JOHANNES KEPLER
UNIVERSITAT LINZ

Netzwerk fir Forschung, Lehre und Praxis

Real-time Ray Tracing of Dynamic Scenes

DIPLOMARBEIT

zur Erlangung des akademischen Grades

DIPLOMINGENIEUR

in der Studienrichtung

INFORMATIK

Angefertigt am Institut fiir Parallele und Graphische Datenverarbeitung

Betreuung;:

o. Univ.—Prof. Dr. Jens Volkert

Eingereicht von:

Stephan Reiter, Bakk. techn.

Mitbetreuung:
Dipl.—Ing. Paul Heinzlreiter

Linz, Juni 2008

Johannes Kepler Universitat
A-4040 Linz - AltenbergerstraBe 69 - Internet: http://www.uni-linz.ac.at - DVR 0093696

Abstract

In this thesis ray tracing of dynamic scenes in real-time is explored based on a separation of
static from animated primitives in acceleration structures suited for each type of geometry.

For dynamic geometry a two—level bounding volume hierarchy (BVH) is introduced that
efficiently supports rigidly animated geometry, deformable geometry and fully dynamic ge-
ometry with incoherent motion and topology changes. With selective rebuilding an updating
technique for BVHs is described that limits costly rebuilding operations to degenerated parts
of the hierarchy and allows for balancing updating and rendering times. Furthermore a new
ordered traversal scheme for BVHs is introduced that is based on a probabilistic model.

Kd-trees are the acceleration structure of choice for static geometry and are commonly
built by employing the surface area heuristic to determine optimal splitting planes. In this
thesis two approaches for reducing the memory footprint of kd—trees are presented. Index
list compaction compresses the list of triangle indices used by leaves to reference triangles.
The cost—scaling termination criterion for kd—tree construction, on the other hand, limits the
creation of deep trees by weighing the costs of splitting a node higher with an increasing
depth.

Kurzfassung

Im Rahmen dieser Diplomarbeit wird die Umsetzbarkeit von Ray—Tracing dynamischer
Szenen in Echtzeit untersucht, basierend auf einer Trennung statischer von animierten Ob-
jekten in jeweils geeigneten Beschleunigungsstrukturen.

Fiir dynamische Geometrie wird eine zweistufige Hiillkdrperhierarchie (BVH) vorgestellt,
die Unterstiitzung fiir starr animierte Geometrie, deformierbare Geometrie und komplett dy-
namische Geometrie mit inkohdrenter Bewegung und Topologiednderungen aufweist. Mit
der Selektiven Neukonstruktion wird eine Aktualisierungsmethode beschrieben, die auf-
wendige Konstruktionsschritte auf degenerierte Teile einer Hierarchie beschriankt und ei-
ne Balanzierung von Aktualisierungs— und Darstellungszeiten erlaubt. Au3erdem wird ein
neuer Ansatz fiir die riumlich geordnete Traversierung von BVHs vorgestellt, der auf einem
Modell der Wahrscheinlichkeitsrechnung basiert.

Kd-Bédume sind die die Beschleunigungsstruktur der Wahl fiir statische Geometrie und wer-
den im Allgemeinen unter Verwendung der sogenannten ,,Surface Area Heuristic* fiir die
Bestimmung optimaler Teilungsebenen konstruiert. In dieser Diplomarbeit werden zwei
neue Ansitze fiir die Reduzierung des Speicherbedarfs von Kd-Bdumen prisentiert. Die
Index-Listen Verdichtung komprimiert die Liste der Dreiecksindizes, welche in Blittern
fiir Verweise auf Dreiecke verwendet wird. Das kostenskalierende Abbruchkriterium fiir
die Konstruktion von Kd—Bidumen hingegen beschrinkt die Erstellung tiefer Bdumen durch
Erhohung der Teilungskosten von Knoten mit zunehmender Tiefe.

Danksagung

Vor allen anderen méchte ich mich an dieser Stelle ganz herzlich bei meinen Eltern bedan-
ken, die mir ein sorgenfreies Studium ermoglicht haben und in all dieser Zeit immer fiir
mich da gewesen sind und mich unterstiitzt haben. Auch meinem Bruder bin ich zu Dank
verpflichtet, der mit mir Zeit bei der empirischen Forschung im Bereich der Computergrafik
verbracht hat und auch Ideen zur Umsetzung von Projekten in der Vergangenheit beigesteu-
ert hat.

Mein besonderer Dank gilt auch Prof. Volkert fiir die Betreuung meiner Diplomarbeit und
fiir die stets konstruktive und gut gemeinte Kritik, die zum Fortschritt des Projekts in die
richtige Richtung beigetragen und iiber viele Monate hinweg motivierend gewirkt hat.

Bei Paul Heinzlreiter mochte ich mich herzlich fiir die Unterstiitzung bei der Bearbeitung
des gewihlten Themas bedanken. Er hat mir die Freiheit gelassen, eigene Wege in der For-
schung zu gehen, stand aber gleichzeitig immer mit Rat zur weiteren Vorgangsweise bereit.
Seine kurzfristige Erreichbarkeit hat die Erstellung dieser Arbeit immens beschleunigt, was
mir ein groBes Anliegen war.

Auch mochte ich mich bei Gerhard Kurka bedanken, der meine Begeisterung fiir Computer-
grafik im Laufe meines Studiums nur noch weiter angefacht hat. Mit der Betreuung meiner
Bakkalaureatsarbeit, die ebenfalls das Thema Ray—Tracing behandelt hat, hat er beim Legen
eines wichtigen Grundsteins fiir diese Diplomarbeit mitgewirkt.

Weiterer Dank gilt der Community von ompf.org, die eine wichtige Quelle von praktischen
Hinweisen zur Umsetzung von Echtzeit-Ray-Tracing war. AuBBerdem mochte ich mich bei
den Mitgliedern des ioguake3—Projekts bedanken, allen voran Thilo Schulz und Zacha-
ry Slater, die die Entwicklung eines wichtigen Projekts im Rahmen dieser Arbeit ermoglicht
und unterstiitzt haben.

Danke!
Linz, Juni 2008 Stephan Reiter

Contents

1 Introduction

2 Background
2.1 PFastlntersectionTestso
2.2 Acceleration Structures Lo
2.2.1 Types of Partitioning Schemes
2.2.2 Adaptive vs. Uniform Structures
2.2.3 Construction of Adaptive Acceleration Structures
224 The Surface AreaHeuristic.
2.3 Ray Tracing Static Geometry
2.3.1 Constructionof Kd-Trees
2.3.2 Construction Based on SAH-Sampling
2.3.3 RayTraversalof Kd-Trees
2.3.4 Exploiting Ray Coherence for Traversal
2.3.5 MultiLevel Ray Tracing
2.4 Ray Tracing Dynamic Geometry
24.1 Typesof Animations
242 Kd-Tree Based Solutions
2.4.3 Bounding Volume Hierarchies
2.4.4 Construction of Bounding Volume Hierarchies
245 Traversalof BVHs L oo
2.4.6 Traversal withRayPackets
247 Updating Bounding Volume Hierarchies
2.4.8 Selective Restructuring Lo

3 Design
3.1 Challenges. e e
3.2 High-Level Solutions
3.2.1 Addressing Static Geometry
3.2.2 A Two-Level Acceleration Structure for Dynamic Geometry
3.2.3 Tracing Rays with Multiple Acceleration Structures
3.2.4 Coherent Ray Packet Assembly
3.2.5 Resolving Branches in Material Systems
3.3 Designing a Flexible Ray Tracing Library

4 Implementation

27
27
29
29

32
32
33
34

35

Contents

4.1 Architecture e e 35
4.2 Basic Data Structures 36
421 Rays 36

422 Packets 38

423 FrustumofRays 38

4.3 Kd-Trees for Static Geometry 40
4.3.1 Constructionof Kd-Trees 40

432 Memory Layout 41

433 RayTraversal 45

4.4 Two-Level Dynamic Acceleration Structure 49
4.4.1 Bounding Volume Hierarchy 50

442 Integrationofthe BVH 63

5 Applications & Results 67
5.1 Tracing Static Scenes 67
5.1.1 Rendering Performance 69

5.1.2 Cost—scaling Termination Criterion 70

5.2 Benchmark for Animated Ray Tracing 72
5.2.1 Ordered Traversalof BVHs 73

5.2.2 Updating Schemes 75

5.3 Real-time Ray TracinginGames 79
53.1 Tools e 79

532 MapViewer. e 79

533 Results 81

5.3.4 Ray Tracing in the Original Game 84

6 Conclusions 87

ii

Chapter

Introduction

Ray tracing has been pursued by academia over the last two decades as a technique for im-
age synthesis considered by many to be superior to other approaches, such as rasterization.
Tracing the paths of light in virtual scenes is both an elegant and flexible solution to the
problem of rendering images and can typically be implemented on computers with little
effort, which contributed to the popularity of ray tracing. However, until recently the prac-
tical use of the technique remained restricted to non—interactive scenarios due to its high
computational requirements, which typically resulted in per—frame rendering times of a few
minutes to many hours on the hardware of that time.

It was not until the beginning of the 21* century that hardware became fast enough to sup-
port ray tracing at interactive frame rates, which was demonstrated with great success by
Ingo Wald in his PhD thesis [54]. Since then a strong interest in employing ray tracing in
interactive and real-time applications developed with the ultimate goal of replacing or aug-
menting rasterization—based solutions, which is aided by current trends in hardware design
that deliver processors suited to exploiting the parallel nature of the ray tracing algorithm.

In this thesis ray tracing of dynamic scenes in real-time is explored, which is particularly
challenging in that moving geometry has to be managed in a so—called acceleration structure
to achieve the necessary low rendering times. This problem is approached by separating
static from dynamic geometry and by using data structures suited for each type of geometry.
In particular a flexible acceleration structure for dynamic primitives is presented, which
efficiently supports different types of animation.

Run-time performance of an implementation of the described concepts and algorithms is
evaluated by employing the well-known “Benchmark for Animated Ray Tracing” by Lext
et al. [32]. Furthermore the applicability of ray tracing to games is demonstrated in that
an existing game is refitted to ray tracing based rendering, which allows the introduction of
new graphical effects that were not possible with rasterization—based rendering used in the
original version.

Chapter

Background

Ray tracing is a conceptually simple rendering technique that has been used with
great success in non-realtime rendering applications. However, in order to be
able to render reasonably complex scenes at interactive frame rates, it is necessary
to reduce the run—time costs of tracing rays. This chapter presents a survey of
different approaches to this problem, which serve as a base for the real-time ray
tracing system developed as part of this thesis.

2.1 Fast Intersection Tests

Testing rays for intersection with the geometry of a scene is at the heart of each imple-
mentation of the ray tracing technique. It is therefore desirable to optimize this operation
in order to reduce the overall rendering time. Different algorithms have been proposed to
find potential intersections of a given ray with geometric primitives of various types such as
spheres [18], implicit surfaces [26] or free—form surfaces [4].

Although ray tracing is in particular known for its large support of different primitive types,
it is possible to achieve better run—time performance by limiting the feature set of an imple-
mentation to only a single primitive type. This allows for an elimination of branches and
yields a tighter inner loop that can be executed faster by current processors.

Triangles are often used as the lowest common denominator in representation of geome-
try. They are supported directly by most modeling applications but can also be generated
through the process of tessellation to serve as a good approximation of higher—order sur-
faces. Being ubiquitous in implementations of rasterization, triangles can also be considered
a good choice for real-time applications based on ray tracing.

A variety of algorithms has been devised to reduce the computational effort of testing a
ray for intersection with a triangle. In addition to information about whether an intersec-
tion point exists or not, the results delivered by these algorithms usually also contain the
barycentric coordinates of the hit point. Commonly named o, 3 and 7, these coordinates
define a point on the surface of a triangle as the weighted sum of its three vertices. Fig-
ure 2.1 illustrates their relationship. Barycentric coordinates are used for interpolation of
per—vertex attributes such as normal vectors and texture coordinates and therefore play an
important role in shading. It is only natural that many algorithms addressing the problem

2 Background

Vv,

Figure 2.1: The point P on the surface of the triangle is defined as the weighted sum of its barycentric
coordinates o, B and 'y and the triangle’s vertices. A, B and T are the areas corresponding fo o, 3
and .

of intersecting rays with triangles compute ¢, B and 7y in the process in order to save on
additional operations that would have to be carried out afterwards to calculate these factors.

Wichter [60] gives an in—depth analysis of ray—triangle intersection tests with regard to
speed and numerical precision, covering algorithms like Arenberg [1], Badouel [3], Pliicker
[25] and Moller-Trumbore [37]. He concludes that a variant of the barycentric coordi-
nate test can be considered the most attractive in a general context because it executes fast
and exhibits good numerical precision. Barycentric coordinate tests first compute the inter-
section of a ray with the plane going through a triangle’s three vertices. Subsequent tests
determine if the calculated hit point lies on the triangle’s surface and can therefore be con-
sidered valid. This is performed by checking if the barycentric coordinates describing the
point sum to one.

A fast implementation is given in [28]. What is interesting about it in particular is the fact
that it was devised by means of automated search. Kensler and Shirely proposed the use
of a genetic algorithm to find the most efficient ray—triangle test with regard to run—time.
After establishing a set of rules that would guarantee the correct order of calculations, they
spawned a large number of variations of the general procedure to find a hit point. A fitness
function based on the measured run—time would then be used to select the best tests and use
them in the subsequent “generation”. By introducing new variations into each generation
by use of techniques known from genetic or evolutionary programming and by repeating
the selection step the result was refined iteratively.

2.2 Acceleration Structures

Rendering images with ray tracing requires processing a large number of rays even for
moderate image resolutions. Testing each ray for intersection with all primitives in order to
find the nearest point of intersection with the geometry is clearly too slow for non—trivial
scenes. A common approach to reducing the run—time costs associated with tracing rays is
to use some kind of acceleration structure. Similar to sorted data arrays that enable the use
of searching algorithms with sub—linear asymptotical behavior, acceleration structures can
reduce the asymptotical run—time of tracing a ray from O(n) to O(logn).

2.2 Acceleration Structures

With the use of acceleration structures a trade—off has to be made between construction
times and the possible gains in ray tracing performance. The goal is a minimization of
the overall frame rendering time. When rendering static scenes, construction is typically
performed once prior to image synthesis. Per—frame times are therefore only affected by
how well the acceleration structure reduces the number of ray—triangle intersection tests.
When dealing with dynamic geometry, the situation becomes more difficult. Primitives that
move or change shape invalidate acceleration structures, which therefore have to be updated
to reflect the new scene configuration. In most applications this has to be performed every
frame. Therefore care needs to be taken to ensure that the reduction of ray tracing time is
greater than the additional time spent in maintaining an acceleration structure.

2.2.1 Types of Partitioning Schemes

There are two basic types of partitioning: Spatial partitioning subdivides space into disjoint
volumes. References are stored for primitives that overlap at least partially with a volume.
Although each point in space is represented uniquely, primitives may overlap multiple vol-
umes and can therefore be referenced more than just once in the acceleration structure.
Object list partitioning schemes distribute all primitives of a scene into disjoint sets. Prim-
itives are therefore referenced exactly once. A point in space on the other hand may be
covered by more than a single entry structure or is potentially not represented at all in the
acceleration if no primitives overlap with it. A number of advantages and disadvantages go
along with these inherent properties of partitioning schemes.

Acceleration structures based on object list partitioning have the benefit of enabling a pri-
ori allocation of memory based on the number of primitives because these primitives are
referenced exactly once. Spatial subdivision requires the use of dynamic memory manage-
ment due to the potential duplication of references. This can introduce a serious run—time
overhead and result in fragmentation of memory if changing scene configurations require
regular rebuilds or updates. Duplication of references may also increase the raw memory
requirements. Additional memory usage stems from the fact that empty space has to be
represented explicitly. This is not the case with object list partitioning schemes that skip
empty space implicitly by dealing with primitives directly.

When it comes to traversal, spatial acceleration structures are usually more efficient than
their counterparts. Their nature of representing space as disjoint volumes enables traversal
in a strict front-to—back order. This allows algorithms, which search for the nearest inter-
section point of a ray with the scene’s geometry, to terminate upon detection of the first hit
because all subsequently detected intersections would be farther away. Object list partition-
ing schemes do not exhibit this property because they allow overlaps of space. When a hit
point is found traversal of the acceleration structure has to be continued in the typical case
because it is not possible to guarantee that no closer intersections exist.

So—called mailboxes are a concept that applies to spatial acceleration structures only. They
are used to record whether a primitive has already been intersected with a given ray or not
to avoid having to perform the same test again. This may occur when traversing the accel-
eration structure because it possibly contains more than one reference to a single primitive.
Acceleration structures based on object partitioning are not subject to this behavior.

2 Background

2.2.2 Adaptive vs. Uniform Structures

In addition to the classification based on the employed partitioning scheme, acceleration
structures can also be described as being either adaptive or uniform.

Adaptive acceleration structures are typically defined as trees. Inner nodes partition primi-
tives into two or more sets selected by a construction heuristic. Leaf nodes store a list con-
taining references to primitives. Numerous different heuristics have been proposed, which
all aim to improve ray tracing performance by achieving good sorting of the primitives of a
scene. Kd-trees [9] are an example for adaptive spatial acceleration structures. Bounding
volume hierarchies [45], bounding interval hierarchies [52] and bounded kd-trees [62] are
instances of adaptive object list partitioning schemes.

In contrast to adaptive structures, uniform acceleration structures have a rigid structure.
Although heuristics may be used to decide when to stop subdivision, e.g. by limiting the
minimal number of primitives per node, the selection of partitions is dictated by the accel-
eration structure itself. Spatial acceleration structures like the grid [7] or the octree [16] fall
into this category.

Adaptive acceleration structures are typically the type of choice in most applications. They
are more flexible and have the potential for better partitioning of geometry, which in turn
reduces the time spent tracing rays. It is, however, important to note that grids have been
used with great success in interactive applications [56]. They are easy to update and can
be built fast [23], which may make up for the generally lower ray tracing performance in
certain scenarios.

2.2.3 Construction of Adaptive Acceleration Structures

Construction algorithms can be classified as either top—down or bottom—up approaches.
Top—down construction is performed by recursively partitioning a set of primitives until a
termination criterion is met, which results in a tree-like structure. Bottom-up construc-
tion groups primitives together and arranges them hierarchically. It has the disadvantage
of operating on a local view, whereas top—down algorithms operate on the complete set of
primitives and may therefore use additional information to build better acceleration struc-
tures.

Waiichter [60] presents the steps of a general recursive procedure that constructs a spatial ac-
celeration structure in top—down manner. These steps are further generalized to acceleration
structures based on both spatial and object list partitioning schemes in the following.

Termination: A termination criterion is a combination of clauses that limit the depth of
the constructed tree. Although deeper trees allow for finer partitioning of primitives, they
require more memory and lead to higher traversal costs, which may offset the gains of fewer
ray—triangle intersection tests. A termination criterion is also used to enforce pre—conditions
of the construction algorithm, i.e. that a minimal number of primitives is provided.

Partitioning: In each step of the construction process the current set of primitives is par-
titioned into two or more sets based on a heuristic. Whether this results in disjoint sets or
not depends on the type of the acceleration structure. The heuristic employed is the key to
achieving both minimal construction times and optimal ray tracing performance. Numer-
ous different heuristics have been proposed, which take into account different aspects of

2.2 Acceleration Structures

partitioning primitives. Simple heuristics may evaluate information only about the current
volume. More complex solutions like the surface area heuristic [33] also take into account
the distribution of the primitives and are typically based on a cost model.

Node creation: After partitioning primitives into two or more sets an equal number of
nodes are allocated. They are stored as children of the current node and initialized by
recursively invoking the construction algorithm.

Post processing: Optimizations such as reordering of nodes for better caching efficiency
can be applied at the end of the construction process [63].

2.2.4 The Surface Area Heuristic

The surface area heuristic (SAH) is based on a probabilistic model and is commonly used to
guide construction of acceleration structures. It was introduced in [33] for use with kd—trees
based upon the work of Goldsmith and Salmon, which had previously used a similar model
for construction of bounding volume hierarchies [10].

The SAH tries to find the optimal placement of a splitting plane by minimizing a cost
function. This function attempts to describe the costs associated with the traversal of an
acceleration structure in ray tracing. Its definition is recursive and reflects the hierarchy of
nodes in acceleration structures it is applied to.

When visiting a leaf all contained geometric primitives have to be tested for intersection
with the ray. The costs of the visit are therefore proportional to the number of primitives.
Equation 2.1 expresses these costs under the assumption that intersection tests have an av-
erage cost of Ciyrersect-

C(N) = Cintersect * |N‘ 2.1)

For inner nodes the cost function corresponds to the sum of the costs of both sub—trees
weighted by the respective probability of traversal. An additional constant factor Cy,qyersal
takes into account the time required by the intersection test between a ray and the node itself.
The cost function for inner nodes is given in Equation 2.2 with N; and N, corresponding to
the number of primitives in the left and the right sub—tree.

C(N) = Ciraversat + p1 *C(N;) + p, x C(N;) (2.2)

The weighting factors p; and p, are based on observations from geometric probability:
Given a uniform distribution of rays the probability that a node has to be traversed is equal
to the ratio of the surface area (SA) of its bounding box to the SA of the root node. By sub-
stituting the parent node for the root node the probability of traversal is expressed relatively
to the parent and can be used in the recursive cost function. The complete defintion of the
cost function is given in Equation 2.3.

(2.3)

C(N) = Crraversai + i *C(N;) + p, * C(N,) for inner nodes
Cintersect * ‘N| for leaf nodes

2 Background

Due to its recursive nature the cost function can only be applied to complete (sub—) trees.
For partitioning schemes where the SAH is used to guide construction in top—down order,
it is therefore necessary to evaluate the cost function greedily because the sub—tree of the
processed node has not been constructed yet. This is approached by assuming that the
children of the node will not be subdivided further but will remain leaves in the tree, yielding
Equation 2.4.

Cgreedy (N) = Ctraversal + D1 * Cinlersect * |Nl’ + Dr* Cinlersect * ‘Nr| (24)

Although the SAH and this type of evaluation in particular are crude approximations not
taking into account occlusion of geometry and early—out scenarios in traversal algorithms,
Havran [15] demonstrated that the SAH yields better results than other partitioning heuris-
tics for kd—trees.

The SAH can also be used to implement an automatic termination criterion (ATC) [17] to
stop subdivision of a node when no gain can be expected from a deeper tree. This decision
is usually based on a comparison of the costs of the best split and the costs of turning the
node into a leaf (Equation 2.5). Additional factors such as the maximal tree depth or the
minimal number of primitives per leaf are commonly used in addition to the SAH-ATC.

Terminate(N) = (2.5)

true min C(N) > ’N‘ * Cintersect
false otherwise

2.3 Ray Tracing Static Geometry

Static geometry encompasses primitives that are fixed in position, orientation and size. They
make up large parts of architectural scenes both in offline rendering and real-time applica-
tions. Given their static nature it is possible to organize these primitives in highly optimized
acceleration structures in a preprocessing step prior to rendering.

Kd-trees are considered state of the art by most researchers today. They adapt well to com-
plex scenes containing primitives of differing size and large empty spaces. Furthermore the
surface area heuristic allows cost—driven construction and requires no per—scene tweaking
unlike other proposed heuristics [15].

2.3.1 Construction of Kd—Trees

A kd-tree is a binary spatial acceleration structure that partitions space into disjunctive
volumes by recursively splitting it with axis—aligned planes. These planes can be positioned
arbitrarily inside a given volume, which is the base of the great flexibility of this acceleration
structure. Algorithm 1 provides a general outline of recursive kd—tree construction.

Leaves in a kd-tree contain a list of references to primitives that overlap with the volume
represented by the node. Due to the fact that kd—trees are a spatial partitioning data structure,
primitives are not necessarily assigned to a single leaf but may be referenced by multiple
nodes if they intersect with splitting planes, as can be seen in Figure 2.2.

