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Abstract
We show that register allocation can be viewed as solving a collec-
tion of puzzles. We model the register file as a puzzle board and
the program variables as puzzle pieces; pre-coloring and register
aliasing fit in naturally. For architectures such as PowerPC, x86,
and StrongARM, we can solve the puzzles in polynomial time, and
we have augmented the puzzle solver with a simple heuristic for
spilling. For SPEC CPU2000, the compilation time of our imple-
mentation is as fast as that of the extended version of linear scan
used by LLVM, which is the JIT compiler in the openGL stack of
Mac OS 10.5. Our implementation produces x86 code that is of
similar quality to the code produced by the slower, state-of-the-art
iterated register coalescing of George and Appel with the exten-
sions proposed by Smith, Ramsey, and Holloway in 2004.

Categories and Subject Descriptors D.3.4 [Processors]: Code
generation

General Terms Algorithms, Theory

Keywords Register allocation, puzzle solving, register aliasing

1. Introduction
Researchers and compiler writers have used a variety of ab-
stractions to model register allocation, including graph color-
ing [12, 17, 36], integer linear programming [2, 19], partitioned
Boolean quadratic optimization [21, 35], and multi-commodity
network flow [25]. These abstractions represent different trade-
offs between compilation speed and quality of the produced code.
For example, linear scan [33, 38] is a simple algorithm based on
the coloring of interval graphs that produces code of reasonable
quality with fast compilation time; iterated register coalescing [17]
is a more complicated algorithm that, although slower, tends to
produce code of better quality than linear scan. Finally, the Appel-
George algorithm [2] achieves optimal spilling, with respect to a
cost model, in worst-case exponential time via integer linear pro-
gramming.

In this paper we introduce a new abstraction: register allocation
by puzzle solving. We model the register file as a puzzle board and
the program variables as puzzle pieces. The result is a collection
of puzzles with one puzzle per instruction in the intermediate rep-
resentation of the source program. We will show that puzzles are
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easy to use, that we can solve them efficiently, and that they pro-
duce code that is competitive with the code produced by state-of-
the-art algorithms. Specifically, we will show how for architectures
such as PowerPC, x86, and StrongARM we can solve each puz-
zle in linear time in the number of registers, how we can extend
the puzzle solver with a simple heuristic for spilling, and how pre-
coloring and register aliasing fit in naturally. Pre-colored variables
are variables that have been assigned to particular registers before
register allocation begins; two register names alias [36] when an
assignment to one register name can affect the value of the other.

We have implemented a puzzle-based register allocator. Our
register allocator has four steps:

1. transform the program into an elementary program by aug-
menting it with special instructions called ϕ-functions [13], π-
functions [5], and parallel copies (using the technique described
in Section 2.2);

2. transform the elementary program into a collection of puzzles
(using the technique described in Section 2.2);

3. do puzzle solving, spilling, and coalescing (using the tech-
niques described in Sections 3 and 4); and finally

4. transform the elementary program and the register allocation
result into assembly code (by implementing ϕ-functions, π-
functions, and parallel copies using the permutations described
by Hack et al. [20]).

For SPEC CPU2000, our implementation is as fast as the ex-
tended version of linear scan used by LLVM, which is the JIT
compiler in the openGL stack of Mac OS 10.5. We compare the
x86 code produced by gcc, our puzzle solver, the version of lin-
ear scan used by LLVM [14], the iterated register coalescing algo-
rithm of George and Appel [17] with the extensions proposed by
Smith, Ramsey, and Holloway [36], and the partitioned Boolean
quadratic optimization algorithm [21]. The puzzle solver produces
code that is, on average, faster than the code produced by extended
linear scan, and of similar quality to the code produced by iterated
register coalescing. Unsurprisingly, the exponential-time Boolean
optimization algorithm produces the fastest code.

The key insight of the puzzles approach lies in the use of
elementary programs, which are described in Section 2.2. In an
elementary program, all live ranges are small and that enables us
to define and solve one puzzle for each instruction in the program.

In the following section we define our puzzles and in Section 3
we show how to solve them. In Section 4 we present our approach
to spilling and coalescing, and in Section 5 we discuss some opti-
mizations in the puzzle solver. We give our experimental results in
Section 6, and we discuss related work in Section 7. Finally, Sec-
tion 8 concludes the paper. The extended version of our paper [32]
has appendices with the proofs of the four theorems stated in this
paper; we have omitted the proofs in this version due to space con-
straints.
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Figure 1. Three types of puzzles.

2. Puzzles
A puzzle consists of a board and a set of pieces. Pieces cannot
overlap on the board, and a subset of the pieces are already placed
on the board. The challenge is to fit the remaining pieces on the
board.

We will now explain how to map a register file to a puzzle board
and how to map program variables to puzzle pieces. Every resulting
puzzle will be of one of the three types illustrated in Figure 1 or a
hybrid.

2.1 From Register File to Puzzle Board
The bank of registers in the target architecture determines the shape
of the puzzle board. Every puzzle board has a number of separate
areas, where each area is divided into two rows of squares. We
will explain in Section 2.2 why an area has exactly two rows. The
register file may support aliasing, which determines the number of
columns in each area, the valid shapes of the pieces, and the rules
for placing the pieces on the board. We distinguish three types of
puzzles: type-0, type-1 and type-2, where each area of a type-n
puzzle has 2n columns.

