
Automatic Inference of Frame Axioms Using Static Analysis∗

Zvonimir Rakamarić, Alan J. Hu
Department of Computer Science, University of British Columbia,{zrakamar,ajh}@cs.ubc.ca

Abstract

Many approaches to software verification are currently
semi-automatic: a human must provide key logical insights
— e.g., loop invariants, class invariants, and frame axioms
that limit the scope of changes that must be analyzed.

This paper describes a technique for automatically in-
ferring frame axioms of procedures and loops using static
analysis. The technique builds on a pointer analysis
that generates limited information about all data struc-
tures in the heap. Our technique uses that information
to over-approximate a potentially unbounded set of mem-
ory locations modified by each procedure/loop; this over-
approximation is a candidate frame axiom.

We have tested this approach on the buffer-overflow
benchmarks from ASE 2007. With manually provided speci-
fications and invariants/axioms, our tool could verify/falsify
226 of the 289 benchmarks. With our automatically inferred
frame axioms, the tool could verify/falsify 203 of the 289,
demonstrating the effectiveness of our approach.

1. Introduction

Automatic formal verification has long been a dream
in software engineering. Unfortunately, undecidability and
tractability problems have prevented full realization of this
dream. Fully automatic verification tools typically sac-
rifice soundness — i.e., they can fail to detect bugs —
(e.g., [15, 8, 21, 32, 1, 23, 2]) or scalability (e.g., [10]),or
both. Our long-term aim is to produce sound, highly scal-
able, automatic program verification tools that can handle
the complexity of real code without producing too many
false error reports.

Many scalable and sound software verification tools are
currently semi-automatic: they rely on user-provided anno-
tations about the modularity of the software to achieve bet-
ter scalability and precision (e.g., [19, 4, 17, 7, 9, 30]).1

∗This work was supported by the Natural Sciences and Engineering Re-
search Council of Canada and a University of British Columbia Graduate
Fellowship.

1User-provided annotations are also useful for verifying incomplete

Typical required annotations include procedure pre- and
postconditions, loop invariants, and frame axioms.

This paper focuses on frame axioms. Formal analysis of
software always confronts some version of the frame prob-
lem [29]: knowing what isnotchanged by a piece of code is
necessary for correct and efficient verification. For straight-
line code and scalar variables, computing what changes and
what does not is straightforward. In the presence of point-
ers, unbounded arrays, and heap-allocated data structures,
however, with the corresponding looping/recursive code to
manipulate them, computing precisely what changes is ex-
ceedingly difficult (undecidable in general). Frame axioms
allow the user to aid this computation by suggesting can-
didate logical formulas that delimit what memory locations
can be modified by a loop or procedure body; if the ver-
ification tool can prove these formulas to be inductive in-
variants, then it can use them as assumptions during ver-
ification of other assertions. Because frame axioms are so
helpful to the verification process, many tools and specifica-
tion styles support them, e.g.:modifiesclauses in Spec# [7]
and HAVOC [9], assignableclauses in JML [27], andas-
signsclauses in Caduceus [17]. Unfortunately, these frame
axioms are often very complex and difficult to write, as they
must carefully balance between looseness and tightness in
order to be inductive, as well as being strong enough to
prove desired properties of the program. We have found
writing frame axioms to be the most tedious part of anno-
tating a program’s procedures and loops.

In this paper, we present a novel, automatic method to
infer candidate frame axioms. Our two main goals are scal-
ability to non-trivial code bases and sufficient precision to
replace most or all manual annotation of frame axioms.
Our method starts from a recent shallow shape analysis ap-
proach that offers scalability to hundreds of thousands of
lines of code, with better precision than previous, highly
scalable pointer analyses [26]. The analysis summarizes
the points-to relation as a graph; our algorithm performs
a graph traversal to create a logical formula characteriz-
ing what could be modified viaany sequence of pointer-
chasing. This formula is the candidate frame axiom. The

programs, but our focus is on scalability and precision whenverifying a
complete code base — very little can be inferred about missing code.

worst-case complexity of the algorithm is exponential in
the size of a graph, so we must evaluate our approach em-
pirically. We have implemented our algorithm in a mod-
ular extended static checker for C programs. To evaluate
scalability, we ran our tool on several medium-sized open-
source C programs and had no difficulty scaling to several
tens of thousands of lines of code. To evaluate the precision
of our analysis, we tested our tool on a benchmark suite
of challenging buffer-overflow examples proposed at ASE
2007 [24]. With manually provided specifications and in-
variants/axioms, our tool could verify/falsify 226 of the 289
benchmarks. Using our new automatic inference approach,
we were able to infer, completely automatically, frame ax-
ioms precise enough to verify/falsify 203 of the 226 bench-
marks, demonstrating the effectiveness of our inference ap-
proach.

1.1. Related Work

Our inference approach uses a simple shape analysis as
a starting point. There is a vast literature on shape analy-
sis (and related analyses of side-effects, pointers, etc.). We
are using one particular, recently published result, which
offers high scalability and context-sensitive heap informa-
tion [26]. We believe our approach could be adapted to
other pointer analyses that produce similar summary graphs
of the data structures in the program.

There has been some work on automatic inference of
procedure pre- and postconditions, and loop invariants
(e.g., [11, 18, 3, 20, 22, 28, 16]). Our work shares the
same motivation with these works: making semi-automatic
program verification more automatic. We address the com-
pletely different problem of inferring frame axioms, how-
ever, so this body of work is complementary to ours.

