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ABSTRACT

The development of a complete Java Virtual Machine (JVM)
implementation is a tedious process which involves knowl-
edge in different areas: garbage collection, just in time com-
pilation, interpretation, file parsing, data structures, etc.
The result is that developing its own virtual machine re-
quires a considerable amount of man/year. In this paper
we show that one can implement a JVM with third party
software and with performance comparable to industrial and
top open-source JVMs. Our proof-of-concept implementa-
tion uses existing versions of a garbage collector, a just in
time compiler, and the base library, and is robust enough to
execute complex Java applications such as the OSGi Felix
implementation and the Tomcat servlet container.
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General Terms
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1. INTRODUCTION

The Java Virtual Machine (JVM) specification [27] describes
a complete execution environment to execute Java applica-
tions. The developer has the freedom of implementation
of the execution environment as long as the implementa-
tion follows the specification. For example, a developer can
choose (i) interpretation, compilation or mixed interpreta-
tion/compilation of bytecodes, or (ii) the garbage collector
algorithm, whether it is generational, copying, mark and
sweep, incremental, etc and (iii) the base library implemen-
tation, which must follow the Sun Java base library API.

Many implementations of the JVM are available, either de-
veloped by industrials, e.g BEA’s JRockit [3], IBM’s J9 [7],
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Sun’s OpenJDK [14], or open-source, such as Cacao [4],
Kalffe [11], JamVM [10], SableVM [13], JnJVM [31], Apache
Harmony [2], IKVM.NET (8] or JikesRVM [17]. They all
have their own way of implementing the specifications. For
example JamVM is interpretation only and JikesRVM is
compilation only, with different level of optimizations.

Industrial JVMs often have their own implementation of
garbage collection, compilation, interpretation and class li-
braries. Open-source JVMs tend to all use the GNU Class-
path base library implementation [6] (some JVMs are cur-
rently being ported to the newly open-sourced Sun imple-
mentation), and the Boehm garbage collector [22]. GNU
Classpath and Boehm GC are popular among JVM imple-
mentations because they are virtual machine agnostic, hence
they do not depend on a particular JVM implementation.

In this paper, we present the design and implementation
of LadyVM!, which follows a lazy developer approach. For
most JVM components, we try to use existing, robust soft-
ware, that have the following properties:

e Virtual machine agnostic. The component must not
be implemented with a specific virtual machine design
in mind. One should be able to use it as-is.

e Library oriented. The component must expose a clean
interface to the developer.

e Large user-community. A large user-community yields
a better responsiveness to bug reports.

e Performance. The component must have been used
in other projects and shown that it has good perfor-
mance.

The goal is to develop a full JIT based JVM with very little
effort. This paper evaluates the approach by means of spec-
ification compliance, performance, interface evolution of the
third-party components, and complexity of development.

With LadyVM, we want to apply experimental JVM tech-
nologies and be able to compete with existing JVMs. For
example, we are developing the Java isolation API [28] on
top of Lady VM. Java isolation requires extra care of memory
allocation, and memory accesses, in order to execute Java
applications in the same JVM. We are currently applying
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isolation to service oriented architectures [26] and we need
a JVM with performance comparable to other JVMs.

LadyVM uses three major third-party software:

e GNU Classpath [6]: LadyVM uses GNU Classpath as
its base library. Until Sun open-sourced its base li-
brary, GNU Classpath was the only free and compet-
ing implementation of the Java core libraries. It has a
clean interface between the library and the virtual ma-
chine. Almost all open-source JVMs use GNU Class-
path today.

e Boehm Garbage Collector [22]: Lady VM uses the Boehm
conservative garbage collector, which is successfully
used in JVMs such as Kaffe or Cacao. Mono, an open-
source CLI implementation also uses it. BoehmGC
provides the allocation and finalization interface and
semantics needed by the JVM specification.

e LLVM [29]: LadyVM uses the Low-Level Virtual Ma-
chine (LLVM) as a just in time compiler. LLVM is
a compiler framework that performs compilation opti-
mizations and code generation on a low-level bitcode
format. LLVM is supported by Apple and has a large
user-community.