Type-0 puzzles. The bank of registers used in PowerPC and the
bank of integer registers used in ARM are simple cases because
they do not support register aliasing. Figure 2(a) shows the puz-
zle board for PowerPC. Every area has just one column that corre-
sponds to one of the 32 registers. Both PowerPC and ARM give a
type-0 puzzle for which the pieces are of the three kinds shown in
Figure 1. We can place an X-piece on any square in the upper row,
we can place a Z-piece on any square in the lower row, and we can
place a Y-piece on any column. It is straightforward to see that we
can solve a type-0 puzzle in linear time in the number of areas by
first placing all the Y-pieces on the board and then placing all the
X-pieces and Z-pieces on the board.

Type-1 puzzles. Figure 2(b) shows the puzzle board for the
floating point registers used in the ARM architecture. This register
bank has 32 single precision registers that can be combined into 16
pairs of double precision registers. Thus, every area of this puzzle
board has two columns, which correspond to the two registers that
can be paired. For example, the 32-bit registers S0 and S1 are in
the same area because they can be combined into the 64-bit register
D0. Similarly, because S1 and S2 cannot be combined into a double
register, they denote columns in different areas. ARM gives a type-
1 puzzle for which the pieces are of the six kinds shown in Figure 1.
We define the size of a piece as the number of squares that it
occupies on the board. We can place a size-1 X-piece on any square
in the upper row, a size-2 X-piece on the two upper squares of any
area, a size-1 Z-piece on any square in the lower row, a size-2 Z-
piece on the two lower squares of any area, a size-2 Y-piece on any

ARM: 16 double precision floating point registers

PowerPC: 32 general purpose integer registers

x86: 8 integer registers, AX≡EAX, SI≡ESI, etc

SPARC V8: 8 quad-precision floating point registers
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Figure 2. Examples of register banks mapped into puzzle boards.

column, and a size-4 Y-piece on any area. Section 3 explains how
to solve a type-1 puzzle in linear time in the number of areas.

Type-2 puzzles. SPARC V8 [22, pp 33] supports two levels
of register aliasing: first, two 32-bit floating-point registers can
be combined to hold a single 64-bit value; then, two of these 64-
bit registers can be combined yet again to hold a 128-bit value.
Figure 2(c) shows the puzzle board for the floating point registers
of SPARC V8. Every area has four columns corresponding to four
registers that can be combined. This architecture gives a type-2
puzzle for which the pieces are of the nine kinds shown in Figure 1.
The rules for placing the pieces on the board are a straightforward
extension of the rules for type-1 puzzles. Importantly, we can place
a size-2 X-piece on either the first two squares in the upper row
of an area, or on the last two squares in the upper row of an area.
A similar rule applies to size-2 Z-pieces. Solving type-2 puzzles
remains an open problem.

Hybrid puzzles. The x86 gives a hybrid of type-0 and type-
1 puzzles. Figure 3 shows the integer-register file of the x86, and
Figure 2(d) shows the corresponding puzzle board. The registers
AX, BX, CX, DX give a type-1 puzzle, while the registers EBP, ESI,
EDI, ESP give a type-0 puzzle. We treat the EAX, EBX, ECX, EDX
registers as special cases of the AX, BX, CX, DX registers; values in
EAX, EBX, ECX, EDX take up to 32 bits rather than 16 bits. Notice that
x86 does not give a type-2 puzzle because even though we can fit
four 8-bit values into a 32-bit register, x86 does not provide register
names for the upper 16-bit portion of that register. For a hybrid of
type-1 and type-0 puzzles, we first solve the type-0 puzzles and
then the type-1 puzzles.

The floating point registers of SPARC V9 [39, pp 36-40] give
a hybrid of a type-2 and a type-1 puzzle because half the registers
can be combined into quad precision registers.
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Figure 3. General purpose registers of the x86 architecture

2.2 From Program Variables to Puzzle Pieces
We map program variables to puzzle pieces in a two-step process:
first we convert a source program into an elementary program and
then we map the elementary program into puzzle pieces.

From a source program to an elementary program. We can
convert an ordinary program into an elementary program in three
steps. First, we transform the source program into static single as-
signment (SSA) form [13] by renaming variables and adding ϕ-
functions at the beginning of each basic block. Second, we trans-
form the SSA-form program into static single information (SSI)
form [1]. In our flavor of SSI form, every basic block ends with
a π-function that renames the variables that are live going out of
the basic block. (The name π-assignment was coined by Bodik et
al. [5]. It was originally called σ-function in [1], and switch oper-
ators in [23].) Finally, we transform the SSI-form program into an
elementary program by inserting a parallel copy between each pair
of consecutive instructions in a basic block, and renaming the vari-
ables alive at that point. Appel and George used the idea of inserting
parallel copies everywhere in their ILP-based approach to register
allocation with optimal spilling [2]. In summary, in an elementary
program, every basic block begins with a ϕ-function, has a parallel
copy between each consecutive pair of instructions, and ends with a
π-function. Figure 4(a) shows a program, and Figure 4(b) gives the
corresponding elementary program. As an optimization, we have
removed useless ϕ-functions from the beginning of blocks with a
single predecessor. In this paper we adopt the convention that lower
case letters denote variables that can be stored into a single regis-
ter, and upper case letters denote variables that must be stored into
a pair of registers. Names in typewriter font, e.g., AL, denote pre-
colored registers. We use x = y to denote an instruction that uses
y and defines x; it is not a simple copy.

Cytron et al. [13] gave a polynomial time algorithm to convert
a program into SSA form, and Ananian [1] gave a polynomial time
algorithm to convert a program into SSI form. We can perform the
step of inserting parallel copies in polynomial time as well.