We are not aware of any work on automatic inference
of frame axioms. The closest related work to ours is [31],
which attacks the more difficult problem of inferring proce-
dure summaries that are sufficiently precise to prove verifi-
cation conditions. Frame axioms form part of these proce-
dure summaries. Because they are attempting a more ambi-
tious objective, they created their own static analysis, which
is more precise (flow-sensitive as well as context-sensitive),
and is therefore by design more expensive and less scal-
able. We cannot compare results directly, because their tool
is for Java, whereas ours is for C, but we report results on
more and larger examples. Our tool also can analyze the
much more complicated pointer manipulation that occurs
in C programs, which theirs does not. On the other hand,
for small Java procedures, their tool infers usable, com-
plete procedure summaries, whereas our goal is only to infer
frame axioms.

1 typedef struct {int f1;
2 int f2;} Elem;
3

4 Elem* alloc(int size) {
5 return (Elem*)malloc(size * sizeof(Elem));
6 }
7

8 void init(int size) {
9 Elem *a1 = alloc(size), *a2 = alloc(size);
10

11 // set fields f1 of a1 to 1
12 for (int i = 0; i < size; i++) {
13 a1[i].f1 = 1;
14 }
15

16 // set fields f1 of a2 and
17 // fields f2 of a1 to 0
18 for (int i = 0; i < size; i++) {
19 a2[i].f1 = 0;
20 a1[i].f2 = 0;
21 }
22

23 // check if fields f1 of a1 are set to 1
24 for (int i = 0; i < size; i++) {
25 assert(a1[i].f1 == 1);
26 }
27 }

Figure 1. Our illustrative example.

2. Illustrative Example

Throughout the paper, we will use a simple running ex-
ample to illustrate the basic concepts as well as our new
automatic inference approach. The code of the example is
presented in Figure 1. First, we define typeElem that is a
structure consisting of two integer fieldsf1 andf2. The
example has two procedures calledalloc andinit. The
procedurealloc allocates an array ofsize elements of
typeElem. The procedureinit starts by allocating arrays
a1 anda2 by calling procedurealloc on line 9. Both
arrays have an unspecified sizesize. Then, two loops are
executed:

1. The loop on line 12 sets fieldf1 of all elements ina1
to 1.

2. The loop on line 18 sets fieldf1 of all elements ina2
to 0, and also fieldf2 of all elements ina1 to 0.

In the end, we check whether fieldf1 of all elements in
a1 is set to 1 using the assertion on line 25. Obviously, the
assertion is not going to fail: First of all, it is clear that fields
f1 of a1 are set to 1 in the first loop on line 13. Second,
the loop on line 18 does not change those fields: it updates
fieldsf1 of different arraya2 and also different fieldsf2

of arraya1. Precisely such important facts about preserva-
tion of values of memory locations are necessary for ver-
ification of this example. We capture them using modifies
clauses (i.e. frame axioms). As we’ll see in the next section,
it is often tedious to specify the modifies clauses manually.
Therefore, the goal of this paper is to infer as much as pos-
sible completely automatically.

3. Background

3.1. Modeling the Semantics of Memory

Because of the vast size of available memory in today’s
computer systems, faithfully representing each memory al-
location and access in a static verifier is not going to scale.
Therefore, verification tools rely on memory models that
trade precision for scalability, and in turn, they define its
programming language operational semantics with respect
to the chosen memory model.

To make this paper self-contained, we briefly introduce
here our memory model and the respective operational se-
mantics of C. For details we refer the reader to the re-
lated work, since our operational semantics is mostly based
on the one used in HAVOC [9], and also similar to Ca-
duceus [17] andVerifiedC[30].

The main idea behind our memory model is to divide the
memory into disjoint objects (or regions). Each object is
identified by its reference, and has a fixed size determined
when the object is being allocated. A pointer in our memory
model is therefore a pair consisting of a reference and an
offset; the reference uniquely defines the object into which
the pointer points to; the byte offset in the object defines the
byte being pointed to.

Our semantics for C programs depends on three fun-
damental types, the uninterpreted typeref of object ref-
erences, the typeint of integers, and the typeptr =
ref× int of pointers. Each variable in a C program, re-
gardless of its static type, contains a pointer value. A
pointer is a pair containing an object reference and an in-
teger offset. An integer value is encoded as a pointer value
whose first component is the special constantnull of type
ref. Note that because of the integer offset component, our
memory model can precisely capture byte offsets and low-
level pointer arithmetic inside an object. On the other hand,
since object references are uninterpreted, the objects are
essentially “infinitely apart” and we cannot model pointer
arithmetic between objects. However, this is not a serious
drawback since such pointer manipulations are very rare in
practice.

The heap of a C program is modeled using two map
variables, Mem and Alloc, and a map constantSize.
The variableMem maps pointers to pointers and intu-
itively represents the contents of the memory at a pointer

location. The variableAlloc maps object references
to the set{UNALLOCATED, ALLOCATED} and is used
to model memory allocation. The constantSize maps
object references to positive integers and represents the
size of the object. For instance, the procedure call
malloc(n) for allocating a memory buffer of sizen re-
turns a pointerPtr(o,0) whereo is an object reference such
thatAlloc[o] = UNALLOCATED andSize[o]≥ n before the
call, andAlloc[o] = ALLOCATED after the call.2

3.2. Specification Language

The modular style of verification we are employing re-
quires a specification language for program annotations,
in the form of invariants and procedure pre- and post-
conditions. The specification language of our modular ver-
ifier is the same as the one used by HAVOC [9]. It allows
succinct expression of many interesting properties of low-
level programs that manipulate unbounded data structures.

