
Parfait – Designing a Scalable Bug Checker

Cristina Cifuentes
Sun Microsystems Laboratories

Brisbane, Australia
cristina.cifuentes@sun.com

Bernhard Scholz
Sun Microsystems Laboratories

Brisbane, Australia
and The University of Sydney

Sydney, Australia
scholz@it.usyd.edu.au

ABSTRACT
We present the design of Parfait, a static layered program
analysis framework for bug checking, designed for scalability
and precision by improving false positive rates and scale to
millions of lines of code. The Parfait framework is inherently
parallelizable and makes use of demand driven analyses.

In this paper we provide an example of several layers of
analyses for buffer overflow, summarize our initial imple-
mentation for C, and provide preliminary results. Results
are quantified in terms of correctly-reported, false positive
and false negative rates against the NIST SAMATE syn-
thetic benchmarks for C code.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication; D.2.8 [Software Engineering]: Metrics; D.3.4
[Programming Languages]: Processors

General Terms
static analysis

1. INTRODUCTION
This project started in response to an internal need within
Sun Microsystems to be able to find bugs and security vul-
nerabilities in internal systems code. There are many tools
and techniques available in the market and the literature,
however, it is hard to find a tool to suit one’s needs or to
justify the acquisition of such a tool to management.

As a systems company, Sun develops systems software using
languages like C and C++ that provide good performance
but do not have type safety. For example, the SolarisTM

Operating System (OS) is written in C, the Java HotSpotTM

virtual machine is written in C++, and the SunTM Studio
compilers and support tools (e.g., dbx) are written in C and
C++. The code bases range in sizes from 50 KLOC for

SAW’08, June 12, 2008, Tucson, Arizona, USA.
(c) Sun Microsystems, Inc.
ACM 978-1-59593-924-1/08/0006

library code to 6 MLOC for the core of the Solaris OS and
the compilers.

In talking to these Sun organizations it became clear that
a set of requirements had not been addressed for those teams
to be using existing off-the-shelf bug checking tools for C/C++
code. Such requirements are:

• scalability: few tools can run over large (millions of
lines of code) code bases in an efficient way. Several
tools cannot parse the code or easily integrate with
existing build environments, others can but may take
too long (> 3 days) to run.

• rate of false positives: the tools that support millions
of lines of code tend to report many bugs that are not
bugs, leading to dissatisfaction and lack of use of the
tool.

• rate of false negatives: tool documentation does not
give an indication of the false negative rate for the
tool. In small code bases, where bugs reported by the
tool are fixed, this leads to a false sense of security,
making developers think they have fixed all problems
in the code.

• customization of the tool is missing in many instances:
customization relates to various aspects; being able to
check a subset of the code, being able to have a way
to specify what parts of the system are more prone
to security vulnerabilities, being able to obtain results
of the bugs in a variety of levels of verbosity (from
line number to a full trace of how the tool determined
there was a bug at a particular line), and being able
to specify priorities of bugs for a given organization.

These requirements compounded with the high cost of most
off-the-shelf tools makes it hard for developers to make a
case for licensing of the tool for a given project.

Based on these requirements, we have designed a new bug-
checking framework for C/C++ code. The framework is de-
signed for scalability (to be able to process millions of lines
of code) and precision (to produce few false positives). We
provide a demonstration of the framework in the form of a
worked example for buffer overflow bugs, and show results
from our initial implementation using our benchmarking in-
frastructure.

4

2. STATE OF THE ART
There are several approaches used to find bugs in programs.
Dynamic analysis tools find bugs at runtime based on instru-
mentation of statements that can potentially cause bugs.
The runtime check introduced by the instrumentation im-
poses a significant slowdown of factors between 2 to 350.
Dynamic tools find bugs in paths that are exercised by the
program, normally 10% of the paths of the program. To
overcome this slowdown, hybrid tools employ static analy-
sis to minimize the number of redundant checks at runtime,
reducing the slowdown by a factor between 10 and 100. In
contrast, static tools analyze the program without executing
it, following all paths of the program, without incurring run-
time overheads. In this paper we survey static bug checking
tools because they provide better code coverage and feed-
back for auditors and developers before the program is de-
ployed.