From an elementary program to puzzle pieces. A program
point [2] is a point between any pair of consecutive instructions.
For example, the program points in Figure 4(b) are p0, . . . , p11.
The collection of program points where a variable v is alive con-
stitutes its live range. The live ranges of programs in elementary
form contain at most two program points. A variable v is said to
be live-in at instruction i if its live range contains a program point
that precedes i; v is live-out at i if v’s live range contains a program
point that succeeds i. For each instruction i in an elementary pro-
gram we create a puzzle that has one piece for each variable that is
live in or live out at i (or both). The live ranges that end at i become
X-pieces; the live ranges that begin at i become Z-pieces; and the
live ranges that cross i become Y-pieces. Figure 5 gives an exam-
ple of a program fragment that uses six variables, and it shows their
live ranges and the resulting puzzle pieces.

We can now explain why each area of a puzzle board has exactly
two rows. We can assign a register both to one live range that ends
in the middle and to one live range that begins in the middle. We
model that by placing an X-piece in the upper row and a Z-piece

      A = •
p1:
      branch L2, L3

      c = •
p3:
      jump L4

   AL = •
p6:
       c = AL
p7:
      jump L4

       join L2, L3
p9:
       • = c, A
p10:
       jump Lend

p2:

p8:
p4:

p5:

L1

L2

L3

L4

p0:

p11:

(a)

     A01 = •
p1: (A1) = (A01)

p2,5: [(A2):L2, (A5):L3] = π (A1)

     c23 = •
p3: (A3,c3) = (A2,c23)

p4: [(A4,c4):L4] = π(A3,c3)

  AL56 = •
p6: (A6, AL6) = (A5, AL56)

     c67 = AL6
p7: (A7,c7) = (A6,c67)

p8: [(A8,c8):L4] = π(A7,c7)

p9: (A9, c9) = Φ[(A4, c4):L2, (A8, c8):L3]

       • = c9, A9
p10: ( ) = ( )
p11: [( ):Lend] = π()

L4

L1

L2 L3

p0: [():L1] = π()

(b)

Figure 4. (a) Original program. (b) Elementary program.

right below in the lower row. However, if we assign a register to a
long live range, then we cannot assign that register to any other live
range. We model that by placing a Y-piece, which spans both rows.

The sizes of the pieces are given by the types of the variables.
For example, for x86, an 8-bit variable with a live range that ends in
the middle becomes a size-1 X-piece, while a 16 or 32-bit variable
with a live range that ends in the middle becomes a size-2 X-
piece. Similarly, an 8-bit variable with a live range that begins in
the middle becomes a size-1 Z-piece, while a 16 or 32-bit variable
with a live range that ends in the middle becomes a size-2 Z-piece.
An 8-bit variable with a long live range becomes a size-2 Y-piece,
while a 16-bit variable with a long live range becomes a size-4 Y-
piece. Figure 9(a) shows the puzzles produced for the program in
Figure 4(b).

2.3 Register Allocation and Puzzle Solving are Equivalent
The core register allocation problem, also known as spill-free regis-
ter allocation, is: given a program P and a number K of available
registers, can each of the variables of P be mapped to one of the
K registers such that variables with interfering live ranges are as-
signed to different registers?

In case some of the variables are pre-colored, we call the prob-
lem spill-free register allocation with pre-coloring.

THEOREM 1. (Equivalence) Spill-free register allocation with
pre-coloring for an elementary program is equivalent to solving
a collection of puzzles.
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Figure 5. Mapping program variables into puzzle pieces.
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Figure 6. Padding: (a) puzzle board, (b) pieces before padding, (c)
pieces after padding. The new pieces are marked with stripes.

3. Solving Type-1 Puzzles
Figure 8 shows our algorithm for solving type-1 puzzles. Our
algorithmic notation is visual rather than textual. The goal of this
section is to explain how the algorithm works and to point out
several subtleties. We will do that in two steps. First we will define
a visual language of puzzle solving programs that includes the
program in Figure 8. After explaining the semantics of the whole
language, we then focus on the program in Figure 8 and explain
how seemingly innocent changes to the program would make it
incorrect.

We will study puzzle-solving programs that work by completing
one area at a time. To enable that approach, we may have to pad a
puzzle before the solution process begins. If a puzzle has a set of
pieces with a total area that is less than the total area of the puzzle
board, then a strategy that completes one area at a time may get
stuck unnecessarily because of a lack of pieces. So, we pad such
puzzles by adding size-1 X-pieces and size-1 Z-pieces, until these
two properties are met: (i) the total area of the X-pieces equals the
total area of the Z-pieces; (ii) the total area of all the pieces is 4K,
where K is the number of areas on the board. Note that total area
includes also pre-colored squares. Figure 6 illustrates padding. In
the full version [32] we show that a puzzle is solvable if and only if
its padded version is solvable.

3.1 A Visual Language of Puzzle Solving Programs
We say that an area is complete when all four of its squares are
covered by pieces; dually, an area is empty when none of its four
squares are covered by pieces.

The grammar in Figure 7 defines a visual language for program-
ming type-1 puzzle solvers: a program is a sequence of statements,
and a statement is either a rule r or a conditional statement r : s.
We now informally explain the meaning of rules, statements, and
programs.

Y

X X

Z Z

X

Z Z

X X X

Z Z

X

Z

X

Z

X

Z

X X X

Z

X

ZZ

X

Z Z

Z

X

X
ZZ

X

X

Z

X

X

Z

X

Z

Y Y

Y Y

Y

Z

Y

Y Y

Y
X

Z

X

Z

X

ZZ Z

X X X X
Z Z

  (Program)   p  ::= s1 . . . sn

(Statement)  s   ::= r | r : s

    (Rule)  r   ::=

Figure 7. A visual language for programming puzzle solvers.