LadyVM links these third-party software to implement a full
Java Virtual Machine. We show that LadyVM has compa-
rable performance with industrial JVMs such as OpenJDK
for scientific applications. For general applications, like the
applications in the SPEC JVM98 benchmark [19], it needs
additional optimizations to fully compete with top JVMs.
LadyVM is robust enough to execute complex applications
such as the Felix OSGi implementation [1] and the Tomcat
servlet container [9].

The remainder of the paper is organized as follows. Section 2
presents the architecture of Lady VM. Section 3 describes the
interface evolution of GNU Classpath, BoehmGC and LLVM
since we started LadyVM, as well as the difficulties to port
LadyVM to these new interfaces. In Section 4, we present
performance of LadyVM relative to other JVMs. Section 5
presents related work and Section 6 concludes the paper.

2. ARCHITECTURE OF LADYVM

LadyVM links third party-software to implement a full Java
Virtual Machine that follows the JVM specification[27]. Fig-
ure 1 shows the overall architecture of LadyVM.

LadyVM performs the following operations:

e Class loading. The GNU Classpath libraries as well as
the application classes are parsed and saved as meta-
data in LadyVM. LadyVM resolves and intialises the
classes.

e JVM bytecode to LLVM IR translation. LadyVM trans-
lates the class type to LLVM type and the Java meth-
ods to LLVM methods.

e GNU Classpath interface. GNU Classpath has a vir-
tual machine interface represented as native methods.

Application

GNU Classpath

LadyVM

LLVM Boehm GC

Operating System

Figure 1: Basic architecture of LadyVM.

e Thread system. LadyVM provides locks for Java syn-
chronizations.

A function provider for the LLVM JIT. LLVM uses a
callback to materialize a function when it has not been
loaded. LadyVM implements this callback by either
locating the function in the metadata if the function
has already been loaded, or by loading its containing
class.

Figure 2 shows the basic interactions between the different
components of LadyVM. As of today, all the components are
used as-is in LadyVM: we do not require the modification of
the components source code. We achieve this independence
by two means: (i) GNU Classpath and Boehm GC have been
used in many virtual machine environments, hence became
generic enough to be used in any environment and (ii) LLVM
is developed as a compiler framework with an extensible
architecture. One can load new optimization passes, provide
its own memory manager or function materializing.

LadyVM also uses two other external functionalities:
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Lady VM.

e Posix threads: LadyVM uses the pthread library to
map Java threads and Java synchronization primitives
to native threads.

e GCC unwinding library: exceptions in LadyVM are
mapped to C++ exceptions, and LLVM generates GCC-
compatible exception tables. Hence LadyVM uses the
GCC unwinding library to find the catch clause of ex-
ceptions.

2.1 Compiler

LadyVM uses LLVM as its just in time compiler. LLVM is
a compiler framework that compiles a low-level instruction
set either to memory for JIT or on file for static compila-
tion. It has many compilation optimization passes, which
makes it a very competing compiler, comparable to GCC’s
performance. Moreover, the instruction set (which is also
called the intermediate representation) of LLVM is low-level
enough to be the target of different languages such as C,
C++, Fortran using llvin-gcc and Java with LadyVM.

LadyVM performs two translations: Java classes are trans-
formed to LLVM types and Java methods are transformed
to LLVM IR. LadyVM also implements Java-specific opti-
mizations on the LLVM IR.

2.1.1 Type translation

Figure 3 shows the LLVM type of the the java/lang/0Object
class. The java/lang/Object class in GNU Classpath does
not have any field. Therefore it only contains the fields of the
LadyVM root object: (i) a pointer to a virtual table used
for calling virtual functions, (ii) a pointer to its LadyVM
internal class, used for runtime type information and (iii) a
pointer to a lock for synchronizations. This layout is however
subject to change for further optimizations (for example one
could use a hash table for locks, or place the class pointer in
the virtual table).

%struct.java_lang_Object = type { i8*, i8*, i8*}

Figure 3: LLVM type of java/lang/Object. The i8%
keyword represents a pointer.