Bug checkers were introduced three decades ago. The lint [19]
tool was developed in the late 1970’s and aimed at detecting
“bugs and obscurities” in C source programs, as well as en-
forcing the type rules of C more strictly than the C compilers
did at the time. Tools like lint check for extra bugs that
a compiler does not report when parsing programs. These
tools are mainly based on syntactic analysis; limiting their
analysis scope. lint’s main drawback is the large number
of false positives reported by the tool: some users report up
to 90% false positives, making it hard for developers to use
the tool effectively for bug checking.

In the last decade, various new bug checking tools have
been developed. These tools make use of advances in static
analysis to reduce the number of false positives and utilize
the increased processing power of modern computers. De-
spite these advances, many developers are hesitant to use
bug checking tools. The reported number of false positives
ranges from 50% down to 10-15%.

We classify bug checking tools based on the type of bugs that
they can find, following the higher level Common Weakness
Enumeration (CWE) [6] classes. These classes are also avail-
able in the Seven Pernicious Kingdoms taxonomy [29]. The
list is by no means exhaustive but gives an idea of the work
reported in the literature in the last decade.

The Timing and State category looks into bugs that are due
to distributed computation via the sharing of state across
time. Examples of bugs in this category are deadlocks and
race conditions. Tools that support this category of bugs
include: JPF [16], a JavaTM programming language checker
that model-checks annotated Java code; PREfix [5], a C/C++
checker based on inter-procedural data flow analysis; ESP [7],
a C checker that focuses on scalability of analysis and simula-
tion; and Goanna [13], a C/C++ checker that model-checks
static properties of a program.

The Input Validation and Representation category looks into
bugs that are caused by metacharacters, alternate encod-
ings and numeric representations, and security problems re-
sulting from trusting input. Examples of bugs in this cat-
egory are buffer overflows, command injection, cross-site
scripting, format string, integer overflow, SQL injection,
etc. This category includes several of the bugs normally

reported as security vulnerabilities by tool vendors. Tools
that support both timing and state, and input validation
and representation bugs include: ESC [8], a Modula-3 and
Java checker that uses a theorem prover (Simplify) to rea-
son about the semantics of language constructs, driven by
annotations in the code; Coverity [10, 11], a C, C++ and
Java checker based on “may belief” analysis; Jlint [1, 2],
a checker of Java classfiles that is based on data flow and
abstract interpretation; PREfast [26], a C, C++ checker
based on intra-procedural analysis and statistics; Splint [12],
a C lint prototype for security vulnerability analysis based
on taint annotations; Archer [32], a C array checker that
uses symbolic analysis; PolySpace [9], an Ada, C and C++
checker based on abstract interpretation that is used in the
embedded systems market; FindBugs [17], a Java checker
that uses bug-patterns and data flow analysis on Java class-
files; KlocWork [31], a C, C++ and Java checker based on
inter-procedural data flow analysis; CQual++ [24], a C++
checker that makes use of taint annotations to determine
security-related bugs; and GrammaTech’s CodeSonar [15],
a C, C++ checker that performs whole-program, interpro-
cedural analysis.

The Security Features category is concerned with authen-
tication, access control, confidentiality, cryptography and
privilege management. Examples of bugs in this category
are insecure randomness, least privilege violation, missing
access control, password management and privacy violation.
A tool that supports timing and state, input validation, and
security features is Veracode [30], a binary/executable code
checker based on data flow analysis that performs penetra-
tion testing on the binary code.