Rules. A rule explains how to complete an area. We write a
rule as a two-by-two diagram with two facets: a pattern, that is,
dark areas which show the squares (if any) that have to be filled in
already for the rule to apply; and a strategy, that is, a description of
how to complete the area, including which pieces to use and where
to put them. We say that the pattern of a rule matches an area a if
the pattern is the same as the already-filled-in squares of a. For a
rule r and an area a where the pattern of r matches a,

• the application of r to a succeeds, if the pieces needed by the
strategy of r are available; the result is that the pieces needed
by the strategy of r are placed in a;

• the application of r to a fails otherwise.

For example, the rule

X

Z

has a pattern consisting of just one square—namely, the square in
the top-right corner, and a strategy consisting of taking one size-1
X-piece and one size-2 Z-piece and placing the X-piece in the top-
left corner and placing the Z-piece in the bottom row. If we apply
the rule to the area

and one size-1 X-piece and one size-2 Z-piece are available, then
the result is that the two pieces are placed in the area, and the rule
succeeds. Otherwise, if one or both of the two needed pieces are
not available, then the rule fails. We cannot apply the rule to the
area

because the pattern of the rule does not match this area.



Statements. For a statement that is simply a rule r, we have
explained above how to apply r to an area a where the pattern of r
matches a. For a conditional statement r : s, we require all the rules
in r : s to have the same pattern, which we call the pattern of r : s.
For a conditional statement r : s and an area a where the pattern
of r : s matches a, the application of r : s to a proceeds by first
applying r to a; if that application succeeds, then r : s succeeds
(and s is ignored); otherwise the result of r : s is the application of
the statement s to a.

Programs. The execution of a program s1 . . . sn on a puzzle P
proceeds as follows:

• For each i from 1 to n:

For each area a of P such that the pattern of si matches a:

− apply si to a

− if the application of si to a failed, then terminate the
entire execution and report failure

Example. Let us consider in detail the execution of the program

Z

X X ( )Z

X
Y

Z :
on the puzzle

X X

Z
Y

Z

.
The first statement has a pattern which matches only the first

area of the puzzle. So, we apply the first statement to the first area,
which succeeds and results in the following puzzle.

Y
ZZ

X X

.
The second statement has a pattern which matches only the

second area of the puzzle. So, we apply the second statement to
the second area. The second statement is a conditional statement,
so we first apply the first rule of the second statement. That rule
fails because the pieces needed by the strategy of that rule are not
available. We then move on to apply the second rule of the second
statement. That rule succeeds and completes the puzzle.

Time Complexity. It is straightforward to implement the appli-
cation of a rule to an area in constant time. A program executes
O(1) rules on each area of a board. So, the execution of a program
on a board with K areas takes O(K) time.

3.2 Our Puzzle Solving Program
Figure 8 shows our puzzle solving program, which has 15 num-
bered statements. Notice that the 15 statements have pairwise dif-
ferent patterns; each statement completes the areas with a particular
pattern. While our program may appear simple and straightforward,
the ordering of the statements and the ordering of the rules in con-
ditional statements are in several cases crucial for correctness. In
general our program tries to fill the most constrained patterns first.
For example, statements 1–8 can only be filled in one way, while
the other statements admit two or more solutions. We will discuss
four such subtleties.

First, it is imperative that in statement 7 our program prefers
a size-2 X-piece over two size-1 X-pieces. Suppose we replace
statement 7 with a statement 7′ which swaps the order of the two
rules in statement 7. The application of statement 7′ can take us
from a solvable puzzle to an unsolvable puzzle, for example:
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Figure 8. Our puzzle solving program
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Because statement 7 prefers a size-2 X-piece over two size-1
X-pieces, the example is impossible. Notice that our program also
prefers the size-2 pieces over the size-1 pieces in statements 8–15
for reasons similar to our analysis of statement 7.

Second, it is critical that statements 7–10 come before state-
ments 11–14. Suppose we swap the order of the two subsequences
of statements. The application of rule 11 can now take us from a
solvable puzzle to an unsolvable puzzle, for example:

Y Y

X

Z
Y

X
Y

Z

X X

solved

stuck

Notice that the example uses an area in which two squares are
filled in. Because statements 7–10 come before statements 11–14,
the example is impossible.

Third, it is crucial that statements 11–14 come before statement
15. Suppose we swap the order such that statement 15 comes before
statements 11–14. The application of rule 15 can now take us from
a solvable puzzle to an unsolvable puzzle, for example:

Z
Y

Z
Y

X

Z

Y Y
X

Z Z Z

solved

stuck

Notice that the example uses an area in which one square is
filled in. Because statements 11–14 come before statement 15, the
example is impossible.

Fourth, it is essential that in statement 11, the rules come in ex-
actly the order given in our program. Suppose we replace statement
11 with a statement 11′ which swaps the order of the first two rules
of statement 11. The application of statement 11′ can take us from
a solvable puzzle to an unsolvable puzzle. For example:
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      AX = •
p1:
      branch L2, L3

 BL = •
p3:
 xchg BX,AX
  jump L4

 BX = AX
 AL = •
p6:
 AL = AL
p7:
  jump L4

  join L2, L3
p9:
 •  = BL,AX
p10:
  jump Lend

p2:

p8:
p4:

p5:

L1

L2

L3

L4

p0:

p11:

(a) (b) (c)

Figure 9. (a) The puzzles produced for the program given in Figure 4(b). (b) An example solution. (c) The final program.
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When we use the statement 11 given in our program, this situa-
tion cannot occur. Notice that our program makes a similar choice
in statements 12–14; all for reasons similar to our analysis of state-
ment 11.

THEOREM 2. (Correctness) A type-1 puzzle is solvable if and only
if our program succeeds on the puzzle.