A top—down construction algorithm with a runtime complexity of O(nlogn) was proposed
in [55]. It uses a spatially sorted per—axis list of events that mark the opening and ending
of a primitive with regard to an axis. Primitives that are perpendicular to a given axis are

2.3 Ray Tracing Static Geometry

Algorithm 1 Recursive kd—tree construction

function PARTITION(triangles 7', voxel V) returns node
if Terminate(7, V) then
return new leaf node(7’)
p =FindPlane(T,V) /* find a plane p to splitV */
(V, Vr) = Split V with p
T,={teT|tNV.)#0}
T ={r e T|(tNVg) # 0}
return new node(p, Partition(7;,Vy), Partition(Tg, Vg))
function BUILDKDTREE(triangles[] T') returns root node
V = AABB(T) /* start with the full scene */
return Build(7,V)

|1|2|3 4|5|6| |1|2i3i|3|4|5|6| |1|2|3|i ;; | i; | |

vA)| VA) VA b

44Vv| | 4479 . 944"

Figure 2.2: Kd—trees partition space into disjunctive volumes with axis—aligned planes.

represented by a single event because they have no extent in that axis and need to be handled
differently.

When splitting a node the SAH-based costs for all potential splitting planes are evaluated
by “sweeping” over the positions denoted by the events and keeping track of the number
of primitives on both sides. Algorithm 2 illustrates this with pseudo code. It suffices to
evaluate these specific positions because the cost function will never have lower values
in between, due to the increase of costs of both sub—trees when primitives straddle the
splitting plane. Finally the plane with minimum costs is selected to split the node into two
volumes. The event lists are also partitioned into two sub-lists keeping the events’ sorting
order intact. Events associated with primitives straddling the splitting plane are recreated
for both volumes based on clipped representations of the primitives. This guarantees correct
positions within the volumes of the new nodes and enables splitting based on the minimal
bounds of the primitives, which yields trees of higher quality. These new events are sorted
and then inserted into the existing event lists using a single merge—sort iteration resulting in
sorted event lists for the construction of the nodes at the next level of the hierarchy.

A termination criterion based on the SAH is used to decide when to stop subdivision of a
given node. Allowing additional construction steps with potential backtracking has proven
to improve the quality of kd-trees because the employed greedy heuristic is subject to ter-
minating too early by not accounting for further splits, which may results in a deeper tree
with total smaller costs.

2 Background

Algorithm 2 SAH plane sweep

function FINDPLANE(triangles 7', voxel V, events E) returns plane
C = oo, p = 0 /* initialize search */
/* consider all K dimensions in turn */
for k = (x,y,z) do
/* sweep plane over all split candidates */
Ny =0,N, =0,Ng = |T| /* initialize counters */
fori=0;i < |E| do
p=(Eip,k),p" =p~ =p/=0
while i < |E| AEj pos = Ppos N Eisype = — do

inc p~,inc i

while i < |E| AE; pos = Ppos N\ Eisype = | do
inc p|, inc i

while i < |E|AEj pos = Ppos N Eisype = + do
inc p*,inc i

/* found next plane p with p*,p’,p‘ */
Ny, = p|,NR— = pl + p~ /* move plane onto p */
C=SAH(V,p,N,N,,Ng) /* evaluate SAH */
if C < C then

C =C, p = p/* found better plane */
N, = 0,Nz+ = pl + p* /* move plane over p */

return p

2.3.2 Construction Based on SAH-Sampling

The algorithm laid out in [55] depends on geometric primitives to be spatially sorted along
each axis. This enables the use of plane sweeping to incrementally compute costs as defined
by the SAH for each splitting plane candidate. Although sorting of primitives can be done
in O(nlogn), the runtime costs of this operation make the proposed algorithm increasingly
less appealing for the construction of kd-trees for scenes with larger primitive counts.

va I 4 Sk
i A <

Figure 2.3: The counters Ni and Ng record the number of primitives on each side of the plane
(e.g., N, =4 and Ng = 8 in this example). Sy and S are the surface areas of the left and the right
bounding box.

Hunt et al. [19] introduce the concept of sampling the SAH cost function. Along each axis
the values necessary to calculate the costs are evaluated at evenly spread out positions. The
numbers of primitives on both sides of a given plane (N; and Ng) are determined by classi-
fying each primitive with regard to the splitting plane candidate. Primitives that straddle the
plane will be counted for both sides. This operation does not depend on sorted geometry.

10

2.3 Ray Tracing Static Geometry

Additionally the surface areas of the left and right bounding boxes are evaluated in constant
time. Figure 2.3 gives an example of sampling the required values for one splitting plane.

Given these four values (N, Ng, Si, Sg) for a fixed number of candidate splitting planes,
a quadratic approximation of the cost function can be generated by interpolating primitive
counts and surface areas linearly. In intervals with strong variation a fixed number of addi-
tional samples may be taken to improve the quality of the approximation.

Based on the collected data the algorithm determines the optimal position of the splitting
plane and continues construction of the sub—trees. When the number of primitives drops
below the configured number of samples construction falls back to the sweeping algorithm,
which is more efficient under these circumstances.

The sampling approach has a number of advantages over the construction algorithm that
relies solely on sweeping:

e Although both algorithms exhibit the asymptotical behavior of O(nlogn), sampling
can be implemented more efficiently on current hardware by exploiting vector in-
struction. It can therefore have smaller run—time constants.

e The presented sampling algorithm defers more work to the construction of the leaves
by performing a sort only for relatively small numbers of primitives compared to the
upfront sort of all geometry when sweeping only. This is especially important for
implementations of lazy construction, which constructs an acceleration structure on
demand and may be able to skip entire sub—trees if they are not needed.

e Sampling is more efficient when the data set doesn’t fit into the cache completely
due to its linear read—only access pattern, which can be predicted well by hardware.
Sorting of geometry is expected to be slower under these circumstances.

Published results show that the quality of the generated kd—tree is within about 4% of a
tree built using sweeping. Hunt et al. [19] also report building times that make per—frame
rebuilds of kd—trees for changing geometry practicable.

2.3.3 Ray Traversal of Kd-Trees

Traversal of a kd—tree is based on maintaining a parameter interval that corresponds to
the segment along the ray intersecting the volume of the current node. This interval is
initially set to the values of the near and far intersection points of the ray with the scene’s
bounding box. Negative near values are clamped to zero in order to restrict the search for an
intersection point to geometry in the viewing direction of the ray. If this operation results in
an invalid interval with 7.4, > 7,4, or if no intersection with the scene’s bounding box could
be determined in the first place, traversal terminates with no hit.

Given a valid interval the ray is intersected with the splitting plane of the root node. The
resulting parameter value f,;; is then used to determine which sub—trees need to be visited
next as depicted in Figure 2.4. If the intersection point with the splitting plane is not in
the active segment (i.€., fspir < tyin OF tspjir > tnayx) Only one child node is visited. If 7,,;, <
tsplir < tmax both sub—trees need to be traversed with updated parameter intervals to reflect
the ray’s intersection with the volume of the next node (i.e. [tin;Zpiir] for the near and
[tspl,-,;tmax} for the far node). In order to guide traversal into finding the nearest hit point in
the minimum number of steps the near child is visited first, whereas the far child is pushed
onto a stack for later traversal.

11

2 Background

1 1

1

! t_max t_split
T

1

1

7 % Lmax
t_min 1 t_min
} t_max / o : 9 / o
1
LW t_min :
1 1

a) b) c)

Figure 2.4: kd—tree traversal is exercised based on three cases: b) Both sub—trees are traversed in
near—to—far order if tyin < toplir < tmax. a) and c) If the intersection point with the splitting plane is
not in the active segment only one child node is visited.

Upon entering a leaf of the kd—tree the ray is intersected with all referenced primitives. If
an intersection point is found that lies in the current interval, traversal can be terminated.
This is due to the order in which sub-trees are visited: All further traversal steps would
encompass intervals farther down along the ray. Therefore no intersection points closer
to the ray’s origin can be found. The check for the intersection point being in the active
segment can be implemented by comparing its distance to the ray origin with the far—value
of the active interval with the less—equal operator. It is a necessity introduced by a specific
property of kd—trees and spatial acceleration structures in general: Objects may overlap
with the volumes of more than a single node. By detecting an intersection point outside the
volume of the current node no guarantee can be made that no closer intersections with other
primitives of the scene exist. Figure 2.5 illustrates such a scenario.

Figure 2.5: The left node is visited first and an intersection of the ray with triangle B is found (1).
Traversal must not stop, however, and also visit the right node because 1 is not contained in the left
node and therefore no valid intersection point. 2 is subsequently determined as the nearest hit point.

This traversal scheme can be implemented directly in a recursive manner. However, it is
preferable to choose an iterative implementation, which usually delivers better performance
because of the eliminated overhead of recursive function calls. Algorithm 3 gives a pseudo—
code sample implementation of iterative kd—tree traversal. Note the presence of an explicit
stack used to store information for resuming traversal of the far sub—tree in situations when
both children have to be visited.

12

2.3 Ray Tracing Static Geometry

Algorithm 3 Iterative kd-tree traversal

function TRAVERSE(ray r)
near =0, far = Infinity
intersect r with scene AABB and update near, far
if near > far then
return
stack S,curNode = rootNode
while true do
while curNodeisnoleaf do
split = intersect r with curNode’s plane
(nearChild, farChild) = determine order of curNode’s children
if split > near then
if split < far then
S — (farChild,split, far) /* push far segment onto the stack */
far = split /* continue traversal in near segment */
curNode = nearChild
else
curNode = farChild

curNode is a leaf, intersect r with triangles
if r.hit.distance < far then
return /* early out */

if S not empty then

(curNode,near, far) < S /* pop next segment from the stack */
else

return

2.3.4 Exploiting Ray Coherence for Traversal

The previously discussed algorithm traverses kd—trees for single rays. By aggregating mul-
tiple rays into so—called ray packets, which is a concept that was introduced in [54], traversal
performance can be improved. When rays exhibits a common set of properties certain cal-
culations may be performed only once and shared among all rays. This is usually exploited
when testing a primitive for intersection with rays sharing a common origin, which is par-
ticularly the case for primary rays.

Ray packets can allow for further performance gains through the use of vector instructions
as provided by the Streaming SIMD Extensions (SSE) on the x86—platform or by AltiVec
on PowerPCs. These instructions perform mathematical operations and comparisons on a
fixed number of values at a time, which is commonly referred to as the native vector size. By
grouping a number of rays, which is a multiple of the native vector size, the per—instruction
throughput can be increased and memory accesses may be reduced by sharing scalar data
across the fields of operands for vector operations.

For kd—tree traversal with packets as described in [54] the components of the rays’ direction
vectors need to have the same sign. This is to ensure that the order of traversal with regard
to near and far sub-trees is consistent for all rays. Another approach to guaranteeing the
same order of traversal among rays is to allow arbitrary directions but force a common
origin. Although beneficial for primary rays there is an associated drawback that harms ray
tracing performance: For packets of rays with the same principal direction the near and far
nodes can be derived from the sign-bits of the direction vectors. A simple XOR—operation
suffices to select the correct nodes during traversal. When taking the common—origin route

13

2 Background

the order of traversal has to be evaluated in each step based on the spatial arrangement of
nodes and origin.

The general outline for the algorithm does not change compared to traversal with a single
ray. An active parameter interval is maintained for each ray as traversal is carried out. With
each step a decision is made whether to cull a certain sub—tree or to visit both in a near—to—
far order. To enable support for multiple rays these decisions are not based on flags but on
masks, which capture the outcome of comparisons when working with vector instructions.
The traversal algorithm is changed to visit a child if at least a single ray intersects its volume.

Additionally a mask of active rays is maintained and updated with every step. It is used
to quickly discard entire ray packets that do not intersect the volume of the current node.
Updates to individual rays in a packet, which should only apply to the active elements, are
also masked.

When processing nodes on higher levels of the kd—tree, coherent rays will most likely agree
on a path through the tree. This is due to the coarse partitioning granularity of the scene
close to the root node. With deeper descent into the data structure rays become more diver-
gent and the performance gains of ray packets diminish. Note that the possible reduction
of ray tracing time is proportional to the coherence of rays in a packet. Secondary rays,
e.g. traced to visualize reflections, are generally less coherent due to scattering over the
hemisphere of the surface of an object. Packet tracing is less efficient for these rays.

An additional modification of the original single-ray traversal algorithm affects the early—
out test that is performed after the intersection tests with primitives in a leaf. The algorithm
keeps track of finished rays that had intersections computed falling into the respective cur-
rent segment. Only when all rays have been finished the traversal may be terminated early.

2.3.5 Multi Level Ray Tracing

The multi level ray tracing algorithm (MLRTA) as described in [44] is an attempt to further
lower the time spent traversing a kd—tree by exploiting additional common properties of
multiple rays. It encompasses two new techniques named entry point search and interval
traversal algorithm, which will be described in the following.

Entry Point Search

Entry point (EP) search tries to locate a deep starting point for a group of rays in a kd—tree
in order to minimize the number of ray traversal steps. First, the kd—tree is traversed in
depth—first order until a leaf node is encountered, which becomes the first EP candidate.
Along the way a quick rejection test based on a conservative representation of the rays is
used to determine if all rays miss a given sub—tree, which can then be skipped. Whenever
both children of the current node would have to be visited, it is pushed onto the so—called
“bifurcation stack” and only the left sub—tree is traversed further.

In the subsequent phase of the entry point search the right sub—trees of the nodes on the
bifurcation stack are traversed. Again, quick rejection tests are used to skip nodes. The
traversal of a sub—tree can be aborted when a non—empty leaf node is found, in which
case the current bifurcation node becomes the new EP candidate. If only empty leaves
are encountered the current bifurcation node is discarded because ray—triangle intersections
would only be found in the left sub—tree where a deeper EP is available.

14

2.3 Ray Tracing Static Geometry

The final entry point is then used to traverse the kd—tree with the rays to find their nearest
points of intersection with the geometry. For coherent rays the EP is typically deep and
allows for skipping ray traversal of all nodes above it. Figure 2.6 illustrates the entry point
search for a sample kd—tree.

Y —
e "13—"
N Y, A
a) b)

’ ... hon-empty leaf ‘ ... empty leaf (: ~} ...bifurcation node O ... EP candidate

-

Figure 2.6: Entry point search is performed in two phases: a) The kd—tree is traversed to collect
bifurcation nodes. b) The right sub—tree of each bifurcation node is traversed to determine the
top—most EP candidate. c) Normal ray traversal starts at the entry point.

Reshetov et al. propose to use the frustum culling technique [2] for quick rejection tests.
In this context the technique operates on a node’s axis aligned bounding box (AABB) and
a frustum for the rays represented by a set of planes [5]). It is a conservative test and may
return false negatives implying that the frustum may intersect an AABB when in fact it
does not. The probability of false negatives depends on the relation between the size of the
frustum and the AABB, with small AABBs and large frusta yielding better results.

By reversing the roles of the frustum and the node’s AABB in the test (“inverse frustum
culling””) more accurate results and subsequently better performance can be achieved by
increasing the number of skipped nodes. This approach is based on the observation that
the frustum for a group of rays is usually a lot narrower compared to an AABB of nodes,
especially when they are close to the kd—tree’s root node where proper culling of sub—trees
is most effective.

Interval Traversal Algorithm

The interval traversal algorithm is derived from the previously described packet—based
traversal algorithm for kd-trees. However, it differs from it in that it does not maintain
an active parameter interval for each ray. Instead a single parameter interval [t,in; fnqy] for
the entire group of rays is used to decide which nodes need to be visited.

In each traversal step all rays are intersected with the splitting plane of the current node and
the minimal and maximal intersection distances (splityin, splitymq,) are computed. Based
on the current interval and the intersection distances one of three cases, as depicted in
Figure 2.7, is exercised. If split,,x < tin only the far child needs to be visited. In case
splityin > tuax it 1s the near sub—tree that needs to be traversed. If neither condition is met
then both child nodes will be visited in a near—to—far order with an updated parameter in-
terval, which is [fyin; min(tmayx, Splitmay)] for the near and [max(tin, Splitmin)3 tmax] for the far
node.

Employing a single parameter interval is beneficial to ray tracing performance in that less
data needs to be maintained and that traversal can be carried out based on two comparisons
of scalar values. However, the use of a single interval is associated with a loss of information

15

2 Background

split_min

i | @

split_max
1
,jfsplit_min
t

ax
) ®
split_max
{ split_min

a) b) c)

1

1

1

T

1

' @ .
1 split_max
1t max

1

1

1

1

Figure 2.7: The interval traversal algorithm is based on three cases: a) Only the far child is visited
if splitmax < tmin. €) If splityin > tmax then only the near child is visited. b) Otherwise both sub—trees
are traversed in near—to—far order.

that can lead to additional traversal steps. In particular more leaves may be visited, which
increases the number of ray—triangle intersection tests. This can be alleviated by clipping
the rays to the AABB spawned by the triangles, thereby reducing the number of active rays
in the leaf, as depicted in Figure 2.8.

Figure 2.8: By clipping rays to the AABB of the triangles in a leaf, the number of active rays can be
reduced and fewer ray—triangle intersection tests need to be performed.

Computing a Frustum for Rays

Boulos et al. [5] devised an algorithm for computing a frustum for a group of rays, which
do not necessarily need to have a common origin. The algorithm first seeks the direction
into which the group of rays extends forward. This is approached by determining an axis for
which the direction vectors of all rays exhibit the same signs. For very incoherent rays (e.g.,
rays that extend spherically from a common origin) no such axis may exists, thereby forcing
the algorithm to return with no valid frustum. If such a “major axis” is found, however, the
algorithm proceeds with calculating the normal vectors for the frustum’s bounding planes.

The direction vectors of the rays are projected onto a plane perpendicular to the major axis w
by dividing them by their w—value. In this 2—-dimensional space [u X v] the extents of the
direction vectors correspond to the slopes of the rays in relation to the major axis. Per—axis
bounds for the slopes can therefore be derived from the minimal and maximal extents of

16

2.4 Ray Tracing Dynamic Geometry

the direction vectors along each axis. These bounds are depicted as axis—aligned lines in
Figure 2.9b.

>,
S,
~,

>
z v N
y a 7N

a) b) C)

Figure 2.9: a) The forward axis of a group of rays is determined. b) Ray directions are projected
into 2D to determine the bounds of their slopes in relation to the major axis. c¢) Normal vectors for
the frustum’s bounding planes are derived from the bounds.

The normal vectors for the frustum’s four bounding planes can then derived from the lower
and upper bounds for the slopes, as exercised in Equation 2.6 for the choice of z as the major
axis. In case the group of rays extends in the negative direction of the major axis the normal
vectors need to be flipped in order to have them point outwards consistently.

—1 1 0 0
nl:ft = 0 anght = 0 nb()_t'mm = -1 nt_(;p = 1 (26)
lower, —uppery lower, —upper,

The definition of each plane is completed by inserting the origins of all rays into its equation
and keeping the maximum of the resulting distance terms.

2.4 Ray Tracing Dynamic Geometry

Although the notion of a dynamic scene is not well-defined it is usually used to refer to
scenes that contain geometric primitives that may move or change shape between any two
subsequent frames. Dynamic scenes should be seen in contrast to static scenes where all
primitives are bound to remain at their initial positions and may not undergo changes af-
fecting size or orientation.

As changes applied to primitives typically invalidate acceleration structures, methods to
restore them to correct representations of the contained geometry are an important aspect of
handling dynamic scenes. The per—frame time limits imposed in the domain of real-time
ray tracing further complicate this and often lead to compromises between the time needed
for updates or reconstruction of a given acceleration structure and its quality as determined
by ray tracing performance.

2.4.1 Types of Animations

According to [58] the actual motion of primitives may be categorized as either hierarchical
or incoherent, with blends being referred to as semi—hierarchical.

17

2 Background

Primitives are animated hierarchically if they can be partitioned into groups of primitives
that are subject to the same transformations. A typical example for this kind of animation
can be found in a car that moves along a path and has its wheels spin around their respec-
tive axis. Incoherent motion marks the opposite case with primitives moving or changing
shape independently of other primitives. Explosions that are simulated using particles may
exhibit this sort of behavior by having the individual primitives, which are used to render
the phenomenon, moving away from its center in a chaotic manner.

Semi-hierarchical motion has aspects of both types of motion, visible, for example, when
looking at a flock of hierarchically animated characters that move independently of each
other.

In their publication Wald et al. also refer to two distinct types of animation with regard to
their affecting the scene’s topology. When animating characters usually only the positions
of the vertices are modified and the mesh topology is left untouched. The character’s geom-
etry is therefore referred to as deformable, which stands in contrast to geometry that may
undergo arbitrary changes. These changes may include modifications of mesh connectivity
and addition or removal of primitives.

2.4.2 Kd-Tree Based Solutions

Kd-tree based approaches to handling dynamic scenes are mostly based on rapid recon-
struction of a tree. Construction by sampling of the SAH [19] or binning of primitives
[40] is performed to reduce build times compared to the standard sweeping approach. Al-
though these techniques construct kd—trees exhibiting lower ray tracing performance, the
overall frame rendering time is reduced making interactive or real-time frame rates possi-
ble. Highly parallel implementations as presented in [47] reduce build times further while
maintaining kd—tree quality.

Another approach was introduced in [13]. Giinther et al. propose to extend kd—trees to
allow for limited movement of primitives, which they call “fuzzy kd-trees”. Construction
takes place in a preprocessing step and encompasses an analysis of the motion of primitives.
This is performed by motion decomposition, which separates motion into an affine trans-
formation and residual motion. By subtracting the former from an animation primitives are
moved into a local coordinate system where frame—to—frame movement is typically much
smaller. Per—primitive bounding boxes are computed reflecting the residual motion and
used as a basis for construction of the fuzzy kd-tree. The extracted affine transformation
is handled by applying its inverse to rays prior to traversal, which transforms them into the
coordinate system of the fuzzy kd—tree.

A reduction of residual motion is desirable because larger per—primitive bounding boxes
have a negative impact on the efficiency of a fuzzy kd—tree. This is due to an increase prob-
ability of intersection with rays. Better performance can therefore be achieved by building
multiple trees, each for groups of primitives that exhibit similar motion. These groups can
be composed automatically by minimization of a cost function based on the residual motion.
The individual trees are merged into a single acceleration structure by being referenced in
the leaves of a separate top—level kd—tree along with the associated transformation matrices.
When traversal enters a leaf, all rays are transformed by the matrix and traversal continues
in the bottom-level kd-tree. A comparable approach with a two-level standard kd-tree
had been introduced previously in [54], which supported hierarchically animated geometry
only.

18

2.4 Ray Tracing Dynamic Geometry

Fast reconstruction of kd—trees and fuzzy kd—trees both have their respective drawbacks.
Although fast implementations of kd—tree reconstruction have been shown, they cannot be
considered to be the optimal solution to the problem. Most primitives of typical scenes ei-
ther don’t move at all or only marginally on a frame—to—frame basis. This fact is ignored by
kd—tree reconstruction because all information from the last frame concerning the structure
of the scene is discarded. By exploiting frame—to—frame coherence the time for maintaining
an acceleration structure can be reduced.

Fuzzy kd-trees on the other hand are difficult to build and limited to a specific type of
animated geometry, whose motion has to be known at the time of construction. Animations
that modify the scene topology cannot be handled just like unpredictable motion in response
to user actions in interactive applications.

Several other acceleration structures have therefore been proposed to support fully dynamic
geometry with good run—time behavior. Especially bounding volume hierarchies have re-
ceived a lot of attention for ray tracing of dynamic scenes because they can be updated
efficiently to reflect changes to a scene.

2.4.3 Bounding Volume Hierarchies

Bounding volumes are a conservative representation of geometry. They are used in fast
rejection tests to determine whether a group of primitives can potentially intersect with a
ray or not. In the latter case intersection tests between the ray and the individual primitives
can be skipped, which can yield a substantial improvement of run—time performance if the
bounding volume encompassed a large number of primitives.