The API Abuse category is concerned with the violation of
the (API) contract between a caller and a callee. Examples
of bugs in this category are dangerous functions that cannot
be used safely, directory restrictions, heap inspection, and
various often misused language or operating system features.
Tools that support timing and state, as well as API abuse
bugs include: SLAM [3, 4], a C/C++ device driver checker
that model-checks and verifies code against a specification of
a device driver; and Blast [18], a C device driver checker that
model-checks and verifies behavioral properties of the inter-
faces the code uses. A tools that support timing and state,
input validation, security features and API abuse bugs is
Fortify’s Static Code Analysis [14], a checker that supports
12 different programming languages that finds over 200 dif-
ferent security issues.

3. PARFAIT FRAMEWORK DESIGN
For better precision in bug checking, our design is to em-
ploy an ensemble of static program analyses that range in
complexity and expense. Analyses are ordered from least to
more (time) expensive, ensuring that each buggy statement
is detected with the cheapest possible program analysis ca-
pable of detecting it, effectively achieving better precision
with smaller runtime overheads.

Figure 1 shows our framework, our algorithm works as fol-
lows: First, a worklist for a specific bug (e.g. buffer overflow)
is set up and populated with all statements that potentially
can cause the bug. Second, we iterate over the program anal-
yses in the ensemble in ascending order. With the selected

5

Figure 1: The Parfait Framework

program analysis we analyze the statements in the worklist.
For each statement, the analysis will either confirm the pres-
ence of a real bug, reject the potential bug as a non-bug, or
retain the potential bug in the worklist for further analysis
by a later analysis. Third, the remaining statements in the
worklist are reported as potential bugs and need to be ver-
ified by the auditor. Heuristics should be applied to order
the importance of the reported bugs. Note that all analyses
PA1, . . ., PAn−1 need to be sound for this “waterfall” model
to work.

To overcome the computational program analysis bottle-
neck, we parallelize the algorithm by employing demand
driven program analysis instead of traditional forward anal-
yses for the whole program. Demand driven analysis gen-
erates a backward slice of a program starting at a partic-
ular statement of interest (in our case, a potential buggy
statement). The algorithm has two levels of embarrassingly
parallel problems. The first level is the various worklists for
specific bugs (e.g. buffer overflows, string vulnerabilities, in-
teger overflows, etc.) and the second level is for statements
in a specific worklist. Independent to us, Le and Soffa have
also proposed the use of demand driven program analysis in
their buffer overflow checking tool [22].

To summarize, the design of the framework features:

• scalability by reducing the problem space with fast
analyses applied first,

• precision by use of sound analyses and refinements of
the worklists, and

• parallelizability by employing demand driven analysis.

4. AN EXAMPLE
Figure 2 gives a simple example in C code that takes as ar-
guments the length of some data and the data itself (as a

string). The program initializes two buffers: the stack buffer
buf is initialized to the “AAA...A” string with a trailing C
end-of-string character, and the heap buffer buf2 is initial-
ized to the input data provided as the third parameter to the
program (argv[2]), after allocating data from the heap of
size equal to the second parameter (argv[1]). This program
is an adaptation of Seacord’s sample buggy programs [28].
This example has 5 bugs, 3 of which are buffer overflows.
A buffer overflow occurs when data is copied to a location
in memory that exceeds the size of the reserved destination
area (i.e., a write is done outside the bounds of the array).

0 #include <stdlib.h>
1 #define BUFF_SIZE 100
2
3 int main (int argc, char *argv[])
4 { char buf[BUFF_SIZE], *buf2;
5 int n = BUFF_SIZE, i;
6
7 if (argc != 3){
8 printf("Usage: prog_name length_of_data data\n");
9 exit(-1);
10 }
11
12 for (i = 1; i <= n; i++) {
13 buf[i] = ’A’;
14 }
15 buf[n] = ’\0’;
16
17 n = atoi(argv[1]);
18 buf2 = (char*)malloc(n);
19 for (i = 0; i <= n; i++) {
20 buf2[i] = argv[2][i];
21 }
22
23 return 0;
24 }

Figure 2: Sample C source code with 3 buffer over-
flow bugs

6

The bugs in the example program are:

• the index computed in line 12 is out of bounds for
the last iteration of the loop, causing a stack buffer
overflow on line 13,

• the terminating string character in line 15 is assigned
to the wrong index location, causing a stack buffer
overflow,

• the memory allocation in line 18 treats the signed in-
teger value in n as an unsigned value of type size_t.
For negative values of n this leads to a large, positive
value being used in the memory allocation,

• the index computed in line 19 is out of bounds on the
last iteration of the loop, causing an off-by-one heap
buffer overflow on line 20, and

• the index computed in line 19 may be out of bounds
for the read array access in line 20.

