Verifying Multi-threaded C Programs
with SPIN

Anna Zaks and Rajeev Joshi*

! New York University
2 Lab for Reliable Software, Jet Propulsion Laboratory

Abstract. A key challenge in model checking software is the difficulty
of verifying properties of implementation code, as opposed to checking an
abstract algorithmic description. We describe a tool for verifying multi-
threaded C programs that uses the SPIN model checker. Our tool works
by compiling a multi-threaded C program into a typed bytecode for-
mat, and then using a virtual machine that interprets the bytecode and
computes new program states under the direction of SPIN. Our virtual
machine is compatible with most of SPIN’s search options and optimiza-
tion flags, such as bitstate hashing and multi-core checking. It provides
support for dynamic memory allocation (the malloc and free family of
functions), and for the pthread library, which provides primitives often
used by multi-threaded C programs. A feature of our approach is that it
can check code after compiler optimizations, which can sometimes intro-
duce race conditions. We describe how our tool addresses the state space
explosion problem by allowing users to define data abstraction functions
and to constrain the number of allowed context switches. We also de-
scribe a reduction method that reduces context switches using dynamic
knowledge computed on-the-fly, while being sound for both safety and
liveness properties. Finally, we present initial experimental results with
our tool on some small examples.

1 Introduction

A key challenge in applying model checking to software is the difficulty of veri-
fying properties of implementation code, as opposed to checking abstract algo-
rithmic descriptions. Even well understood protocols such as Peterson’s protocol
for mutual exclusion, whose algorithmic description takes only half a page, have
published implementations that are erroneous. This problem is especially acute
in our domain of interest — small, real-time embedded systems in use on robotic
spacecraft — where limits on memory and processor speeds require implementa-
tion ingenuity, but where the risks of failure are high.

* The work described in this paper was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronau-
tics and Space Administration. Funding was also provided by the NASA ESAS 6G
project on Reliable Software Engineering.

Our work extends previous work on model-driven verification, in which model
checking was applied to the verification of sequential C programs [HJ04],[GJ0S].
Model-driven verification is a form of software model checking for C programs
that works by executing C code embedded in a PROMELA model. The SPIN
model checker [Hol03] translates a PROMELA model (along with an LTL prop-
erty to be checked) into a C program pan.c that encodes a model checker that
checks the property in question (in a sense, therefore, SPIN is really a model
checker generator). Because SPIN compiles models into C code, recent ver-
sions (since SPIN 4.0) allow fragments of C programs to be embedded within
PROMELA models. Each such fragment is treated as a deterministic atomic
transition (in SPIN parlance, the equivalent of a “dstep”). This allows SPIN to
be used to check C programs against LTL specifications using most® of SPIN’s
search options, including bitstate hashing, and multi-core execution[HBO7].

A significant limitation of model-driven verification is that each fragment of
embedded C code is executed as an atomic transition by SPIN. This in turn
means that it is hard to (a) check properties (such as assertions and invariants)
at control points within the embedded C code, (b) interrupt the control flow
within a C function (to simulate, say, a device interrupt or an asynchronous
reset), and (c) explore interleavings of more than one fragment of C code, which
is needed in order to check multi-threaded C programs. A discussion of how to
address the first two limitations appears elsewhere [GJO08]; in this paper, we ad-
dress the third limitation of checking multi-threaded C programs. We describe a
tool (named “pancam”) which implements a virtual machine for executing pro-
grams in the LLVM bytecode language [LLA04]. Since the state space of even a
small C program is typically much larger than that of most PROMELA models,
we consider various approaches to combat the space explosion problem. In par-
ticular, we describe a technique called superstep reduction that can increase the
granularity of atomic steps on-the-fly during a model checking run. We also dis-
cuss how context-bounding [MQO7] can easily be integrated with our tool, with
only a small modification to our virtual machine, and how pancam allows users
to define data abstractions to reduce state space still further. Finally, we present
initial experimental results with using our tool on some small multi-threaded C
programs.

2 Model Checking C programs with pancam

Our approach to checking a concurrent C program with SPIN is to first translate
the program into bytecode for the Low Level Virtual Machine (LLVM) compiler
infrastructure [LA04]. This bytecode is then checked by executing it within the
context of an explicit-state model checker by using a virtual machine interpreter.
In a sense, this approach is similar to Java Pathfinder (JPF) [VHBT03]. However,

3 Two key options not supported for embedded code by SPIN are breadth-first search,
which would require too much additional overhead, and partial-order reduction,
which is difficult for C programs because computing a nontrivial independency re-
lation is hard.