For this paper, we will informally introduce only the part
of the specification language necessary for annotating our
running example. The example with manually provided
annotations required for the verification to go through is
given in Figure 2.3 As usual, we denote preconditions with
requires, postconditions withensures, loop invariants
with invariant, and modifies clauses withmodifies.

The procedurealloc has one precondition,size>0,
requiring that its integer parametersize be greater than 0
at every call. Furthermore, it ensures that the heap object
pointed to by the return pointer (denoted with$return) is
allocated, its size is equal tosize*sizeof(Elem), and
also that the offset component of$return is 0.

In procedureinit, all three loops had to be annotated
with loop invariants and modifies clauses to be able to prove
the assertion on line 44. Each loop has a necessary invariant
0<=i<=size that bounds the counteri. Apart from the
usual basic expressions, such as0<=i<=size, the speci-
fication language also supports annotations, again borrowed
from HAVOC, convenient for constructing potentially un-
bounded sets of pointers (such asArray) and for manipu-
lating those sets (such asIncr andUnion).

The expressionArray(p,size, idx), wherep is a pointer
andsizeandidx are integers, refers to the unbounded set of
pointers

{p, p+size, p+2∗ size, . . . , p+(idx−1)∗ size}.

We use it to specify a set of memory locations up to in-
dex idx belonging to an array whose element size issize.
For instance, in the invariant on line 17, the expression

2We currently do not model failure of memory allocation, but it would
be easy to do so.

3For better readability, we omit the syntactic clutter that pushes the
annotations through the C frontend of our prototype verifier.

1 typedef struct {int f1;
2 int f2;} Elem;
3

4 requires size > 0;
5 ensures Allocates($return);
6 ensures Size($return) == size*sizeof(Elem);
7 ensures OffsetOf($return) == 0;
8 Elem* alloc(int size) {
9 return (Elem*)malloc(size * sizeof(Elem));

10 }
11

12 requires size > 0;
13 void init(int size) {
14 Elem *a1 = alloc(size), *a2 = alloc(size);
15

16 invariant 0 <= i <= size;
17 invariant Forall(x,
18 Array(a1, sizeof(Elem), i),
19 x→f1 == 1);
20 modifies Incr(Array(a1,
21 sizeof(Elem), New(i)),
22 OFFSET(Elem, f1));
23 // set fields f1 of a1 to 1
24 for (int i = 0; i < size; i++) {
25 a1[i].f1 = 1;
26 }
27

28 invariant 0 <= i <= size;
29 modifies Union(
30 Incr(Array(a2, sizeof(Elem), New(i)),
31 OFFSET(Elem, f1)),
32 Incr(Array(a1, sizeof(Elem), New(i)),
33 OFFSET(Elem, f2)));
34 // set fields f1 of a2 and
35 // fields f2 of a1 to 0
36 for (int i = 0; i < size; i++) {
37 a2[i].f1 = 0;
38 a1[i].f2 = 0;
39 }
40

41 invariant 0 <= i <= size;
42 // check if fields f1 of a1 are set to 1
43 for (int i = 0; i < size; i++) {
44 assert(a1[i].f1 == 1);
45 }
46 }

Figure 2. Our illustrative example anno-
tated with necessary preconditions, post-
condtions, loop invariants, and modifies
clauses.

Array(a1,sizeof(Elem),i) captures elements of the
arraya1 up to indexi.

The set expressionIncr(C,n) increments each element
of the set of pointersC by the offsetn. On line 20, it is used
to increment all pointers in the set defined withArray by
the offset of fieldf1 in the structure typeElem. Similarly,
the set expressionDecr(C,n) decrements each element of
the set of pointersC by the offsetn.

To be able to reason about sets of pointers, we use the
expressionForall(x,S,φ), which says that for all elements
x of some set of pointersS, formula φ has to hold. For
example, on line 17, we useForall to say that fieldsf1 of
all elements ina1 up to indexi are set to 1.

Each modifies clausemodifiesC refers to a set of point-
ersC in the pre-state of the respective procedure or loop. It
specifies which memory locations get modified by the pro-
cedure/loop. The setC has to be carefully specified. If
the set is a subset of the memory locations that actually
get modified, the frame axiom generated from the modi-
fies clause will fail when the verifier checks it. If the set is
too coarse of an over-approximation, the verifier will not be
able to prove many interesting properties later on. Modifies
clauses are therefore often complex, as can be seen from the
one on line 29, which says that the loop modifies only fields
f1 of the arraya2 (first Incr expression of theUnion) and
fieldsf2 or the arraya1 (secondIncr expression). Note
that in the loop modifies clauses,New(i) indicates that we
are not referring to the value ofi in the pre-state, but to the
value ofi being changed by the loop (i.e. in the post-state).

Our tool needs two important facts to be able to dis-
charge the assertion on line 44. The facts are captured by
the annotations on line 17 and 29 we just explained. First,
the invariant on line 17 ensures that after the loop, the field
f1 of all elements ina1 is set to 1. In addition, the modifies
annotation on line 29 ensures that the second loop does not
modify thef1 fields ofa1 that the first loop just set. The
modifies clause says that the loop modifiesf1 fields of ele-
ments of arraya2 andf2 fields of elements ofa1, leaving
thereforef1 fields ofa1 unchanged. To be able to generate
these modifies sets automatically, we have to be able to dis-
tinguisha1 from a2 although they are allocated using the
samemalloc instruction on line 9, and also to conclude
which fields (offsets) of array elements are being modified.