In this section we show sample layers of analyses of the
framework that aid in detecting buffer overflow bugs. The
program analyses and their ordering are: constant propa-
gation and folding < partial evaluation < symbolic analysis
using affine constraints.

4.1 Constant Propagation and Folding
Constant propagation and folding is one of the cheapest
inner analyses that can be implemented. Constant prop-
agation is the process of substituting the values of known
constants in expressions. Constant folding is the process of
simplifying constant expressions. These data flow analyses
can be used to check whether constant array indices are out
of bounds. In the example, variable n is initialized in line 5
with a constant value that can be propagated into its uses
at lines 12 and 15, leading to the following snippet of code

3 int main (int argc, char *argv[])
4 { char buf[100], *buf2;
...
12 for (i = 1; i <= 100; i++) {
13 buf[i] = ’A’;
14 }
15 buf[100] = ’\0’;

The constant array access on line 15 can be checked to be
out of bounds as the array buf was defined in line 4 to have
100 elements indexed from 0 to 99. This analysis is partially
complete as not all array indices become constant.

4.2 Partial Evaluation
Partial evaluation is a program transformation technique
which operates via specialization: any function can be spe-
cialized by fixing one or more of its inputs to a particular
value. For buffer overflow checking, partial evaluation can
be used when analyzing a loop that accesses an array and
has a constant number of iterations. A slice of the loop that
contains the statements that are relevant for the array ac-
cess is computed. This small slice of code can be augmented

with a test for out of bounds access, then partial evaluation
is performed on the augmented slice of code.

This analysis, a more expensive yet cheap layer, is relevant
to the code in lines 12-14, where there is a write buffer access
on line 13. The slice of this loop contains lines 12 and 14,
and the execution of the augmented slice would return a true
value on overflow and false otherwise, finding the second
buffer overflow bug in the program. Pseudo-code for the
augmented slice is as follows

12 for (i = 1; i <= 100; i++) {
if (i < 0 || i > 99)

return (true);
14 }

return (false);

4.3 Symbolic Analysis using Affine Constraints
Symbolic analysis uses symbolic expressions to describe com-
putations of a program as algebraic formulas over the pro-
gram’s input. In symbolic analysis we can use linear con-
straints to determine properties of an array. This program
analysis is useful in determining whether non-constant in-
dices of an array are out of bounds or not. In our example,
we would like to check lines 19-20, as non-constant indices
are used. The slice for the write array access at line 20 is
the following

3 int main (int argc, char *argv[])
17 n = atoi(argv[1]);
18 buf2 = (char*)malloc(n);
19 for (i = 0; i <= n; i++) {
20 buf2[i] = argv[2][i];
21 }

In this slice, index variable i needs to be within the range
of 0 and n-1. However, variable i has the range of 0 ≤ i ≤
n, violating the array bounds. A linear constraint solver
detects the violation and finds this third buffer overflow in
the program.

5. CURRENT IMPLEMENTATION
The initial implementation of Parfait is built on top of the
LLVM framework [21], a low-level virtual machine for var-
ious languages including C and C++. Its instruction set
has been designed for a virtual architecture that avoids ma-
chine specific constraints, and its instruction set is strictly
typed. Every value or memory location has an associated
type and all instructions obey strict type rules. LLVM code
is represented in SSA form.