Requirements for bounding volumes are four—fold:

e A bounding volume should fit its geometry as tightly as possible in order to reduce
the probability of false positives, where a ray intersects the bounding body but not the
actual geometry.

e Tests to detect intersections between rays and bounding volumes should be run—time
efficient to limit the introduced computational overhead introduced. It makes no sense
to use bounding volumes that are more expensive to intersect with than the original
geometry.

e Bounding volumes should require minimal storage.

e Construction of bounding volumes should be run—time efficient in scenarios where
frequent updates due to changing geometry are necessary.

Different bodies have been proposed to serve as an approximation for geometry, e.g.
spheres, axis—aligned bounding boxes (AABB), oriented bounding boxes (OBB) [11] and
discrete orientation polytopes (k—DOPs) [29].

Spheres are light—-weight objects that have a low memory footprint and are fast to intersect
with. Their use as approximations of triangular geometry is limited because tight fits are
typically not possible and the introduced empty space increases the probability of false
positives. K—DOPs are convex polytopes defined by a set of k planes. They can serve
as good approximations of geometry, especially with an increasing number of planes, but
have high associated run—time costs regarding both construction and intersection with rays.
Memory requirements depend on the number of planes but are typically higher than those
of spheres, AABBs and OBBs.

19

2 Background

AABBs have been shown to be a good compromise between all four requirements. An
AABB’s memory footprint is low as it can be stored in two three—dimensional vectors.
These vectors correspond to the minimal and maximal extents of the approximated geom-
etry in each dimension and can be determined in linear time for a set of primitives. Also
several algorithms are available to detected intersections with rays [14, 27, 34, 48, 61].

Kay and Kajiya [27] propose to intersect a given ray with each of the six axis—aligned
planes that define an AABB. The resulting distances to the intersection points are then
used to form intervals for each axis. The ray is only reported to hit the AABB if all three
intervals overlap, as depicted in Figure 2.10 in two dimensions. Smits proposed an efficient
implementation of the algorithm, which exploits the properties of floating—point arithmetic
to reduce the number of branches [48]. His version is straightforward to implement using
vector instructions to test multiple rays for intersection with an AABB at once. Listing 2.1
gives an implementation in C++ for single rays.

ymin

ymax X

b)

Figure 2.10: a) The intervals along each axis overlap signalling that the ray hits the AABB. b) The
intervals do not overlap because the ray misses the box.

bool IntersectRayWithAABB (ray r, aabb box)

{
float nearDist = 0.0f, farDist = Infinity;
for (int axis = 0; axis < 3; ++axis)

{
float org = r.originlaxis];
float dir = 1.0f / r.direction[axis];
float t0 = (box.lower[axis] - org) = dir;
float tl1 = (box.upperlaxis] - org) = dir;
nearDist = max (nearDist, min(t0, tl));

farDist = min(farDist, max(t0, tl));
}

return (nearDist <= farDist);

Listing 2.1: Testing a ray for intersection with an axis—aligned bounding box

Bounding volume hierarchies (BVH) are based on an arrangement of bounding volumes
in a tree-like structure, where higher—level volumes completely encompass the bounding
volumes of their descendents [45]. Although this definition does not impose any restrictions
on the type of the bounding bodies and on the branching factor of the tree, AABB-based
binary BVHs are commonly used in ray tracing.

BVHs are an acceleration structure based on partitioning of an object list. Primitives are
therefore referenced only once, with references being stored in per—leaf lists. A priori al-

20

2.4 Ray Tracing Dynamic Geometry

location of the required memory is therefore possible, which allows for construction and
updates to be performed in—place.

2.4.4 Construction of Bounding Volume Hierarchies

Kay and Kajiya [27] introduced a top—down construction algorithm that builds BVHs by
recursively splitting primitives at the spatial median. Goldsmith and Salmon [10] used a
cost model, which would be the basis for the SAH for kd-trees, to guide a bottom-up
construction algorithm. Primitives are inserted one after the other into an existing tree
thereby modifying its structure by introducing new splits. A drawback of this approach is
a dependency on the order of the primitives. Randomization of the order and building of
multiple trees with subsequent selection of the best tree are attempts to remedy this problem.

Miiller and Fellner [39] merged both approaches by performing top—down construction
based on the cost function devised by Goldsmith and Salmon, which was further refined
by Wald et al. [57]. The resulting algorithm is similar to the SAH-based kd—tree construc-
tion algorithm [55] albeit with differences related to the fact that a BVH partitions an object
list instead of space.

In particular there are only O(n) reasonable candidate planes, which are located at the prim-
itives’ bounds in each dimension, for splitting a node in a kd-tree. For BVHs and object
list partitioning schemes in general, however, there are O(2") ways of partitioning a set of
primitives into two disjoint sub—sets. Evaluation of all possible configurations is therefore
intractable. By taking only partitions into account that are derived from a per—axis sorted
list of primitives the number of configurations is limited to O(n), which can be evaluated by
the construction algorithm sufficiently fast.

Similar to kd—tree construction in [55] the costs for a set of potential splitting planes are
evaluated and the plane with the minimal associated costs is selected to carry out the split.
Wald et al. note that using a set of planes situated at the primitive’s bounds in each di-
mension leads to no discernable improvement of ray tracing performance over using the
axis—aligned planes going through the centroid of each primitive’s bounding box. The BVH
construction algorithm therefore operates on the latter set, which encompasses only half as
many candidates. Classification of primitives regarding their position relative to a plane is
performed based on centroids, too. This simplifies the classification to a 1D—comparison
based on the signed distance of a point to the plane, which is desirable because it is not
obvious how plane—straddling primitives should be handled.

It is important to note that the calculation of surface areas is based on AABBs computed
to tightly fit the primitives in both partitions. This computation can be implemented effi-
ciently in a two—pass approach, by computing the per—candidate left bounding box itera-
tively though sweeping from the left and reusing it in the second pass, which sweeps from
the right and also evaluates the cost function. Kd-tree construction derives the AABBs for
the two partitions in O(1) from the current node’s AABB by splitting it with the candidate
plane.

Algorithm 4 presents the SAH-based construction algorithm for BVHs in pseudo code. Its
asymptotical run—time is O(nlog2 n). The comparable algorithm for kd—trees exhibits a
run—time behavior of O(nlogn) because it performs sorting only once unlike the presented
algorithm for BVHs, which sorts primitives repeatedly with every step.

21

2 Background

Algorithm 4 Centroid—based SAH partitioning

function PARTITION(triangles T') returns node
C=C,ix* |T|,a)2is = —1,mid = —1 /* initialize search */
for axis = (x,y,z) do
sort T using bounding box centroids in axis
/* sweep from the left */
triangles 71 = 0,7, =T
fori=1to|T|do
Tli].leftArea = Area(T})
move triangle i from 7 to T}
/* sweep from the right */
=T1T=0
fori=|T|to 1 do
Tli].rightArea = Area(Ts)
/* evaluate the SAH—costs for the current configuration */
C =SAH(|Tv|,Tli].leftArea,|T5|, T[i].rightArea)
move triangle i from 77 to 7>
if C < C then
C = C,axis = axis,mid = i
if axis # —1 then
sort T using bounding box centroid in bestAxis.
Ty =T[l.mid], T, = T)mid..|T|]
return new node(axis, Partition(7}), Partition(7»))
else
return new leaf node(7T") /* found no partition better than leaf */

Construction of BVHs in O(nlogn) can be performed by employing techniques like SAH-
sampling and binning of primitives known from kd—trees. A binning approach was pre-
sented in [53].

2.4.5 Traversal of BVHs

Traversal of a bounding volume hierarchy is conceptually simple. When an inner node is
visited an intersection test is carried out between the ray and the bounding volumes of the
two children. Based on the results either sub—tree may be culled or traversed recursively.
Upon entering a leaf each of the referenced primitives is intersected with the ray. No early—
out condition exists for standard rays because traversal is not performed in front—to—back
order and potentially closer intersections with primitives may be found in other sub-trees.
An iterative implementation in pseudo code is given in Algorithm 5.

A number of improvements can be applied to the described traversal algorithm to reduce
its average run—time. An early—out condition can be evaluated for so—called shadow rays,
which are used to determine whether a surface is illuminated by a given light source or not.
This check is performed by tracing a secondary ray from the visible point on the surface
to the light. In case any primitive is intersected in between the point lies in shadow with
regard to this particular light source. This occlusion test does not require finding the nearest
point of intersection, any intersection between the ray’s origin and the light source will
suffice. Implementing this early—out check for shadow-rays is straightforward but may
drastically reduce the overall rendering time because shadow rays are usually spawned in
large numbers.

22

2.4 Ray Tracing Dynamic Geometry

Algorithm 5 Iterative BVH traversal

function TRAVERSE(ray r)
stack S = rootNode
while S not empty do
curNode «— S /* pop next node from the stack */
if curNode is leaf then
intersect r with triangles
else
(leftChild,rightChild) = curNode’s children
if r intersects le frChild then
if r intersects rightChild then
(nearChild, farChild) = determine order of (leftChild,rightChild)
S « farChild /* push far child onto the stack */
S «— nearChild /* put near child on top of the stack */
else
S «— leftChild

else
if » intersects rightChild then
S «— rightChild

Culling of sub—trees can also be optimized by visiting nodes only if they are intersected in a
point that is closer to the ray’s origin than the nearest recorded intersection with a primitive.
Another improvement, which builds upon this behavior, affects the order of traversal. The
baseline traversal algorithm makes no particular assumptions about the spatial ordering of
nodes and typically traverses the sub—trees in a fixed order. By evaluating the spatial rela-
tionship of siblings during construction a weak front—to—back traversal can be implemented
[35]. Depending on the direction of the ray the near node is always visited first which
increases the probability that the far sub—tree can be skipped.

Another optimization has been proposed in [48] that enables stack—less traversal of a BVH
by storing so—called skip pointers to the next node in the traversal sequence.

2.4.6 Traversal with Ray Packets

By grouping rays together and performing traversal of the bounding volume hierarchy with
packets ray tracing performance can be increased similar to kd—tree traversal with packets.

Generalization of the single ray traversal algorithm to multiple rays is straightforward. A
sub—tree is traversed if any of the rays intersects with its root node’s volume. Especially
large packets of rays benefit from this behavior due to the fact that detecting a ray—node
overlap allows for skipping the rest of the rays. This results in typically only a single
test for coherent packets that intersect with a node, which lowers the computational costs
considerably. However, it is important to note that all rays need to be tested against a node
in case the whole packet misses it.

Wald et al. propose to address this aspect by employing the frustum—based approach intro-
duced with the multi level ray tracing algorithm by Reshetov et al. [44] for quick miss tests
[57]. A set of planes is computed prior to traversal that acts as a conservative representation
for the ray shaft. Frustum culling is then used to determine whether any of the rays of the
packet can actually intersect a node or not. Large packets benefit from this approach a lot
because the quick miss test is independent from the number of rays and therefore free for
additional rays.

23

2 Background

The complete algorithm by Wald et al. performs up to three steps to determine whether a
sub-tree has to be traversed:

1. The quick hit test encompasses checking a single ray for intersection with the node in
question. If a hit is detected the algorithm descends into the sub—tree directly without
going through any of the subsequent phases. With regard to the fact that a ray, which
misses a particular node, also misses all of its descendents, it is wise to perform the
test with a ray that is not known to have missed the parent node. This is accomplished
by keeping track of the first active ray in the packet over the course of traversal of a
sub-tree.

2. The quick miss test uses the packet’s frustum to quickly reject a node for all rays.

3. The last resort is testing the rest of the rays until a hit is detected or it is know that the
entire packet misses the node.

By traversing a sub—tree with all rays in the packet when a single ray overlaps with it,
the number of ray—node intersection tests can be reduced significantly for large packets.
As a consequence rays may descend into lower levels of the hierarchy even if they do not
overlap with the volumes represented by the nodes. Although this has no negative impact
on traversal it may increase the number of ray—primitive intersection tests that are carried
out when entering a leaf. Noting that these tests are typically more expensive than ray—node
intersections, Wald et al. suggest testing all remaining active rays for overlap with leaves to
determine the exact set of active rays prior to operations involving rays and primitives.

Although the complete traversal strategy can be implemented with scalar code operating on
individual rays the use of vector instructions poses a performance advantage. Rays should
therefore be processed in groups of the native vector size (e.g., 4 for SSE on the x86 plat-
form) when performing ray—node overlap tests and intersection tests with the primitives
referenced in the leaves of the BVH.

2.4.7 Updating Bounding Volume Hierarchies

Animation of primitives invalidates acceleration structures, which therefore need to be re-
built or updated to reflect the changes in a scene. Although bounding volume hierarchies
can be built efficiently, which would make per—frame rebuilding feasible, better run—time
performance can be expected from updating an existing BVH and thereby reusing informa-
tion from the last frame.

Refitting is a well-known technique that updates the bounding volumes of the individual
nodes in a BVH [57]. In a first step the bounding volumes are recomputed for the leaves
of the tree based on the referenced primitives. Subsequently the bounding volumes of the
inner nodes and the root node are updated in bottom—up order by merging the volumes of
the respective children. The whole operation is linear in the number of primitives and can
therefore outperform rebuilding, which has an asymptotical run—time behavior of O(nlogn).
Lauterbach et al. [31] report that refitting is about four times faster than rebuilding for their
benchmark models.

It is, however, important to note that refitting does not modify the partitioning structure of a
bounding volume hierarchy. The technique is merely an approach to restoring a BVH to a
correct representation of the geometry. Culling efficiency may therefore degrade if primitive
movement increases the overlap of nodes or empty space within the volume of a node.

24

2.4 Ray Tracing Dynamic Geometry

In order to maintain the quality of the acceleration structure, Wald et al. [57] propose to
perform rebuilding in the background stretched out over several frames, with the resulting
hierarchy replacing the potentially degenerated existing hierarchy.

Lauterbach et al. present another approach in [31]. They employ a heuristic to measure
degradation of a BVH and perform rebuilding only if a specified threshold is exceeded. The
heuristic is based on the observation that the surface area of a node in a well-built tree is
typically much larger than the combined surface areas of its children. This relationship is
depicted in Figure 2.11. By assuming that the ratio between these two values is optimal
when the BVH is built and recording the initial ratio for each node, they have a base for
measuring the degradation of a hierarchy’s quality over its lifetime.

LA

\ 4

P S

a) b)

Figure 2.11: a) Good partitioning of primitives results in a pair of nodes with small AABBs com-
pared to the parent’s AABB and with minimal overlap. b) Movement of primitives leads to a degen-
eration of the partitioning structure. Bounding boxes grow in size and the overlap between siblings
increases, which negatively affects a BVH's culling efficiency.

During refitting the ratio of a node’s surface area to the combined surface areas of its chil-
dren is calculated for each node. The differences to the original ratios are accumulated and
divided by the number of nodes to get a measurement of the average degradation of culling
efficiency. Rebuilding is then initiated if a certain threshold is exceeded. Lauterbach et al.
report that a threshold of 40% resulted in a good balance between ray tracing time and
updating time and enabled rendering at stable frame rates over the course of an animation.

2.4.8 Selective Restructuring

A more sophisticated approach to the problem of updating a BHV was introduced in [64]
under the name ‘“‘selective restructuring”. Restructuring operates on pairs of nodes that
exhibit poor culling efficiency due to an overlap of the nodes’ bounding volumes. By repar-
titioning the primitives that are referenced in the respective sub—trees the overlap can be
reduced resulting in an improvement of the BVH’s quality. This operation is performed in
two phases, hierarchical refinement and restructuring, that are carried out after refitting was
applied to the BVH.

During hierarchical refinement the BVH is traversed in a top—down manner to prepare a set
of node pairs for the subsequent restructuring phase. The algorithm is based on a queue of
node pairs that is initialized with the children of the root node. It iteratively retrieves an
entry from the queue until it is depleted and refines it to pairs of nodes with overlapping
volumes. Potential candidates for restructuring are recorded additionally.

Refinement of a given pair of nodes (nl, n2) is performed based on the overlap of their
volumes.

25

2 Background

e In case no overlap is detected the BVH guarantees that the sub—trees of nl and n2
do not overlap either and pairs containing nodes from both sub—trees can be ignored.
(nl, n2) is no candidate for restructuring and is refined to two pairs made up by the
respective children of n1 and n2. The search therefore continues strictly with pairs of
nodes from a single sub—tree.

e If n1 and n2 overlap (nl, n2) is stored as a candidate pair. To further localize the
overlap of the two nodes’ sub—trees, (nl, n2) is refined. The children of the node with
the larger volume, for example nl, are paired with the other node, yielding the pairs
(nl.left, n2) and (nl.right, n2). In addition to that the pair (nl.left, n1.right) is created
to also continue search in the spatially larger sub—tree.

Hierarchical refinement also encompasses the evaluation of the so—called restructuring met-
ric for each node pair. The metric enables measuring of the benefit that can be expected
from applying restructuring to the nodes based on a probabilistic model. It is used as a stop-
ping criterion for hierarchical refinement that prevents node pairs from being restructured if
the potential gain is outweighed by the costs. A detailed discussion of the metric is outside
the scope of this thesis and available in the original paper [64].

The second phase of the algorithm uses the generated candidate list to perform the actual
restructuring operation as depicted in Figure 2.12. The union of the primitives referenced in
the sub—trees of both nodes is repartitioned yielding new nodes with less overlap and better
culling efficiency.

BV(R,)
T 3
| [I
Ly ' I
T2 BV (n, AL,
BV(N,)
A A Restructure &1
i
I S
Ty 1o T T, T, T, T, T,

Figure 2.12: Restructuring selects a pair of nodes with overlapping bounding volumes. The union
of the primitives of both sub—trees is then repartitioned to reduce the overlap and improve the BVH'’s
culling efficiency [64].

26

Chapter

Design

This chapter gives an overview of the major challenges of building a real-time ray
tracing system. Then, solutions based on the previously introduced approaches
to accelerating ray tracing are presented and contributions of this thesis are high-
lighted. The chapter concludes with the design of a general purpose ray tracing
library, whose implementation will be discussed in detail in the next chapter.

3.1 Challenges

Ray tracing is a conceptually simple rendering technique that is, however, difficult to imple-
ment efficiently. In particular the run—time costs associated with tracing rays are high and
need to be lowered considerably for real-time applications.

An important algorithmic optimization is the use of an acceleration structure, which par-
titions the primitives of a scene to reduce the number of ray—primitive intersection tests.
A single ray can then be traced in O(logn), which is a significant improvement over the
linear asymptotical run—time of the original algorithm. However, acceleration structures
need to be built and also maintained for animated geometry. This increases the overall com-
plexity of a ray tracing implementation and may introduce an additional run—time overhead
eventually prohibiting interactive frame rates.

In general the choice of an acceleration structure is not obvious due to differences in mem-
ory requirements, culling efficiency and support for fast building or updating, which is
especially important in ray tracing dynamic geometry. Adaptive acceleration structures like
the kd-tree and the bounding volume hierarchy are commonly used in real-time ray tracers.
They can be built in the minimal asymptotical run—time for comparison—based approaches
of O(nlogn). The construction algorithms can also be parallelized to exploit the com-
putational power of multi—core systems. Nevertheless per—frame rebuilds of acceleration
structures are problematic. Even moderately sized scenes with primitive counts in the range
of 100,000 to 1 million result in large datasets that need to be processed during construc-
tion. The available memory bandwidth for ray tracing, which is typically already a limiting
factor on general purpose architectures, is therefore further decreased, which has an adverse
effect on the overall rendering performance.

Updating schemes have therefore been devised to retain the quality of an acceleration struc-
ture for animated geometry. By reusing information from the last rendered frame and mod-
ifying the structure only partially the overhead of maintaining an acceleration structure can

27

3 Design

be reduced. This is particularly true for deformable geometry and rigid animations, which
exhibit spatially localized motion of primitives. Incoherent motion, on the other hand, can
result in a degradation of quality of large sub—trees. In this case complete reconstruction
may be faster than attempts to perform selective restructuring because the latter incurs a
certain overhead associated with determining the sub—trees that are best updated. Updating
is therefore not always superior to rebuilding and needs to be applied with care. Employing
an updating scheme can also negatively affect traversal due to additional data that needs
to be stored to record the previous state of an acceleration structure. In adaptive acceler-
ation structures like the BVH this typically increases the node size and therefore also the
consumed memory bandwidth during traversal.

Another challenge of performing real-time ray tracing is fast tracing of incoherent rays.
Run-time efficient traversal of acceleration structures is based on exploiting coherence of a
set of rays by traversing them together in packets. This works reasonably well for primary
rays, which can be arranged in groups with a principal direction and low divergence. The
rays therefore traverse large parts of an acceleration structure together, which allows for
high amortization of traversal costs. Secondary rays are spawned in the process of shading
a hit point to implement effects like shadows, reflections and refractions. Depending on
the distribution of light sources and the curvature of the shaded surface, secondary rays
are subject to heavy scattering across the hemisphere over the surface, as can be seen in
Figure 3.1. Packet tracing then degenerates quickly to traversal with only a single active
ray and run—time performance drops. Attempts by Mansson et al. [36] to group rays into
coherent packets by employing sorting techniques were unsuccessful and so efficient tracing
of secondary rays remains an unsolved problem.

Figure 3.1: Secondary rays are typically incoherent yielding lower run—time performance in packet—
based approaches.

Shading is also problematic because it does not map well to general purpose processors
due to its floating—point intensive nature. Reducing branches to a minimum is important
for achieving good performance, which can be difficult when complex material systems
with a large number of effect combinations need to be supported. Additionally tracing
secondary rays is prone to producing visual artifacts due to limited precision of floating
point calculations. A common approach to remedy this problem is to apply an offset to
a ray’s starting point along its direction. However, this so—called epsilon value needs to
be chosen carefully to avoid getting rays stuck in the actively shaded surface and skipping
valid intersections with nearby geometry. What further complicates this is that epsilons are
typically determined empirically for a given scene and generally don’t map well from one
scene to another.

28

3.2 High—Level Solutions

3.2 High-Level Solutions

Chapter 2 introduced four classes of geometry based on the motion of primitives and the
stability of the geometry’s topology over its lifetime:

e Static geometry exhibits no motion and has a constant topology that is not subject to
addition or removal of primitives.

e Primitives that are static in relation to each other but move as a group on the scene
level contribute to the class of geometry with rigid animations.

e Deformable geometry encompasses meshes with static connectivity but motion of
their vertices over the course of animations.

e Fully dynamic geometry may exhibit incoherent motion of individual primitives and
topology changes due to the addition or the removal of primitives.

Fully dynamic geometry is the most general class and also encompasses geometry that is
characterized by one of the other three classes. It is therefore possible to handle dynamic
scenes with a single strategy that supports all aspects of fully dynamic geometry (e.g., by
performing a complete rebuild of an acceleration structure each frame, thereby ignoring
inter—frame coherency). A benefit of this approach is its simplicity with regard to its imple-
mentation because there is only one code path that needs to be created and maintained.

However, better run—time performance can be expected from approaches that address all
four classes individually and exploit their characteristic properties. Especially scenes with a
large proportion of static geometry benefit from a diversified approach because acceleration
structures for static geometry can be created in a preprocessing step and may be optimized
for high ray tracing performance.

3.2.1 Addressing Static Geometry

Kd-trees are widely regarded as the optimal data structure for handling static geometry in
a ray tracer. They adapt well to geometry and can be traversed efficiently with single rays
and with ray packets.

In order to be able to achieve optimal run—time performance it is necessary to perform
construction based on the surface area heuristic, which delivers superior results compared
to other known heuristics [15]. Algorithms that evaluate all reasonable splitting positions
like the plane sweeping approach by Wald and Havran [55] should be preferred for optimal
tree quality, too. Although there are faster alternatives like SAH—sampling [19], which
also build good kd-trees, the reduction of build—time is typically irrelevant because the
construction of acceleration structures for static geometry is performed in a preprocessing
step and therefore has no effect on ray tracing performance.