3.3. Data Structure Analysis (DSA)

Data Structure Analysis (DSA) [26] is a highly scalable
and fast, context-sensitive (with fullheap cloning), field-
sensitive, conservative pointer analysis. The term “heap
cloning” refers to a property important for achieving true
context-sensitivity — heap objects are not distinguished just
by allocation site, but also by (acyclic) call paths leadingto
their allocation, i.e. the calling context in which they were

%struct.Elem array: A1

0:f1 4:f2

%struct.Elem array: A2

0:f1 4:f2

 $loop2a a1 $loop2b $loop1 a2

Figure 3. Simplified Data Structure Graph for
procedure init. The nodes $loop1, $loop2a,
and $loop2b are temporary helper pointer
variable nodes not visible in the source code;
%struct.Elemdenotes the type of a node; flag
array marks array nodes; f 1 and f 2 are fields
at offsets 0 and 4, respectively. The fields f 1
and f 2 are integer and not pointer fields, and
therefore have no outgoing edges.

created. In our illustrative example from Section 2, both ar-
rays get created with the same call tomalloc on line 9, but
from different contexts (line 14). Such patterns are common
because support for data structure operations is often going
to be encapsulated in a library, and therefore it is important
to be able to handle such cases precisely.

DSA constructs a representation of the heap in the form
of Data Structure Graphs (DS graphs); it creates one DS
graph per procedure plus an additional one for global stor-
age. The separate globals graph is a key optimization al-
lowing procedure graphs to contain only the parts of global
storage reachable from that procedure. A DS graph con-
sists of a set of nodes (DS nodes) and a set of edges. The
DS graph for procedureinit of our motivating example is
shown in Figure 3. We distinguish two types of DS nodes:
heap nodes with a number of fields at different offsets (e.g.
nodesA1 andA2 in the example graph), and pointer vari-
able nodes that point into heap nodes (e.g. nodesa1 and
$loop1). A pointer variable node is named after the pointer
variable it represents and has one edge. A heap node has one
outgoing edge per pointer field. Each heap node represents
a potentially unbounded number of memory locations. A
DS graph edge is defined by its source node and offset (i.e.
offset of the respective pointer field in the source node), and
its end node and offset. For instance, the edge coming out
of $loop2b is defined by〈$loop2b,0〉→ 〈A1,4〉.

Instead of just providing the usual pairs of references that
may alias (points-to/alias information), the explicit heap
representation DSA constructs includes objects that are
maybe not directly necessary for identifying aliases. That
additional limited information about linked data structures
present in the heap and explicit tracking of reachability re-
lations between heap objects makes DSA a simple form of
shape analysis. It can identify different instances of data

structures and provide structural and type information for
each identified instance (e.g. all data structures on which
array indexing is performed, such asA1 andA2, are marked
with thearray flag). Having explicit representation of heap
objects and their connectives (and therefore also reachabil-
ity information) is important for our approach since it in-
volves describing sets of objects that DS nodes represent
by traversing paths through which they are reachable from
global variables, procedure parameters, etc.

Another important feature of the algorithm is conserva-
tive field-sensitivity in a type-unsafe language such as C.
DSA tracks fields precisely in the type-safe parts of the
heap/program, while in the presence of type-unsafe oper-
ations it conservatively collapses all fields of an object. The
field-sensitivity of DSA enabled us to take advantage of
our precise memory model described in Section 3.1, and
therefore to generate modifies sets at the level of granular-
ity of byte offsets instead of whole heap objects. We can
see where this is important on our illustrative example from
Figure 2: to prove the final assertion, our automatic infer-
ence algorithm has to be able to conclude that the loop on
line 36 modifies only fieldf2 of arraya1.

4. Automatic Frame Axiom Generation

Given the DS graphs generated by DSA (Section 3.3),
our tool chain creates candidate frame axioms for the veri-
fier via a three-step process. First, we process the DS graph
to compute an over-approximation of the set of memory lo-
cations that can be modified by each function or loop body,
which we call themodifies set. Next, we encode this set into
a typical program specification logic, for use as a modifies
clause annotation. The final step is the standard conversion
of the modifies clauses into frame axioms used internally by
the verification tool.

4.1. From DS Graphs to Modifies Sets

The goal of the first step is to compute an over-
approximation of the set of memory locations that can be
modified by parts of the program code. Because we intend
to generate annotations for loops and procedures (for use in-
ductively as frame axioms), our analysis centers on charac-
terizing what memory locations can be modified by a given
procedure or loop body.

The algorithm is a straightforward traversal and marking
of the DS graphs. The analysis is ordered by a bottom-up
traversal of the program’s call graph. (Cycles in the call
graph are broken arbitrarily.) For each procedure or loop
body, we can identify all store operations and mark the tar-
get address’s corresponding location, which is defined by
its node and offset, in the procedure’s or globals DS graph
as (potentially) modified. In addition, for any procedures

called from this procedure or loop body, we copy the mark-
ings from the callee’s DS graphs to the corresponding node
in the current DS graph, if any. In other words, we mark
any changes made by the current procedure/loop body, as
well as copying over any changes made by any callee that
is visible to the current procedure/loop body. Note that all
modified locations marked in the globals graph do not have
to be copied over since the globals graph is shared by all
procedures. Therefore, the globals graph is always searched
first when marking modified locations.

The result is that we compute the following sets of
〈DSnode,offset〉 pairs:

• For each procedure, we find a set of memory locations
(i.e. 〈DSnode,offset〉 pairs) in the respective DS graph
that are being modified by that procedure or its callees,
and that are visible to its callers, i.e. nodes reachable
from globals or procedure parameters.