The code can have an unlimited number of typed virtual reg-
isters, which hold values of primitive types (integral, floating
point, or pointer values). The instructions are encoded in
three address code, i.e., most LLVM operations take one or
two operands and produce a single result. For example, the
instruction %tmp.85 = add uint %indvar, 1 adds value 1
to virtual register %indvar and stores the result in %tmp.85.

Each variable has a single assignment such that the instruc-
tion that defines the variable and the variable’s value can
be synonymously used. At confluence points phi-nodes are

7

introduced to select a value from a set of values that are
defined on different paths meeting at the confluence point.

LLVM provides type-safe pointer arithmetic with the in-
struction getelementptr, that calculates the address of a
subelement in an aggregate data structure. For example

%tmp.16 = getelementptr sbyte** %argv, int 2

calculates the third element of the pointer array of argv. In-
struction getelementptr either returns a pointer to a field or
an element in an array. LLVM has a type conversion mech-
anism that is implemented via the cast instruction. The
cast instruction converts a value from one type to another.
The instruction %tmp.4 = cast int %tmp.0 to uint con-
verts the value of %tmp.0 that is an integer to an unsigned
integer and stores the result in %tmp.4. LLVM provides
support for alias analysis and has a couple of interprocedu-
ral, context-insensitive alias analyses in place (Andersen’s
and Steensgaard’s), as well as a Data Structure Analysis
context-sensitive analysis.

The current implementation of Parfait focuses on arrays
reads and writes and is based on sound analyses in the ab-
sence of the standard C libraries:

• a potential-bug-locator that finds all locations in a C
program where a buffer overflow (array write) or a read
outside the bounds of the array (array read) is per-
formed,

• a constant propagation analysis for buffer overflow and
read outside the bounds of the array, and

• a partial evaluation analysis for buffer overflow and
read outside the bounds of the array. The partial eval-
uation code is run on the LLVM interpreter using byte-
codes

Parfait runs on the x64/Solaris OS, x86/Linux and x86/OSX
platforms.

Security Vulnerabilities
If a developer is interested in concentrating on security vul-
nerabilities, an optional pre-processing analysis can be used
before running the core engine (i.e., the framework), to de-
termine which statements in the program are prone to se-
curity attacks. Using a simple definition of security vul-
nerability, where a bug is a security vulnerability if it can
be exploited by an attacker using malicious input, we have
developed a new user-input dependence analysis and have
implemented both context-insensitive and context-sensitive
approaches [27]. The algorithm keeps track of both, data
and control dependencies, and is fast (linear in the num-
ber of statements and dependencies). A may-function alias
analysis was added to LLVM to better support accuracy of
the dependence analysis.

To illustrate, if analyzing the example in Figure 2 from a
security vulnerability point of view, we need to determine
which statements of the program are user-input dependent
and only consider those for bug checking purposes. In the

example there are two user inputs: the length of the data
(argv[1]) and the string of data (argv[2]). The statements
that are user-input dependent yield the following program
fragment:

0 #include <stdlib.h>
1 #define BUFF_SIZE 100
2
3 int main (int argc, char *argv[])
4 { char *buf2;
5 int n = BUFF_SIZE, i;

17 n = atoi(argv[1]);
18 buf2 = (char*)malloc(n);
19 for (i = 0; i <= n; i++) {
20 buf2[i] = argv[2][i];
21 }
22
23 return 0;
24 }

This resulting program can then be fed into the core en-
gine. For the analyses explained in Section 4, performing
constant propagation in this case is of no use, neither is the
partial evaluation of code, because constant values cannot
stem from user-input dependencies. The only analysis that
is of relevance in this case is the symbolic analysis, which
will determine that there is a heap buffer overflow on line 20
for one index of the loop. This buffer overflow is the only
security vulnerability in the program due to write array ac-
cesses.