For an elementary program P , we generate |P | puzzles, each of
which we can solve in linear time in the number of registers. So,
we have Corollary 3.

COROLLARY 3. (Complexity) Spill-free register allocation with
pre-coloring for an elementary program P and 2K registers is
solvable in O(|P | ×K) time.

A solution for the collection of puzzles in Figure 9(a) is shown
in Figure 9(b). For simplicity, the puzzles in Figure 9 are not
padded.

4. Spilling and Coalescing
We now present our approach to spilling and coalescing. Figure 10
shows the combined step of puzzle solving, spilling, and coalesc-
ing.

Spilling. If the polynomial-time algorithm of Theorem 3 suc-
ceeds, then all the variables in the program from which the puzzles
were generated can be placed in registers. However, the algorithm
may fail, implying that the need for registers exceeds the number
of available registers. In that situation, the register allocator faces
the task of choosing which variables will be placed in registers and
which variables will be spilled, that is, placed in memory. The goal
is to spill as few variables as possible.

We use a simple spilling heuristic. The heuristic is based on
the observation that when we convert a program P into ele-

• S = empty
• For each puzzle p, in a preorder traversal of the dominator tree

of the program:

while p is not solvable:

− choose and remove a piece s from p, and for every
subsequent puzzle p′ that contains a variable s′ in the
family of s, remove s′ from p′.

S′ = a solution of p, guided by S

S = S′

Figure 10. Register allocation with spilling and local coalescing

mentary form, each of P ’s variables is represented by a family
of variables in the elementary program. For example, the vari-
able c in Figure 4(a) is represented by the family of variables
{c23, c3, c4, c67, c7, c8, c9} in Figure 4(b). When we spill a vari-
able in an elementary program, we choose to simultaneously spill
all the variables in its family and thereby reduce the number of
pieces in many puzzles at the same time. The problem of register
allocation with pre-coloring and spilling of families of variables
is to perform register allocation with pre-coloring while spilling as
few families of variables as possible.

THEOREM 4. (Hardness) Register allocation with pre-coloring
and spilling of families of variables for an elementary program is
NP-complete.

Theorem 4 justifies our use of a spilling heuristic rather than an
algorithm that solves the problem optimally. Figure 10 contains a
while-loop that implements the heuristic; a more detailed version
of this code is given in [32]. It is straightforward to see that the
heuristic visits each puzzle once, that it always terminates, and that
when it terminates, all puzzles have been solved.

In order to avoid separating registers to reload spilled variables
only certain pieces can be removed from an unsolved puzzle. These
pieces represent variables that are neither used nor defined in the
instruction that gave origin to the puzzle. For instance, only the Y
piece f can be removed from the puzzle in Figure 5. When choos-



ing a piece to be removed from a puzzle, we use the “furthest-first”
strategy of Belady [3] that was later used by Poletto and Sarkar [33]
in linear-scan register allocation. The furthest-first strategy spills a
family of variables whose live ranges extend the furthest, according
to a linearization determined by a depth first traversal of the domi-
nator tree of the source program. We do not give preference to any
path. Giving preference to a path would be particularly worthwhile
when profiling information is available.

The total number of puzzles that will be solved during a run
of our heuristic is bounded by |P | + |F|, where |P | denotes the
number of puzzles and |F| denotes the number of families of
variables, that is, the number of variables in the source program.

Coalescing. Traditionally, the task of register coalescing is to
assign the same register to the variables x and y in a copy statement
x = y, thereby avoiding the generation of code for that statement.
An elementary program contains many parallel copy statements
and therefore many opportunities for a form of register coalescing.
We use an approach that we call local coalescing. The goal of
local coalescing is to allocate variables in the same family to the
same register, as much as possible. Local coalescing traverses the
dominator tree of the elementary program in preorder and solves
each puzzle guided by the solution to the previous puzzle, as shown
in Figure 10. In Figure 9(b), the numbers next to each puzzle denote
the order in which the puzzles were solved.

The pre-ordering has the good property that every time a puzzle
corresponding to statement i is solved, all the families of variables
that are defined at program points that dominate i have already
been given at least one location. The puzzle solver can then try
to assign to the piece that represents variable v the same register
that was assigned to other variables in v’s family. For instance,
in Figure 4(b), when solving the puzzle between p2 and p3, the
puzzle solver tries to match the registers assigned to A2 and A3.
This optimization is possible because A2 is defined at a program
point that dominates the definition site of A3, and thus is visited
before.

During the traversal of the dominator tree, the physical location
of each live variable is kept in a vector. If a spilled variable is
reloaded when solving a puzzle, it stays in a register until another
puzzle, possibly many instructions after the reloading point, forces
it to be evicted again. Our approach to handling reloaded variables
is somewhat similar to the second-chance allocation described by
Traub et al. [38].

Figure 9(c) shows the assembly code produced by the puzzle
solver for our running example. We have highlighted the instruc-
tions used to implement parallel copies. The x86 instruction xchg
swaps the contents of two registers.

5. Optimizations
We now describe three optimizations that we have found useful in
our implementation of register allocation by puzzle solving for x86.

Size of the intermediate representation. An elementary pro-
gram has many more variable names than an ordinary program;
fortunately, we do not have to keep any of these extra names. Our
solver uses only one puzzle board at any time: given an instruction
i, variables alive before and after i are renamed when the solver
builds the puzzle that represents i. Once the puzzle is solved, we
use its solution to rewrite i and we discard the extra names. The
parallel copy between two consecutive instructions i1 and i2 in the
same basic block can be implemented right after the puzzle repre-
senting i2 is solved.