An important aspect of SAH-based construction is the termination criterion. It is evaluated
prior to splitting of a node to determine whether further subdivision actually increases the
kd-tree’s quality or not with regard to better ray tracing performance. A common approach
is to evaluate the costs of the optimal splitting plane and compare them to the costs of turning
the node in question into a leaf of the kd—tree. The node is split only if the associated costs
are less than those of the alternative. Although this seems to be a reasonable solution for
the termination problem kd-trees with better quality can be built by employing a refined
criterion.

29

3 Design

The described termination criterion performs a greedy evaluation of the SAH cost function
when determining the costs of the optimal splitting plane, which is based on the assumption
that a split always produces a node with two leaves as children. Further partitioning steps,
which might well reduce the costs of the current sub—tree, are therefore ignored and the
construction algorithm may get stuck in a local minimum. This problem can be eliminated
by continuing subdivision as long as the preconditions of the construction algorithm are met
(i.e., that there is at least a single primitive in the active volume) and performing backtrack-
ing if a deeper tree results in no reduction of the costs. In order to limit the increase of build
time over the original termination criterion an upper bound of the number of backtracking
points can be specified.

Premature termination of kd—tree construction can severely degrade ray tracing performance
due to too coarse partitioning of space and an associated increase of ray—primitive intersec-
tions during traversal. However, a reduction of performance can also be observed for kd—
trees that exhibit very fine partitioning. This is related to the additional traversal steps that
need to be performed in a deeper tree, which do not only increase the computational load
on the processor but also raise memory bandwidth requirements, which quickly become a
bottleneck on general purpose processors. Although the SAH cost function incorporates a
factor to represent these costs, an extension to the termination criterion can yield smaller
kd-trees with equal or marginally better ray traversal behavior.

It can be observed that the absolute gains of splitting a node decline with the depth of the
kd—tree, which is only natural because the effects of the splits are localized in potentially
small sub-trees that have a low probability of being traversed by rays. Nevertheless the
termination criterion in its current form often does not stop further subdivision because it
determines that performing a split is less expensive than turning the node into a leaf, even
if only marginally. In this thesis this problem is addressed by introducing a depth—based
factor to limit the creation of deep sub—trees that have only little impact on the overall costs.

In order to avoid irrelevant splits the termination criterion is modified to favor the creation
of leaves at increasingly deep levels. This is accomplished by scaling down the costs of
leaves based on their depth in the kd—tree relatively to the costs of splitting a node. During
the work on this thesis it has been discovered that an exponential scaling function gives
very good results and allows for a reduction of the size of kd—trees by up to 80% without
sacrifices in ray tracing performance. A detailed analysis based on a variety of test scenes
is given in chapter 5.

3.2.2 A Two-Level Acceleration Structure for Dynamic Geometry

After a ray was intersected with the static geometry in the kd—tree a second dynamic accel-
eration structure has to be traversed to find potentially closer intersections with animated
primitives. In this thesis the use of bounding volume hierarchies is investigated for this
purpose and a two—level acceleration structure is proposed that supports rigidly animated
geometry, deformable geometry and fully dynamic geometry with incoherent motion and
topology changes.

Bounding volume hierarchies have a number of advantages over other hierarchies that make
them particularly useful in the context of dynamic geometry. As an object list partitioning
scheme they are fast to build and adapt well to a given distribution of primitives when the
surface area heuristic is used by the construction algorithm. Furthermore it is possible to
update BVHs to reuse partitioning information and exploit frame to frame coherency.

30

3.2 High—Level Solutions

BVHs are therefore a great base for the two—level acceleration structure. Its lower level is
made up from separate bounding volume hierarchies containing the raw geometry, which
typically reflect the logical structure of the dynamic scene (i.e., by having such a container
for each animated character). These hierarchies are not built upfront but are constructed
lazily when a ray traverses them, thereby reducing the work load by evaluating only braches
that are actually needed.

To facilitate this, a BVH is initially only composed of a single leaf node that encompasses
the complete set of primitives. When a ray hits the leaf’s volume the traversal algorithm
attempts to split the node based on the surface area heuristic by evaluating a set of planes
through sampling [19]. If this operation is successful the traversal algorithm proceeds by
traversing the newly created children nodes, which are again subject to potential splitting.
However, in case a split would yield no reduction of the overall costs the leaf is marked
as final. This suppresses further splitting attempts and forces the traversal algorithm to
intersect rays with all referenced primitives.

Lazy construction can be implemented efficiently for object list partitioning schemes due
to the fact that the upper bound of the number of nodes can be derived from the number
of primitives. This allows the construction algorithm to operate on pre—allocated memory,
thereby eliminating the overhead of memory allocations, which would have a negative effect
on ray tracing performance. Lazy construction is also a perfect base for a new updating
scheme called “selective rebuilding” that has been developed within the context of this
thesis.

Selective rebuilding can be regarded as a subset of selective restructuring. Like selective
restructuring it supports partial rebuilding of a bounding volume hierarchy but performs
this operation on complete sub—trees only. Similarly to refitting all bounding volumes are
recalculated in bottom—up level order to adapt the hierarchy to the new configuration of
primitives. In addition to that the SAH-based costs are reevaluated for each node and
compared to the costs of the original configuration, which were recorded when the nodes
were split in the first place. When the new costs exceed the old by a specified threshold,
which is a hint that the quality of the BVH might have degraded, a rebuild of the local
sub—tree is issued. In a system that uses lazy construction this is can be done by freeing
all descendents of the sub—tree and turning its root node into a leaf. Lazy construction then
carries out the rebuild when rays hit the node. By modifying the rebuild threshold it is
possible to balance BVH quality and updating time.

The upper level of the two—level data structure is comprised of a single BVH that contains
references to the hierarchies of the lower level in its leaves. These references are associated
with a transformation matrix that enables rigid animation of geometry without transform-
ing the primitives individually and updating the lower—level BVHs. This is accomplished
by modifying the traversal algorithm to transform the rays for each hit reference with the
associated matrix and to continue traversal in the lower level. A similar approach albeit for
kd-trees was proposed previously by Wald [54].

By allowing multiple references to a single lower—level BVH, it is possible to implement
geometry instancing with little extra effort. The concept of instancing was introduced by
Sutherland [50] and is based on the idea that scenes typically contain objects that appear
several times in different spots, possibly rotated and scaled. Instead of embedding their
primitives multiple times in the acceleration structure the objects’ respective geometry is
defined only once and inserted via references. This reduces both the memory requirements
and the time spent in building and maintaining the hierarchies because the number of prim-
itives is reduced.

31

3 Design

3.2.3 Tracing Rays with Multiple Acceleration Structures

Traversal of an acceleration structure with a ray typically identifies the hit primitive with
a handle that can be used to access related data such as per—vertex attributes for triangles.
Additional data may include the intersection distance and barycentric coordinates of the
intersection point.

If more than a single acceleration structure needs to be traversed, it is possible to combine
these results by keeping only the information about the nearest intersection point. However,
better ray tracing performance can be achieved by reusing the intersection distance from one
traversal pass in the subsequent traversal of an additional acceleration structure. This allows
limiting the search range for intersections and therefore enables skipping of sub—trees that
contain only primitives farther away than the already recorded intersection.

The ideal order of the traversal of acceleration structures is not obvious and might even vary
from ray to ray depending on the distribution of primitives. Generally, shallow hierarchies
should be traversed first because potential intersections may on average be detected in fewer
steps compared to hierarchies with deep sub—trees. The efficiency of traversal algorithms is
another aspect of choosing a traversal order. Kd—trees in particular can be traversed faster
than other acceleration structures, which should therefore be performed early in order to
be able to use detected intersection points for culling in the subsequent traversal of other
acceleration structures.

3.2.4 Coherent Ray Packet Assembly

Packet-based traversal of acceleration structures allows for amortization of memory ac-
cesses and traversal steps over the rays in a given packet. However, the possible gains in
run—time performance depend largely on the coherence of rays in packets. Especially sec-
ondary rays, which account for a large fraction of the overall number of traced rays per
frame, are typically incoherent and yield a reduction of ray tracing performance.

Furthermore it becomes increasingly difficult to assemble packets of sufficient size in deep
levels of the shading tree. Whenever the rays of a packet intersect with primitives that do not
share a common material, it is necessary to invoke more than a single function to perform
material specific shading operations. This reduces the number of active rays in each path,
which limits the number of secondary rays, too, as illustrated in Figure 3.2.

To alleviate this problem a system based on cooperative threads was proposed in [42], where
a large number of image tiles is rendered in an interleaved pattern. Whenever a request for
tracing of rays is made the rays are inserted into a queue to be sorted for high coherence.
Additionally the active cooperative thread is put on hold. In case enough rays were collected
for assembly of coherent packets they would be processed and the respective threads that
requested tracing would be marked active again if their request was fulfilled. Otherwise
another tile would be processed.

Although this approach enables ray traversal of an acceleration structure with large coher-
ent packets the overhead of sorting of rays and switching between cooperative threads is
prohibitive in real-time applications. In this thesis methods for automatic grouping of rays
are therefore not employed. Instead it is attempted to assemble coherent ray packets by
exploiting domain specific knowledge in materials (e.g. by tracing shadow rays from one
light source at a time to all active hit points, thereby creating packets of rays with a common
origin).

32

3.2 High—Level Solutions

Figure 3.2: Assembly of packets of sufficient size is diffuclt in deep levels of the shading tree where
typically only few rays are active in a given path.

3.2.5 Resolving Branches in Material Systems

Typical material systems are based on a collection of properties that are set on a per—object
or per—primitive basis usually by evaluation of a description file at run—time. Shading of hit
points is then implemented by interpreting these properties. In order to be able to support a
large feature set, different code paths need to be created (e.g., for reflection and refraction
effects). Conditions for the branches associated with these fragments of functionality need
to be evaluated for each shaded ray, which may degrade performance considerably. Material
specific optimization opportunities are also missed out by having a generic function for all
material configurations.

The use of run—time code generation for materials was proposed in [43]. This retains the
flexibility of a run—time parameterizable material system and allows for performance im-
provement by elimination of branches and folding of constants. Code generation is non—
trivial and time consuming to implement, particularly when dealing with multiple platforms.
It is therefore advisable to rely on external libraries, such as the low—level virtual machine
(LLVM) [30], for this purpose.

The LLVM is an abstraction from hardware and is based on a virtual instruction set. It
supports emission of code through an object—oriented interface and run—time generation of
machine code for a large number of platforms. Interoperation with C/C++ code is possible
through dynamic linking, which is handled transparently by the LLVM. A large number
of optimization passes are available that can be applied selectively to balance compilation
times and the quality of the generated code.

33

3 Design

3.3 Designing a Flexible Ray Tracing Library

The presented high—level solutions form the base for a ray tracing library that was devel-
oped over the course of this thesis. The library enables ray tracing of reasonably complex
triangle—based dynamic scenes at real-time frame rates, which is employed in a variety of
rendering applications that will be discussed in chapter 5.

However, an additional design goal for such a ray tracing library was to make sure that it is
useful not only in the context of image synthesis but also in other areas where ray tracing is
employed (e.g., collision detection). This was approached by restricting the library to deal
with raw geometry only, thereby leaving management of additional per—triangle domain
specific attributes (e.g., normal vectors, materials) to the applications. Therefore the library
mainly provides containers for triangle—based geometry with support for fast ray tracing
queries.

Kd-trees are supplied for static geometry, whereas the intended use for the previously in-
troduced two—level acceleration structure lies in the handling of dynamic geometry. Results
from traversing these data structures encompass a unique identifier for the hit triangle, the
distance of the hit point from the ray’s origin and the barycentric coordinates of the hit
point. This set of data describing a hit point should be general enough to be useful in
a broad range of applications and can be extended based on the identifier by looking up
additional triangle—specific attributes.

34

Chapter

Implementation

Aspects specific to the implementation of the ray tracing library developed within
the context of this thesis are discussed in this chapter. After an introduction of the
library’s architecture the implementation of its subsystems is described in detail.

4.1 Architecture

The architecture of the ray tracing library is based on the idea of supplying a collection of
geometry containers that can be combined to create a fast ray tracing system with support
for static and dynamic geometry. C++ is the language of choice for the object—oriented
implementation because it enables the use of SIMD instructions through intrinsics in up—to—
date compliers and allows for low-level management of data structures (i.e., specification
of alignment and reinterpretation of pointers as integer values), both of which are crucial to
achieving good run—time performance.

Following the previously discussed design of the library kd—trees are used for static geome-
try and are created by a builder that employs a SAH sweeping—based construction approach
to create high—quality kd—trees. Objects of the class StaticKdTree are immutable and
can be serialized to disk for later reuse. It is therefore possible to use the builder supplied
by the library in preprocessing tools separate from the actual rendering application.

Containers for dynamic geometry (DynamicGeometry) can be instantiated directly and
expose access to resizable buffers for triangle vertices and indices. When an application
has finished updating a container’s buffer with new geometry it has to invoke one of the
container’s update methods to refresh its internal bounding volume hierarchy. Refitting and
selective rebuilding are usually the updating scheme of choice to keep updating times low.
However, if triangles are added to the container or removed from it a full rebuild is always
required in order to allow for resizing of internal data structures.

Dynamic geometry containers correspond to the lower level of the previously introduced
two—level acceleration structure. The class DynamicScene implements its upper level
and arranges dynamic geometry containers in a BVH for fast ray traversal. It exposes meth-
ods for adding and removing containers and associating them with a transformation matrix,
which can be used for rigid animations. Similar to geometry containers it is necessary to
rebuild a DynamicScene after its list of containers was modified. Rebuilds are also re-
quired after changes to transformation matrices. Refitting or selective rebuilds, however, do

35

4 Implementation

not need to be performed manually because these operations are carried out automatically
after they were applied to a container at the lower—level.

All three data structures share a common interface for ray traversal, which is given in List-
ing 4.1. As most applications will typically use a Stat icKdTree and aDynamicScene
the class SceneGroup was introduced. It implements the ray traversal interface by for-
warding method calls to two wrapped geometry containers, thereby supplying a single in-
vocation point for ray tracing requests.

interface ITraceable

{
void Trace
void Trace(ray rays[], int count, int flags);

(ray r, int flags);

(
void Trace (packet p, int flags);

(

(

void Trace (packet packets[], int count, int flags);
void Trace (packet packets[], int count, int flags, frustum f);

Listing 4.1: The general interface for ray traversal.

The class Tracer provides a simplified interface as given in Listing 4.2 and acts as another
wrapper for either an acceleration structure or a SceneGroup. When multiple rays are passed
to a Tracer it automatically performs packet assembly with respect to the requirements
and features of the wrapped object and invokes its fast packet—based traversal methods. The
tracing results are subsequently extracted from the packets and written to the original rays.

class Tracer
{
void Trace(ray r, int flags);
void Trace(ray rays[], int count, int flags);

}
Listing 4.2: Simplified ray traversal interface.

The overall architecture of the ray tracing library is illustrated in a UML class diagram in
Figure 4.1.

4.2 Basic Data Structures

4.2.1 Rays

A ray is defined by a point, which is commonly called its origin, and a direction vector.
Ray objects in the ray tracing library contain fields for these two values, which should be
set in the constructor. However, for practical reasons the definition of the ray structure also
includes fields to capture the results of tracing operations (i.e. an identifier for the hit object,
the distance of the hit point and its barycentric coordinates).

Additionally there are fields to record traversal specific data, such as the number of inter-
sected triangles or the number of visited nodes, which is particularly useful for analyzing
the complexity of a scene or the quality of an acceleration structure. Given the fact that
collection of this data introduces a certain computational overhead that reduces ray trac-
ing performance, it is possible to disable this functionality and mask the associated fields
through a preprocessor directive.

36

4.2 Basic Data Structures

K<wrap>>

1 1

1 1
F<wrap>> <kwrap>>

1 1

1

Figure 4.1: A UML class diagram for the ray tracing library.

struct ray
{
union
{
struct
{
int trilId;
float distance, beta, gamma;
}i
_ ml28 results;
} hit;

float3 origin, direction;

#ifdef RECORDRAYSTATS
struct stats
{
int visitedInnerNodes, visitedLeaves;
int intersectedTriangles;
int splitNodes;
} staticStats, dynamicStats;
#endif

struct
{
void xdata;
} user;
}
Listing 4.3: Rays have not only an origin and a direction but also fields for storage of traversal
results and statistics.

37

4 Implementation

An additional field named user.data is included to enable applications to associate cus-
tom data with each ray, yielding the final definition of the structure as given in Listing 4.3.

The fields for the results of intersection tests are laid out to fit into a 128-bit SSE regis-
ter and can therefore be manipulated with vector instructions. It is important to note that
SSE requires data to be aligned on 16-byte memory boundaries, which is performed auto-
matically by the compiler only for ray objects that are allocated on the stack. If rays need
to be created on the heap the programmer is responsible for guaranteeing proper alignment.
This can be accomplished by replacing the traditional malloc () function with a function
that allocates aligned memory (e.g. .-mm_malloc () thatis supplied by most compilers).

4.2.2 Packets

Packets serve as temporary containers for exactly 4 rays, which corresponds to the native
vector size of the employed SSE instruction set. They are not created by the programmer di-
rectly. Instead the class Tracer is responsible for assembling packets from individual rays
depending on the requirements of the configured ray tracing system. It serves as a front-end
for the acceleration structures that are supplied by the library and relieves the programmer
from ensuring that only groups of rays are created that can be processed together by the
implemented traversal algorithms (e.g. by sorting ray according to their direction vectors
for kd—tree traversal).

The definition of the packet structure is very similar to the previously given ray structure.
In particular a packet also contains fields for the origins and the directions of its 4 rays.
Additionally the per—component multiplicative inverses of the direction vectors are stored,
which are useful in the context of ray—plane intersections that are performed frequently dur-
ing the traversal of acceleration structures. By pre—calculating (1/dir.x,1/dir.y,1/dir.z) for
each ray it is possible to replace divisions with faster multiplications, which may increase
run—time performance considerably.

Fields for hit data are also part of the definition of a packet albeit again in vector form
for all 4 rays. Fields for traversal statistics, however, are not replicated for each ray and
capture data on the granularity level of entire packets. Nevertheless this results in no loss of
information because all rays in a packet are subject to the same operations when a packet—
based traversal algorithm is employed.

Additionally packets contain references to the 4 rays that they wrap. These references are
used to update the rays with traversal results and statistics after acceleration structures were
traversed with the packet. Listing 4.4 gives the final definition of the packet structure.

4.2.3 Frustum of Rays

The multi level ray tracing algorithm by Reshetov et al. [44] uses the frustum of a group
of rays to quickly discard entire sub—trees during kd—tree traversal. The traversal algorithm
for bounding volume hierarchies by Wald et al. [57] is based on the same idea to exploit ray
coherence. Packet assembly by the Tracer class therefore encompasses the computation
of a frustum for rays to support the use of these traversal schemes, which is performed based
on the algorithm devised by Boulos ef al. [5]. The algorithm operates on rays that do not
necessarily need to share a common origin and is therefore also useful in the context of
tracing secondary rays. After the parameters for the frustum’s 4 bounding planes have been

38

4.2 Basic Data Structures

struct packet
{

vector3 origin;
vector3 direction;
vector3 invdir;

struct

{

_.ml28 trilId;

__ml128 distance, beta, gamma;
} hit;

ray *xrays[4];

#ifdef RECORDRAYSTATS

ray::stats staticStats, dynamicStats;
#endif
}

Listing 4.4: Packets are temporary wrappers for 4 rays and have similar fields albeit in vector form.

computed, they are stored in a SIMD friendly form devised in the following to allow for an
efficient culling of axis—aligned bounding boxes.

Culling of an AABB involves proving that all of its 8 vertices are on the outside of at least
one of the frustum’s bounding planes. This can be approached by making sure that the
signed distances of all vertices to a given plane with an outward facing normal are positive.
However, Greene [12] proposed that testing a single vertex suffices to determine whether
the entire AABB is located on the outside of a plane or not. The so—called n—vertex is the
vertex of an AABB that lies farthest in the negative direction of a given plane’s normal
vector. If this vertex is on the outside of a plane then the other vertices are outside, too, as
illustrated in Figure 4.2.

Figure 4.2: The n—vertex of an AABB is the vertex laying farthest in the negative direction of a
plane’s normal vector.

Based on the representation of an AABB with two extremal points the position of the n—
vertex can be composed component-wise based on the signs of the plane’s normal vector.
For positive values of the normal vector the lower extremal value in that axis is used for
the n—vertex, otherwise it is the upper extremal value. By separating the positive from the
negative values of a plane’s normal, as proposed by Reshetov et al. [44], the signed distance
of the n—vertex can be calculated directly as demonstrated in Equation 4.1.

39

4 Implementation

dist = max(0,ny) x lower, +min(0,n,) *x upper, +
max(0,ny) * lowery, +min(0,ny) x uppery, + 4.1)

max(0,n;) xlower, +min(0,n;) xupper, —d

By pre-computing max(0,n) and min(0,n) for each plane and storing them in vector form
along with the planes’ distance terms d, culling of AABBs can be implemented efficiently
with SIMD instructions to evaluate all of the frustum’s 4 bounding planes in parallel.

4.3 Kd-Trees for Static Geometry

Kd-trees for static geometry are implemented in the class StaticKdTree. It serves as
an immutable container for both the triangles and the acceleration structure and supports
methods for traversal with rays and packets. Stat icKdTree objects are typically created
by the Stat icKdTreeBuilder based on a set of triangles. Serialization to files for later
reuse is also supported, which allows the creation of static kd—trees in preprocessing tools.

4.3.1 Construction of Kd—Trees

The StaticKdTreeBuilder is responsible for the construction of static kd—trees in the
ray tracing library and provides a simple to use interface for this task, which accepts a list
of triangles and returns an instance of the Stat icKdTree class. The builder employs the
surface area heuristic to create high—quality kd—trees and is based on the plane sweeping
approach by Wald and Havran [55].

The first step performed by the builder is the initialization of sorted per—axis lists with
opening, closing and planar events for the triangles. The implementation uses an OpenMP
parallel for—loop to perform event creation and list sorting for each axis in parallel on a max-
imum of three processing units. At the same time it determines the axis—aligned bounding
box for all triangles.

Construction of the kd-tree is then carried out in top—down manner by recursively invoking
a partitioning function, which returns a new sub—tree based on a set of inputs:

e An AABB describing the active volume,

o A list of references to the triangles in the volume,
e Event lists for each axis,

e The current depth and

e The remaining number of backtracking points.

The function initially determines if all pre—conditions for further subdivision are met by
checking that the number of triangles is greater than zero and that the current depth does
not exceed the maximal allowed depth. If this is the case then the splitting plane with
the minimal associated costs is identified using the plane sweeping algorithm, otherwise
a leaf node is returned. Given a valid plane the termination criterion is then evaluated to
determine if splitting the active volume is beneficial to the quality of the kd—tree. In case an
abort is suggested, a backtracking point may be used to continue the subdivision albeit with

40

4.3 Kd-Trees for Static Geometry

a subsequent evaluation and potential backtracking to undo it if it does not exhibit lower
costs than a leaf.

Splitting a node involves a series of operations:
e The given bounding volume is split into two new AABBs using the splitting plane.

e Triangles are partitioned into two subsets, which are not necessarily disjoint, based
on a left/right—classification of their positions relative to the splitting plane.

e Two new sets of per—axis events lists are created in a more involved procedure. First
of all the events for triangles that intersect with the splitting plane are deleted and
the lists are spliced into a left and a right event list for each axis retaining the sorting
order. Events for plane—straddling triangles are then recreated based on clipped rep-
resentations of the triangles (e.g., created using the Sutherland—Hodgeman clipping
algorithm [51]). These events are sorted and inserted into the left and right lists us-
ing a single mergesort iteration, yielding again sorted event lists that can be used in
subsequent subdivision steps.

After these steps an inner node is allocated with the sub—trees resulting from invoking the
partitioning function for the left and right data sets assigned as children.