#include <pthread.h>

struct pa.desc { void * threadl main(void *args) {

volatile int *fO, *f1 ; struct pa.desc d ;
int last ; pa-desc_init(&d, 1) ;
b for (5;) {

pa_desc_lock(&d) ;
threadx_critical() ;

volatile int pa_fO, pa_fl, pa_last ;
pa-desc_unlock(&d) ;

void pa-desc_lock(struct }
pa_desc *d) { return NULL ; /* NOT REACHED x/
for (*d->f0=1, pa_last=d->last; }
*d->fl1==1 && pa_last==d->last;
}) /* pancam helpers */
: void init(void) {
int count =0 ; pa_fO = pa_fl = pa_last = 0 ;
void threadx_critical(void) { }
count++

Bool check_exclusion(void) {

. // critical section return (count <= 1) ;

count-- ; }

}

Fig. 1. Excerpt of C implementation of Peterson’s Algorithm using pthreads, from
the Wikipedia. The two highlighted occurrences of volatile were missing, causing a
potential race condition.

unlike JPF, we do not integrate the model checker with the bytecode interpreter.
Instead, our virtual machine executes bytecode as directed by SPIN, by provid-
ing a method pan_step(i) that is called by SPIN to execute the next transition
of thread i. In a sense, therefore, SPIN orchestrates the search by deciding which
thread to execute next, by storing visited states in its hash table, and by restor-
ing a previous state during a backtracking step. This division of labor allows
us to freely benefit from SPIN’s unique abilities, notably its scalability, search
heuristics, and, lately, the capability to deploy it on multi-core CPUs [HBO7].

To illustrate how our tool works, Fig. 1 shows the C program that appears
in the Wikipedia entry* for Peterson’s mutual exclusion protocol [wik]. The
C language does not have any built-in primitives for concurrency, so the pro-
gram uses primitives from the standard pthreads library. The property to be
checked is mutual exclusion, which is defined by the boolean valued function
check_exclusion.

Our tool first compiles this program into LLVM bytecode, using the 11vm-gcc
compiler (an extension of the GNU gcc compiler that generates LLVM bytecode).

4 To simplify the statement of the mutual exclusion property, we have added an ad-
ditional variable count as shown.

define void @pa_desc_lock(%struct.pa_desc* %d) {
entry:
%tmpl = getelementptr Ystruct.pa_desc* %d, i32 0, i32 0
%tmp2 = load i32%* Ytmpl
store 132 1, i32* Ytmp2
%tmp4 = getelementptr Ystruct.pa_desc* %d, i32 0, i32 2
%tmp5 = load i32x %tmp4
store 132 Ytmp5, i32x @pa_last
ret void

Fig. 2. LLVM bytecode for function pa_desc_lock

LLVM bytecode is like typed assembly language; a sample appears in Fig. 2,
which shows the bytecode corresponding to the pa_desc_lock function shown in
Fig. 1.

To check the C code for Peterson’s algorithm with our tool, we use a PROMELA
model to make appropriate calls to schedule the threads via our virtual machine.
Fig. 3 shows a SPIN model for checking the program in Fig. 1. The c_decl
primitive is used to declare external C types and data objects that are used
in the embedded C code. For simplicity, we assume the declarations needed by
our model are in the header file pancam peterson.h. Next, the c_track dec-
larations are tracking statements, which are discussed below. The PROMELA
process init defines the initialization steps for the SPIN model: as shown, they
consist of initializing the interpreter (by calling pan_setup()), registering an
invariant (defined by the C function check_exclusion) with the interpreter,
performing one-time initialization of the C program (pan_run_function()), cre-
ating and starting the threads, and, finally, starting one PROMELA process for
each thread. As shown, each PROMELA process then consists of repeatedly ex-
ecuting a single step of the associated thread (by calling pan_step()) provided
that the thread is enabled.

The c_track declarations provide the essential ingredient that allows us to
use the SPIN model checking engine in conjunction with our interpreter. During
its depth first search®, whenever SPIN reaches a state with no new successors,
it backtracks to the most recent state that has not been fully explored. For
PROMELA variables, restoration of earlier values when backtracking is auto-
matic, since they are stored in the state vector maintained by SPIN. However,
the state of the pancam virtual machine is not part of the PROMELA model.
Thus the model checker needs explicit knowledge of the region of memory where
this state is stored, so that it can copy and restore this memory during its back-
tracking search. This knowledge is provided through the c_track declarations. In
our framework, the bytecode interpreter maintains its state in a single contigu-

5 SPIN currently supports execution of embedded C code only when using depth first
search mode.

c_decl {
\#include "pancam_peterson.h"

}
c_track "csbuf" "CS_SIZE" "Matched";
init () {
c_code {
pan_setup() ;
pan_register_invariant ("check_property") ;
pan_run_function("init") ;
pan_start_thread(0, "threadO_main", NULL) ;
pan_start_thread(l, "threadl main", NULL) ;
b
run thread0() ;
run threadl()
}
proctype thread0() {
do
:: c_expr{pan_enabled(0)} -> c_code{pan_step(0);}
od
}
proctype threadl1() {
do
:: c_expr{pan_enabled(1)} -> c_code{pan_step(1);}
od
}

Fig. 3. Spin driver for executing pancam on Peterson’s Algorithm

ous region of memory starting at address csbuf and occupying CS_SIZE bytes;
this corresponds to the c_track declaration shown in the figure.