For security analysis all APIs used in the programs need to
be documented, including functions in the C library. For
example, the atoi library function has the following signa-
ture:

int atoi (const char *nptr);

The output of the atoi function is dependent on the input
to it. Hence, if the input is tainted data, the output is a
tainted value. This type of information can be automati-
cally generated by analyzing the libraries standalone. In the
example, lines 18 and 19 become tainted in our analysis be-
cause the variable n becomes tainted. Line 20 is also tainted
because the predicate of the loop contains tainted data (i.e.,
it is control dependent on tainted data).

6. PRELIMINARY RESULTS
We report on preliminary results using our initial implemen-
tation of two of the layers of analyses for buffer overflow. We
use the NIST SAMATE benchmarks to report accuracy of
the framework.

Evaluation Methodology
As far as we are aware of, there is no established evaluation
methodology for bug checking tools. In the research com-
munity, a few first attempts have been made to consolidate
this problem [33, 20, 23, 25], however, the reported litera-
ture does not seem to use these benchmarking results. Quite
often results such as “Tool/Technique X found Y number of
bugs” are presented in the literature. This statement lacks of
precision because the following questions are not answered:

8

• Which kind of bugs were found? (there are many bugs
in any large software project, but which ones are con-
sidered relevant to the developer or auditor?)

• How many bugs were not found? (i.e., false negative
rate). Note that Y could be a small number in com-
parison with the real total number of bugs in the code.

• How many bugs were reported as bugs and were not
actual bugs? (i.e., false positive rate)

• Does the tool understand when a reported bug has
been fixed? (i.e., when the tool is re-run with a fixed
bug, is the bug reported again or not?)

• How long did it take to run the tool to find the bugs?

We use a simple scheme that gives a “bug specific” view. For
a specific bug class (e.g. buffer overflow bugs, signed/unsigned
bugs), we conduct an automated evaluation. The evalua-
tion contains the measurement of functional metrics for each
benchmark including false positives and false negatives.

Besides functional metrics we are also interested in the ex-
ecution time of the tool, i.e., how many lines of code it can
process per minute, and how much memory is needed for
the execution of the tool. Speed and memory consumption
are important to be able to extrapolate the scalability of the
system.

We are using the synthetic benchmarks that have been con-
tributed to the SAMATE project [25], and we report on
those benchmarks herein. As a side effect of our testing
process we are also collecting sample proprietary and open
source buggy source code and annotating it with the bugs
that are known to exist in that code.

Results
Table 1 shows the results of the Parfait framework on a
subset of the SAMATE benchmarks, namely, those that are
for C code and that relate to buffer overflow and read out-
side the bounds of an array. Parfait currently implements
two of the three analyses mentioned in this paper: con-
stant propagation and partial evaluation. As such, Parfait
can analyze statically-allocated buffers but not dynamically-
allocated ones. The dataset had 1182 benchmarks with 896
bugs. Some benchmarks do not contain any bugs as they
represent the fixed version of a buggy benchmark. The re-
sults show that 85% of the array bugs are correctly identified
with a 0% false positive rate and a 6.5% false negative rate.
The false negatives are due to the lack of support of the stan-
dard C libraries at this point in time; the semantic meaning
of library functions like strcpy needs to be taken into ac-
count. In strcpy, the destination buffer is overwritten by
the source buffer, and if the destination buffer is smaller
than the source buffer, then a buffer overflow will happen,
e.g., the SAMATE program basic-00046-med.c:

1 char src[18];

2 char buf[10];

3

4 memset(src, ’A’, 18);

5 src[18 - 1] = ’\0’;

6 strcpy(buf, src);

Parfait will currently not report an error at line 6, leading
to a false negative, because the error was missed.

Of the remaining 150 potential bug locations in the potential-
bug list, 76 of them are real bugs yet to be determined
(using symbolic analysis). The 896 bugs can be accounted
for: 762 were correctly reported, 58 are not reported due
to false negatives, and 76 are yet-to-be-reported (i.e., are in
the potential-bug list).

7. CONCLUSIONS
In this paper we described the design of Parfait, a static lay-
ered program analysis framework for bug checking designed
for scalability and precision.