The construction algorithm can be parallelized by spawning a second thread to handle sub-
division of either the left or the right data set. However, care must be taken not to deplete
the system’s resources by spawning an exponential number of threads through kd—tree con-
struction. In fact multi—threading is most efficient if there is a single active thread running
on each processing unit. Such behavior can be implemented by introducing a shared counter
to control the number of threads. It is initialized to reflect the available processing units.
A thread can only be spawned if the counter is greater than zero, in which case it is decre-
mented using an atomic operation so not to require locking. Upon termination of the thread
the counter is incremented again.

Although it might seem that this threading scheme involves the creation and destruction of
a large number of threads, it is actually very efficient. This is due to the top—down approach
to kd—tree construction where all threads are spawned on high levels close to the root node
and live throughout the entire construction of their respective sub—trees.

4.3.2 Memory Layout
Kd-tree Nodes

Kd-tree nodes can be packed into 8 bytes by employing the data structure as given in List-
ing 4.5 and storing the nodes contiguously in memory (i.e. in an array).

The first 4 byte sized field of a leaf node is a signed integer that stores the number of
triangles contained in the leaf. The second field is an offset into an array of indices where
the actual references to the triangles are stored sequentially.

Inner nodes contain an axis—aligned splitting plane and references to their children. De-
spite the fact that the kd—tree is a binary hierarchy it is possible to describe the whole tree
with only a single reference per inner node by exploiting the arrangement of nodes in mem-
ory. If nodes are stored in depth—first order in a contiguous block of memory it suffices
to remember the address of the right child because the left child always follows its parent
node. Another approach is to store siblings in pairs and to remember the address of the first
node. Although both approaches are equally powerful with regard to their ability to describe

41

4 Implementation

union node

{

struct

{
int numberOfIndices; // number of triangle indices
int offsetTolIndices; // offset to array of indices
} leaf;

struct
{
int offsetAndAxis; // 0..2 axis, 2..30 offset

float splitPos; // position of the splitting plane
} inner;

Listing 4.5: Kd—tree nodes can be packed tightly into a structure of 8 bytes.

kd-trees, storing nodes in pairs has the added advantage that children can be accessed in C—
style array notation, therefore yielding easier to read code. The StaticKdTreeBuilder
therefore allocates an array for all nodes and arranges siblings in pairs, as depicted in Fig-

ure 4.3.
(A)
al-[8[c|plE[FlG (B) (C)
® ©® G @

Figure 4.3: By storing siblings as a pair in contiguous memory it is possible to access both nodes
based on the address of the first node.

By storing offsets to child nodes in multiples of bytes, the lower two bits of the integer
representation of an offset are always zero due to nodes having a size of 8 bytes. These
two bits suffice to store the axis of the splitting plane. The position of the plane is a single
precision floating point number and is stored in the second 4 byte sized field of the inner
node.

In order to be able to discern between leaves and inner nodes based on their representation
in memory an additional marker has to be introduced. A viable solution is the use of the
most significant bit (MSB) of the first field. The MSB corresponds to the sign bit of signed
integers and is never set in leaf nodes because they cannot contain a negative number of
triangles. It can therefore be freely used to signal that a node has to be interpreted as an
inner node. A potential drawback of this approach is the reduction of the range of offsets to
child nodes. However, in 32-bit systems the operating system typically reserves the upper
half of the address space and therefore limits the available memory for nodes anyway.

42

4.3 Kd-Trees for Static Geometry

Triangles

The ray—triangle intersection test devised by Kensler and Shirley [28] can be implemented
efficiently by precomputing data. In particular the algorithm expects triangles to be defined
not based on three vertices but on a single point and two edge vectors. This transformation is
carried out during the construction of a Stat icKdTree object, as depicted in Figure 4.4.
Additionally the face normal vector is calculated to save on an additional cross product
operation at run—time, which increases memory requirements from 32 bytes to 48 bytes per
triangle.

A pO
CC/Q\BQZ> eO/N

Figure 4.4: By pre—computing data the ray—triangle intersection test can be optimized.

Indices

Packing kd—tree nodes into 8 bytes has the side effect that it is not possible to store ref-
erences to more than a few triangles directly in the leaves. Using references of 2 bytes in
size limits the maximum of triangles in a given scene to 2'®, which is not sufficient even
for moderately complex scenes. Additionally it requires a modification of the construc-
tion algorithm to continue subdivision of nodes until they contain no more than 4 triangles
regardless of the termination criterion, which may reduce ray tracing performance.

In order to be able to reference a potentially large number of triangles in a leaf of a kd—tree
an extra data structure is required. This data structure has the form of an array that stores
references to triangles (e.g. with 4 bytes per reference). As described previously, leaves
then contain an offset into this array and a counter that specifies the length of the range
beginning at the offset.

4 8 12 451[122 55,11 3|4 1123

\Qd

Figure 4.5: The overall number of indices can be reduced by merging the per—leaf lists and allowing
them to overlap.

By allowing ranges to overlap, as can be seen in Figure 4.5, the size of the data structure
can be reduced. Despite the fact that combining lists into a single list of minimal size is an
np—complete problem, good results can be attained in polynomial run—time by employing
Algorithm 6.

The algorithm creates an empty global index list and performs traversal of the kd—tree in
depth—first order. When a leaf is visited its local index list is sorted (e.g., ascendingly) and it

43

4 Implementation

is determined whether its contents are already present in the global list in exactly the same
order or not. If no occurence is found the contents of the leaf’s list are simply appended to
the global list. Otherwise the existing range of indices is reused. In both cases the local list
is dropped and the leaf is updated to reference a section of the global list.

Algorithm 6 Index list compaction

function TRAVERSE(node n, list indices)
if n is leaf then
sort n.indices /* e.g., ascendingly */
if indices contains n.indices then
update n to reference existing indices
else
append n.indices to indices
update n accordingly
else
Traverse(nyy;, indices)
Traverse(n, gy, indices)

function COMPACTINDICES(tree T') returns list
indices = 0 /* initialize the global index list */
Traverse(Typor, indices)
return indices

The main computational effort of this algorithm is the search for an existing set of indices in
the global list. To optimize this aspect the use of string searching algorithms like the Boyer—
Moore algorithm [6] is tempting, which finds strings with m characters in a text of length n
in Q(n/m). However, in the context of this thesis it has been determined that a brute—force
approach is almost always faster. This is due to the fact that leaves typically reference only
a few triangles when a SAH-based construction approach is employed. Therefore the m is
small and the theoretical run—time benefits of the Boyer—Moore algorithm are outweighed
by its organizational overhead. For a selection of scenes, which will be described in chap-
ter 5, the distribution of indices can be seen in Figure 4.6.

60%

50% -

40% -

= clown
= forest
= buddah

= kitchen

30%

= menger

— scene6
sponza

—&—average

Proportion of all leaves

20%

N\

0 1 2 3 4 5

10%

0%

Indicesper leaf

Figure 4.6: Leaves typically contain only few references to triangles when a SAH-based construc-
tion algorithm is used.

Nevertheless the run—time efficiency of the algorithm can be improved based on properties
of the traversal order. By traversing a kd—tree in depth—first order leaves in close spatial
proximity, which are likely to contain shared triangles, are visited in sequence. Appending

44

4.3 Kd-Trees for Static Geometry

to the global index list increases the probability of finding an existing set of indices towards
the end of the list. The algorithm can therefore be optimized by restricting the range of the
brute force search to encompass only the last n entries without sacrificing good packing of
indices.

As can be seen in Figure 4.7 only mild growths of the global index list result from restricting
search ranges to widths of n € [100; 1000]. The overhead of index list compaction, however,
is reduced considerably and increases kd—tree construction times by less than 8% on average
for the given selection of scenes.

31x

80% / - 26x
N\N—— /

100%

90% -

[}

70% £
[- 21x ‘é
o —
5 60% 4+ | b= clown
= S =——forest
2 50% N I - 16x g
S 0 / § —buddah
%’ 20% § ——kitchen
€ / Fax 8 sceneg

30% / | 2 sponza

—&—average (time)

20%
/‘ - 6x
10% /

0% * g ¥ T 1x
none 1 10 100 1000 10000 100000 full

L 3
L 2

Searchrange

Figure 4.7: The run—time overhead of index list compaction can be reduced significantly with little
influence on the quality of the generated list by limiting the search range’.

4.3.3 Ray Traversal

Traversal of the kd—tree with both packets and single rays is implemented iteratively to
avoid the overhead of recursive function calls. For this purpose an explicit stack storing
nodes along with the near and far parameter intervals for the rays is required. The necessary
amount of memory is allocated on the stack based on the maximal allowed kd—tree depth,
which has advantage of being inherently thread—safe compared to the use of heap—allocated
memory that needs to be replicated for each active thread in the ray tracing system.

The selection of the near and the far node in each traversal step is based on a bit—field
containing the index of the near node for each axis. By storing siblings in pairs with the
node corresponding to the lower volume first, the near node has the index 0 for rays pointing
in the positive direction of an axis and the index 1 otherwise. This bit—field can therefore be
composed directly from the sign—bits of the ray’s direction vector’s components, as given in
Listing 4.7. For packets it is guaranteed that all rays have direction vectors with equal signs,
which allows the composition of the bit—field based on an arbitrarily selected (i.e., the first)
ray.

IThe Menger-Sponge scene was omitted from the graph because it does not benefit from index list com-
paction. Its regular structure allows for perfect partitioning of triangles, which are therefore referenced
exactly once. Skipping the compaction operation for faster kd—tree construction is advisable if the number
of indices is only marginally higher than a scene’s primitive count.

45

4 Implementation

void Trace(ray &r, int flags)

{

float3 invDir = 1.0f / r.direction;

float nearDist = 0.0f, farDist = (flags & ShadowRays) *?
min(1.0f, r.hit.distance) : r.hit.distance;

if(!ClipToSceneBox (nearDist, farDist, r, invDir))
return; // the ray missed the scene’s AABB

Mailbox mailbox;

int stackIdx = 0, signMask = GetSignMask (r.direction);
float nears[MaxDepth], fars[MaxDepth];

node xnodes[MaxDepth], xcur = _nodes;

while (true)

{

while (!cur->IsLeaf()) // traverse down to a leaf

{

int a = cur—->inner.GetAxis () ;

float d = (cur->inner.splitPos - r.originf[a]) = invDir([al;
node xchildren = cur->inner.GetChildren();
int nearIndex = (signMask >> a) & 0x1;

if(d >= nearDist)
{
if(d <= farDist)
{
nodes [stackIdx] children + (nearIndex =~ 1);
nears[stackIdx] = d; fars[stackIdx++] = farDist;
farDist = d; // visit the near child first

cur children + nearIndex;

else
cur

children + (nearIndex =~ 1);

int xindices = cur—->leaf.GetIndices();
for(int 1 = 0; i < cur—>leaf.numberOfIndices; ++1)

{
if (!mailbox.SkipIntersectionTestWith (indices[i]))
_triangles[indices[i]].IntersectWith(r, indices[i]);

if(r.hit.distance <= ((flags & ShadowRays) ? 1.0f : farDist))
break; // early out

if (stackIdx > 0) // pop the next node from the stack
{

cur = nodes[--stackIdx];

nearDist = nears|[stackIdx]; farDist = fars[stackIdx];
}
else

break;

Listing 4.6: Single ray traversal of kd—trees.

46

4.3 Kd-Trees for Static Geometry

int GetSignMask (float3 v)
{

union { float f; unsigned int i; } tmpx, tmpy, tmpz;

tmpx.f = v.x; tmpy.f = v.y; tmpz.f = v.z;
return ((tmpx.i >> 31) & 0Ox1) |

((tmpy.1i >> 30) & 0x2) |

((tmpz.1i >> 29) & 0x4);

}

Listing 4.7: The index of the near node in each axis is extracted from the sign—bits of the ray’s
direction vector.

When ray traversal reaches a non—empty leaf, the referenced triangles are intersected with
the ray using the algorithm devised by Kensler and Shirley [28]. The ray is then updated
if an intersection point closer to its origin is found, which encompasses writing the zero—
based index of the triangle, the hit distance, and the barycentric coordinates of the intersec-
tion point to the corresponding fields in the ray. In order to be able to skip triangles that
were tested for intersection with a given ray or packet in another leaf previously an inverse
mailbox is used.

Mailboxes keep track of intersection tests that have been carried out during traversal. In
their original form they are implemented by assigning each ray or packet a unique identifier
and writing it to a per—primitive field after an intersection test was performed. The field
therefore always contains the identifier of the ray/packet that it was intersected with last,
which allows for skipping of primitives with a simple comparison of ids. Within a multi—
threaded ray tracer this has the disadvantage of requiring such a field for each active thread
to avoid having concurrent traversal operations overwrite each other’s records, which would
reduce the efficiency of the technique.

Inverse mailboxes are based on storing a list of intersected primitives for each ray or packet,
which therefore do not need to be assigned unique identifiers. By allocating this list on the
program stack the technique can be implemented in a thread—safe way and is useful also in
multi—threaded environments. Although the number of intersection tests is typically low on
average for kd-trees, which allows to keep a perfect record of all intersections with little
memory overhead on average as well, it is preferable to keep track of intersections based
on hashing to guarantee O(1) behavior both in memory use and run—time. An efficient
implementation of this approach encompasses the allocation of a fixed size array with 2"
entries and the insertion of primitive identifiers based on their lower n bits. Arrays with
32 or 64 entries typically suffice to reduce hash collisions to acceptable levels, with larger
arrays having no measurable positive effects on ray traversal performance for the selection
of scenes introduced previously.

The implementation of single ray kd-tree traversal is given in Listing 4.6. In addition to
standard ray traversal, which is used to find the closest point of intersection of a ray with
geometry, the function has special support for shadow rays.

Shadow rays are traced as secondary rays from a point on the surface of an object to a
light source. They are used to determine whether the point is illuminated or in shadow due
to the existance of an object blocking the incoming light. To determine that a point is in
shadow it suffices to find any intersection between the point and a light source. Furthermore
all potential intersections behind the light can be ignored as they have no effect on the
illumination of the point. Based on these two observations the early—out test and the initial

47

4 Implementation

void Trace (packet &p, int flags)
{
__ml128 nearDist4 = Zero4, farDist4 = (flags & ShadowRays) °?
_mm_min_ps (Oned4, p.hit.distance.f4) : p.hit.distance.f4;
int active = ClipToSceneBox (nearDist4, farDist4, p);
if (active == 0) return; // all rays missed the scene’s AABB

int terminated = active ~ 0xf; Mailbox mailbox;

int signMask = GetSignMask (p.rays[0]->direction);

int stackIdx = 0; __ml28 nears[MaxDepth], fars[MaxDepth];
node xnodes|[MaxDepth], cur = _nodes;

while (true)

{

tr: while(!cur->IsLeaf()) // traverse down to a leaf
{
int axis = cur—->inner.GetAxis();
_ ml28 d = _mm_mul_ps(_mm_sub_ps(_mm_setl_ps (cur->inner.splitPos),
p.origin[axis].f4), p.invdirlaxis].f4);
node xchildren = cur->inner.GetChildren();
int nearIndex = (signMask >> axis) & 0x1;
int near = _mm_movemask_ps (_mm_cmnpge_ps (d, nearDist4)) & active;
if (near != 0)
{
int far = _mm_movemask_ps (_mm_cmple_ps(d, farDist4)) & active;
if(far != 0)
{
nodes[stackIdx] = children + (nearIndex ~ 1);
nears|[stackIdx] = d; fars[stackIdx++] = farDist4;
farDist4 = d; active = near; // visit the near child first
}
cur = children + nearIndex;
}
else
cur = children + (nearIndex "~ 1);
}
int xindices = cur->leaf.GetIndices();
for(int i = 0; i < cur->leaf.numberOfIndices; ++1i)

{
if (!mailbox.SkipIntersectionTestWith (indices[i]))
_triangles[indices[i]].IntersectWith(p, indices[i]);

terminated |= _mm_movemask_ps (_mm_cmple_ps(p.hit.distance.f4,
(flags & ShadowRays) ? Oned4 : farDist4)) & active;
if (terminated == 0xf) break; // early out test

while (stackIdx > 0) // pop the next node from the stack
{

nearDist4 = nears[--stackIdx];
farDist4 = _mm_min_ps(p.hit.distance.f4, fars[stackIdx]);
active = _mm_movemask_ps (_mm_cmple_ps (nearDist4, farDist4d)) &
“terminated;
if (active != 0) { cur = nodes[stackIdx]; goto tr; }
}
break;

Listing 4.8: Traversal of kd—trees with a single packet.

48

4.4 Two-Level Dynamic Acceleration Structure

far distance are modified to enable faster tracing of shadow rays, which are assumed to have
non—normalized direction vectors extending from the point in question to the light source.

Listing 4.8 presents the implementation of kd-tree traversal with a single packet. It is a
vectorization of the single ray traversal routine and therefore exhibits similar control flow
and operations albeit in SIMD instruction form. In particular masks are used instead of flags
to capture and evaluate the results of comparisons.

Traversal begins by intersecting all rays in the given packet with the scene’s axis—aligned
bounding box to determine the initial parameter intervals. An additional result of this op-
eration is a mask that records which rays hit the scene’s AABB and should therefore be
subject to traversal. If no rays can be considered “active” with regard to this then traversal
is skipped and the function returns with no ray—triangle intersections.

During traversal of the kd—tree this mask is updated with each step to reflect the rays that
are active in the current sub—tree, which is necessary to be able to accurately determine the
nodes that need to be visited. In addition to the active mask a “termination” mask is main-
tained that records the rays for which their respective closest intersection with geometry
has already been found. It is updated subsequently to the intersection tests in a leaf and
evaluated to assess whether the early—out condition of traversal has been met (i.e., all rays
have been terminated) or not.

Popping nodes from the stack is a slightly more involved operation in packet traversal com-
pared to single ray traversal. When a node and a parameter interval is taken from the top
of the stack the interval’s far value is updated to factor in the distances to the closest hit
points. The active mask is then recomputed and combined with the termination mask to
restrict the set of active rays precisely to those rays that benefit from visiting the retrieved
node in that closer intersection points might be found. If this yields a mask with zero active
rays another interval-node pair is taken from the stack until traversal can either be aborted
due to an empty stack or resumed.

Traversal for multiple packets is implemented by invoking single packet traversal for each
packet individually. This delievers better results on average than the use of the multi level
ray tracing algorithm (MLRTA), which was also implemented but deactivated, due to two
aspects:

e MLRTA requires coherent ray packets to be efficient and is therefore unsuitable to
secondary rays, for which its overhead results in reduced run—time performance com-
pared to standard packet traversal.

e MLRTA performs best when traversing kd—trees that are built based on a modified
cost model favoring nodes with large volumes. Large volumes reduce the probability
that packets take different paths through the kd—tree and enable entry point search
to find starting points deep in the tree. However, modifying the cost model in this
way reduces the run—time performance of standard packet traversal and therefore the
efficiency of tracing secondary rays in our system.

4.4 Two-Level Dynamic Acceleration Structure

The previously introduced two—level acceleration structure is based on the concept of man-
aging raw geometry in the lower level and arranging geometry chunks on the scene level by
means of instancing and transformation in the upper level.

49

4 Implementation

The class DynamicGeometry implements the lower level of the acceleration structure
and acts as a container for raw geometry. Geometry is represented as an array of vertex
positions and a list of triangle indices connecting the points to triangles. For this purpose
the class provides functions for resizing the internal buffers for vertex positions and triangle
indices and also for acquiring pointers to the buffers to allow for writing and updating data.

The upper level of the two-level data structure is implemented in DynamicScene, a class
that acts as a collection of geometry containers. It provides a method for adding a reference
to a DynamicGeometry object, which returns a handle to the thereby created instance
of the geometry on the upper level. Based on this handle it is then possible to associate
the instance with a transformation matrix to position its geometry or to remove the instance
again.

To enable fast ray tracing both classes maintain an internal acceleration structure for their
contents, which was chosen to be bounding volume hierarchies in the context of this the-
sis. Leaves of BVHs in the lower level therefore contain references to triangles, whereas
geometry containers are referenced in the leaves of the upper level BVH. This difference in
contents affects both the traversal and the construction algorithm of the respective bounding
volume hierarchies, which makes it difficult to create a single BVH implementation directly
accommodating the two levels.

In order to facilitate the creation of a single BVH implementation it is necessary to encap-
sulate the differences in functionality and data between the upper and the lower level:

o Although ray traversal of the BVH is identical the actual operations carried out when
a leaf is visited differ between the lower level, where ray—triangle intersection tests
are performed, and the upper level, where the ray is subject to transformations and
further traversal of the referenced geometry containers. By encapsulating this leaf—
specific behavior in a functor a single traversal algorithm (for each type, rays and
packets) can be implemented and customized based on the level of the acceleration
structure it is used at.

e BVHs of the lower level partition triangles, which stands in contrast to the partitioning
of geometry container instances on the upper level. However, both types of entities
have in common that an axis—aligned bounding box can be computed for them, which
is all that is needed for the implementation of most construction algorithms. By hav-
ing both classes, DynamicGeometry and DynamicScene, manage an array of
AABBs corresponding to their contents a single construction algorithm can be sup-
ported. This also applies to updating schemes like refitting and selective restructuring,
which operate on bounding boxes only, too.

In the following the implementation of the bounding volume hierarchy is described, with
subsequent discussion of the integration with the classes of the two—level acceleration struc-
ture.

4.4.1 Bounding Volume Hierarchy

Memory Layout

Bounding volume hierarchies are an object partitioning scheme and reference each primitive
exactly once. Construction can therefore be performed in—place by reordering the primitives

in the array they are stored in and building a node hierarchy with leaves referencing runs
of primitives. To reduce the memory overhead of moving primitives during construction an

50

4.4 Two-Level Dynamic Acceleration Structure

additional indirection in the form of an index list can be introduced, as already known from
the discussion of the kd—tree implementation.

Each node in a BVH primarily represents an axis—aligned bounding box, which can be
described with its two extremal points that are called 1ower and upper in the definition
of the node structure as given in Listing 4.9. The hierarchy of nodes is established by
having inner nodes contain references to their children. Following the allocation scheme
of the kd-tree, siblings are stored consecutively in memory, which allows access to both
nodes through a single pointer to the first node. The associated offset from the current inner
node to its children is stored in the field offsetToChildren. In addition to this each
node also stores the offset to its parent, which is required for bottom—up traversal of the
BHYV as performed in updating algorithms. Although the root node has no parent the field
offsetToParent is still useful in that it allows marking of the BVH root (by assigning
the field an invalid offset, i.e. zero) to signal the end of a bottom—up traversal sequence.

struct node

{
float3 lower, upper;
int firstObj, lastObij;
int offsetToParent;

// INNER: 7 .. 0 near index
// LEAF: 31 .. leaf node, 30 .. final leaf, 29 .. 0 depth
int nearMask;

int offsetToChildren; // INNER: offset to the children
float splitCosts; // INNER: original costs for splitting

Listing 4.9: Structure definition of a BVH node that is 48 bytes in size.

The fields firstObj and lastObj are used as offsets into the index array, which is a
necessity in leaves in order to be able to carry out ray—triangle intersection tests during
traversal. However, keeping offsets to the indices in all nodes is convenient in a dynamic
environment because it allows updating algorithms to quickly determine the set of primitives
in a given sub—tree. Selective restructuring uses this information to reset an inner node to a
leaf for subsequent rebuilding if its partitioning quality drops below a specified threshold.
To facilitate this an additional field (splitCosts) records the SAH based costs of the
initial split.

Ordered traversal of the BVH is implemented based on an evaluation of the spatial rela-
tionship of nodes at construction time, which will be discussed later in detail. 8 cases
depending on the signs of the components of a ray’s direction vector are handled, as illus-
trated in Figure 4.8 for two dimensions (4 cases). For this purpose the lowest 8 bits of the
field nearMask are used in each inner node to store the index of the near node.