In using our tool to verify the Wikipedia C implementation of Peterson’s
protocol, we discovered a bug in the implementation. The bug is interesting
because it manifests itself when the code is compiled with optimization enabled.
The problem arose from the fact that certain global variables were not originally
marked as volatile (as indicated by the shaded keywords in Fig. 1). As a result,
the optimized bytecode reused stale values read earlier, leading to scenarios
where mutual exclusion was violated. We have since fixed the Wikipedia entry.

3 Addressing State Space Explosion

Not surprisingly, the biggest challenge in using a tool such as ours is the prob-
lem of state space explosion. Even though our main interest is in checking small
embedded C programs, the typical state vectors we encounter are much larger
(of the order of hundreds or even thousands of bytes) as compared to typical
PROMELA models (whose state vectors are smaller by one or two orders of mag-
nitude). In addition, because a single line of C may translate into many steps of

bytecode, a naive exploration of all interleavings of a set of threads would quickly
make even the smallest of problems intractable. To address these issues, pancam
uses three techniques: (a) it allows users to provide data abstraction functions,
(b) it provides the ability for the user to enforce context-switch bounding (see
below), and (c¢) it employs an algorithm that performs a kind of partial order
reduction on-the-fly to reduce the number of context switches without losing
soundness of checking. We describe the first two of these techniques in the rest
of this section; our reduction method is described in Section 4.

3.1 Abstraction

The ability of our tool to support abstractions is derived from the distinction be-
tween tracked and matched objects in SPIN. As discussed in Section 2, a tracked
data object is stored on the stack used by SPIN’s depth first search (DFS), so
that an earlier state of that object can be restored on each backtracking step
during the DFS. In almost all cases®, any data that changes during an execution
should be tracked. A matched object, on the other hand, is one that is part of
the state descriptor that SPIN uses to determine if a state has been seen before.
By declaring an object to be tracked but not matched, we can therefore ex-
clude it from the state descriptor. Support for this is provided by the "Matched"
and "UnMatched" keywords in SPIN. (These keywords were introduced in SPIN
version 4.1.)

The ability to separate tracked and matched data allows us to use data
abstraction to reduce the size of the state space [HJ04]. A simple but effective
scheme is to define a new auxiliary variable abs for storing the abstract state,
and provide a function update_abs() which updates the value of abs based on
the (current) values of the concrete program variables. Then, to make SPIN
search the abstract state space, we declare all concrete program variables as
tracked but "UnMatched", and declare the abstraction variable abs as tracked
and "Matched", and we ensure that the function update_abs() is called after
every transition that changes concrete state.

Our tool supports this scheme for data abstraction by providing a buffer abs.
The user provides the function update_abs, which computes the data abstraction
and writes it to the buffer. Our tool ensures that this function is invoked if any of
the variables that appear in the body of this function changes during a transition.

3.2 Context-Bounded Checking

The idea in context-bounded model checking [QR05,MQ07,MQO08] is to avoid
state space explosion in multi-threaded programs by enforcing an upper bound
on the number of allowed preemptive context switches. A context switch from
process p to process ¢ is called preemptive if process p is enabled (and could
therefore continue execution if the context switch did not occur). Experience with

S There are valid reasons for not tracking certain data even though it changes during
an execution [GJ08]; see Section 4.2.

context-bounded model checking suggests that, in most cases, errors in multi-
threaded software typically have shortest counterexample traces that require
only a small number of context switches [MQO07]. Thus exhaustive exploration
of runs with a small budget of allowed context switches has a good chance of
finding errors.

To extend our tool with support for context-bounded search, we change the
top-level SPIN model that orchestrates the run by replacing calls to pan_enabled (p)
(which check if thread p is enabled) by calls to the function pan_enabled_cb(p)
(which additionally checks the condition for context-bounding). Fig. 4 shows the
C code for the function pan_enabled _cb. As shown, we add two additional inte-
gers last_proc and nswitch to the state space (but note that these variables are
only tracked, and not matched). It is not hard to show that by using it to replace
the original pan_enabled function, (and by appropriately updating last_proc
and nswitch whenever a thread is executed) we achieve the desired effect of
limiting the number of preemptive context switches to the user-provided bound
of MAX_SWITCH.