LadyVM also creates a type for the static part of a class.
When a class is loaded, its static fields are all allocated in a
single object which reference the fields. Figure 4 describes
the process of resolving a class in LadyVM. Due to just in
time resolution, all field objects are represented with the
java/lang/0Object LLVM type. The virtual table of a class
is filled with function pointers or stubs when a function is
not yet compiled. For simplicity reasons, a static instance
inherits the java/lang/0Object fields; its class is set to zero.

LadyVM uses the LLVM type information in three cases.
First, for optimization purposes, in its type-based alias anal-
ysis. Second, to be able to perform escape analysis and al-
locate Java objects on stack (see Section 2.1.3). And finally,
to ease the IR generation of field accesses (see Section 2.1.2).

2.1.2  Bytecode translation

All JVM bytecodes are translated to one or more LLVM in-
structions. Since LLVM IR is in a static single assignment
(SSA) form, and the JVM bytecode is stack oriented, La-
dyVM creates a temporary stack when parsing bytecodes.
This stack is used at compile time, not at runtime. The
LLVM IR is generated by creating instructions whose operands
are popped from the stack and whose result is pushed on the
stack. For example the IADD bytecode pops two operands
from the compilation stack, creates an LLVM Add instruc-
tion and pushes the result on the compilation stack. Figure
5 shows the process of translating the ILOAD_O, IADD and
IRETURN in LLVM IR. Figure 6 is the translation between a
Java add method from JVM bytecode to LLVM IR.

Most of the JVM bytecodes translate to one, two or three
LLVM instructions. The notable exceptions are: field ac-
cesses , method calls, exceptions, runtime checks, synchro-
nizations, allocations and switch instructions.

In the case of a field access, a method call, a runtime check or
an allocation, the bytecode operates on a class that may have
not been resolved when the bytecode is being compiled. In
such case, LadyVM inserts a callback function in the LLVM
IR. At runtime, the function will resolve the class and return
the appropriate information (e.g. a pointer to a field or a
class). The callback function is only executed once.

For virtual field accesses, if the class of the object on which



public class MyType {
MyType o;
inti;
double d;

static float f = 1.2;
static short s = 4;

static void staticFunc() {

}

void virtualFunc() {

}
}

L]
Phase 1: créate LLVM types
1]

vtype = { { i8*, i8*, i8* }, { i8*, i8*, i8* }*, i32, double }

stype = { {i8*, i8*, i8*}, float, i16 }

1
Phase 2: Allocate virtudl table and static instance
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I I I 1
virtualFunc

L— > java/lang/Object virtual method
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lock = 0 (will be instantiated on a synchronized)
f=1.2
s=4

Figure 4: Resolving a class in LadyVM

to retrieve the field is resolved, the object is casted from the
default java/lang/Object LLVM type to its real type.

For non-virtual calls, i.e. invokespecial or invokestatic,
LadyVM relies on LLVM for callbacks. If the called method
has not been resolved, LLVM generates a callback which will
invoke a function provider. LadyVM implements its own
function provider. It is responsible for loading the class if
needed, translate the JVM bytecode to LLVM IR and then
return the LLVM IR to LLVM. Finally, LLVM will patch
the native call instruction to call the newly resolved method
instead of the callback.

For virtual, non-interface calls, i.e. invokevirtual, La-
dyVM emits LLVM instructions that loads the virtual table
of the object, loads the function pointer from the virtual
table at the offset of the method and calls the function. At
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case ILOAD_O : {
// Push argument 0 on the compilation stack.

push(new LoadInst(arg[0], "", currentBlock));
break;

}

case IADD : {

// Pop from the compilation stack and convert

// it to a jint.

Value* val2 = popAsInt();

// Pop from the compilation stack and convert

// it to a jint.

Value* vall = popAsInt();

// Create the LLVM Add.

Value* res = BinaryOperator::createAdd(vall, val2,
", currentBlock);

// Push the result on the compilation stack

// and type it as a jint.

push(res, AssessorDesc::dInt);

break;
}

case IRETURN : {
// Pop from the compilation stack and convert

// it to a jint.
Value* res = popAsInt();

// Create the LLVM return instruction.
Returnlnst::Create(res, currentBlock);

}

Figure 5: Translation from ILOAD_0, TADD and
IRETURN bytecode to LLVM IR.

runtime, if the function has not been materialized, a stub
is executed that will call the function provider of LLVM.
The function provider will in turn lookup the offset of the
method in the virtual table, compile the method if not al-
ready compiled and update the virtual table.