The same field is used to store the depth of leaves, which is necessary in order to stop incre-
mental construction from exceeding the maximal allowed depth of the BVH. nearMask
is also used to distinguish between inner node and leaves based on the top—most bit, which
is set only for leaves. Leaf nodes are classified further with a second bit as either final or
non—final with regard to potential splitting as part of lazy construction.

51

4 Implementation

void Traverse (ray &r, float3 invDir, int flags, int signMask, LeafOpType
leafOp)

node xcur = _nodes;
if (cur->IntersectWith(r, invDir))
{
int stackIdx = 0;
node xnodes [MaxDepth];
while (true)
{
if (cur->IsLeaf ())
{
if (cur->CanSplit())
{
switch (SplitNode (cur))
{
case Finalized: break; // done, this is leaf
case Split: goto inner; // this has become an inner node
case InProgress:
if (stackIdx > 0) // we have other nodes to visit
swap (cur, nodes[stackIdx - 1]);
continue; // try again in next iteration

}
leafOp(r, invDir, cur->firstObj, cur->lastObj, flags);
}
else
{
inner: node xchildren = cur->GetChildren();
bool left = children[0].IntersectWith(r, invDir);
bool right = children[l].IntersectWith(r, invDir);
if(left)
{
if (right)
{
// push far child onto the stack and traverse near sub-tree
int nearIndex = cur->GetNearIndex (signMask) ;

nodes [stackIdx++] = children + (nearIndex =~ 1);
cur = children + nearIndex;

}

else
cur = children;

continue;

}
else if (right)
{ cur = children + 1; continue; }

// pop a node from the stack or exit
if (stackIdx > 0) cur = nodes[--stackIdx]; else break;

Listing 4.10: Traversal of a BVH with a single ray.

52

4.4 Two-Level Dynamic Acceleration Structure

Figure 4.8: Ordered traversal of a BVH is based on a pre—evaluation of the near node for rays based
on the signs of their direction vectors’ components.

Ray Traversal with Lazy Construction

Lazy construction is a technique that builds an acceleration structure on demand during
ray traversal. Whenever a leaf node is visited, which has not been marked as final, the
construction algorithm is invoked to either split the node or turn it into a final leaf if further
subdivision is not beneficial. Ray traversal and construction are therefore not separated but
integrated into a single process.

Listing 4.10 presents an iterative implementation of single ray traversal. The core operation
is the detection of intersections between the ray and the bounding boxes of the nodes, which
can be implemented efficiently using Smit’s algorithm [48]. The results of these intersection
tests determine which sub—trees of a given inner node need to be traversed. In case both
children need to be visited it is the near sub—tree that is traversed first in order to be able to
find close intersection points and skip traversal of parts of the far sub—tree that are farther
away.

When a leaf is visited it is checked whether it has been marked final or not. In the first
case the leaf operation supplied for traversal is carried out for the referenced entities in the
leaf. In the latter case the construction algorithm is invoked, which returns a status code
describing the modifications made to the BVH:

o If the leaf was marked as final the traversal algorithm may continue treating the node
as a leaf, which involves execution of the specified leaf operation.

e If the node was split traversal has to continue treating the current node as an inner
node, which involves determining which of its two children need to be visited and in
what order.

o If no operation was performed the type of the node has to be reevaluated by the
traversal algorithm.

The third case can occur in multi-threaded environments only in the situation where more
than one thread try to modify the given leaf node, which is an operation that involves writing
to shared memory and therefore has to be protected against race conditions. An efficient
way of handling this scenario is to resume traversal of another node on the traversal stack
if possible and continue with the current leaf node later on when the construction algorithm
active in another thread has most likely been finished.

Traversal of a BVH with a single packet exhibits identical control flow and differs only
in the use of vector instructions for processing of multiple rays in parallel compared to

53

4 Implementation

void Traverse (packet packets[], int count, int flags, frustum f,
int signMask, LeafOpType leafOp)

node xcur = _nodes;
int first = cur->IntersectWith (packets, £, 0, count);
if(first < count)
{
int stackIdx = 0; node *nodes[MaxDepth]; int firsts[MaxDepth];
while (true)
{
if (cur->IsLeaf ())
{
if (cur->CanSplit())
{
switch (SplitNode (cur))
{
case Finalized: break; // done, this is leaf

case Split: goto inner; // this has become an inner node
case InProgress:

if (stackIdx > 0) // we have other nodes to visit
{

swap (cur, nodes[stackIdx - 1]);

swap (first, firsts[stackIdx - 1]);
}

continue; // try again in next iteration

}
leafOp (&packets[first], £, count - first,

cur->firstObj, cur->lastObj, flags, MaskOp (cur));
}

else
{
inner: node xchildren = cur->GetChildren();
int cfirsts[] = {

children[0].IntersectWith (packets, £, first, count),
children[1l].IntersectWith (packets, f, first, count) };
if (cfirsts[0] < count)
{
if (cfirsts[1l] < count)

{

int nearIndex = cur->GetNearIndex (signMask) ;
firsts([stackIdx] = cfirsts[nearIndex "~ 1];
nodes[stackIdx++] = &children[nearIndex =~ 1];
cur = &children[nearIndex]; first = cfirsts[nearIndex];
}
else
{ cur = children; first = cfirsts[0]; }
continue;

}

else if (cfirsts[l] < count)
{ cur = children + 1; first = cfirsts[1l]; continue; }

}

if (stackIdx > 0) // pop a node from the stack or exit

{ cur = nodes[--stackIdx]; first = firsts[stackIdx]; }
else break;

Listing 4.11: Traversal of a BVH with multiple packets based on a frustum.

54

4.4 Two-Level Dynamic Acceleration Structure

scalar instructions in the implementation of single ray traversal. Traversal with multiple
packets, however, allows for an optimization of the handling of inner nodes and branching,
as described by Wald et al. [57].

Listing 4.11 presents the implementation of multi—packet traversal of BVHs as part of the
ray tracing library. Throughout the traversal of a specific path the index of the first active
packet is updated, which requires an additional field to be part of each entry on the traversal
stack. When an inner node is encountered it is then determined which of its sub—trees need
to be traversed by performing up to three operations per child node, as given in Listing 4.12:

o Initially the first active packet is intersected with the AABB of the node. If it is
determined that a ray in the packet hits the AABB the function returns signalling that
the node has to be visited. This operation is called the “quick hit test” by Wald et al..

e If no intersection could be determined and there are still potentially active packets
left the so—called “quick out test” is performed by determining whether the frustum,
which was computed for the given set of packets, allows for intersections to be found
or not.

e As a last resort the remaining packets are tested individually until the first hit is found
or all rays are certain to miss the node.

int node::IntersectWith (packet packets[], frustum f,
int first, int count)

{
if (IntersectWith (packets[first]))
return first; // active packet hits the node

if (++first < count)

{
if (f.MissesBox (lower, upper))
return count; // frustum misses the node

// check the remaining rays and return on the first hit
do

{
if (IntersectWith (packets[first]))
return first; // found a hit
} while (++first < count);

}

return count; // no hit could be found

Listing 4.12: Testing in three stages whether a node has to be visited or not [57].

When a leaf is visited the same check for further subdivision as with single ray traversal
is carried out. If this results in an execution of the leaf operation (e.g., intersection of the
referenced triangles with the rays), the operation functor typically intersects all of the still
active packets with the current node in order to filter packets missing the node.

Splitting a Node

Lazy construction in a multi-threaded environment has to be implemented carefully to avoid
race conditions that may result in the creation of invalid bounding volume hierarchies. In

55

4 Implementation

order to ensure thread safety an attempt to lock the leaf, which is to be subdivided, is
performed first. If this fails due to the fact that the node is already locked by another thread,
the process is aborted forcing ray traversal to try again later. Otherwise it is ascertained that
the node in question is still a leaf because it may have been modified during the time the
lock was acquired. If this check returns that the node has already been transformed into an
inner node traversal may be resumed immediately after unlocking.

The first step of node subdivision encompasses the search for a splitting plane. For this
purpose two strategies are followed by the implementation:

e For nodes containing more than n primitives (e.g., 16 primitives) SAH sampling is
used to find a good splitting plane quickly [19] by computing the costs for a fixed
number of 16 evenly distributed planes along each axis. Using interpolation the per—
axis splitting plane with the lowest costs is determined and the best of the resulting
three axes is selected.

e Otherwise plane sweeping in O(nlogzn) is employed with sorting of the remaining
primitives and evaluation of all reasonable splitting planes based on the centroids of
the primitives [57]. For small triangle counts this has the benefit of finding the optimal
plane in run—times comparable to SAH sampling.

In case the costs of the selected splitting plane exceed the costs of keeping the node as
a leaf the node is marked as final and ray traversal is resumed after unlocking the node.
However, if it is beneficial to split the leaf node the construction algorithm continues by
allocating a consecutively stored pair of nodes, which is used for the new child nodes. This
can be performed in a lockless manner by employing an atomic operation to increment the
BVH'’s free memory pointer by the size of two nodes (i.e., by using the compare—and—swap
instruction).

Subsequently the referenced primitives are partitioned into two disjoint sets by reordering
the indices visible in the leaf’s window of the global index list. In addition to the corre-
sponding offsets in the index list the computed bounding boxes for both sets are used to
initialize the new child nodes. Each of these two leaves is then marked final if it contains
less than two primitives or has reached the maximal depth of the BVH.

The final steps of the construction algorithm involve updating the former leaf node to turn
it into an inner node. To enable support for selective rebuilding the costs of the new config-
uration are stored in the field splitCosts of the node. Then the spatial relationship of
the children as described in the following are evaluated to compute the mask, which serves
as the base for ordered traversal of the BVH. Finally the type of the node is changed to an
inner node, which is important to be performed last because it will affect traversal in other
threads immediately.

After unlocking the node ray traversal of the BVH can be continued treating the former leaf
as an inner node.

Precomputed Traversal Order of Siblings

Traversing a bounding volume hierarchy in a rough near—to—far order allows for skipping
of nodes if they’re farther away than a previously found intersection of a ray with geometry.
A typical approach to implementing ordered traversal uses the distances of a ray to the
bounding boxes of an inner node’s children to determine the closer node. Although this
solution yields the most accurate traversal order for a single ray, it has certain drawbacks
when applied to packet—based traversal algorithms.

56

4.4 Two-Level Dynamic Acceleration Structure

As depicted in Figure 4.9, the near node may differ for rays in a packet especially when they
are incoherent. Basing the traversal order on an arbitrary ray in the set of rays intersecting
both nodes is possible albeit associated with a reduction of accuracy, particularly when a
large number of rays is active. To increase the accuracy the near node could be selected
based on the accumulated data of all rays. However, this approach conflicts with multi—
packet ray traversal, which makes the decision to visit a node based on the first intersection
of a single packet with its bounding box. Intersection distances are therefore only available
for a limited number of rays.

D
e =

Figure 4.9: The order of traversal may differ for rays in a packet.

In general identifying the closer node based on a comparison of distances negatively affects
the run—time efficiency of the traversal loop due to the increased register pressure and an
additional comparison.

Wald et al. [S57] propose an alternative that uses pre—computed data to find the closer node
for a given ray or packet during traversal. For each inner node the axis of greatest separation
(n4yis) of its children is stored along with the index of the child that should be visited first
by rays extending in the positive direction of the axis (ny;.;). During traversal the index of
the near node is then calculated by combining the sign-bit of the first ray’s direction vector
in ngys and the node’s order bit ;. using the X OR—operation, as given in Equation 4.2.

firstChild = sign(ray|[0].direction|nayis)) & n firs 4.2)

An advantage of this solution is its minimal run—time overhead both in ray traversal and
BVH construction. Furthermore only 3 bits of additional storage is required for each inner
node, which can typically be allocated in existing fields, thereby not increasing the size of
the node data structure. Despite the fact that Wald et al. report good performance in practice
a new approach based on a probabilistic model was developed in the context of this thesis,
which increases the accuracy of the traversal order without introducing a higher run—time
overhead in ray traversal.

Given a set of rays extending uniformly from a point p in space and intersecting both chil-
dren of an inner node n, the probability of rays hitting a specific child first can be derived
from the surface areas of the children’s bounding volumes. As depicted in Figure 4.10 a
“corridor” exists for each configuration of siblings that encompasses all rays intersecting
both nodes. It can be observed that the proportion of rays intersecting a node m first equals
the ratio of the unoccluded surface area of m in the corridor to that of the total surface area
in the corridor, both visible from p. By visiting the node with the larger visible surface area
first the correct order of traversal is more likely to be carried out for rays originating in p.

This approach can be generalized for rays originating at arbitrary points by pre—computing
the index of the near child for each ray direction octant. The results can then be packed into
an 8 bit wide mask in inner nodes and accessed based on the signs of a ray during traversal.

57

4 Implementation

int EvaluateNearMask (node x1, node =r)
{
int nearMask = 0;
for (int signMask = 0; signMask < 8; ++signMask)
{
// compute bounding box describing the volume of interest
int front = 0; float3 intL, intU;
for (int axis = 0; axis < 3; ++axis)
{
if (signMask & (1 << axis))
{

intL[axis] = max(l->lower[axis], r—->lower[axis]);

intU[axis] = max(l->upper|axis], r—->upperlaxis]);

front |= (l->upperlaxis] >= r->upperfaxis]) ? 0 : (1 << axis);
}
else
{

intL[axis] = min(l->lower[axis], r—->lower[axis]);

intU[axis] = min(l->upper(axis], r—->upperlaxis]);

front |= (l->lower[axis] <= r—->lower[axis]) ? 0 : (1 << axis);

// intersect the bounding boxes with the volume of interest
float3 leftl = max(l->lower, intL), leftU = min(l->upper, intU);
float3 rightlL = max(r->lower, intl), rightU = min(r->upper, intU);

bool 1lvalid = (leftlL.x <= leftU.x && leftL.y <= leftU.y &&
leftlL.z <= leftU.z);
bool rvalid = (rightL.x <= rightU.x && rightL.y <= rightU.y &&

rightL.z <= rightU.z);

// calculate the surface areas of the visible sides

float3 dl = leftU - leftl, dr = rightU - rightL;

float leftArea = lvalid ? 0 : (dl.x x (dl.y + dl.z) + dl.y = dl.z);
float rightArea = rvalid 2?2 0 : (dr.x x (dr.y + dr.z) + dr.y * dr.z);
if (1lvalid && rvalid)

{

// subtract the occluded surface areas

float3 di = min(leftU, rightU) - max(leftl, rightl);

((front & 0x1) ? leftArea : rightArea) -= max(0.0f, di.y % di.z);
((front & 0x2) ? leftArea : rightArea) -= max(0.0f, di.x di.z);
((front & 0x4) ? leftArea : rightArea) -= max(0.0f, di.x % di.y);

// pick the node with the larger visible area as the near node
nearMask |= (leftArea >= rightArea) ? 0 : (1 << signMask);
}

return nearMask;

Listing 4.13: Evaluating the index of the near node for each octant of the direction cube.

58

4.4 Two-Level Dynamic Acceleration Structure

Figure 4.10: A “corridor” exists for each configuration of siblings that encompasses all rays inter-
secting both children of a given inner node.

For a given octant the volume where rays may intersect both siblings can be derived from
the nodes’ bounding boxes, as shown in Figure 4.11a. Along each axis the interval of
interest spans from the nearest of the lower extremal values to the nearest of the upper
extremal values, which can be calculated using the min(max) function for positive(negative)
directions. Clipping the bounding boxes to this volume allows for calculating the surface
areas of the node’s visible sides in the corridor. Occlusion can be taken into account be
subtracting the area of the occluding surface from the hidden surface on a per—axis basis,
yielding the final algorithm in Listing 4.13.

a) b) c)

Figure 4.11: a) Rays in a specific direction octant can intersect both nodes only in the volume of
interest. b) The surface areas in the corridor can be calculated based on clipped bounding boxes. c)
Taking occlusion into account to get the final values.

An analysis of the effects of the approach on run—time performance is given in chapter 5.

Refitting of BVHs

Refitting is an operation that traverses the BVH in a bottom—up manner to update the bound-
ing boxes of the nodes to reflect changes to geometry. The algorithm is implemented in
4 stages in the ray tracing library developed in the context of this thesis:

1. The bounding boxes of the specified triangles are updated and the set of leaves con-
taining these triangles is assembled based on a per—triangle pointer to its hosting leaf.

2. Bounding boxes are recalculated for each leaf node in the previously assembled set.
If a difference regarding the AABB is detected the leaf’s parent node is inserted into
a data structure that maps from the depth in the tree to a set of nodes.

3. The data structure is processed beginning with the set at the deepest level. For each
node in the set its bounding box is recalculated based on the AABBs of its children.
Additionally the traversal order of its children is reevaluated. If the new bounding box

59

4 Implementation

differs from the old the node’s parent is inserted into the data structure at depth — 1,
thereby ensuring that bottom—up traversal continues only if necessary. This process-
ing schemes is an implementation of parallel bottom—up traversal of multiple sub—
trees in level order and ends when only a single node is waiting to be updated at a
depth closer to the root than all of the updated leaves.

4. Finally the rest of the path from the single active node to the root of the BVH is
traversed, updating nodes on the way and stopping early when the new AABB for a
node equals the old AABB. Although the functionality of this stage is already present
in the previous stage, processing a single sub—tree only allows for an efficient imple-
mentation of bottom—up traversal, as given in Listing 4.14.

Figure 4.12 illustrates the behavior of the algorithm for a sample BVH.

node *n =

while (true)

{
node xchildren = n->GetChildren();
n->nearmask = EvaluateNearMask (&children([0], &children[1l]);
float3 lower = min(children[0].lower, children[l].lower);
float3 upper = max(children[0].upper, children[1l].upper);

if(n—>lower != lower || n->upper != upper)
{

n—>lower = lower; n-—->upper = upper;

if (n—>IsRootNode())

break;

}
else

break;

n = n->GetParent ();

}

Listing 4.14: Bottom—up traversal used during refitting when only a single sub—tree is processed.

. ‘ ... updated leaf

O ... updated inner node (parallel)

O ... updated inner node (single)

Figure 4.12: BVH refitting is performed in a bottom—up manner. Numbers in the figure correspond
to the time of processing of a node.

Selective Rebuilding

Selective rebuilding is an extension of the refitting algorithm with conditional rebuilding of
sub—trees. For each inner node the SAH cost function is reevaluated in a greedy manner with
a subsequent comparison of the resulting value and the node’s original costs, as expressed
in Listing 4.15. If the difference exceeds a specified threshold the node is inserted into a list

60

4.4 Two-Level Dynamic Acceleration Structure

to facilitate deletion of its sub—tree and transformation into a leaf, thereby making the node
again subject to splitting during ray traversal.

bool RebuildFavorable (node *n, float threshold)

{
node x*children = n->GetChildren();
float sa = EvaluateSurfaceArea (n);
float 1sa = EvaluateSurfaceArea(&children[O0]);
float rsa = EvaluateSurfaceArea (&children[1l]);
int leftCount = children[0].lastObj - children[0].firstObj + 1;
int rightCount = children[1l].lastObj - children([1l].firstObj + 1;
float splitCosts = (lsa » leftCount + rsa x rightCount) / sa;
return (splitCosts >= n->splitCosts » threshold);

}

Listing 4.15: Selective rebuilding reevaluates the SAH cost function for each inner node and uses
the result to decided whether the node should be rebuilt or not.

After the list rebuildInners of nodes, which are subject to rebuilding, has been col-
lected their sub—trees are deleted iteratively using the following algorithm, which also com-
pacts the memory reserved for nodes. This is necessary to enable allocation of nodes merely
by incrementing a pointer to the next free node, which can be performed with an atomic in-
struction and therefore does not require locking.

1. The sub—tree of the current node is traversed in top—down order to collect all nodes
that need to be freed in a list pairs. Due to the fact that nodes are allocated in pairs
it suffices to store the offset of the first child of each inner node. In case a node is
found that is already marked for deletion in the list rebuildInners, the node is
removed from rebuildInners as it will be deleted in the current iteration.

2. The current node is turned into a leaf with the contained triangles being updated to
reference it as their hosting node.

3. Deletion of nodes and compaction of memory is carried out using the functionality
given in Listing 4.16 and illustrated in Figure 4.13: For each pair of nodes that is
marked for deletion in the list pairs the BVH’s pointer to the next free node is
decremented by 2. If this results in the current pair being moved to the free memory
area no further work is due. However, if nodes that are still in use end up in free
memory they are moved to the area of used memory by overwriting the current pair.
By repeatedly deleting the node in the list pairs with the highest address (e.g., by
sorting the list first) the number of copy operations can be reduced since the deletion
from the tail of used memory is more likely to happen.

N 4 —& N
[o I 3T 4] [ofacfae]
"
. ... hon-empty leaf O ... node subject to rebuildingu' ... next node

Figure 4.13: Deletion of the sub—tree of node 3 with subsequent compaction of the node array.

61

4 Implementation

for (vector<int>::iterator it = pairs.begin(); it != pairs.end(); ++it)
{

// decrement the pointer to free memory by the size of two nodes

_nextNode -= 2;
if (it >= _nextNode)
continue;

// the pair of nodes that should be freed is not at the tail
// overwrite them with the nodes that are at the tail
node xdest = _nodes + *it, *src = _nodes + _nextNode;

// update the parent of src to with the new position of its children
node xparent = src->GetParent ();
parent->offsetToChildren = dest - parent;

// copy the nodes individually

for(int 1 = 0; i < 2; ++1i)

{
// 1f a nodes is moved that is subject to later rebuiling
// its address needs to be updated in the 1list

list<int>::iterator idx = find(rebuildInners.begin(),
rebuildInners.end (), &src[i] - _nodes);

if (idx !'= rebuildInners.end())
*1dx = &dest[i] - _nodes;

dest[1] = srcl[i];

dest[i] .offsetToParent = parent - &dest[i];

if (src[i].IsLeaf())

{
// update offsets of triangles to their hosting node
int leaf = &dest[i] - _nodes;
for(int j = src[i].firstObj; j <= src[i].lastObj; ++7j)

_oObjGetter.Get (indices[j]) .leaf = leaf;

}

else

{
// update hierarchy connectivity information
node *children = src[i].GetChildren();
children[0] .offsetToParent = &dest[i] - &children[O0];
children[l].offsetToParent = &dest[i] - &children[1l];
dest[i].offsetToChildren = children - &dest[i];

}

Listing 4.16: Deletion of nodes and compaction of memory is performed as the last operation of
selective rebuilding.

62

4.4 Two-Level Dynamic Acceleration Structure

4.4.2 Integration of the BVH

In the following the integration of the BVH with the classes of the two-level hierarchy is
described with regard to construction, updating and traversal of the data structure.

As previously stated the construction and updating functionality of the BVH operates on
bounding boxes only and is not tied to the specific contents of the classes DynamicScene
and DynamicGeometry. It is therefore necessary for these two classes to maintain an
internal array of AABBs accessible to the BVH and keep it in sync to the actual contents
(i.e. triangles or instances), which is an operation that is best carried out prior to invocations
of the BVH’s update methods, as demonstrated for refitting of raw geometry in Listing 4.17.
As can be seen it is also the responsibility of DynamicGeometry to forward updates to
its parents, which makes it necessary for geometry—objects to track the scenes they have
been instantiated in.

void Refit (int firstTriangle, int lastTriangle)

{
// update bounding boxes of the triangles in the specified range
UpdateTriangles (firstTriangle, lastTriangle);

// list all leaves containing parts of the specified triangles

std: :set<int> leaves;

for(int i = firstTriangle; i <= lastTriangle; ++1i)
leaves.insert (_triangles([i].leaf);

// reevaluate the bounding boxes for the leaves and

// propagate the updated bounding boxes up to the root node

if (_hierarchy.Refit (leaves))

{
// continue propagation in the scene for all leaves containing
// instances of this geometry
for (typename std::map<DynamicScene x, std::vector<int>>::

iterator it = _parents.begin(); it != _parents.end(); ++it)

{
it->first->Refit (this);

}

Listing 4.17: Prior to refitting the bounding boxes of the triangles are recalculated. In case the
geometry’s root node was modified the refitting algorithm is continued on the upper level.