Critical Edges and Conventional SSA-form. Before solving
puzzles, our algorithm performs two transformations in the target
control flow graph that, although not essential to the correctness of
our allocator, greatly simplify the elimination of ϕ-functions and
π-functions. The first transformation, commonly described in com-

piler text books, removes critical edges from the control flow graph.
These are edges between a basic block with multiple successors and
a basic block with multiple predecessors [8]. The second transfor-
mation converts the target program into a variation of SSA-form
called Conventional SSA-form (CSSA) [37]. Programs in this form
have the following property: if two variables v1 and v2 are related
by a parallel copy, e.g.: (. . . , v1, . . .) = (. . . , v2, . . .), then the live
ranges of v1 and v2 do not overlap. Hence, if these variables are
spilled, the register allocator can assign them to the same memory
slot. A fast algorithm to perform the SSA-to-CSSA conversion is
given in [11]. These two transformations are enough to handle the
‘swap’ and ‘lost-copy’ problems pointed out by Briggs et al. [8].

Implementing ϕ-functions and π-functions. The allocator
maintains a table with the solution of the first and last puzzles
solved in each basic block. These solutions are used to guide the
elimination of ϕ-functions and π-functions. During the implemen-
tation of parallel copies, the ability to swap register values is nec-
essary to preserve the register pressure found during the register
assignment phase [7, 31]. Some architectures, such as x86, provide
instructions to swap the values in registers. In systems where this
is not the case, swaps can be performed using xor instructions.

6. Experimental Results
Experimental platform. We have implemented our register allo-
cator in the LLVM compiler framework [26], version 1.9. LLVM
is the JIT compiler in the openGL stack of Mac OS 10.5. Our tests
are executed on a 32-bit x86 Intel(R) Xeon(TM), with a 3.06GHz
cpu clock, 3GB of free memory (as shown by the linux command
free) and 512KB L1 cache running Red Hat Linux 3.3.3-7.

Benchmark characteristics. The LLVM distribution provides
a broad variety of benchmarks: our implementation has compiled
and run over 1.3 million lines of C code. LLVM 1.9 and our puzzle
solver pass the same suite of benchmarks. In this section we will
present measurements based on the SPEC CPU2000 benchmarks.
Some characteristics of these benchmarks are given in Figure 11.
All the figures use short names for the benchmarks; the full names
are given in Figure 11. We order these benchmarks by the num-
ber of non-empty puzzles that they produce, which is given in Fig-
ure 13.

Puzzle characteristics. Figure 12 counts the types of puzzles
generated from SPEC CPU2000. A total of 3.45% of the puzzles
have pieces of different sizes plus pre-colored areas so they exercise
all aspects of the puzzle solver. Most of the puzzles are simpler:
5.18% of them are empty, i.e., have no pieces; 58.16% have only
pieces of the same size, and 83.66% have an empty board with no
pre-colored areas. Just 226 puzzles contained only short pieces with
precolored areas and we omit them from the chart.

As we show in Figure 13, 94.6% of the nonempty puzzles in
SPEC CPU2000 can be solved in the first try. When this is not
the case, our spilling heuristic allows for solving a puzzle multiple
times with a decreasing number of pieces until a solution is found.
Figure 13 reports the average number of times that the puzzle solver
had to be called per nonempty puzzle. On average, we solve each
nonempty puzzle 1.05 times.

Number of moves/swaps inserted by the puzzle solver. Fig-
ure 14 shows the number of copy and swap instructions inserted by
the puzzle solver in each of the compiled benchmarks. Local copies
denote instructions used by the puzzle solver to implement paral-
lel copies between two consecutive puzzles inside the same basic
block. Global copies denote instructions inserted into the final pro-
gram during the SSA-elimination phase in order to implement ϕ-
functions and π-functions. Target programs contains one copy or
swap per each 14.7 puzzles in the source program, that is, on av-
erage, the puzzle solver has inserted 0.025 local and 0.043 global
copies per puzzle.



Benchmark LoC asm btcode

gcc 176.gcc 224,099 12,868,208 2,195,700
plk 253.perlbmk 85,814 7,010,809 1,268,148
gap 254.gap 71,461 4,256,317 702,843
msa 177.mesa 59,394 3,820,633 547,825
vtx 255.vortex 67,262 2,714,588 451,516
twf 300.twolf 20,499 1,625,861 324,346
crf 186.crafty 21,197 1,573,423 288,488
vpr 175.vpr 17,760 1,081,883 173,475
amp 188.ammp 13,515 875,786 149,245
prs 197.parser 11,421 904,924 163,025
gzp 164.gzip 8,643 202,640 46,188
bz2 256.bzip2 4,675 162,270 35,548
art 179.art 1,297 91,078 40,762
eqk 183.equake 1,540 91,018 45,241
mcf 181.mcf 2.451 60,225 34,021

Figure 11. Benchmark characteristics. LoC: number of lines of C
code. asm: size of x86 assembly programs produced by LLVM with
our algorithm (bytes). btcode: program size in LLVM’s interme-
diate representation (bytes).

Short/longs, no precol

Short/longs, precol

Longs only, no precol
Shorts only, no precol

Longs only, precol

33.199%
50.448%
0.013%
3.452%
7.707%

Empty puzzles 5.181%

.5

.4

.3

.2

.1
0

.6

.7

.8

.9
1

g
z
p

v
p
r

g
c
c

m
s
a

a
r
t

m
c
f

e
q
k

c
r
f

a
m
p

p
r
s

p
b
k

g
a
p

v
t
x

b
z
2

t
w
f

Figure 12. The distribution of the 1,486,301 puzzles generated
from SPEC CPU2000.