For each interface call site, i.e. invokeinterface, LadyVM
creates a linked-list cache that records which object classes
were called last. At runtime, when the object class is not
referenced in the cache, LadyVM performs a full method
lookup. The resulting class is then placed at the top of the
list. The following calls will verify the object class with
the top of the list. If they are equal, the call proceeds.
This implementation of interface calls has the advantages
of being compiler independent. For example, Alpern et al.
[20] generate optimized native stubs to implement efficiently
the invokeinterface bytecode. Since we want to rely on a
generic JIT such as LLVM to generate code, we did not
follow this implementation.

Synchronization bytecodes (i.e. monitorenter and moni-
torexit) are lowered to a thin lock implementation [21].

Switch instructions (i.e. tableswitch and lookupswitch)
are decomposed in many LLVM instructions that perform
the comparisons and branches.



ESS O EETaTS | Javac stca:\tifi i|j1t add(int, int);
static public int add(int a, int b { o ol )
return a + b; 1: iload_1
2: jadd
} 3: ireturn

LadyVM @

define i32 @"JavaMethod<int Operations::add(int, int)>"(i32, i32)
start:
add i32 %1, %0
ret i32 %2

; <i32>:2 [#uses=1]

Figure 6: A Java add method from Java to LLVM
IR.

Allocation bytecodes (i.e. new, newarray, anewarray and
multianewarray) are translated to calls to the allocation
functions of LadyVM. These functions will in turn load the
classes if ot resolved, and invoke Boehm GC to perform the
memory allocation.

2.1.3 High-level optimizations

LLVM is a compiler framework that language implementors
can extend to perform language-specific optimizations, with-
out modification of the source code of LLVM. LLVM can
dynamically load new compilation passes that operate on
methods, loops or modules (a module is a set of functions).

LLVM contains many compilation optimization passes. La-
dyVM takes advantages of these passes and always apply
them to Java functions. The most relevant passes for Java
code are:

e Promote memory to register: this pass will promote
Java local variables to registers.

e Predicate simplifier: this pass helps to remove redun-
dant array checks.

e Loop Invariant: this pass moves invariant code out of
a loop. For example an array check can be hoisted out
of a loop.

e Global Value Numbering: this pass eliminates redun-
dant instructions.

e Constant Propagation: the javac compiler does a poor
job for constant propagating. This pass will propagate
constants inside a function.

LadyVM also extends LLVM with three new optimization
passes. The first optimization performs a type based alias
analysis. The second optimization loads constant values (the
size of a given array, the virtual table of an object or the
class of an object) only once in a function. Finally, the third
optimization performs escape analysis on a single function.
The escape analysis allocates objects that do not escape from
the function on the stack instead of the heap.

2.1.4 Limitations

LLVM can currently only be used with a compilation-only
approach. It has an interpreter, however it can not call
native functions. This would prevent the use of JNI in
LadyVM. Furthermore, modern JVMs often use a mixed
interpretation-compilation approach, where methods are in-
terpreted at first, and compiled when they achieve a "hot-
ness” threshold. LLVM does not provide such a system.

Another limitation of LLVM is its lack of garbage collection
support. It contains hooks to implement a garbage collec-
tor, and a starting implementation of a garbage collector.
However, it has not been fully tested.

Finally, LLVM targeting mostly unsafe languages such as C
or C++, does not have a type-based alias analysis (TBAA)
as well as the correct infrastructure to implement it effi-
ciently. Our implementation of TBAA is not complete, be-
cause LLVMs IR does not offer all the needed type informa-
tions.

2.2 Garbage Collector

LadyVM uses the Boehm GC as allocator and garbage col-
lector. Metadata as well as Java objects are allocated with
the Boehm GC.