Although traversal of the BVH is identical in both levels of the hierarchy, the operations car-
ried out in leaves differ depending on the contents. It is therefore necessary to customize this
aspect of the BVH, which is accomplished through the use of a functor object. Ray—triangle
intersections are performed in the class DynamicGeomet ry, which update rays with in-
formation about the hit triangles encompassing their zero—based index in the container and
the handle of the container instance. This is in contrast to the class DynamicScene where
rays are transformed and traversal of the instances contained in a leaf is carried out. The
implementation of the functor used by objects of the class DynamicScene is given in
Listing 4.18.

Figure 4.14 illustrates the control flow of ray traversal of the two—level dynamic acceleration
structure.

63

4 Implementation

class TraversalleafOp

{
const std::map<int, Instance> &_instanceMap;
const std::vector<int> &_ indices;
const unsigned int _signMask;

public:

TraversalleafOp (const std::map<int, Instance> &instanceMap,
const std::vector<int> &indices, unsigned int signMask)
_instanceMap (instanceMap), _indices(indices),

_signMask (signMask)

{1}

void operator () (ray &r, const float3 &invDir, int firstObj,
int lastObj, int flags) const
{
#ifdef RECORDRAYSTATS
++r.dynamicStats.visitedInnerNodes;
#endif
for(int i = firstObj; i <= lastObj; ++1i)
{
const Instance &inst =
_instanceMap.find(_indices[i])->second;
if (inst.transformed)

{

// transform the ray and traverse the hierarchy

float3 org = r.origin, dir = r.direction;
r.origin = inst.invtransform x float4 (org, 1);
r.direction = inst.invtransform x= floatd (dir, O0);

inst.geometry->Trace(r, 1.0f / r.direction, flags,
_signMask, inst.handle);
r.origin = org; r.direction = dir; // restore
}
else

{

// traverse the hierarchy without ray transformation
inst.geometry->Trace(r, invDir, flags,
_signMask, inst.handle);

}

Listing 4.18: Functor used by DynamicScene to traverse lower level hierarchies in its leaves.

64

4.4 Two-Level Dynamic Acceleration Structure

“2UNIONALS UONDAD]IIID [2A2]—0M] Y] JO [DS42ADLJ—CDL JO MO} [043u0)) H] " AN

pasianel) iz
> [esianes) anunuoD :V
> paosen 0T
pasianen 6
[esianes) anupuoD g
sa|Buel 109sI81U] 1L
< Jea| ssao0id 19
doo|
doul yum asianel] g
$m_ pawlojsuel) adel] <
Jea| ssao0ld i€
dooj
AanucEm:_ YUM asIanel] g []
Ae1aoel] T
doreaesianel] ‘Anewoanoiweuiq HAG Anawoenolweuig AnswoaoolweuAkq doresesianel] auaoSolweUAq HAG 8U8dSoIWRUAQ U80S oIWRUAQ

$ $ $ $ $ $

65

Chapter

Applications & Results

In this chapter an evaluation of the ray tracing library developed as part of this the-
sis is given based on separate benchmarks for scenes with static geometry only and
for scenes also comprised of animated primitives. Additionally the applications
used for the benchmarks are presented. Finally the use of real-time ray tracing in
the context of games is demonstrated.

Benchmark data presented in this chapter was collected running the 64-bit version
of Ubuntu Linux 7.10 on a system with a dual-core AMD Athlon X2 3800+ pro-
cessor and 3 GB RAM. Rendering applications were configured to process tiles
comprised of 8 x 8 pixels, which were dynamically distributed to two threads.
GCC 4.2 was used for compiling the library and the applications.

5.1 Tracing Static Scenes

An evaluation of run—time performance in rendering static scenes was performed with a
benchmarking application developed specifically for this purpose. The application provides
an intuitive user interface for loading scenes and viewing statistical data both in graphical
and numerical form, as shown in Figure 5.2.

Several different rendering modes are available, such as simple diffuse lighting, color cod-
ing of the visible triangle or mapping of traversal steps to color, which is particularly useful
for analyzing the complexity of the acceleration structure. Furthermore the average number
of traversal steps and ray—triangle intersection tests is also displayed in addition to a set of
values derived from the per—frame rendering time (current frame rate, average number of
frames per second, etc.).

The application supports loading of a variety of scenes at run—time, which are mainly taken
from a collection created by Wichter [59]. For each scene a pre—defined camera position
and orientation is available, which were specified by Wichter in order to allow for compa-
rability of published results. The following scenes are included in the collection:

e CLOWN modeled by C. Wichter (44, 154 triangles)

o FAIRY FOREST from the Utah 3D Animation Repository [46] (174,117 triangles)

e HAPPY BUDDAH from the Stanford 3D Scanning Repository [49] (1,087,716 trian-
gles)

67

5 Applications & Results

] Clown (44,154 triangles) kd—tree \ BVH ‘
a) Average frames per second 203 | 23.6
b) Average number of visited nodes per ray 36.7 | 31.0
c) Average number of intersected triangles per ray 1.9 6.2

| Fairy Forest (174,117 triangles) kd-tree | BVH |
a) Average frames per second 12.7 | 13.5
b) Average number of visited nodes per ray 63.3 | 60.2
c¢) Average number of intersected triangles per ray 47| 14.8

’ Happy Buddah (1,087,716 triangles) kd-tree \ BVH ‘
a) Average frames per second 156 | 10.7
b) Average number of visited nodes per ray 36.1 | 64.0
¢) Average number of intersected triangles per ray 32| 183

| BART Kitchen (110,561 triangles) kd-tree | BVH |
a) Average frames per second 13.7 9.5
b) Average number of visited nodes per ray 53.6 | 80.9
c¢) Average number of intersected triangles per ray 59| 275

| Menger Sponge (1,920,000 triangles) kd-tree | BVH |
a) Average frames per second 156 | 15.3
b) Average number of visited nodes per ray 53.1 | 563
¢) Average number of intersected triangles per ray 3.2 9.5

] scene6 (804 triangles) kd—tree \ BVH ‘
a) Average frames per second 27.8 | 359
b) Average number of visited nodes per ray 20.5 | 10.7
¢) Average number of intersected triangles per ray 1.4 2.8

] Sponza Atrium (67,462 triangles) kd-tree \ BVH ‘
a) Average frames per second 176 | 12.8
b) Average number of visited nodes per ray 42.6 | 68.4
c¢) Average number of intersected triangles per ray 2.8 | 13.6

Figure 5.1: Benchmark data for a collection of static scenes rendered with simple diffuse shading at
a resolution of 5127 pixels.

68

5.1 Tracing Static Scenes

Figure 5.2: 1) A variety of scenes can be loaded through a drop—down menu. 2) 6 rendering modes
are supported, with the current selection yielding a display of the number of visited nodes. 3) Statis-
tics about scene complexity and run—time performance are supplied.

e KITCHEN from the Benchmark for Animated Ray Tracing [32] (110,561 triangles),
with a transformation applied by C. Wichter to challenge building of efficient accel-
eration structures with axis—aligned partitioning schemes

e MENGER SPONGE supplied by C. Wichter, fractal geometry (1,920,000 triangles)

e SCENEG6 from P. Shirley’s global illumination test scenes (804 triangles)

As an additional scene a model of the Sponza Atrium [8] (67,462 triangles) is used in the
benchmarks due to its popularity in the ray tracing research community. The camera was
configured to point at the scene’s origin in the positive direction along the x—axis with the
y—axis acting as the “up”—vector.

5.1.1 Rendering Performance

Benchmark data obtained by rendering the scenes with simple diffuse shading are given in
Figure 5.1. No secondary rays were spawned in the process and data was collected for both
kd—trees and BVHs serving as the acceleration structure for the geometry. The data shows
that neither the kd—tree nor the BVH is the obvious choice for ray tracing of static scenes
when only primary rays are processed due to the fact that the Clown, the Fairy Forest, and
scene6b seem to be better suited for rendering with BVHs, while higher frame rates for the
other scenes can be achieved with a kd-tree.

Kd-trees have the benefit of enabling flexible partitioning of primitives with planes that
can adapt well to geometry especially in architectural scenes. Furthermore the ray traver-
sal algorithm traverses the data structure in near—to—far order, which allows for terminating
traversal after the first valid intersection has been found. Both aspects contribute to the typ-
ically high culling efficiency of kd—trees, yielding a low number of ray—triangle intersection
tests per ray.

69

5 Applications & Results

Traversal of BVHs on the other hand scales very well to large coherent packets, which is
the case with rays originating from the camera. This can give a performance advantage
in some of the scenes despite lower triangle culling efficiency. Furthermore BVHs enable
fast skipping of empty space because unlike in kd—trees empty space is not represented
explicitly in empty nodes and therefore does not have to be traversed.

5.1.2 Cost—scaling Termination Criterion

In chapter 3 a new termination criterion for SAH-based construction of kd—trees was in-
troduced, which is based on the idea of limiting tree depth by splitting deep nodes only if
sufficiently large gains can be expected from the operation. For this purpose the traditional
SAH-based termination criterion is modified to scale down the costs of a leaf relatively to
the costs of an inner node based on the depth in the kd—tree. In the context of this thesis
an exponential function was used, as shown in Figure 5.3, which was parameterized by
specifying the scale factor at the maximal kd—tree depth.

[2]

B

Q

o

8

3

S 0,4 4

B o3 >
0,2
0,1 >
0,0 T T T .

0 32 64 96 128
Depth

Figure 5.3: Exponential scaling of leaf costs, parameterized by specifying the scale factor at the
maximal kd—tree depth (here: 128, which was set through a constant in the code).

Figure 5.4 presents the results of this new termination criterion with regard to rendering
time, building time and the size of the built kd—trees for each of the previously discussed
scenes. As can be seen rendering time is affected only marginally when leaf costs are
scaled down to no less than 10% of their original value at the maximal kd—tree depth. For
some scenes like the Menger Sponge or the BART Kitchen this results in a minor drop of
rendering performance of about 5.3%, whereas a speed—up of 6.3% can be measured for the
Happy Buddah scene. However, at the same time the building time is shortened to 38.0%
on average compared to the building time with the non—scaling termination criterion. The
size of the generated kd—trees experiences a similar drop to about 46.0% on average for the
given set of scenes.

Therefore the new termination criterion has very positive effects on ray tracing of static
scenes with kd—trees, especially when considering the reduced storage requirements of kd—
trees, which is an important aspect of the distribution of applications with pre—compiled
scene data. By tweaking the scaling factor on a per—scene basis the size of the kd—tree can
be reduced without negatively affecting ray traversal performance.

70

5.1 Tracing Static Scenes

Base of the exponential scaling function

0,965 0,975 0,985 0,995
210% A
5
>{§ 190% - clown
g = = forest
BE 170% - —— buddah
= ——kitchen
E’; 150% == menger
é 3 = sceneb
é g 130% —— sponza
2 = average
= 110% A
90% T 1
0,01 01 1
Scaleof leaf costsat a kd-treedepth of 128
Base of the exponential scaling function
0,965 0,975 0,985 0,995
100% L . L
g 80% ——clown
3t — forest
= o
85 60% - ~buddah
28 ——kitchen
S
EE == menger
22 40% -
% B ° = scened
2 g —— sponza
S 20% A —average
0% T 1
0,01 0,1 1
Scaleof leaf costsat akd-treedepth of 128
Base of the exponential scaling function
0,965 0,975 0,985 0,995
100% L . L
>
2 é 80% 1 —clown
g ; = forest
85 60w - —— buddah
hogy =—Kkitchen
X
% ; % | == menger
§ B 40% e SCenes
5 § ~==sponza
05 —
NE 20% = average
0% T 1
0,01 01 1

Scaleof leaf costsat akd-treedepth of 128

Figure 5.4: The graphs present data regarding rendering time, building time and the size of the built
kd—trees for each scene relatively to kd—tree construction with the traditional SAH-based termina-

tion criterion.

71

5 Applications & Results
5.2 Benchmark for Animated Ray Tracing

The Benchmark for Animated Ray Tracing (BART) was created by Lext ef al. [32] and
encompasses a set of scenes with scripted animations of geometry and a pre—determined
camera path. The intention behind creating the benchmark was to provide a common data
set for researchers, which could then evaluate the run—time performance of their ray tracing
applications and publish the results in a comparable manner, as done in the appendix of this
thesis.

Lext et al. [32] provide a code framework for loading their scenes, which served as the
base for a second benchmarking application developed in the context of this thesis for ani-
mated scenes. Figure 5.5 presents the user interface of the program, which provides similar
functionality to the previously presented application for benchmarks of ray tracing static
scenes.

Additional features include support for a larger variety of rendering modes tailored to the
available scene data (e.g. rendering with diffuse illumination only or rendering with all
effects enabled including shadows, reflections, and refractions). Furthermore it is possible
to change the updating scheme of the BVH at run—time and record a video clip of the
rendered animation, as given in Figures 5.12, 5.13 and 5.14.

Intersected Triangles

':Sumpla

Restart EXIT

Figure 5.5: 1) 11 rendering modes are supported, with the current selection yielding a display of
the number of intersected triangles of static (red) and dynamic (green) geometry. 2) The size of the
application window can be changed to a pre—defined set of window sizes. 3) The BART scenes can
be selected from a drop—down menu. 4) Statistics about run—time performance and the complexity
of the scene are displayed. 5) The behavior of the application can be modified at run—time.

Benchmark data was collected by measuring the per—frame rendering time for a large num-
ber of different configurations, including different rendering modes, updating schemes and
the separation of static from dynamic geometry in two acceleration structures. From this
data several key figures were derived, which will be discussed in the following.

Figure 5.6 provides data for an analysis of the effects of handling static geometry in a kd—
tree separately from dynamic geometry in the two—level bounding volume hierarchy, which
stands in contrast to handling all primitives solely in the BVH.

72

5.2 Benchmark for Animated Ray Tracing

’ Kitchen BVH only | BVH + kd—tree | Speed—up
a) Diffuse 118.09s 140.27s -15.8%
b) Diffuse with shadows 782.81s 319.22s | +145.2%
c¢) Diffuse with reflections, refractions 945.24s 485.84s +94.6%
d) All effects 1623.22s 668.05s | +143.0%

| Museum (4096) BVH only | BVH + kd—tree | Speed—up
a) Diffuse 30.78s 41.43s -25.7%
b) Diffuse with shadows 250.70s 159.28s +57.4%
c¢) Diffuse with reflections, refractions 672.61s 421.74s +59.5%
d) All effects 892.16s 542.29s +64.5%

’ Robots BVH only | BVH + kd—tree | Speed—up
a) Diffuse 118.18s 132.28s -10.7%
b) Diffuse with shadows 745.44s 210.08s | +254.8%
c¢) Diffuse with reflections, refractions | 9299.19s 1016.11s | +815.2%
d) All effects 9763.40s 1095.44s | +791.3%

Figure 5.6: Benchmark data for the BART scenes rendered at a resolution of 800 x 600 pixels with
a maximal recursion depth of 3 for reflections and refractions.

As can be seen the BVH-only approach performs better than the combined approach when
no secondary rays are traced, which is the case with the diffuse rendering mode. However,
once secondary rays are spawned the use of an additional kd—tree for static geometry allows
for a reduction of rendering times. This is due to the fact that traversal of BVHs exhibits
poor run—time performance when packets comprised of only a few rays are traced, which
is typical for reflection and refraction rays but also for shadow rays in case only a limited
number of lights are present in a scene.

By moving static geometry to a kd—tree the BVH contains less primitives and can be tra-
versed faster. As traversal of kd-trees with small numbers of rays incurs only a mini-
mal performance hit the overall rendering time is reduced. Especially the highly reflective
Robots scene benefits from this approach with measured speed-ups of up to 800%.

Figures 5.7 through 5.9 present a detailed view of the per—frame distribution of time spent
on the various supported effects, such as diffuse lighting, shadowing, reflections, and refrac-
tions. The data for the graphs was derived from the data collected for Figure 5.6 as given in
Equation 5.1.

Ishadows = tdiffuse-i—shadows - tdiffuse
treflections-i—refractions = tdiffuse-i—reflections+refractions - tdiffuse (5 . 1)
total = tdiffuse + Ishadows + treflections+refractians

The resulting time #,4 is within +2% of the measured 7,;;_¢ffecrs. The quality of the
approximation of the individual factors can therefore be considered good enough for display
in graphical form.

5.2.1 Ordered Traversal of BVHs

In chapter 4 an implementation of ordered traversal of bounding volume hierarchies based
on a probabilistic model was introduced. Figure 5.10 presents the rendering times of the

73

5 Applications & Results

Per-framerender time
aw1} Jopusd Jawe 1j- Jad

a) b)

® Diffuse ™ Shadows ™ Reflections, Refractions

Figure 5.7: Per—frame times spent rendering the animation sequence of the BART Kitchen with a)
BVH only and b) BVH + kd-tree at a resolution of 800 x 600 pixels with a maximal recursion depth
of 3 for reflections and refractions.

6s

5s

Per-framerender time
aW1} Jopus Jawe 1y Jad

a) b)

® Diffuse ™ Shadows ™ Reflections, Refractions

Figure 5.8: Per—frame times spent rendering the animation sequence of the BART Museum (4096)
with a) BVH only and b) BVH + kd—tree at a resolution of 800 x 600 pixels with a maximal recursion

depth of 3 for reflections and refractions.

15s

aLUI) JopUB JBWR 1- Jod

Per-framerender time

a) b)

® Diffuse ™ Shadows ™ Reflections, Refractions
Figure 5.9: Per—frame times spent rendering the animation sequence of the BART Robots with a)

BVH only and b) BVH + kd—tree at a resolution of 800 x 600 pixels with a maximal recursion depth
of 3 for reflections and refractions.

74

5.2 Benchmark for Animated Ray Tracing

BART scenes with simple color coding of the visible triangles for both the new approach
and the approach proposed by Wald et al. [57]. All geometry was stored solely in a BVH in
order to avoid skewed results due to the use of a kd—tree as a second acceleration structure.

Animation sequence ‘ BVHy 14 ‘ BVHgeiter ‘ Speed—up ‘

Kitchen 65.42s 62.72s +4.30%
Museum (64) 17.55s 17.41s +0.81%
Museum (256) 18.06s 17.60s +2.61%
Museum (1024) 19.33s 18.77s +3.01%
Museum (4096) 22.39s 21.97s +1.95%
Museum (16384) 32.79s 32.02s +2.41%
Museum (65536) 78.27s 78.26s +0.02%
Robots 76.74s 72.78s +5.44%

Figure 5.10: Benchmark data for the BART scenes rendered with BVHs and different ordered traver-
sal schemes with simple triangle coloring at a resolution of 5122 pixels.

The probabilistic model developed in the context of this thesis yields consistently better
run—time performance than the approach presented by Wald et al. [57] with a speed—up of
4.3% for the Kitchen scene, 5.4% for the Robots scene and up to 3% for variations of the
Museum scene.

5.2.2 Updating Schemes

Selective rebuilding was introduced as an updating scheme for bounding volume hierarchies
in chapter 3. In addition to this technique the ray tracing library also supports full rebuilding
and refitting, which is conceptually equivalent to selective rebuilding with an infinitely high
rebuilding threshold. An evaluation of these updating schemes was performed by render-
ing the variations of the BART museum scenes with color coding of visible triangles and
separation of static from dynamic geometry.

As visible in Figure 5.11, selective rebuilding with a threshold of +30% delivers the best
run—time performance for the Museum scenes with more than 256 triangles dynamic tri-
angles with speed—ups up to 450% over refitting and 250% over rebuilding. For variations
with fewer dynamic triangles the gains from updating the BVH are negligible and the con-
ceptually simple approach of fully rebuilding the BVH for each frame is preferable.

1000s

4] full-rebuilding refitting
[} S 1
§ |
£
£z .
S g —64
53
22 100 o T—=6
= E 1024
22
£s e ——4096
2.2 — o —16384
O ©
e E T 4 65536
[

10s + T T T T T T T T T T
100% 110% 120% 130% 140% 150% 160% 170% 180% 190% 200%

Selectiver ebuildingthreshold

Figure 5.11: Benchmark data for the Museum scenes with varying counts of animated triangles
rendered at a resolution of 512° pixels with simple color coding and different updating schemes.

75

5 Applications & Results

Figure 5.12: Animation sequence comprised of 800 frames from the BART Kitchen scene rendered at
a resolution of 5122 pixels with all effects enabled (recursion depth 3) in 668.3s (1.20fps on average).

76

5.2 Benchmark for Animated Ray Tracing

Figure 5.13: Animation sequence comprised of 300 frames from the BART Museum scene with
4096 dynamic triangles rendered at a resolution of 5122 pixels with all effects enabled (recursion
depth 3) in 542.3s (0.55fps on average).

77

5 Applications & Results

Figure 5.14: Animation sequence comprised of 800 frames from the BART Robots scene rendered
at a resolution of 5122 pixels with all effects enabled (recursion depth 3) in 1095.4s (0.73fps on
average). Heavy aliasing related to under—sampling of textures is visible in the images due to the
fact that only bilinear filtering is performed.

78

5.3 Real-time Ray Tracing in Games
5.3 Real-time Ray Tracing in Games

As part of this thesis the use of real-time ray tracing in games was also explored. Employing
the assets from Raven Software’s game Star Trek Voyager: Elite Force [41] a map viewer
was developed with the goal of rendering the original scenes augmented with new effects
specific to ray tracing, such as pixel-perfect reflections.

5.3.1 Tools

Creating the map viewer involved retrieving data from the original game and preparing it
for rendering in a ray tracer, which resulted in the creation of an extensive tool chain that
will be discussed briefly in the following.

Shaders

Elite Force and other games based on id Software’s Quake 3 Arena (Q3A) engine [20]
support the use of a shader language for describing the look and behavior of surfaces and
objects in the game, as discussed in detail in the Q3A shader manual [24]. In order to be
able to achieve a similar look and behavior in the map viewer a parser for this language
was created with Coco/R [38] based on an attributed grammar. Using the parser surface
shading and animation code is generated and compiled to a dynamic link library with the
GNU C compiler (GCC) for use in rendering and scene updating in the map viewer.

Geometry data

Geometry of Elite Force maps is stored in a proprietary binary data format, which was
however made publicly available with the release of the source code to the mapping tools
of the Q3A engine under an open source license. It was therefore possible to create a tool
that would load the original map files for further processing. In particular static geometry is
separated from dynamic geometry by checking each primitive whether the assigned shader
specifies an animation for it or not. Additionally all geometry is tesselated to triangles and
written along with information about scene entities, such as lights, weapons, and character
spawn points, to an XML file for simplified loading of map data in the viewer.

Post Processing of Static Geometry

Static geometry is then modified by adding an epsilon offset to so—called “decals”, which
are planar surfaces typically rendered last in a rasterizer to display markers on top of regular
world geometry. Adding an offset is necessary in order to avoid precision problems in a ray
tracer that would manifest themselves as graphical artifacts like noise in the rendered image.
For this stage the shader parser is again used to determine whether a given triangle is part
of a decal or not. Finally a kd—tree is built for static geometry and stored in binary form to
disk to accelerate loading of maps in the viewing application.

5.3.2 Map Viewer

The pre—processed data is then loaded and used by the map viewer in the following manner:

79

5 Applications & Results

Figure 5.15: Garden from Raven Software’s Star Trek Voyager: Elite Force rendered with full light-
ing effects at a resolution of 1275 x 642 pixels in the map viewer developed within the context of this
thesis.

80

5.3 Real-time Ray Tracing in Games

e The dynamic link library containing the shaders is loaded and a shader manager is
instantiated that manages creation and destruction of shader objects.

e Static world geometry is loaded from the pre-built kd-tree. A dynamic container is
created for animated world geometry, such as water surfaces, and initialized with data
from the XML file. Additional per—triangle data, such as normal vectors or texture
coordinates, is retrieved from the XML file. All animated geometry is then updated
by shaders each frame.

e Entities are parsed and an acceleration structure for lights is created to enable fast
range queries for determining the set of lights affecting a given surface. Furthermore
object entities, such as weapons and player characters, are loaded from external . md3
and .mdr files, which contain models in another proprietary format by id Software
and Raven Software. Each model file is loaded only once and stored in a dynamic
container. Instancing is then used to render models at multiple positions in the scene.