4 On-the-fly Superstep Reduction

As described in Section 2, our tool uses a SPIN model to orchestrate the state
space search by choosing, at each step, a thread to execute, and executing its next
transition by invoking the virtual machine. An exhaustive search along these lines
would require exploring all possible interleavings of the threads in the program,
which is intractable for all but the smallest of programs. A common technique
used to deal with the problem is partial order reduction [Pel93,CGP00]. Intu-
itively, partial order reduction works by reducing the number of context switches,
exploiting the fact that transitions in different threads are often independent (in
the sense that the order in which they occur does not affect visible program
behavior).

Most partial order methods described in the literature are static in the sense
that they determine independence of transitions by analyzing program text.
Such analyses are, however, not terribly effective with C programs, and typically
allow only very simple and conservative independence relations to be computed.
For C programs, therefore, it is more instructive to look at dynamic partial
order reduction methods[FG05],[GFYS07], in which independence relationships
are computed dynamically, during a model checking run. For example, one of
the simplest approaches to dynamic partial order reduction is to only allow a
context switch after an update or an access to a global memory location.

In the context of our tool, however, there is one additional complication
caused by the fact that the model checking engine (SPIN) treats the model as
having a single transition (denoted by the function pan_step). In particular,
this means that support for partial order reduction therefore requires either
exposing additional pancam state (which would require modification of SPIN,
which we hope to avoid), or for the reduction to be implemented entirely within
pancam. We adopt the latter strategy. Pancam performs partial order reduction

c_decl {
int last_proc = -1 ;
int nswitch = 0 ;
int MAX_SWITCH = -1 ;

Bool pan_enabled_cb(int p) {
int i ;
if (!pan_enabled(p)) /* thread p is disabled */
return FALSE ;

if (last_proc == p) /* no context switch */
return TRUE ;

/* Check if bound not specified, or not reached */
if ((MAX_SWITCH < 0) || (mswitch < MAX_SWITCH))
return TRUE ;

/* We have exhausted the context switch bound, and this
** thread is not the last one that was executed. Allow
** it only if the other thread is disabled.
*/
/* Check if any other thread is enabled */
for (i=0 ; i<ThreadCount ; i++)

if ((i != p) && pan_enabled(i))

return FALSE ;

/* all other threads are disabled, so don’t preempt */

return TRUE ;
c_track "&nswitch" "sizeof (int)" "UnMatched";
c_track "&last_proc" ‘"sizeof(int)" "UnMatched" ;

Fig. 4. Code for implementing context bounding with pancam

on the state space by allowing a thread ¢ to execute a sequence of more than
one instruction as part of a single SPIN transition from a state s. We refer to
such a sequence of instructions as a “superstep” and denote it by the notation
A?. Since the model checker only sees the first and last states of a superstep, the
intermediate states are hidden from the model checker, which in turn reduces
the number of interleavings to be explored (and therefore the number of states
and transitions).

Of course, as with traditional partial order reduction, there are certain con-
ditions that must be satisfied by such supersteps in order to preserve soundness
of model checking. In the next subsection, we describe a set of conditions under
which we can preserve the soundness of next-time free LTL properties.

4.1 Correctness of Superstep Reduction

For convenience, we consider programs with & deterministic threads (or pro-
cesses), where the only source of nondeterminism comes from thread scheduling.
We also assume that each instruction can access at most one global memory
location. This assumption is safe to make about the LLVM bytecode, which uses
designated instructions store and load to access memory.

We say that two transitions a and 3 are independent if neither enables nor
disables the other, and for any state, execution of a followed by execution of
0 results in the same state as execution of 3 followed by a. We say that two
transitions conflict if both access a common memory location and at least one
of them is a write. Under the assumption that one thread may enable or disable
another only by means of mutexes, which are a type of a shared object, the
absence of a conflict between transitions implies independence as long as the
transitions do not belong to the same thread.

Claim 1 The soundness and completeness of next-time free LTL model checking
1s preserved as long as for every thread i enabled in state s, superstep sequence
A3 satisfies the following three requirements:

1. Superstep Size A must be finite and contain at least one transition. The
check for finiteness can be implemented conservatively by setting an upper
bound on the number of transitions in a superstep sequence or the number
of loop heads within the sequence.

2. Independence Only the very last transition of the path A conflicts with
any of the transitions in A} for any thread k # .

8. Visibility At most one transition which changes the value of any of the
atomic propositions is allowed in A;. If exists, it must be the very last tran-
sition of the superstep sequence.

The formal proof of the claim is similar to the one presented in [CGPO00] and is
beyond the scope of this paper. Here we only present some intuition about the
correctness of the superstep reduction.