• For each loop, we find a set of〈DSnode,offset〉 pairs
modified by that loop or by procedures called from the
loop, and that are visible outside the loop, i.e. nodes
reachable from globals or loop variables that are live at
the loop header.

Note that each〈DSnode,offset〉 pair can represent an un-
bounded set of memory locations.

The modifies set we compute might not be guaranteed
to be an over-approximation, because when we break cy-
cles in the call graph, we may lose behaviors of the origi-
nal program. Fortunately, this localized unsoundness in our
analysis does not compromise the overall soundness of the
verification, because the candidate frame axioms (like any
other annotation) are checked when they are used during the
verification process.

4.2. Modifies Sets to Modifies Clauses

The modifies sets are then passed to the second stage
of our algorithm, which tries to characterize these sets of
memory locations as formulas in a logic for program spec-
ification and verification, as in Section 3.2. Details of this
specification language are largely unimportant, as most ver-
ification tools use languages with very similar expressive-
ness. One significant issue is that our specification lan-
guage, like most others, does not currently have constructs
for describing unbounded recursive data structures. (We
plan to address this in future work.) Accordingly, the sec-
ond stage starts by breaking any cycles in the DS graphs,
which can represent such data structures, yielding directed
acyclic graphs (DAGs). As before, this localized potential
unsoundness does not compromise the overall soundness of
the verification process.

For each node in the DS graph, we generate a logic for-
mula that tries to over-approximate the set of memory lo-
cations that the pair〈DSnode,0〉 represents. The formulas
are generated by walking over the topologically sorted (each
node before all nodes to which it has outbound edges) nodes
of a DS graph (DAG) starting from variables that can appear
in the respective modifies clause. We call such variables
root variables. The root variables for modifies clauses for
procedures are the globals and the procedure parameters;
the root variables for loops are globals and variables live at
the loop header. A path in a DS graph to a node represented
as a formula will be a sequence of pointer arithmetic oper-
ations, memory dereferences, andArray set constructors.
The pseudocode of the algorithm is given in Figure 4.

The input of the algorithm is a set of root nodesR and
a DS graph. For each node in the graph reachable from
the root nodes, the algorithm generates a list of expressions,
each expression representing one path to the〈DSnode,0〉
pair from a root node. We call such expressionspath ex-
pressions. If a noden is a variable node, the path expression
to the beginning of the object its edgee points to is simply

Decr(n.varName,e.endOffset)

and is generated on line 6. Note that whilen.varNameand
e.endOffsetare actually evaluated by our algorithm,Decr

becomes a part of the path expression we are recursively
constructing and is not evaluated. Before we add the path
expression to thee.endNode, we always have to case-split
on whether thee.endNoderepresents an array or not. If a
noden is a heap node, the algorithm iterates through all of
its outgoing edges on line 12. For each edgee, it loops on
line 13 through all path expression to the current noden.
Then, for each pathp, the path expression

Decr(Deref(Incr(p,e.startOffset)),e.endOffset)

to the beginning of the object the edge points to is gener-
ated on line 14. The path expression captures the fact that
each outgoing edge from a heap node represents a mem-
ory dereference, which is represented by theDeref expres-
sion. Again, before adding the newly generated path ex-
pression to the end node, we have to case-split on whether
thee.endNoderepresents an array or not on line 15.

An array heap node represents an array of unbounded
number of elements that the algorithm captures using the
Array expression introduced in Section 3.2. The algorithm
generates array expressions

Array(path,sizeof(e.endNode),Size(path))

on lines 8 and 16. Note that while the size of each array el-
ementsizeof(e.endNode) can be known at compile time,
the total size of the array is usually not since arrays tend to
be dynamically allocated. However, because our memory

1: Q← nodes with no predecessor
2: while Q is non-emptydo
3: pop noden from Q
4: if n is a variable node andn in R then
5: e← n.edge
6: path← Decr(n.varName,e.endOffset)
7: if e.endNodeis array nodethen
8: path←

Array(path,sizeof(e.endNode),
Size(path))

9: end if
10: e.endNode.addPath(path)
11: else if n is a heap nodethen
12: for all edgeseof n do
13: for all pathsp of n do
14: path← Decr(Deref(

Incr(p,e.startOffset)),e.endOffset)
15: if e.endNodeis array nodethen
16: path←

Array(path,sizeof(e.endNode),
Size(path))

17: end if
18: e.endNode.addPath(path)
19: end for
20: end for
21: end if
22: for all edgeseof n do
23: remove edgee from graph
24: if e.endNodehas no other incoming edgesthen
25: pushe.endNodeinto Q
26: end if
27: end for
28: end while

Figure 4. Algorithm for generating formulas
that describe DS graph nodes reachable from
a set of root nodes R.

model has the mapSize where size of each object is stored
during allocation, with the expressionSize(path) we are
referring to this map when looking for a dynamic size of
the array objectpathpoints to. The ability of the DSA to
recognize array heap nodes, and the ability of our algorithm
to precisely express the potentially unbounded set of mem-
ory locations the array nodes represent, is crucial for the
precision of the generated modifies sets.

In the end, because the generated path expressions point
to the beginning of an object, we have to offset them to point
exactly to the modified memory location inside the object.
The modifies set for the respective procedure or loop is then
the union of such path expressions.

4.3. Modifies Clauses to Frame Axioms

Finally, frame axioms are constructed from the modi-
fies clauses in the standard manner of the many tools that
support modifies clauses. Formally, the modifies clause
modifiesC, whereC is a set of pointers, is translated into
the following frame axiom:4

∀x : ptr





old(Alloc)[Obj(x)] == UNALLOCATED

|| (x ∈ old(C) && Obj(x)!=null)
|| old(Mem)[x] == Mem[x]



 .