The Boehm GC implements the Java finalization mecha-
nism. Hence on each allocation, LadyVM specifies the fi-
nalizer method (or a stub to the finalizer method), which is
located in the virtual table of the object to allocate. Final-
ization mechanisms are different depending on the language
considered (C++, Java, C#). From the point of view of
the garbage collector, there are mainly two algorithms: one
for managed environments, and one for unmanaged environ-
ment. The former requires that the memory of an object is
freed after the finalization method if the object is still un-
reachable. For the latter, the destructor method is always
called and the object destroyed right after.

LadyVM uses two interfaces of the Boehm GC. It uses the
allocation method to allocate Java objects and the finalizer
registration method to inform the GC of the object’s finalizer
method.

2.2.1 Limitations

The Boehm GC was designed for non type-safe languages
such as C or C++4. The drawbacks for using the Boehm GC
for a JVM is that (i) it can only be conservative, (ii) it can
not be a generational GC efficiently and (iii) it can not be a
copying and compacting GC. On the contrary, most modern
JVMs use a generational, compacting and precise garbage
collector [24].

2.3 Base Library

LadyVM uses GNU Classpath as its base library. GNU
Classpath is a free implementation of the standard library
of Java. Many open-source JVMs use GNU Classpath, such
as JikesRVM, Cacao, Kaffe, GCJ or JamVM.

Because GNU Classpath is not tailored to any JVM imple-
mentation it must define a virtual machine interface. This
interface is a set of functions that are virtual machine or op-
erating system dependent. For virtual machine dependent



functions, the underlying JVM must implement them. For
example, GNU Classpath does not have access to the layout
of a runtime Java object, therefore, the Object.getClass ()
function, that returns the class of an object, has to be imple-
mented by the JVM. GNU Classpath provides default imple-
mentations of operating system dependent functions as well
as non-optimized implementations of some virtual-machine
dependent functions.

LadyVM in its current state, implements 85 virtual-machine
dependent functions. This is sufficient to execute standard
Java benchmarks such as SpecJVMO98 or the Java Grande
Forum Benchmark, and complex applications such as the Fe-
lix OSGi implementation and the Tomcat servlet container.

2.3.1 Limitations

GNU Classpath follows the Java standard library API which
does not have a specification. Therefore, it is not fully com-
patible with the Sun implementation. As of today, it imple-
ments 95% of the Java 1.5 API [6].

GNU Classpath also provides a virtual machine interface in
order to be easily ported to virtual machines. However this
interface limits some optimizations, if not modified.

2.4 Summary

GNU Classpath, Boehm GC and LLVM implement the de-
sired functionalities, but impose some limitations. Table 1
summarizes these limitations.

3. INTERFACE EVOLUTION

By using third-party software to build a JVM, we face the
problems of uncontrolled interface evolution. Since we are
not the primary developers of these projects, we have to doc-
ument ourselves and port LadyVM to new interface changes.
In this Section, we present our experience on following the
API changes of LLVM, BoehmGC and GNU Classpath.

3.1 LLVM Interface

LadyVM interfaces with LLVM by ways of API use, exten-
sion, and runtime hooks. LadyVM uses the LLVM API to
build types and the intermediate representation.

We started the implementation of LadyVM with LLVM ver-
sion 1.9. The intermediate representation API of LLVM is
the most fragile API when switching to new LLVM versions.
From version 1.9 to 2.3, all releases required a change to La-
dyVM. These changes are mostly due to new features and
securing the public API.

Overall, moving LadyVM to a new LLVM release requires
less than one man-day.

3.2 Boehm GC

Since the Boehm GC targets uncooperative environments
such as C or C++, it does not require compilation infor-
mation, nor compiler barriers or typed mallocs. Therefore
LadyVM only uses two functions from Boehm GC, which
are allocation and finalizer registration.

We started the project with Boehm GC version 6.8. When
moving from Boehm GC 6.8 to 7.0, there was no API changes

Time (sec.) Time % Name of the Pass
5.84 58.7 X86 Instruction Selection
0.55 5.5 Local Register Allocator
0.37 3.4 Java bytecode to LLVM IR
0.17 1.6 X86 Machine Code Emitter
9.95 Total time

Table 2: Compilation time without optimization of
a Java HelloWorld program.

for Lady VM.