All the paths outgoing from a state s can be partitioned into sets, where each
set is covered by one of the superstep sequences as following. If, on the path 6%,
all the transitions of the superstep sequence A7 precede the last transitions of
the superstep sequences that correspond to all the other threads, 6° is said to
be covered by A?. Consider the example in Fig. 5(a) that depicts the superstep
sequences of the three program threads (Thy, The, and Thg) from the program
state s. In Fig. 5 (b), the transitions 71, a1, 81, as form the prefix of a number
of the program paths outgoing from state s. All these paths correspond to the
program runs in which, from the state s, the threads are scheduled in the fol-
lowing order. First, one transition of Ths is scheduled, followed by a transition
from Thy, a transition from Tho, and another transition from Th,. We say that
all these paths are covered by the superstep sequence of Thy since as occurs
before B and 3 on each of the paths. At each state s, the superstep reduction
prunes away all the program paths which do not have a superstep sequence as a

(@ (b) (©)

Fig. 5. Superstep POR

prefix and substitutes the superstep sequence with just one summary transition
as shown in Fig. 5(c).

Let ©° be the minimal prefix of #° such that it contains all the transitions
of A;. Then, all the states reachable after following path ©¢ can also be reached
after following A7 due to the fact that all the transitions of ©¢ which are not in
A? do not conflict with the transitions in A; and can be commuted out. Going
back to our example, since transitions §; and 3 do not conflict with as, the
state g, reachable by following transitions 71, a1, 81, as, can also be reached by
following the superstep sequence a, as.

It only remains to show that the intermediate states of the paths @° and
A? do not have to be exposed to a model checking algorithm. The paths are
finite; and, by definition of @7, its last transition is equal to the last transition
of Af. Following the visibility requirement, only the very last transition of A
and, consequently, only the very last transition of ©° may change the values
of the predicates participating in the LTL property being checked. Thus, all
the states on the paths except for the very last ones are indistinguishable from
the state s. Moreover, since the transitions of ©° that do not occur in A7 do
not modify the values of the predicates, the new values of the predicates in the
last state of ©° are the same as in the last state of A7. Thus, if a transition
changes one of the predicates, it will always be visible to the model checker. In
the example on Fig. 5, only the transition as can be visible. All the states can
be partitioned into two groups depending on the values of the predicates: the
states undistinguishable from the state s and the states undistinguishable from
the state g.

Notice that the listed requirements are general enough to allow for differ-
ent choices of superstep sequences. However, as long as they are satisfied, the
soundness and completeness of LTL model checking is preserved.

10

4.2 Implementation of Superstep Reduction in pancam

Next, we describe how superstep reduction is implemented as part of our tool,
which piggybacks the nested depth-first search algorithm used by SPIN. One
of the attractions of using SPIN’s nested depth-first search is that, unlike the
case with breadth-first search [GFYS07], our implementation is fully compatible
with checking of liveness properties. (And, although, we do not describe it here,
our method can be straightforwardly extended to cooperate with breadth-first
search, if desired.)

During its state exploration, SPIN issues calls to pan_step(i), which, given
the current state s, computes the state s’ obtained by executing one or more
instructions of thread 7. The executed instructions form the superstep sequence
A3 . The superstep size requirement guarantees that at least one instruction would
be executed; consequently, unless there is a loop in the state space, s # s’. Due
to the nature of depth-first search, pan_step will be called multiple times on the
same state s. In particular, after exploring the state space in which thread 7 is
executed from state s, SPIN backtracks and attempts to execute the thread i+ 1
from the same state s in response to which pancam computes A3 ;.

The pseudocode of pan_step is presented in Fig. 6. If the state s is visited
by the depth-first search for the very first time, pan_step executes initialization
routines. Further, each time SPIN calls pan_step (i), we compute the superstep
sequence for thread ¢ by interpreting the enabled instructions of thread ¢ one by
one. On each iteration, we check that addition of the corresponding instruction to
the sequence does not violate any of the requirements stated above (in practice,
the checks are only required for the instructions that access a global program
location).

The most non-trivial check is the verification of the independence condition
for which one could use various static and dynamic methods. Fig. 7 presents the
dynamic independence check employed by pancam. Due to the nature of the in-
dependence requirement, the superstep of one thread depends on the transitions
that constitute the supersteps of the other threads. An eager approach to this
problem is to compute the supersteps for every thread the very first time the
state s is visited (with the request to take step on thread one) and use the pre-
computed supersteps on all the subsequent visits to the same state (when SPIN
backtracks to take step on the other threads). However, this solution leads to
inefficiencies since computing the supersteps effectively entails computation of
the successors of the state s. Storing the successor states along with the current
state leads to a large space overhead. Recomputing the successor states, on the
other hand, would impair the running time.