Informally, the axiom states that the contents ofMem re-
mains unchanged at each pointer that is allocated and both
not a member ofC and notnull in the pre-state of the pro-
cedure/loop. Because of the flow-insensitivity of DSA and
also of our algorithm (i.e. flow-insensitive marking of mod-
ified locations even if they had not been allocated), a loop
frame axiom might contain memory locations that are allo-
cated only later on. Such locations are uninitialized and can
point to essentially anything. Therefore, leaving them in
the frame axioms would mean that anything could be mod-
ified, which is highly imprecise and would prevent prov-
ing many interesting properties. We prevent this by adding
path-sensitivity by restricting the set of modified locations
just to the ones that have been allocated (i.e. not equal to
null) at the point where frame axiom had been asserted
(procedure or loop entry).

The automatically generated frame axioms are our best
effort to be as precise as possible, and in general do not
have to be sound. However, as mentioned already, this does
not affect the soundness of the verification, since all of the
generated frame axioms are checked during verification.

4.4. Example Run

We now illustrate how the presented algorithm gener-
ates path formulas on the DS graph of our running example
given in Figure 3. The root nodes for the second loop in
the example area1 anda2. The algorithm starts by putting
all variable nodes (i.e. nodes with no predecessor) intoQ.
Nodes $loop1, $loop2a, and $loop2b are just going to be
popped on line 3 and their edges removed in the loop on
line 22 since these variable nodes are not in root nodes.
Nodea1 is a root node. It has one edge whose end node
is the array heap nodeA1. Therefore, the path

Array(Decr(a1,0),sizeof(A1),Size(Decr(a1,0)))

will be added to the paths of nodeA1. Also, in the loop on
line 22, the nodeA1 will be pushed ontoQ since it has no
more incoming edges. The same thing will happen witha2

4The expressionold(φ) denotes the value ofφ in the pre-state of the
procedure/loop.

in the next iteration of the while loop. Then,A1 andA2 will
be removed fromQ since they have no outgoing edges,Q is
empty, and we are done.

The paths generated by the algorithm are

Array(Decr(a1,0),sizeof(A1),Size(Decr(a1,0)))

to the memory location〈A1,0〉, and

Array(Decr(a2,0),sizeof(A2),Size(Decr(a2,0)))

to the memory location〈A2,0〉. The loop modifies memory
locations pointed by $loop2a and $loop2b, which corre-
spond to pairs〈A2,0〉 and 〈A1,4〉. Therefore, the expres-
sion

Incr(Array(Decr(a2,0),
sizeof(A2),Size(Decr(a2,0))),0)

represents the first set of modified memory locations, while
the expression that offsets all pointers by 4

Incr(Array(Decr(a1,0),
sizeof(A1),Size(Decr(a1,0))),4)

represents the second set. The final modifies set for the sec-
ond loop is the union of these two sets, which corresponds
to the modifies set we provided manually on line 29 in Fig-
ure 2.

5. Experiments

We have implemented the inference algorithm in our tool
SMACK (Static Modular Assertion ChecKer), a modular,
annotation-based, extended static checker of C programs.
In the spirit of modular verification, SMACK verifies pro-
grams annotated with procedure specifications and loop in-
variants. It uses the LLVM compiler framework [25] to
parse input programs and annotations. The LLVM output is
translated by SMACK into a BoogiePL [13] program based
on the operational semantics of C memory accesses intro-
duced in Section 3.1. BoogiePL is the input language of the
BOOGIE verifier [5], which, in turn, generates a verification
condition (VC) from the input program whose validity im-
plies partial correctness of the input. The VC generation in
BOOGIE is performed using a variation [6] of the standard
weakest preconditiontransformer [14]. We check the gen-
erated VC using the accompanying Z3 theorem prover [12].

We assessed the usability of our technique and the pre-
cision of the generated modifies clauses on the buffer-
overflow benchmark suite proposed at ASE 2007, contain-
ing testcases derived from a number of buffer-overflow vul-
nerabilities in open-source programs [24]. The suite has
22 vulnerabilities from 12 programs, totaling 289 testcases
(faulty and patched versions) with different difficulty lev-
els and around 18000 LOC. First, we manually annotated

Program #TCs #Annot #Mod #Infer

apache 24 24/24 90 9/24
bind 20 4/20 8 4/4
edbrowse 6 6/6 14 6/6
gxine 2 2/2 0 2/2
libgd 8 4/8 4 4/4
MADWiFi 6 6/6 8 2/6
NetBSD-libc 24 24/24 72 20/24
OpenSER 102 102/102 204 102/102
samba 4 4/4 2 4/4
sendmail 67 46/67 58 46/46
SpamAssassin 2 2/2 4 2/2
wu-ftpd 24 2/24 2 2/2
Total 289 226/289 466 203/226

Table 1. Results showing the quality of the
automatically generated modifies clauses.
“#TCs” is the number of testcases; “#An-
not” is the number of testcases our tool dis-
charged with the manually provided anno-
tations; “#Mod” is the number of required
modifies clauses; “#Infer” is the number of
testcases with the automatically generated
modifies clauses our tool successfully dis-
charged.

most of the benchmarks with pre- and postconditions, loop
invariants, and modifies clauses necessary for the verifica-
tion/falsification to go through. We checked NULL pointer
dereference, buffer-overflow, and buffer-underflow proper-
ties for each pointer dereference. Then, we removed all of
the manually provided modifies clauses and, instead, used
the ones generated by our automatic approach. We again
ran all of the experiments to measure the quality of the au-
tomatically generated modifies clauses. The results for this
set of experiments are presented in Tables 1 and 2.