3.3 GNU Classpath

GNU Classpath provides VM classes, a one-to-one mapping
between a standard class (e.g. java/lang/Class) and a
virtual machine implementation (e.g. java/lang/VMClass).
The virtual machine class contains native functions or de-
fault implementations that virtual machines must imple-
ment or optimize.

We started the project with GNU Classpath version 0.93.
LadyVM now uses the latest version, 0.97.2. Since GNU
Classpath has had many releases before 0.93, the API changes
between 0.93 and 0.97.2 were minimal.

GNU Classpath moved to java version 1.5, including gener-
ics, with release 0.95. Since the JVM specification did not
change between version 1.4 and 1.5, the move to GNU Class-
path 0.95 did not require any changes in LadyVM. The only
modification we made was due to the 1ldc opcode, which
loads classes since JVM 1.5.

4. RESULTS

LadyVM comprises 18k lines of C++ code for the core vir-
tual machine code, and 4k lines of C code for the GNU Class-
path interface. These numbers are equivalent to projects
such as JamVM (that does not have a JIT), or IKVM.Net
(which is based on Mono for GC and JIT).

For benchmarking, we use an Athlon XP 1800+ processor
with 512M B of memory on Gentoo Linux 2.6.23.

4.1 Compilation time

Table 2 shows the time for compiling an HelloWorld Java
class program without any optimization and Table 3 shows
the time with the optimization passes turned on. We only
show the most expensive and Java-relevant passes, such as
the ones described in 2.1.3. Since LadyVM is a compile-
only JVM, the execution of the HelloWorld program in-
volves compiling many methods. These methods create the
class loader, load the file and print. With GNU Classpath
version 0.97.2, 536 methods have to be compiled, with a
total of 26952 bytecode instructions.

When optimizations are off, most of the compilation time
is spent in instruction selection, the local register alloca-
tor (which is one of the simplest in LLVM) and the live
analysis of variables do not cost much. With optimizations
and the linear scan register allocator (the most efficient reg-
ister allocator of LLVM), instruction selection is also the



[ Component | Limitations
Boehm GC Non-conservative, non copying, non-compacting.
LLVM Compilation-only, no default implementation of Garbage Collection.

GNU Classpath

Not fully compatible with the Java base library.
The virtual machine interface is not optimized.

Table 1: Limitations of the components.

Time (sec.) Time % Name of the Pass
3.99 32.7 X86 Instruction Selection
1.21 9.9 Global Value Numbering
0.66 5.3 Live Variable Analysis
0.65 5.3 Predicate Simplifier
0.53 4.2 Live Interval Analysis
0.45 3.6 Linear Scan Register Allocator
0.37 3.3 Java bytecode to LLVM IR
0.15 1.2 X86 Machine Code Emitter
12.21 Total time

Table 3: Compilation time with optimizations of a
Java HelloWorld program.

Time (sec.) Time % Name of the Pass
25.8 34.3 X86 Instruction Selection
4.56 6.0 Live Variable Analysis
3.79 5.6 Linear Scan Register Allocator
3.70 4.9 Live Interval Analysis
3.50 4.6 Predicate Simplifier
2.53 3.3 Java bytecode to LLVM IR
2.43 3.2 Global Value Numbering
1.06 1.4 X86 Machine Code Emitter
75.17 Total time

Table 4: Compilation time with optimizations of
Tomcat version 6.0.16.

most time-consuming pass. The linear scan register alloca-
tor needs live variable and interval analysis. In comparison,
other JVMs execute the HelloWorld program in less than
one second. OpenJDK executes the HelloWorld program in
228 milliseconds, JikesRVM in 108 milliseconds and Cacao
in 279 milliseconds.

Table 4 shows the compilation time for running Tomcat
6.0.16. LadyVM boots Tomcat in 75 seconds. In compari-
son, OpenJDK boots Tomcat in 8 seconds.

Since the just in time compiler of LLVM is still under devel-
opment (most of the current improvements in LLVM target
static compilation), there has been little to no optimization
on compilation time. There is no baseline compiler such as
in the JikesRVM [17] that compiles a method quick but in
an unoptimized fashion. We think that, with LLVM gaining
more and more users, optimizations on compilation time will
be investigated.