Three other register allocators. We compare our puzzle solver
with three other register allocators, all implemented in LLVM 1.9
and all compiling and running the same benchmark suite of 1.3
million lines of C code. The first is LLVM’s default algorithm,
which is an industrial-strength version of linear scan that uses
extensions by Wimmer et al. [40] and Evlogimenos [14]. The
algorithm does aggressive coalescing before register allocation and
handles holes in live ranges by filling them with other variables
whenever possible. We use ELS (Extended Linear Scan) to denote
this register allocator.

The second register allocator is the iterated register coalescing
of George and Appel [17] with extensions by Smith, Ramsey, and
Holloway [36] for handling register aliasing. We use EIRC (Ex-
tended Iterated Register Coalescing) to denote this register alloca-
tor.

The third register allocator is based on partitioned Boolean
quadratic programming (PBQP) [35]. The algorithm runs in worst-
case exponential time and does optimal spilling with respect to a
set of Boolean constraints generated from the program text. We

Benchmark #puzzles avg max once

gcc 476,649 1.03 4 457,572
perlbmk 265,905 1.03 4 253,563
gap 158,757 1.05 4 153,394
mesa 139,537 1.08 9 125,169
vortex 116,496 1.02 4 113,880
twolf 60,969 1.09 9 52,443
crafty 59,504 1.06 4 53,384
vpr 36,561 1.10 10 35,167
ammp 33,381 1.07 8 31,853
parser 31,668 1.04 4 30,209
gzip 7,550 1.06 3 6,360
bzip2 5,495 1.09 3 4,656
art 3,552 1.08 4 3,174
equake 3,365 1.11 8 2,788
mcf 2,404 1.05 3 2,120

1,401,793 1.05 10 1,325,732

Figure 13. Number of calls to the puzzle solver per nonempty puz-
zle. #puzzles: number of nonempty puzzles. avg and max: average
and maximum number of times the puzzle solver was used per puz-
zle. once: number of puzzles for which the puzzle solver was used
only once.
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Figure 14. Number of copy and swap instructions inserted per
puzzle.

use this algorithm to gauge the potential for how good a register
allocator can be. Lang Hames and Bernhard Scholz produced the
implementations of EIRC and PBQP that we are using.

Stack size comparison. The top half of Figure 15 compares the
maximum amount of space that each assembly program reserves on
its call stack. The stack size gives an estimate of how many different
variables are being spilled by each allocator. The puzzle solver and
extended linear scan (LLVM’s default) tend to spill more variables
than the other two algorithms.

Spill-code comparison. The bottom half of Figure 15 compares
the number of load/store instructions in the assembly code. The
puzzle solver inserts marginally fewer memory-access instructions
than PBQP, 1.2% fewer memory-access instructions than EIRC,
and 9.6% fewer memory-access instructions than extended linear
scan (LLVM’s default). Note that although the puzzle solver spills
more variables than the other allocators, it removes only part of the
live range of a spilled variable.

Run-time comparison. Figure 16 compares the run time of the
code produced by each allocator. Each bar shows the average of five
runs of each benchmark; smaller is better. The base line is the run
time of the code when compiled with gcc -O3 version 3.3.3. Note
that the four allocators that we use (the puzzle solver, extended lin-
ear scan (LLVM’s default), EIRC and PBQP) are implemented in
LLVM, while we use gcc, an entirely different compiler, only for
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Figure 16. Comparison of the running time of the code produced
with our algorithm and other allocators. The bars are relative to gcc
-O3; shorter bars are better.

reference purposes. Considering all the benchmarks, the four allo-
cators produce faster code than gcc; the fractions are: puzzle solver
0.944, extended linear scan (LLVM’s default) 0.991, EIRC 0.954
and PBQP 0.929. If we remove the floating point benchmarks, i.e.,
msa, amp, art, eqk, then gcc -O3 is faster. The fractions are:
puzzle Solver 1.015, extended linear scan (LLVM’s default) 1.059,
EIRC 1.025 and PBQP 1.008. We conclude that the puzzle solver
produces faster code than the other polynomial-time allocators, but
slower code than the exponential-time allocator.

We have found that the puzzle solver does particularly well on
sparse control-flow graphs. We can easily find examples of basic
blocks where the puzzle solver outperforms even PBQP, which
is a slower algorithm. For instance, with two register pairs (AL,
AH, BL, BH) available, the puzzle solver allocates the program in

a = •

B = •

c = •

d = B

E = c

• = a,d,E

a B c d E

R4 = R1
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Figure 17. (left) Example program. (center) Puzzle pieces. (right)
Register assignment.

Figure 17 without spilling, while the other register allocators (ELS,
EIRC and PBQP) spill at least one variable. In this example, the
puzzle solver inserts one copy between instructions four and five to
split the live range of variable a.

Compile-time comparison. Figure 18 compares the register al-
location time and the total compilation time of the puzzle solver
and extended linear scan (LLVM’s default). On average, extended
linear scan (LLVM’s default) is less than 1% faster than the puzzle
solver. The total compilation time of LLVM with the default alloca-
tor is less than 3% faster than the total compilation time of LLVM
with the puzzle solver. We note that LLVM is industrial-strength
and highly tuned software, in contrast to our puzzle solver.