The solution we present computes the supersteps lazily - whenever pan_step(i)
is called, it only computes the superstep for thread ¢. To convey the information
about the supersteps which have already been computed, we store additional
information along with the program state on the depth-first search stack. For
each state s and each thread i, we store AccessTable} - the list of location and
access type pairs. Each instruction of A7 that accesses a global is represented by
a pair (1,ty); it records the global location 1 that is accessed and the flag ty

11

ConflictType = { CONTINUE, POST_STOP, PRE_STOP }

pan_step(ThreadID i) {
superstep_length = 0;

if (not backtracking) {
init_independence_tester();
}

while (true) {
tr; = get_next_instruction(i);
ConflictType error = test_for_independence(i, tr;);
if (error == PRE_STOP) break;
execute_instruction(tr;);
superstep_length++;
if (superstep_length > MAX_SUPERSTEP_LENGTH) break;
if (error == POST_STOP) break;
if (is_proposition_modifying(tr;)) break;

b}

Fig. 6. Pseudocode of pan_step with superstep reduction.

init_independence_tester() {
for (every enabled thread k) {
AccessTable; .add(get_access_pair(get_next_instruction(k)));

}
}

test_for_independence(ThreadID i, Instruction tr;) {
ai = get_access_pair(tr;);
for (all threads k : k # i) {
for (all ak € AccessTable;) {
if (conflict(ai, ak)) {
if (ak # last_of (AccessTablef)) {
return PRE_STOP;
} else {
if (tr; # first_of(A})) AccessTable.add(ai);
return POST_STOP;
Fr1d
if (tr; # first_of(A})) AccessTable.add(ai);
return CONTINUE;

}

Fig. 7. Pseudocode of the independence condition tester.

12

stating whether the transition is a read or a write. AccessTable is not stored as
the part of the state tracked by SPIN but maintained externally within pancam
VM since the data it stores is updated each time the state is visited.

The very first time state s is visited, init_independence_tester() initial-
izes the AccessTable{ of each enabled thread ¢ with the access information
derived from the very first instruction to be executed on the thread ¢. Fur-
ther, before adding an instruction tr; to the superstep sequence of thread i,
pan_step consults with test_for_independence(i, tr;) to ensure that the inde-
pendence condition is met. test_for_independence may return three different
values. CONTINUE means that the instruction can be added to the superstep A7
since it does not conflict with any instructions in A7 for all threads k # i.
POST_STOP means that tr; introduces a conflict with some other thread, but
adding it to A does not violate the independence requirement as long as it is
the very last transition of A$. Finally, PRE_.STOP means that adding tr; to A
leads to a violation since the transition with which it conflicts is not the very
last transition of thread k for some k # i; thus, tr; must not be executed.
Due to the initialization of AccessTable$, it is not possible to have a PRE_STOP
on the very first transition of any of the threads; thus, the superstep size re-
quirement is met - pan_step always executes at least one transition. Finally,
test_for_independence(i, tr;) updates the AccessTablel with the access pair
derived from tr; if the instruction is to be added to A; and if it is not the very
first instruction of A;. Recall that the AccessTable is updated with the access
pairs corresponding to the very first instructions of each thread as part of the
initialization routine.

The above technique requires no space overhead when used as part of breadth-
first search state exploration. However, when used with depth-first search, the
AccessTable must be stored on the search stack. In cases when the sets are quite
large, one could use approximations. For instance, one idea is to use a coloring
abstraction, in which the memory is partitioned into regions with distinct colors,
and each transition is associated with the set of colors it reads and writes.

Ezxample 1. Let us demonstrate the algorithm on an artificial example from
Fig. 8 that depicts the instructions that the three threads can execute from
the state s. We assume that the variables k, x, y, and m are global variables; t,
l, z_ptr, k_ptr are local; x_ptr and k_ptr are the pointers to x and k, respectively.

When the state s is visited for the very first time, init_independence_tester
initializes the AccessTable with the information derived from the very first in-
structions of each thread as following;:

AccessTable§ = ((k_ptr,read))

AccessTablel = ((ad(y),write))

AccessTable§ = ((ad(m),write))
Here ad(x) stands for the address in memory where the variable z is stored
(AccessTable stores the actual addresses of the accessed variables). After the
initialization, pan_step issues calls to test_for_independence passing the in-
structions of Thy; one by one. The function returns CONTINUE when passed t
:= ¥k ptrand t := t - x. However, since t := t + y conflicts with the very

13

Thy Thy Ths

< S D

t := *k.ptr y =6l m:=4
I

t =t -x ' m:=m+ 1
| 1

ti=t+y 1: =k
[

' *x_ptr := 8.

v Y

'

Fig. 8. The example demonstrating the application of the Superstep POR algorithm.
The solid arrows represent the instructions that form the supersteps from the state s.

first instruction of T'ho, POST_STOP is returned as the result of the third call. The
table is updated accordingly:

AccessTable; = ((kptr,read); (ad(z),read); (ad(y),read))

When the depth-first search backtracks to schedule Tho, pan_step calls
test_for_independence with y := 6 as the argument. Due to the conflict with
the last instruction of Th;, the function returns POST_STOP, making y := 6 to
be the only instruction forming A3. The AccessTable§ does not need to be
updated.