Scalability is addressed by an ensemble of program analy-
ses such that easy-to-check bugs are detected with cheap
and simple analyses, and more complex bugs are detected
with more expensive analyses. Scalability is also addressed
by use of demand driven analyses, analyzing small slices of
code around a potential buggy statement. Parallelization is
easily enabled by the framework. Precision is addressed by
using sound analyses in the ensemble of analyses, and keep-
ing track of three different lists per bug-type being checked:
real bugs, no bugs, and potential bugs.

We also reported on our initial implementation of buffer
overflow detection and provided preliminary results using
benchmarks from the NIST SAMATE project.

Acknowledgments
We would like to thank Nathan Keynes and Erica Mealy for
comments to improve the presentation of this paper.

8. REFERENCES
[1] C. Artho and A. Biere. Applying static analysis to

large-scale, multi-threaded Java programs. In
Proceedings of the Australian Software Engineering
Conference (ASWEC), pages 68–75, Canberra, ACT,
Australia, August 2001. IEEE Press.

[2] C. Artho and K. Havelund. Applying Jlint to space
exploration software. In Verification, Model Checking,
and Abstract Interpretation, volume 2937/2003 of
Lecture Notes in Computer Science, pages 297–308.
Springer Berling / Heidelberg, 2004.

[3] T. Ball and S. K. Rajamani. Automatically validating
temporal safety properties of interfaces. In Proceedings
of the Workshop on Model Checking of Software
(SPIN), LNCS 2057, pages 103–122, May 2001.

[4] T. Ball and S. K. Rajamani. The SLAM project:
Debugging system software via static analysis. In
Proceedings of the Principles of Programming
Languages (POPL), pages 1–3. ACM Press, January
2002.

[5] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static
analyzer for finding dynamic programming errors.
Software—Practice & Experience, 30:775–802, 2000.

[6] CWE list (draft 5).
http://cwe.mitre.org/data/index.html, December
2006.

[7] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive
program verification in polynomial time. In

9

Type of Data Raw Data Percentage
Number of benchmarks 1182
Number of buffer overflows 893
Number of read outside array bounds 3

Number of reported buffer overflows 759 85%
Number of correctly-reported buffer overflows 759 100%
Number of false positives 0 0%
Number of false negatives 58 6.5%
Number of potential bugs in potential-bug list 150
Number of buffer overflows in potential-bug list 76 8.5%

Number of reported read outside array bounds 3 100%
Number of correctly-reported read outside array bounds 3 100%
Number of false positives 0 0%
Number of false negatives 0 0%

Average time taken per benchmark 0.2068 sec

Table 1: Current Results on Array Reads and Writes Using Parfait on the SAMATE C Benchmarks for Array
Reads and Writes

Proceedings of the Conference on Programming
Language Design and Implementation (PLDI), pages
57–68, Berlin, Germany, June 2002. ACM Press.

[8] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B.
Saxe. Extended static checking. Technical Report
SRC-RR-159, COMPAQ Systems Research Center,
130 Lytton Avenue, Palo Alto, CA 94301, December
1998.

[9] A. Deutsch. Static verification of dynamic properties.
PolySpace White Paper, February 2004.

[10] D. Engler, B. Chelf, A. Chou, and S. Hallem.
Checking system rules using system-specific
programmer-written compiler extensions. In
Proceedings of the Fourth Symposium on Operating
Systems Design and Implementation, pages 23–25, San
Diego, CA, Oct. 2000. USENIX.

[11] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and
B. Chelf. Bugs as deviant behavior: A general
approach to inferring errors in systems code. In
Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles, pages 57–72, Alberta,
Canada, Oct. 2001. ACM Press.

[12] D. Evans and D. Larochelle. Improving security using
extensible lightweight static analysis. IEEE Software,
pages 42–51, January/February 2002.