Table 1 assesses the quality (i.e., precision) of the auto-
matically generated modifies clauses. We managed to man-
ually annotate and check with SMACK 226 out of the 289
testcases. We had to skip 63 testcases because they either
require bit-precise reasoning, which our tool currently does
not support, or they were too complex to be completely an-
notated manually with the limited time we had. The anno-
tation of these 226 testcases required, among other anno-
tations, 466 modifies clauses, ranging in complexity from
simple lists of variables that get modified to complex ex-
pressions involving unions of unbounded sets of pointers
(Array expressions) and pointer arithmetic. After removing
all of the manually provided modifies clauses and replac-
ing them with the automatically generated ones, SMACK

discharged successfully 203/226 testcases (or 90%). This
clearly shows the effectiveness of our technique: in most

Program MTime(s) ITime(s)

apache 42.5 44.1
bind 11.5 11.5
edbrowse 14.5 13.6
gxine 3.8 3.8
libgd 13.3 13.3
MADWiFi 3.9 3.9
NetBSD-libc 61.6 94.5
OpenSER 275.3 276.4
samba 7.7 7.8
sendmail 120.4 120.9
SpamAssassin 4.3 4.3
wu-ftpd 3.9 3.9
Total 559.1 585.1

Table 2. Verification time for testcases using
manually provided (MTime) vs. automatically
inferred (ITime) modifies clauses. Verifica-
tion was run on an Intel Pentium D at 2.8Ghz.

cases, the automatically generated modifies clauses are pre-
cise enough for the verification to succeed, or for finding a
bug without introducing false errors.

We analyzed the 23 testcases for which the automati-
cally generated modifies clauses are not good enough. In
all cases, the problems are loop modifies clauses, in par-
ticular, certain idioms of loops iterating over arrays. The
root cause is the loss of precision because DSA conserva-
tively over-approximates an unbounded array by a single el-
ement. The resulting overly conservative modifies clauses
can cause either verification complexity to blow-up or some
annotation to fail erroneously. In these 23 testcases, how-
ever, SMACK never erroneously reported a violation of the
correctness properties; the failure was manifestly a failure
of the analysis, not a false bug report.

Table 2 gives cumulative execution times of SMACK for
the 203 testcases that SMACK could discharge with auto-
matically generated modifies clauses. The results again sup-
port our automatic inference technique — the performance
penalty we paid for using automatically generated modifies
clauses is negligible compared to the effort needed for man-
ually specifying them when the technique was not available.

Because the size of the testcases in the buffer-overflow
benchmark suite is relatively small, the running times of
DSA and our automatic inference algorithm are just a few
milliseconds. Therefore, although annotating and check-
ing these programs using SMACK is beyond the scope of
this paper, we assessed the scalability of the inference algo-
rithm on a number of open-source applications: the bftpd
FTP server, the muh irc-bouncer, the gzip compression util-
ity, the Pure-FTPd FTP server, the CUDD decision diagram
package (we actually run the analysis on nanotrav — a sim-

Benchmark LOC Time(s)

bftpd 2.0 3843 2.5
gzip 1.2.4 5809 2.9
muh 2.2a 6294 2.7
Pure-FTPd 1.0.21 26320 3.8
Spin 5.1.4 29672 122.5
CUDD/nanotrav 2.4.1 67578 61.0
Total 139516 195.4

Table 3. Total running times of DSA and our
automatic inference algorithm on a number
of open-source benchmarks. These were on
an AMD Opteron 254 at 2.8Ghz.

ple reachability analysis program included with the CUDD
package), and the Spin explicit-state model-checker.

The running times are in Table 3 and clearly show the
scalability of the prototype implementation of our approach.
Our biggest example, CUDD, took only 61s. We believe the
running time for Spin is the longest because it has an unusu-
ally big DS graph of around 2500 nodes for global storage.
Since the complexity of our expression generator algorithm
is worst-case exponential in the size of a DS graph, it is un-
derstandable that slowdown of the analysis is possible on
big graphs, which is confirmed by the Spin example. How-
ever, as can be seen from the published DSA results [26],
the usual maximal graph size is only a couple hundred of
nodes and such big graphs do not occur often in practice.

6. Conclusion and Future Work

We have described a technique for automatically infer-
ring frame axioms of procedures and loops using static anal-
ysis. We evaluated the inference technique on a benchmark
suite proposed in ASE 2007. Our inference technique au-
tomatically generated frame axioms of sufficient quality to
discharge approximately 90% of the benchmark examples
that we could solve with manually provided frame axioms.
In no cases did the automatic frame axioms produce false er-
ror reports or fail to falsify the buggy examples in the bench-
mark suite. The inference algorithm is also very fast. We
have demonstrated scalability to several tens of thousands
of lines of code, and we expect scalability to hundreds of
thousands of lines of code in the near future.

We have immediate plans for future work along a num-
ber of directions. Adding support for recursive data struc-
tures based on the version of the reachability predicate de-
scribed in [9] is at the top of our list. Another promising di-
rection is to use disjointness information about sets of heap
objects, which is also captured by DSA, to improve per-
formance of the extended static checker by safely separat-

ing memory into disjoint regions. Using DSA, we can also
find objects that are potentially accessed in a type-unsafe
manner. We could employ this information to use a more
refined, bit-precise memory model that would capture low-
level, type-unsafe information for such accesses on demand,
instead of using it for each memory access.