Modern JVMs have a mixed interpreter/compiler environ-
ment, that compiles hot methods and interprets cold meth-
ods. A profiling mechanism selects which methods must be

compiled with aggressive optimizations [30].

4.2 Performance

To evaluate Lady VM we used the Jave Grande Forum (JGF)
benchmark [23] and the SPECJVM98 benchmark [19]. We
run all VMs with a minimum and maximum heap size of
512M B.

We compare Lady VM with industrial and open-source JVMs.
We use Sun’s OpenJDK (Java version 1.7) in server mode,
IBM’s J9 version 1.6.0.1, JikesRVM version 2.9.2 with the
optimizing compiler as the default compiler and Cacao ver-
sion 0.98. JikesRVM is the most popular open-source JVM
lead by IBM, and has many contributors. Cacao is an open-
source JVM focused on just in time compilation. Its devel-
oper base is equivalent to ours. JikesRVM, Cacao and La-
dyVM use GNU Classpath as their base library. All these
JVMs perform runtime optimizations, and J9 and Open-
JDK execute in a mixed interpreter and compiler environ-
ment. To limit our comparisons with steady-state perfor-
mance (i.e. excluding compilation and class loading times),
we iterate 10 times each benchmark in the same JVM and
extract the best number.

The main limitations of LadyVM, which will explain most
of the performance loss compared to other JVMs are:

1. Object creation: we use the Boehm GC allocator, which
is not as fine tuned as industrial GCs for Java.

2. Exception throw: we use the unwinding library of GCC,
which does not have good performance.

3. Removal of array checks: the removal of array checks
in LadyVM is based on a non-optimized predicate sim-
plifier of LLVM.

4. Escape analysis: LadyVM does not perform an inter-
procedural escape analysis.

Overall, LadyVM competes well with other JVMs in sci-
entific applications (present in the JGF benchmark). On
applications that benchmark all aspects of a JVM, LadyVM
is outperformed by JikesRVM and Sun, but has similar per-
formance than Cacao.

JGF has three types of benchmarks. Section 1 contains low-
level operations such as mathematical operations or memory
assignments. Section 2 contains CPU-intensive applications.
Section 3 contains large-scale applications. On all figures,
higher is better (a relative score of two means two times
better than LadyVM).



Figure 7 shows a subset of the micro-benchmarks (Section 1
of JGF). We see that LadyVM has similar performance for
computation and memory micro-operations than industrial
JVMs or JikesRVM, but does not perform well on exceptions
and allocations.
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Figure 7: Section 1 of JGF (Logarithmic scale).
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Figure 8: Section 2 (small input size) of JGF.

Figures 8, 9 and 10 show the results of Section 2 of JGF,
applied on different input sizes (respectively small, medium
and large). A score of 0 means an out of memory error. On
most benchmarks LadyVM has similar performance than
OpenJDK, J9 and JikesRVM, and outperforms Cacao.

The poor performance of LadyVM for the SOR benchmark
is mainly due to our non-optimized array checks removal im-
plementation, which is based on an incomplete LLVM opti-
mization pass.

Figure 11 shows the results of Section 3 of JGF. LadyVM
has poor performance with the Euler benchmark. This is due
to our non-optimized escape analysis. In previous work [31],
we have shown that these two benchmarks are very sensitive
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Figure 9: Section 2 (medium input size) of JGF.
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Figure 10: Section 2 (large input size) of JGF.

to a good escape analysis. An optimized escape analysis
will yield better performance, as the garbage collector is less
often invoked. In [31], we show that with escape analysis,
the Euler benchmark goes from 1616 collections to 963.

On the MolDyn, RayTracer and AlphaBetaSearch bench-
marks, LadyVM is similar in performance to JikesRVM (from
1.0 to 1.6, higher is better). OpenJDK and IBM J9 outper-
form the other virtual machines.