Finally, when pan_step(3) is called, the check for independence on the first
three instructions of Thg returns CONTINUE. Note that even though both the
third instruction of Ths and the first instruction of Thy read from the same
memory location: it can be determined at run time that k_ptr equals ad(k), no
conflict is reported. However, the fourth instruction, *x_ptr := 8, conflicts with
the second entry in AccessTable? raising the PRE_STOP return code. Since the
conflicting transition is not the last transition of Af, *x_ptr := 8 should not be
included in A3.

5 Experimental Results

We have gathered some initial experimental results with our prototype on a few
small multi-threaded C programs. Fig. 9 shows results from checking two ver-
sions of the implementation of Peterson’s algorithm in C, described in Section 2.
Fig. 9(a) shows the number of states explored against varying context bounds
for the version of the program with the missing volatile keyword bug, while
Fig. 9(b) shows similar results for the version of the program without the bug.
The graphs also compare a heuristic that runs a thread until it makes an access
to any global state (labeled “global access” in the figure) versus our superstep

14

reduction method (labeled “superstep”). As the graphs indicate, the bug is found
fairly easily in all versions, though increasing the context bound beyond a cer-
tain point makes it harder to find the bug. (This is likely a consequence of the
fact that SPIN uses depth-first search.) The graphs also show the benefit of an
abstraction function we used which tracks the algorithmic state of the protocol
(the value of the abstract “flag” and “turn” variables).

Fig. 10 shows results from the “robot” benchmark example [GFYS07]. This
example consists of two threads that move across a shared board of size N x N
in slightly different patterns; the program checks that the robots meet only
in expected locations. As the graph shows, our superstep method provides a
noticeable reduction in the number of states over the global access method, as
the size of the board grows.

Fig. 11 shows results from a slightly larger program: a module that imple-
ments inter-process communication (ipc) for an upcoming mission. The module
consists of around 2800 lines of (non-commented) C source code (including some
support modules that it relies on). It implements a communication system that
supports prioritized messages and provides thread-safe primitives for sending
and receiving messages. The figure shows two models: the first with a single
sender and receiver, and the second with two senders and one receiver, showing
how the state space grows as the sizes of the queues increase. This model is large
enough that the global access method does not complete in most cases; thus the
figures only show the performance for runs using superstep reduction.

6 Related Work

There has been considerable interest in applying model checking directly to im-
plementation code. The Bandera checker [CDH'00] translates Java programs to
the input language for a model checker, while Java Pathfinder (JPF) [VHBT03]
uses an approach more similar to ours, in that it interprets bytecode. However,
JPF tightly integrates model checking with the virtual machine. In contrast, our
tool uses the SPIN model checker to orchestrate the search, using our virtual
machine to execute the transitions. This allows us to inherit (for free) the various
optimizations and features of SPIN (both those that exist, and those yet to be
invented). In spite of this loose integration, our approach is flexible; for instance,
as shown in Section 2, adding support for bounding context-switches was done
fairly easily in our tool.

For verification of multi-threaded C programs, the CMC tool [MPC*02] uses
explicit-state model checking. One limitation of CMC, however, is that it requires
a manual step by the user to convert an existing C program into a form that can
be used by CMC. In contrast, by working directly on bytecode, our tool design is
simpler (interpreting typed LLVM bytecode is much easier than interpreting C).
In addition, we are able to detect errors introduced during compiler optimization
(like the Wikipedia error in Peterson’s algorithm, described in Section 2).

Another tool for verifying C programs is VeriSoft [God97], which uses state-
less model checking. VeriSoft uses static partial order reduction, which typically

15

results in little reduction when applied to C programs, since the independence
relation is hard to compute. More recent work on dynamic partial-order re-
duction [FGO5] addresses this problem, though the approach described was not
applied directly to C programs. Another issue with stateless search is that it
requires the search depth to be bounded, which poses a challenge for programs
whose state graphs have cycles.

More directly related to the superstep reduction presented in Section 4 is the
work on “cartesian partial order reduction” [GFYS07], which is a method that
dynamically computes independence relationships, and tries to avoid context
switching whenever possible. The ideas behind cartesian partial order reduc-
tion and superstep reduction are closely related, though there are significant
implementation differences. In particular, our reduction is done in the context
of SPIN’s depth-first search. While this complicates the design somewhat, and
incurs some additional memory overhead, it can be applied even when check-
ing liveness properties. (In contrast, the cartesian reduction method was applied
only in the context of checking assertion violations and deadlocks.)

