
Run-Time Code Generation for Materials
Stephan Reiter

Results

Original Triangles Traversal
(max. 128 steps)

Ray Traced
(with added reflections)

id Software‘s

Quake 3 Arena, 1999.

Map: q3dm1, 25k triangles

RT: 6 fps @ 800 x 600

Raven Software‘s Star Trek

Voyager: Elite Force, 2000.

Map: Breach, 90k triangles

RT: 1 fps @ 800 x 600

Images rendered on an AMD Athlon X2 3800+ (2005)

with 3 GB RAM running 64-bit Ubuntu Linux 7.10.

Introduction

Code generation using the Low-Level Virtual Machine

A ray tracing based rendering backend for id Tech 3

The rendering backend of the id Tech 3 engine serves as a connection

between the graphics API and the engine’s front end, which is

responsible for maintaining the state of the virtual environment. In

each frame the backend receives a stream of rendering requests (e.g.,

to draw an object or a list of triangles), applies filtering, such as

frustum culling, and issues the corresponding draw calls. In order to

supply a ray tracer with a complete description of the environment, a

few modifications had to be introduced:

• Dynamic geometry (players, items, …) is collected each frame by

intercepting draw calls within the engine and is stored in a BVH.

Frustum culling is not applied and the PVS is ignored.

• Static geometry (i.e., walls but not doors) is extracted and stored in a

kd-tree when the scene is loaded.

For downloads and further information please visit http://stephanreiter.info/

static world geometry

dynamic geometry (item, weapon)

te
x-

co
or

d
s

n
or

m
a
ls

m
a
te

ri
a
l-

id
s

Creation of materials for the ray tracer is implemented by extending

the engine’s internal script parsing function to load the referenced

textures and to generate the shading code using the LLVM.

Each frame is rendered with ray tracing after the dynamic geometry

has been collected. Rays are spawned for tiles of 8x8 pixels and

traced by first traversing the kd-tree followed by the BVH. Shading is

performed on groups of rays that hit the same primitive:

• Depending on the requirements of the associated material, normals,

texture coordinates, and lighting information (dynamic lights & static

lighting in the scene’s lightmap) are gathered.

• The shading function is then invoked to determine the color of the

hit points. Texture sampling or tracing of secondary rays (e.g., for

reflections) may be requested by the function in the process.

In order to facilitate comparisons of the

original and the new ray tracing based

look of the game, toggling of rendering

modes is supported at run-time.

Furthermore it is possible to display

traversal statistics, material-ids, texture

coordinates and normals.

textures/gothic_block/demon_block15fx
{
{
map textures/sfx/firegorre.tga
tcmod scroll 0 1
tcMod turb 0 .25 0 1.6
tcmod scale 4 4
blendFunc GL_ONE GL_ZERO

}
{
map textures/gothic_block/demon_block15fx.tga
blendFunc GL_SRC_ALPHA GL_ONE_MINUS_SRC_ALPHA

}
{
map $lightmap
blendFunc GL_DST_COLOR GL_ONE_MINUS_DST_ALPHA

}
}

fi
re

sp
it
ti
n
g

d
em

on

blend

diffuse

sample

tex-coords

blend

blend

sample

tex-coords

scale

turbulence

scroll

abstract
syntax tree

trace bg

optimized away

id Tech 3 is a game engine used in several well received

products, such as id Software’s Quake 3 Arena, and was

released under an open source license in 2005. Within the

scope of my diploma thesis I investigated the use of real-

time ray tracing in games and found id Tech 3 to be an

excellent basis for evaluating the qualities of ray tracing

in creating visually pleasing virtual environments.

id Tech 3 uses a complex material system that allows the

specification of the look and the behavior of surfaces in

scripts. Support for this system in the new ray tracing

based rendering backend was crucial to recreating and

augmenting the original look. Noting that interpretation

would have resulted in an unacceptable loss of speed,

run-time generation of machine code was employed.

Materials in id Tech 3 can be composed of multiple layers

that are blended to get the final color value:

• An animated or static texture can be sampled in each

layer at coordinates computed by a chain of modifiers,

which apply transformations to the texture coordinates of

the surface the material is applied to.

• Color and alpha values can be generated per layer (e.g.,

based on noise and waveforms) and may be used to

modulate the texture color (typically used for lighting).

• Alpha testing, fog, environment mapping, …

The LLVM’s code generation interface is object-oriented

and built on the notion of value-objects, which are

created directly by wrapping constants or indirectly as the

result of emitting virtual instructions (e.g., alloca, load,

add, cmp, call, ...) with other values supplied as input.

Code is arranged in basic blocks, which are linked with

branches to implement control flow in a function.

Code generation using the LLVM is type-safe and

supports the composition of complex data structures from

primitives, such as ints and floats. Vectors are also

natively supported for the emission of SIMD-style code.

The basis for code generation is an abstract syntax tree

derived from the parsed material script. It describes the

operations involved in calculating the surface color based

on inputs such as texture coordinates, normals and

lighting information. Code is emitted as the tree is

traversed in postorder with nodes returning values (a.k.a.

items) that record the result of the represented operation.

After the body of a function has been created a variety of

optimizations can be applied to the code. In order to be

able to invoke the function it has to be passed to the jitter,

which returns a pointer to the generated machine code. Value *EmitAdd(Value *a, Value *b) {
return Builder()->CreateAdd(a, b);

}