Figure 12 shows the results of the SPECJVM98 benchmark.
Due to limitations in LadyVM we could not run the bench-
marks following the SPEC rules: LadyVM can not currently
execute the mpegaudio benchmark. To exclude as much as
possible compilation time, for each VM we took the best
time out of 10 iterations of a benchmark. The results show
that LadyVM is equivalent in performance to Cacao (La-
dyVM and Cacao use the same garbage collector), but is
outperformed by OpenJDK, J9 and JikesRVM.
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Figure 12: SPECJVM98 results

4.3 Summary

In this Section, we have shown that LadyVM has perfor-
mance comparable to industrial JVMs in non memory in-
tensive scientific applications. For memory intensive ap-
plications, LadyVM is outperformed by industrial JVMs.
Moreover, the compilation time also limits the performance
of LadyVM. It boots Tomcat 10 times longer than indus-
trial JVMs. These limitations are due to the compile-only
approach of LadyVM, as well as its non-generational Boehm
GC.

5. RELATED WORK

As stated in introduction, there are many implementations
of the Java Virtual Machine [2, 14, 7, 4, 17, 31, 10, 3, 13,
8, 11, 16]. Most research implementations reuse existing
software, such as the base library with GNU Classpath and
the Boehm GC. However our approach is unique in the sense
that all major components are third party software with
different goals than creating a JVM. Table 5 describes the
components used by different JVM implementations.

Our approach is very close to IKVM.Net [8] or GCJ [16].
These projects use existing infrastructures to build a Java
Virtual Machine. IKVM.Net uses Mono [18] and GCJ uses
GCC [15]. However, IKVM.Net can not follow the exact
semantics of JVM class loading. LadyVM follows the JVM
specification [27] and is thus fully compliant with the class
loading mechanism. GCJ is a ahead-of-time compiler and
therefore can only interpret dynamically loaded classes. Both
IKVM.Net and GCJ limitations are due to using infrastruc-
tures which are too high-level and/or not well suited.

6. CONCLUSION

We have shown that with little effort (18k lines of code), one
can build a full Java Virtual Machine using third-party soft-
ware. For scientific applications, the performance is equiv-
alent to industrial JVMs. There are however performance
limits with other types of applications that stress many parts
of the JVM (garbage collection or exceptions). LadyVM
is robust enough to execute complex applications such as
the Felix OSGi implementation and the Tomcat servlet con-
tainer.

By developing our own JVM in a timely fashion, we are keen
to develop JVM research extensions, such as the Isolate API
[28] and an application of isolates to the OSGi platform [26].

We also validated the approach of LadyVM by developing
a Common Language Infrastructure [25], called N3 [12]. It
uses the Boehm GC, LLVM and the pnetlib library [5].

7. AVAILABILITY

LadyVM (and N3) is publicly available on an open-source
license. The project is hosted by the LLVM team on sub-
version.

svn checkout
http://1lvm.org/svn/llvm-project/vmkit/trunk vmkit

8. REFERENCES

Apache felix. http://felix.apache.org/site/index.html.

Apache Harmony. harmony.apache.org.

BEA JRockit. www.bea.com.

Cacao JVM. www.cacaojvm.org.

DotGNU portable. NET. dotgnu.org/pnet.html.

The GNU Classpath Project.

www.gnu.org/software/classpath/ classpath.html.

IBM J9. www.ibm.com/developerworks/java/jdk.

IKVM.Net. www.ikvm.net.

Jakarta tomcat. http://jakarta.apache.org/tomcat/.

JamVM. jamvm.sourceforge.net.

Kaffe JVM. www.kaffe.org.

N3: N3 is Not .NET. llvm.org.

Sable VM. www.sablevm.org.

Sun OpenJDK. openjdk.java.net.

The GNU Compiler Collection. http://gcc.gnu.org/.

The GNU Compiler for the Java Programming

Language. http://gcc.gnu.org/java.

[17] The Jikes Research Virtual Machine.
http://www-124.ibm.com/
developerworks/oss/jikesrvm.

[18] The Mono Project. www.mono-project.org.

wW N

ENCINENEON O

= = —_———
O W = O 0 0

T EET =
=)



Garbage collector Base libraries Compiler Execution mode | Development type

J9 (IBM) Internal IBM JRE Internal Mixed Closed
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