References

[1] S. Anand, C. S. Pasareanu, and W. Visser. Symbolic exe-
cution with abstract subsumption checking. InIntl. SPIN
Workshop on Model Checking of Software (SPIN), pages
163–181, 2006.

[2] D. Babić and A. J. Hu. Calysto: Scalable and precise ex-
tended static checking. InIntl. Conf. on Software Engineer-
ing (ICSE), pages 211–220, 2008.

[3] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Raja-
mani. Automatic predicate abstraction of C programs. In
Conf. on Programming Language Design and Implementa-
tion (PLDI), pages 203–213, 2001.

[4] J. Barnes.High Integrity Software: The SPARK Approach to
Safety and Security. Addison-Wesley, 2003.

[5] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and
K. R. M. Leino. Boogie: A modular reusable verifier for
object-oriented programs. InSymp. on Formal Methods for
Components and Objects (FMCO), pages 364–387, 2005.

[6] M. Barnett and K. R. M. Leino. Weakest-precondition of
unstructured programs. InWorkshop on Program Analysis
For Software Tools and Engineering (PASTE), pages 82–87,
2005.

[7] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec#
programming system: An overview. InIntl. Workshop on
Construction and Analysis of Safe, Secure and Interoperable
Smart Devices (CASSIS), pages 49–69, 2005.

[8] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static ana-
lyzer for finding dynamic programming errors.Software —
Practice and Experience, 30(7):775–802, 2000.

[9] S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamarić. A
reachability predicate for analyzing low-level software.In
Intl. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 19–33, 2007.

[10] E. Clarke, D. Kroening, and F. Lerda. A tool for checking
ANSI-C programs. InIntl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS),
pages 168–176, 2004.

[11] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. InSymp. on Principles of
Programming Languages (POPL), pages 238–252, 1977.

[12] L. de Moura and N. Bjørner. Z3: An efficient SMT solver.
In Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 337–340, 2008.

[13] R. DeLine and K. R. M. Leino. BoogiePL: A typed procedu-
ral language for checking object-oriented programs. Tech-
nical Report MSR-TR-2005-70, Microsoft Research, 2005.

[14] E. W. Dijkstra. Guarded commands, nondeterminacy and
formal derivation of programs. Communications of the
ACM, 18:453–457, 1975.

[15] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking sys-
tem rules using system-specific, programmer-written com-
piler extensions. InSymp. on Operating System Design and
Implementation (OSDI), pages 1–16, 2000.

[16] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon sys-
tem for dynamic detection of likely invariants.Science of
Computer Programming, 69(1–3):35–45, Dec. 2007.

[17] J. Filliâtre and C. Marché. Multi-prover verification of C
programs. InIntl. Conf. on Formal Engineering Methods
(ICFEM), pages 15–29, 2004.

[18] C. Flanagan and K. R. M. Leino. Houdini, an annotation
assistant for ESC/Java. InIntl. Symp. of Formal Methods
Europe on Formal Methods for Increasing Software Produc-
tivity (FME), pages 500–517, 2001.

[19] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In
Conf. on Programming Language Design and Implementa-
tion (PLDI), pages 234–245, 2002.

[20] C. Flanagan and S. Qadeer. Predicate abstraction for soft-
ware verification. InSymp. on Principles of Programming
Languages (POPL), pages 191–202, 2002.

[21] P. Godefroid. Software model checking: The VeriSoft ap-
proach. Formal Methods in System Design, 26(2):77–101,
2005.

[22] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMil-
lan. Abstractions from proofs. InSymp. on Principles of
Programming Languages (POPL), pages 232–244, 2004.

[23] D. Hovemeyer and W. Pugh. Finding more null pointer bugs,
but not too many. InWorkshop on Program Analysis for
Software Tools and Engineering (PASTE), pages 9–14, 2007.

[24] K. Ku, T. E. Hart, M. Chechik, and D. Lie. A buffer overflow
benchmark for software model checkers. InConf. on Auto-
mated Software Engineering (ASE), pages 389–392, 2007.

[25] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. InIntl.
Symp. on Code Generation and Optimization (CGO), pages
75–88, 2004.

[26] C. Lattner, A. Lenharth, and V. S. Adve. Making context-
sensitive points-to analysis with heap cloning practical for
the real world. InConf. on Programming Language Design
and Implementation (PLDI), pages 278–289, 2007.

[27] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: A behavioral interface specification language for
Java.Software Engineering Notes, 31(3):1–38, 2006.

[28] K. R. M. Leino and F. Logozzo. Loop invariants on demand.
In Asian Symposium on Programming Languages and Sys-
tems (APLAS), pages 119–134, 2005.

[29] J. McCarthy and P. J. Hayes. Some philosophical problems
from the standpoint of artificial intelligence. InMachine
Intelligence 4, pages 463–502. Edinburgh Univ. Press, 1969.

[30] W. Schulte, S. Xia, J. Smans, and F. Piessens. A glimpse
of a verifying C compiler (extended abstract). InC/C++
Verification Workshop, 2007.

[31] M. Taghdiri, R. Seater, and D. Jackson. Lightweight extrac-
tion of syntactic specifications. InIntl. Symp. on Founda-
tions of Software Engineering (FSE), pages 276–286, 2006.

[32] Y. Xie and A. Aiken. Scalable error detection using boolean
satisfiability. InSymp. on Principles of Programming Lan-
guages (POPL), pages 351–363, 2005.