The map viewer exhibits a graphical user interface similar to the previously described two
benchmarking applications for static and for animated geometry, as depicted in Figure 5.16.
It provides access to multiple rendering modes, like textured rendering, display of normal
vectors and texture coordinates, and traversal statistics. Furthermore the behavior of the
application can be modified, for example by forcing mono ray tracing, by enabling lighting,
shadows, and advanced effects like reflections.

Figure 5.16: 1) Statistics encompassing the frame rate and the ray processing rate are updated
continuously. 2) A series of rendering modes are supported, such as textured rendering, display of
normal vectors and texture coordinates, and traversal statistics. 3) Maps can be loaded at run—time
through a drop—down menu. 4) The behavior of the application can be modified, for example by
enabling lighting, shadows, and advanced effects like reflections. 5) Moveable objects like doors
can be activated. Player characters present in the scene can also be animated.

The user interface also enables interaction with the scene by allowing the user to toggle
moveable objects like doors and elevators between their states and to issue the playback of
animations of player characters present in the scene. Another feature of the map viewer
is its support for fly—throughs that can be created by the user by placing waypoints in the
scene. Playback then uses spline interpolation to move the camera along the recorded path,
which is particularly useful for recording of video clips.

5.3.3 Results

Figure 5.15 shows images rendered with the map viewer with full lighting effects.

81

5 Applications & Results

Figure 5.17: a) Screenshots from Raven Software’s original game Star Trek Voyager: Elite Force.
b) Screenshots from the map viewer rendered at a resolution of 1024 x 768 pixels with the camera
serving as a diffuse light source. c) Screenshots from the map viewer with shadows and full direct
lighting from the light entities in the maps. The images appear darker because light emitted from
surfaces is not taken into account and the camera no longer serves as a light source.

82

5.3 Real-time Ray Tracing in Games

Another set of images is presented in Figure 5.17 with images shown in the first column
originating directly from Raven Software’s game. Images in the second column show results
from the map viewer developed in the context of this thesis with the camera serving as a
point light. These images were rendered at a resolution of 1024 x 768 pixels at 2—4 frames
per second.

The reflection effects implemented with recursive ray tracing are clearly visible in con-
soles and metallic structures. Although reflections are not directly supported by the shader
language, they are applied selectively to the scene by recognizing patterns in the original
shaders involving environment maps and replacing them with reflections.

Finally, the images in the third column present the scenes with additional lighting and shad-
ows and were rendered at 1-2 frames per second at a resolution of 1024 x 768 pixels. It is
important to note that these images appear darker than the other screenshots due to the fact
that light emitted from surfaces (e.g. Voyager’s warp core) is not taken into account and the
camera no longer serves as a light source. By employing lighting data stored in the per—map
lightmaps it would be possible to obtain results with similar lighting to the original game.

At a lower resolution of 5122 pixels frame rates of up to 20fps were achieved for scenes
from Elite Force when full lighting is disabled. Figure 5.18 presents performance data for a
few selected views of different maps.

Altar ‘] Beta Station

Triangle-Ids 15.1fps| |Triangle-Ids 11.3fps
Textured 11.3fps| |Textured 8.8fps
Lit 5.9fps| |Lit 5.2fps
Lit+Shadows 3.7fps| |Lit+Shadows 1.7fps

Bravery | [Breach

Triangle-Ids 17.7fps| |Triangle—Ids 18.1fps
Textured 10.5fps| |Textured 12.0fps| |
Lit 2.5fps| |Lit 5.7fps
Lit+Shadows 1.8fps| |Lit+Shadows 4.2fps

]Dangerous Cargo]Delta Station

Triangle-Ids 16.5fps| |Triangle-Ids 16.5fps
Textured 9.91fps| |Textured 11.1fps
Lit 4.1fps| |Lit 5.0fps
Lit+Shadows 2.1fps| |Lit+Shadows 1.7fps

Resistance ‘] Sea Temple

Triangle-Ids 14.0fps| |Triangle-Ids 17.1fps
Textured 7.9fps| |Textured 9.5fps
Lit 3.9fps| |Lit 5.6fps
Lit+Shadows 3.7fps| |Lit+Shadows 2.2fps

Figure 5.18: Performance data for selected maps from Raven Software’s Star Trek Voyager:
Elite Force rendered at a resolution of 5122 pixels with different rendering modes. Lighting incurs a
rather high performance hit due to the presence of a large number of lights in the maps, which were
never meant to be used for direct lighting at run—time but only for the generation of lightmaps in a
pre—processing step.

83

5 Applications & Results

5.3.4 Ray Tracing in the Original Game

In 2005 the source code for the Quake 3 Arena engine was released by id Software un-
der an open source license and has since been maintained and developed further by the
community [21]. This code base provided an excellent basis for implementing a new ray
tracing based rendering backend for games that use the Q3A engine, such as Elite Force and
Quake 3 Arena, which gave the engine its name.

Large fractions of the code from the map viewer could be reused for this purpose albeit
with modifications related to interfacing with the Q3A engine. In particular loading of
models and map geometry, parsing of shaders, and creation of textures no longer had to
be performed by the ray tracer but were handled by the engine, which made the use of
pre—processing tools obsolete in this context. However, the code generation for shaders
posed a problem because in its form used by the map viewer it required the presence of a
configured C++ compilation environment, which could not be expected to be available on
non—development machines and would therefore have hindered the intended distribution of
the program. The Low-Level Virtual Machine (LLVM) [30] was used to solve this problem
by generating machine code for surface shading and animation at run—time [43].

Figures 5.19 and 5.20 present images from the fully playable games Quake 3 Arena and
Elite Force rendered with the developed ray tracing backend for the Q3A engine.

2 i)

Figure 5.19: All images were rendered at a resolution of 800 x 600 pixels using a new rendering
backend for the Q3A engine [21] and the original assets from id Software’s Quake 3 Arena [20]. a)
Visited static (red) and dynamic (green) nodes (max. 128). b) Intersected static (red) and dynamic
(green) triangles (max. 16). c) Color coding of triangles. d) Normal vectors. e) Texture coordinates.
f) Color coding of shaders. g) View rendered with full effects at 4fps. h+i) Views rendered at 5fps.

&4

5.3 Real-time Ray Tracing in Games

Figure 5.20: Walk through the engineering room from Raven Software’s Star Trek Voyager:
Elite Force [41] rendered at a resolution of 800 x 600 pixels with the ray tracing based render-
ing backend developed in the context of this thesis.

85

Chapter

Conclusions

In this thesis real-time ray tracing of dynamic scenes was explored based on a separation
of static primitives from animated primitives in acceleration structures suited for each type
of geometry.

For dynamic geometry a two—level bounding volume hierarchy was introduced that effi-
ciently supports rigidly animated geometry, deformable geometry and fully dynamic geom-
etry with incoherent motion and topology changes. Selective rebuilding was shown to be
an efficient approach to updating a BVH after movement of primitives. It restricts costly re-
building operations to degenerated parts of the hierarchy, which benefit from repartitioning
of the contained primitives, and allows for balancing updating and rendering times. Run—
time performance of ray traversal of BVHs could additionally be improved by using a new
ordered traversal scheme based on a probabilistic model, which relies on pre—computed data
to determine the near node in each traversal step.

Kd-trees were shown to exhibit better run—time behavior than BVHs when it comes to
tracing of secondary rays, which typically account for a large proportion of all traced rays
in a frame. They also yielded lower per—frame rendering times for some static scenes when
tracing primary rays only and therefore remain the acceleration structure of choice for static
geometry. By using a construction algorithm, which employs the surface area heuristic for
finding optimal splitting planes, the best results in terms of run—time performance can be
achieved. However, this typically results in a fine partitioning of primitives, which increases
the overall size of the data structure.

In order to reduce the memory footprint of kd—trees two approaches were introduced: Index
list compaction compresses the list of triangle indices used by leaves to reference triangles.
The cost—scaling termination criterion for kd—tree construction, on the other hand, limits the
creation of deep trees by weighing the costs of splitting a node higher with an increasing
depth. It was shown that this allows for reducing the size of kd—trees by up to 80% without
negatively affecting ray traversal performance. Furthermore, a speed—up could be measured
for some scenes, which is an effect related to fewer traversal steps that need to be carried
out on average in shallow kd—trees.

With the creation of a map viewer for animated scenes from Raven Software’s game
Star Trek Voyager: Elite Force the ability of the developed ray tracing library to deliver
interactive frame rates for visually complex scenes was demonstrated on already relatively
old hardware at the time of writing this thesis. Subsequently parts of the map viewer were
integrated into a new rendering backend for id Software’s engine from Quake 3 Arena,

87

6 Conclusions

which allows playing games based on the engine with graphics augmented with ray tracing
specific effects, such as pixel-perfect reflections. The use of the Low-Level Virtual Ma-
chine (LLVM) for shader code generation in this context proved to be a very good choice
with regard to both ease of integration and run—time performance.

However, the quality of the rendered images was compromised by the presence of aliasing
effects related to under—sampling of textures. By employing ray differentials, as proposed
by Igehy [22], and using mip—mapping or summed area tables for texture sampling this
problem can be solved albeit with an increased number of rays that need to be traced, which
may negatively affect the achieved frame rate.

Efficient tracing of secondary rays remains another problem that needs to be solved, which
is mostly related to the fact that the assembly of large coherent packets is often not possible.
Especially traversal of BVHs with small packets exhibits poor run—time behavior, as shown
in chapter 5. By processing multiple tiles in an interleaved manner, as proposed in [42],
this problem could be solved in that an increased number of active secondary rays would
raise the potential for assembly of coherent packets. A problem of this approach, however,
is the overhead of switching between tiles that used to be prohibitive when the technique
was applied to primary rays previously.

In general it seems the time for real-time ray tracing has arrived in that processors with a
higher number of cores in each generation will allow for rendering increasingly complex
scenes due to the excellent scalability of the ray tracing technique.

88

Appendix

BART Measurement Reports

Machine: AMD Athlon X2 | Memory: 3GB

3800+, 2 x 2 GHz
Model: kitchen Frames: 800
Primitives: 110,561 Complexity level: -
Resolution: 800 x 600 Mode: predetermined!
Average frame time: 0.84s Worst frame time: 2.13s
Deviation: 0.35 Continuity: 0.71
Total time: 668.05s Preprocessing time: 9.36s
Model: museum Frames: 300
Primitives: 14,239 Complexity level: 6
Resolution: 800 x 600 Mode: predetermined’
Average frame time: 1.81s Worst frame time: 4.87s
Deviation: 0.56 Continuity: 0.33
Total time: 542.29s Preprocessing time: 1.19s
Model: robots Frames: 800
Primitives: 71,708 Complexity level: -
Resolution: 800 x 600 Mode: predetermined’
Average frame time: 1.37s Worst frame time: 2.32s
Deviation: 0.31 Continuity: 0.36
Total time: 1,095.44s Preprocessing time: 0.77s

I'Static geometry was extracted.

89

Bibliography

[1] J. Arenberg. Ray/triangle intersection with barycentric coordinates. Ray Tracing
News, 1(11), 1988.

[2] U. Assarsson and T. Moller. Optimized view frustum culling algorithms for bounding
boxes. Journal of Graphics Tools, 5(1):9-22, 2000.

[3] D. Badouel. An efficient ray-polygon intersection. In Graphics gems, pages 390-393.
Academic Press Professional, Inc., 1990.

[4] C. Benthin, I. Wald, and P. Slusallek. Interactive ray tracing of free-form surfaces.
In AFRIGRAPH ’04: Proceedings of the 3rd international conference on Computer

graphics, virtual reality, visualisation and interaction in Africa, pages 99-106. ACM,
2004.

[5] S.Boulos, I. Wald, and P. Shirley. Geometric and arithmetic culling methods for entire
ray packets. Technical report, School of Computing, University of Utah, 2006.

[6] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications of
the ACM, 20(10):762-772, 19717.

[7] J. G. Cleary and G. Wyvill. Analysis of an algorithm for fast ray tracing using uniform
space subdivision. Visual Computer, 4(2):65-83, 1988.

[8] M. Dabrovic. Model of the Atrium Sponza Palace, Dubrovnik, Croatia, 2001. URL
http://hdri.cgtechniques.com/ sponza/.

[9] D. S. Fussell and K. R. Subramanian. Fast ray tracing using k-d trees. Technical
report, University of Texas at Austin, 1988.

[10] J. Goldsmith and J. Salmon. Automatic creation of object hierarchies for ray tracing.
IEEE Computer Graphics and Applications, 7(5):14-20, 1987.

[11] S. A. Gottschalk. Collision queries using oriented bounding boxes. PhD thesis, The
University of North Carolina at Chapel Hill, 2000.

[12] N. Greene. Detecting intersection of a rectangular solid and a convex polyhedron. In
Graphics Gems 1V, pages 74-82. Academic Press Professional, Inc., 1994.

[13] J. Giinther, H. Friedrich, I. Wald, H.-P. Seidel, and P. Slusallek. Ray tracing ani-
mated scenes using motion decomposition. Computer Graphics Forum, 25(3):517—
525, 2006. (Proceedings of Eurographics).

91

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

92

E. Haines. Bounding box intersection via origin location. Ray Tracing News, 14(1),
2001.

V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Department of Computer
Science and Engineering, Faculty of Electrical Engineering, Czech Technical Univer-
sity in Prague, 2000.

V. Havran. A summary of octree ray traversal algorithms. Ray Tracing News, 12(2),
1999.

V. Havran and J. Bittner. On improving kd-trees for ray shooting. Journal of WSCG,
10(1):209-216, 2002.

J. Hultquist. Intersection of a ray with a sphere. In Graphics gems, pages 388-389.
Academic Press Professional, Inc., 1990.

W. Hunt, W. R. Mark, and G. Stoll. Fast kd-tree construction with an adaptive error-
bounded heuristic. In Proceedings of the 2006 IEEE Symposium on Interactive Ray
Tracing. IEEE, 2006.

id Software. Quake 3 Arena, 1999. URL http://www.idsoftware.com/.
id Software, Z. Slater. ioquake3, 2005. URL http://ioquake3.org/.

H. Igehy. Tracing ray differentials. In SSIGGRAPH '99: Proceedings of the 26th annual
conference on Computer graphics and interactive techniques, pages 179-186, 1999.

T. Ize, C. Robertson, I. Wald, and S. G. Parker. An evaluation of parallel grid con-
struction for ray tracing dynamic scenes. In Proceedings of the 2006 IEEE Symposium
on Interactive Ray Tracing. IEEE, 2006.

P. Jaquays, B. Hook, J. Carmack, C. Antkow, K. Cloud, and A. Carmack. Quake III
Arena Shader Manual, 1999. URL http://www.heppler.com/shader/.

R. Jones. Intersecting a ray and a triangle with Pliicker coordinates. Ray Tracing
News, 13(1), 2000.

D. Kalra and A. H. Barr. Guaranteed ray intersections with implicit surfaces. In
SIGGRAPH ’89: Proceedings of the 16th annual conference on Computer graphics
and interactive techniques, pages 297-306. ACM, 1989.

T. L. Kay and J. T. Kajiya. Ray tracing complex scenes. In SIGGRAPH ’86: Proceed-
ings of the 13th annual conference on Computer graphics and interactive techniques,
pages 269-278. ACM, 1986.

A. Kensler and P. Shirley. Optimizing ray-triangle intersection via automated search.
In Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing. IEEE, 2006.

J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan. Efficient
collision detection using bounding volume hierarchies of k-DOPs. IEEE Transactions
on Visualization and Computer Graphics, 4(1):21-36, 1998.

C. Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s thesis,
Computer Science Dept., University of Illinois at Urbana-Champaign, 2002.

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Bibliography

C. Lauterbach, S.-E. Yoon, D. Tuft, and D. Manocha. RT-DEFORM: Interactive ray
tracing of dynamic scenes using BVHs. In Proceedings of the 2006 IEEE Symposium
on Interactive Ray Tracing, pages 39—46. IEEE, 2006.

J. Lext, U. Assarsson, and T. Moller. A benchmark for animated ray tracing. IEEE
Computer Graphics Applications, 21(2):22-31, 2001.

D.J. MacDonald and K. S. Booth. Heuristics for ray tracing using space subdivision.
Visual Computer, 6(3):153-166, 1990.

J. Mahovsky and B. Wyvill. Fast ray-axis aligned bounding box overlap tests with
pliicker coordinates. Journal of Graphics Tools, 9(1):35-46, 2004.

J. A. Mahovsky. Ray tracing with reduced-precision bounding volume hierarchies.
PhD thesis, University of Calgary, 2005.

E. Mansson, J. Munkberg, and T. Akenine-Moller. Deep coherent ray tracing. In
Proceedings of the 2007 Eurographics/IEEE Symposium on Interactive Ray Tracing,
pages 79-85, 2007.

T. Moller and B. Trumbore. Fast, minimum storage ray/triangle intersection. In S/G-
GRAPH ’05: ACM SIGGRAPH 2005 Courses, page 7. ACM, 2005.

H. Mossenbock, A. WoB, and M. Loberbauer. Der Compilergenerator Coco/R. In
Peter Rechenberg - Festschrift zum 70. Geburtstag. Universitéitsverlag Rudolf Trauner,
Linz, Austria, 2003. URL http://ssw. jku.at/coco/.

G. Miiller and D. W. Fellner. Hybrid scene structuring with application to ray tracing.
Technical report, Braunschweig University of Technology, 1999.

S. Popov, J. Giinther, H.-P. Seidel, and P. Slusallek. Experiences with streaming con-
struction of SAH KD-trees. In Proceedings of the 2006 IEEE Symposium on Interac-
tive Ray Tracing, pages 89-94. IEEE, 2006.

Raven Software. Star Trek Voyager: Elite Force, 2000. URL
http://www.ravensoft.com/.

S. Reiter. Offloading ray processing onto the GPU using cooperative worker threads.
In Poster Compendium of the 2006 IEEE Symposium on Interactive Ray Tracing,
page 8, 2006. Poster abstract.

S. Reiter. Run-time code generation for materials. In Poster Compendium of the
2008 IEEE Symposium on Interactive Ray Tracing, 2008. Poster abstract (accepted
for publication).

A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray tracing algorithm. In SIG-
GRAPH ’05: ACM SIGGRAPH 2005 Papers, pages 1176-1185. ACM, 2005.

S. M. Rubin and T. Whitted. A 3-dimensional representation for fast rendering of
complex scenes. SIGGRAPH Computer Graphics, 14(3):110-116, 1980.

SCI Institute at the University of Utah. The Utah 3D Animation Repository. URL
http://www.sci.utah.edu/ "wald/animrep/.

93

Bibliography

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

94

M. Shevtsov, A. Soupikov, and A. Kapustin. Highly parallel fast kd-tree construction
for interactive ray tracing of dynamic scenes. Computer Graphics Forum, 26(3):395-
404, 2007. (Proceedings of Eurographics).

B. Smits. Efficiency issues for ray tracing. In SIGGRAPH ’05: ACM SIGGRAPH
2005 Courses, page 6. ACM, 2005.

Stanford University Computer Graphics Laboratory. The Stanford 3D Scanning
Repository. URL http://graphics.stanford.edu/data/3Dscanrep/.

I. E. Sutherland. Sketch pad a man-machine graphical communication system. In DAC
'64: Proceedings of the SHARE design automation workshop, pages 6.329—6.346.
ACM, 1964.

I. E. Sutherland and G. W. Hodgman. Reentrant polygon clipping. Communications
of the ACM, 17(1):32-42, 1974.

C. Wichter and A. Keller. Instant Ray Tracing: The Bounding Interval Hierarchy.
In T. Akenine-Moller and W. Heidrich, editors, Rendering Techniques 2006 (Proc. of
17th Eurographics Symposium on Rendering), pages 139-149, 2006.

I. Wald. On fast construction of SAH based bounding volume hierarchies. In Proceed-
ings of the 2007 Eurographics/IEEE Symposium on Interactive Ray Tracing, 2007.

I. Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD thesis, Com-
puter Graphics Group, Saarland University, 2004.

I. Wald and V. Havran. On building fast kd-trees for ray tracing, and on doing that in
O(N log N). In Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing,
pages 61-69. IEEE, 2006.

I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray tracing animated scenes
using coherent grid traversal. ACM Transactions on Graphics, 25(3):485—493, 2006.

I. Wald, S. Boulos, and P. Shirley. Ray tracing deformable scenes using dynamic
bounding volume hierarchies. ACM Transactions on Graphics, 26(1):6, 2007.

I. Wald, W. R. Mark, J. Giinther, S. Boulos, T. Ize, W. Hunt, S. G. Parker, and
P. Shirley. State of the art in ray tracing animated scenes. In Eurographics 2007
State of the Art Reports, 2007.

C. Wichter. Compilation of models for ray tracing of static scenes, 2006. URL
http://ompf.org/forum/viewtopic.php?f=4&t=64.

C. Wichter. Quasi-Monte Carlo Light Transport Simulation by Efficient Ray Tracing.
PhD thesis, Ulm University, 2007.

A. Williams, S. Barrus, R. K. Morley, and P. Shirley. An efficient and robust ray-box
intersection algorithm. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses, page 9.
ACM, 2005.

S. Woop, G. Marmitt, and P. Slusallek. B-KD trees for hardware accelerated ray
tracing of dynamic scenes. In GH "06: Proceedings of the 21st ACM SIGGRAPH/Eu-
rographics symposium on Graphics hardware, pages 67-77. ACM, 2006.

Bibliography
[63] S.-E. Yoon and D. Manocha. Cache-efficient layouts of bounding volume hierarchies.
Computer Graphics Forum, 25(3):507-516, 2006. (Proceedings of Eurographics).

[64] S.-E. Yoon, S. Curtis, and D. Manocha. Ray tracing dynamic scenes using selective
restructuring. In SIGGRAPH ’07: ACM SIGGRAPH 2007 sketches, page 55. ACM,
2007.

95

Curriculum Vitae

Personal Details

Stephan Reiter
Date of Birth: September 18, 1984
Place of Birth: Linz, Austria

Education

Primary and Secondary School, 1991 — 2003, Linz, Austria.
Matura passed with distinction.

Bakk. techn., Informatik, 2004 — 2007, Johannes Kepler University, Linz, Austria.
Thesis entitled “Laufzeit—effizientes Raytracing”.

Publications

Stephan Reiter: Run-Time Code Generation for Materials. 2008 IEEE Symposium on
Interactive Ray Tracing, Los Angeles, CA, USA, August 9 — 10, 2008, (accepted for pub-
lication).

Reinhard Wolfinger, Stephan Reiter, Deepak Dhungana, Paul Griinbacher and Herbert
Prihofer: Supporting Runtime System Adaptation through Product Line Engineering and
Plug—in Techniques. 7th IEEE International Conference on Composition—Based Software
Systems, ICCBSS 2008, Madrid, Spain, February 25 — 29, 2008. Received the best paper
award.

Stephan Reiter and Reinhard Wolfinger: Erfahrungen bei der Portierung von Delphi Legacy
Code nach .NET. Nachwuchs Workshop. SE 2007 — the Conference on Software Engi-
neering, Hamburg, Germany, March 27 — 30, 2007.

Stephan Reiter: Offloading Ray Processing onto the GPU using Cooperative Worker
Threads. 2006 IEEE Symposium on Interactive Ray Tracing, Salt Lake City, UT, USA,
September 20 — 22, 2006.

Eidesstattliche Erklarung

Ich erkldre an Eides statt, dass ich die vorliegende Diplomarbeit selbststindig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wortlich oder sinngemél entnommenen Stellen als solche kenntlich gemacht habe.

Linz, Juni 2008 (Stephan Reiter)