We omit the compilation times of EIRC and PBQP because the
implementations that we have are research artifacts that have not
been optimized to run fast. Instead, we gauge the relative compi-
lation speeds from statements in previous papers. The experiments
shown in [21] suggest that the compilation time of PBQP is be-
tween two and four times the compilation time of extended iterated
register coalescing. The extensions proposed by Smith et al. [36]
can be implemented in a way that adds less than 5% to the compi-
lation time of a graph-coloring allocator. Timing comparisons be-
tween graph coloring and linear scan (the core of LLVM’s algo-
rithm) span a wide spectrum. The original linear scan paper [33]
suggests that graph coloring is about twice as slow as linear scan,
while Traub et al. [38] gives an slowdown of up to 3.5x for large
programs, and Sarkar and Barik [34] suggests a 20x slowdown.
From these observations we conclude that extended linear scan
(LLVM’s default) and our puzzle solver are significantly faster than
the other allocators.

7. Related Work
We now discuss work on relating programs to graphs and on com-
plexity results for variations of graph coloring. Figure 21 summa-
rizes most of the results.

Register allocation and graphs. The intersection graph of the
live ranges of a program is called an interference graph. Figure 19
shows the interference graph of the elementary program in Fig-
ure 4(b). Any graph can be the interference graph of a general pro-
gram [12]. SSA-form programs have chordal interference graphs
[6, 9, 20, 30], and the interference graphs of SSI-form programs
are interval graphs [10]. We call the interference graph of an ele-
mentary program an elementary graph [32]. Each connected com-
ponent of an elementary graph is a clique substitution of P3, the
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Figure 19. Interference graph of the program in Figure 4(b).
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Figure 20. Elementary graphs and other intersection graphs. RDV-
graphs are intersection graphs of directed lines on a tree [29].

simple path with three nodes. We construct a clique substitution of
P3 by replacing each node of P3 by a clique, and connecting all the
nodes of adjacent cliques.

Elementary graphs are a proper subset of interval graphs, which
are contained in the class of chordal graphs. Figure 20 illus-
trates these inclusions. Elementary graphs are also Trivially Perfect
Graphs [18], as we show in [32]. In a trivially perfect graph, the
size of the maximal independent set equals the size of the number
of maximal cliques.

Spill-free Register Allocation. Spill-free register allocation is
NP-complete for general programs [12] because coloring general
graphs is NP-complete. However, this problem has a polynomial
time solution for SSA-form programs [6, 9, 20] because chordal
graphs can be colored in polynomial time [4]. This result assumes
an architecture in which all the registers have the same size.

Aligned 1-2-Coloring. Register allocation for architectures
with type-1 aliasing is modeled by the aligned 1-2-coloring prob-
lem. In this case, we are given a graph in which vertices are as-
signed a weight of either 1 or 2. Colors are represented by numbers,
e.g.: 0, 1, . . . , 2K − 1, and we say that the two numbers 2i, 2i + 1

Class of graphs
Program general SSA-form SSI-form elementary
Problem general chordal interval elementary
ALIGNED 1-2- NP-cpt [24] NP-cpt [4] NP-cpt [4] linear [TP]
COLORING
EXTENSION
ALIGNED 1-2- NP-cpt [24] NP-cpt [27] NP-cpt [27] linear [TP]
COLORING
COLORING NP-cpt [24] NP-cpt [4] NP-cpt [4] linear [TP]
EXTENSION
COLORING NP-cpt [24] linear [16] linear [16] linear [16]

Figure 21. Algorithms and hardness results for graph coloring.
NP-cpt = NP-complete; TP = this paper.

are aligned. We define an aligned 1-2-coloring to be a coloring that
assigns each weight-two vertex two aligned colors. The problem
of finding an optimal 1-2-aligned coloring is NP-complete even for
interval graphs [27].

Pre-coloring Extension. Register allocation with pre-coloring
is equivalent to the pre-coloring extension problem for graphs.
In this problem we are given a graph G, an integer K and a
partial function ϕ that associates some vertices of G to colors. The
challenge is to extend ϕ to a total function ϕ′ such that (1) ϕ′ is
a proper coloring of G and (2) ϕ′ uses less than K colors. Pre-
coloring extension is NP-complete for interval graphs [4] and even
for unit interval graphs [28].

Aligned 1-2-coloring Extension. The combination of 1-2-
aligned coloring and pre-coloring extension is called aligned 1-
2-coloring extension. We show in [32] that this problem, when
restricted to elementary graphs, is equivalent to solving type-1
puzzles; thus, it has a polynomial time solution.

Register allocation and spilling. When spills happen, loads
and stores are inserted into the source program to transfer values
to and from memory. If we assume that each load and store has a
cost, then the problem of minimizing the total cost added by spill
instructions is NP-complete, even for basic blocks in SSA-form, as
shown by Farach et al. [15]. If the cost of loads and stores is not
taken into consideration, then a simplified version of the spilling
problem is to determine the minimum number of variables that
must be removed from the source program so that the program
can be allocated with K registers. This problem is equivalent to
determining if a graph G has a K-colorable induced subgraph,
which is NP-complete for chordal graphs, but has polynomial time
solution for interval graphs, as demonstrated by Yannakakis and
Gavril [41].

8. Conclusion
In this paper we have introduced register allocation by puzzle solv-
ing. We have shown that our puzzle-based allocator runs as fast as
the algorithm used in an industrial-strength JIT compiler and that it
produces code that is competitive with state-of-the-art algorithms.
A compiler writer can model a register file as a puzzle board, and
straightforwardly transform a source program into elementary form
and then into puzzle pieces. For a compiler that already uses SSA-
form as an intermediate representation, the extra step to elementary
form is small. Our puzzle solver works for architectures such as
x86, ARM, and PowerPC. Puzzle solving for SPARC V8 and V9
(type-2 puzzles) remains an open problem. Our puzzle solver pro-
duces competitive code even though we use simple approaches to
spilling and coalescing. We speculate that if compiler writers im-
plement a puzzle solver with advanced approaches to spilling and
coalescing, then the produced code will be even better.
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