Our approach to enforcing context-bounding is directly inspired by the work
on the CHESS model checker for concurrent C code [MQ08,MQ07]. One point
of departure is that, even with fair scheduling, the CHESS model checker only
checks livelocks; in contrast, our approach is able to handle general liveness
properties.

7 Conclusion

We have described a tool that can be used in conjunction with the SPIN model
checker to check multithreaded C programs. Our tool works by generating typed
bytecode generated for the Low-Level Virtual Machine (LLVM), which is then
interpreted by a virtual machine (named “pancam”). The virtual machine is de-
signed to be used with SPIN, and the resulting tool therefore supports almost
all SPIN features such as bitstate verification and multi-core operation. We have
also shown we address the state explosion problem by allowing users to spec-
ify abstraction functions, context-switching bounds, and by using an on-the-fly
algorithm for reducing unnecessary context switches. We are currently working
on extending our tool to support checking liveness properties in the context of
SPIN nested depth-first search.

References

[CDH"00] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and
H. Zheng. Bandera: Extracting finite-state models from java source code. In
Proceedings of the 22nd International Conference on Software Engineering
(ICSE), June 2000.

[CGP0O0] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking.
MIT Press, 2000.

16

[FGO5]

[GFYS07]

[GJO0S]

[God97]

[HBO7]

[HJ04]
[Hol03]

[LAO4]

Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction
for model checking software. In Proceedings of the 32nd ACM Symposium
on Programming Languages (POPL), pages 110-121, 2005.

Guy Gueta, Cormac Flanagan, Eran Yahav, and Mooly Sagiv. Cartesian
partial-order reduction. In SPIN Workshop on Model Checking of Software,
pages 95-112, 2007.

Alex Groce and Rajeev Joshi. Extending model checking with dynamic
analysis. In Proceedings of the Conference on Verification, Model Checking
and Abstract Interpretation, 2008.

P. Godefroid. Model checking for programming languages using verisoft.
In Proceedings of the 24th ACM Symposium on Principles of Programming
Languages (POPL), 1997.

Gerard J. Holzmann and Dragan Bosnacki. The design of a multi-core
extension of the spin model checker. In IEEE Transactions on Software
Engineering, volume 33, pages 659—674, October 2007.

Gerard J. Holzmann and Rajeev Joshi. Model-driven software verification.
In SPIN Workshop on Model Checking of Software, pages 76-91, 2004.
Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley Professional, 2003.

Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the 2004
International Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

[MPC*02] Madanlal Musuvathi, David Park, Andy Chou, Dawson Engler, and David

[MQO7]

[MQOS]

[Pel93]

[QRO5]

[VHB03]

[wik]

Dill. CMC: A pragmatic approach to model checking real code. In Sympo-
sium on Operating System Design and Implementation, 2002.

Madan Musuvathi and Shaz Qadeer. Iterative context bounding for sys-
tematic testing of multithreaded programs. In Proceedings of the 34th ACM
Symposium on Programming Languages (POPL), pages 446-455, 2007.
Madanlal Musuvathi and Shaz Qadeer. Fair stateless model checking. In
Proceedings of the ACM SIGPLAN Conference on Programming Languages
Design and Implementation (PLDI), 2008.

Doron Peled. All from one, one for all: on model checking using representa-
tives. In Proceedings of the 5th Conference on Computer Aided Verification,
pages 409—423. Springer, 1993.

Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concur-
rent software. In Tools and Algorithms for the Construction and Analysis
of Systems, pages 93—107, April 2005.

Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and
Flavio Lerda. Model checking programs. Automated Software Engineer-
ing, 10(2):203-232, April 2003.

Peterson’s algorithm. http://en.wikipedia.org/wiki/Peterson’s_algorithm.

17

States Explored

global access without abstraction ——
global access with abstraction
superstep without abstraction
superstep with abstraction =

global access without abstraction ——
global access with abstraction
superstep without abstraction
superstep with abstraction =

100000 1e+06
10000 | 100000 |
- i
- T 10000]
1000 | —~— s e
T~ X e o] 1000]
100 | e - * 1 8 .
o '3 : 4
) g 100
o 8 G
10} , w0l]
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Context Bound

(b) peterson.c without bug

Context Bound

(a) peterson.c with bug

Fig. 9. Growth of state space with increasing context switch bound

global access —— superstep

14000 T T T T T T T

12000 - ,
10000 - i
8000 | ,
6000 - ,

4000 \/ i

2000 9

States Explored

Board Size

Fig. 10. Results on the robot benchmark

1 sender, 1 receiver, no abstraction ——
1 sender, 1 receiver, with data abstraction -
2 senders, 1 receiver, with data abstraction

1e+06
100000
10000

1000

100 . E

Number of States Explored

10 ¢ E

Queue Size

Fig.11. Results on the ipc code

18