[13] A. Fehnker, R. Huuck, P. Jayet, M. Lussenburg, and
F. Rauch. Goanna—a static model checker. In
L. Brim, B. Haverkort, M. Leucker, and J. Pol,
editors, Proceedings of the 11th International
Workshop on Formal Methods for Industrial Critical
Systems, number 4346 in Lecture Notes in Computer
Science, Bonn, Germany, Aug. 2006.

[14] Fortify Static Code Analysis (SCA).
http://www.fortify.com/products/sca/. Last
accessed: 1 April 2008.

[15] GrammaTech CodeSonar. http://www.grammatech.
com/products/codesonar/overview.html. Last
accessed: 1 April 2008.

[16] K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. Software Tools for
Technology Transfer, 2(4), April 1999.

[17] D. Hovemeyer and W. Pugh. Finding bugs is easy. In
Companion to the 19th annual ACM SIGPLAN
Conference on Object Oriented Programming Systems,
Languages, and Applications (OOPSLA), pages
92–106, Vancouver, BC, Canada, Oct. 2004. ACM
Press.

[18] R. Jhala. Lazy Abstraction. PhD thesis, University of
California, Berkeley, Fall 2004.

[19] S. Johnson. Lint, a C program checker. Unix
Programmer’s Manual, AT&T Bell Laboratories, 1978.

[20] K. Kratkiewicz and R. Lippmann. Using a diagnostic
corpus of C programs to evaluate buffer overflow
detection by static analysis tools. In Proc. of
Workshop on the Evaluation of Software Defect
Detection Tools, June 2005.

[21] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In Proceedings of the 2004
International Symposium on Code Generation and
Optimization (CGO’04), Palo Alto, California, March
2004.

[22] W. Le and M. L. Soffa. Refining buffer overflow
detection via demand-driven path-sensitive analysis.
In Proceedings of the ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering, pages 63–68, San Diego, CA, June 2007.

[23] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou.
BugBench: A benchmark for evaluating bug detection
tools. In Proc. of Workshop on the Evaluation of
Software Defect Detection Tools, June 2005.

[24] S. McPeak. Elsa/Oink/Cqual+. Talk at CodeCon,
February 2006.

[25] NIST SAMATE – software assurance metrics and tool
evaluation. http://samate.nist.gov. Last accessed:
January 2007.

[26] J. Pincus. Steering the pyramids: Tools, technology,
and process in engineering at microsoft. Keynote at
the International Conference on Software Maintenance
(ICSM). Slides at http://research.microsoft.com/

users/jpincus/icsm.ppt, 2002.

[27] B. Scholz, C. Zhang, and C. Cifuentes. User-input

10

dependence analysis via graph reachability. Technical
Report SMLI TR-2008-117, Sun Microsystems
Laboratories, 16 Network Circle, Menlo Park, CA
94025, March 2008.

[28] R. C. Seacord. Secure Coding in C and C++. SEI
Series, A CERT Book. Addison-Wesley, Sept. 2005.

[29] K. Tsipenyuk, B. Chess, and G. McGraw. Seven
pernicious kingdoms: A taxonomy of software security
errors. IEEE Security & Privacy, 3(6):81–84,
November/December 2005.

[30] Veracode website. http://www.veracode.com/. Last
accessed: January 2007.

[31] M. Webster. Leveraging static analysis for a
multidimensional view of software quality and
security: Klocwork’s solution. White paper, IDC,
Framingham, MA, Sept. 2005.

[32] Y. Xie, A. Chou, and D. Engler. Archer: using
symbolic, path-sensitive analysis to detect memory
access errors. In ESEC/FSE-11: Proceedings of the 9th
European software engineering conference held jointly
with 11th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 327–336,
New York, NY, USA, 2003. ACM Press.

[33] M. Zitser, R. Lippmann, and T. Leek. Testing static
analysis tools using exploitable buffer overflows from
open source code. In SIGSOFT ’04/FSE-12:
Proceedings of the 12th ACM SIGSOFT Twelfth
International Symposium on Foundations of Software
Engineering, pages 97–106, New York, NY, USA,
2004. ACM Press.

11

