
Run–Time Code Generation for Materials
Stephan Reiter∗

Typical material systems are based on a collection of properties
that are set on a per–object or per–surface basis usually by evalua-
tion of a description file at run–time. Shading of hit points is then
implemented by interpreting these properties. In order to be able
to support a large feature set, different code paths need to be cre-
ated, e.g. for reflection and refraction effects. Conditions for the
branches associated with these fragments of functionality need to
be evaluated for each shaded ray, which may degrade performance
considerably. Material specific optimization opportunities are also
missed out by having a generic function for all material configura-
tions.

We propose the use of run–time code generation for materials.
This retains the flexibility of a run–time parameterizable material
system and allows for performance improvement by elimination of
branches and folding of constants. Noting that code generation is
non–trivial and time consuming to implement, particularly when
dealing with multiple platforms, we suggest the use of the low–
level virtual machine (LLVM) [1] for this purpose.

The LLVM is an abstraction from hardware and based on a vir-
tual instruction set. It supports emission of code through an object–
oriented interface and run–time generation of machine code for a
large number of platforms. Interoperation with C/C++ code is pos-
sible through dynamic linking, which is handled transparently by
the LLVM. A large number of optimization passes are available
that can be applied selectively to balance compilation times and the
quality of the generated code.

We present an implementation of the extensive material system
from id Software’s id Tech 3 engine, which supports multiple tex-
ture layers, blending and texture coordinate modifiers among other
features. This implementation is used in a new rendering backend
for said engine, which allows playing original games based on the
engine with raytraced graphics and new effects. With support from
the development community we have been able to test this with
id Software’s Quake 3 Arena and Raven Software’s Star Trek Voy-
ager: Elite Force.

REFERENCES

[1] C. Lattner. LLVM: An Infrastructure for Multi-Stage Optimization.
Master’s thesis, Computer Science Dept., University of Illinois at
Urbana-Champaign, Urbana, IL, Dec 2002.

∗e-mail: stephan.reiter@gmail.com

Figure 1: Animated fire in the map q3dm1 from id Software’s
Quake 3 Arena, rendered at a resolution of 800x600 pixels at 5 fps
on an AMD Athlon X2 3800+.

Figure 2: Raytraced reflections on a console in Raven Software’s
Star Trek Voyager: Elite Force, rendered at a resolution of 800x600
pixels at 2 fps on an AMD Athlon X2 3800+.


