
Universitá degli Studi di Pisa
Facoltá di Ingegneria

Corso di Laurea Triennale in
Ingegneria Informatica

An efficient ActionScript 3.0
Just-In-Time compiler

implementation

Candidato:

Alessandro Pignotti

Relatori:

Prof. Graziano Frosini

Dott. Giuseppe Lettieri

Anno Accademico 2008/09

Abstract

Adobe Flash: the current de facto standard for rich content web ap-

plications is powered by an ECMAScript derived language called Action-

Script. The bytecode for the language is designed to run on a stack based

virtual machine. We introduce a Just in Time compiler and runtime en-

vironment for such bytecode. The LLVM framework is used to generate

optimized native assembly from an intermediate representation, generated

from the bytecode while optimizing stack traffic, local variable accesses

and exploiting implicit type information.

Sommario

Adobe Flash rappresenta l’attuale standard de facto per le applicazio-

ni web interattive e multimediali. Tale tecnologia include ActionScript :

un linguaggio di programmazione derivato da ECMAScript. Esso viene

compilato in una forma binaria intermedia, pensata per essere eseguita su

una macchina virtuale basata su stack. Introduciamo un compilatore Just

In Time e un ambiente di esecuzione per tale forma intermedia. Il sistema

LLVM è utilizzato come back end per generare codice nativo ottimizzato

da una rappresentazione intermedia, costruita sfruttando le informazioni

implicite sui tipi e ottimizzando gli accessi allo stack e alle variabili locali.

1

Contents

1 Introduction 3

1.1 Introduction to stack machines 3

1.2 The SSA (Single Static Assignment) Model and LLVM 6

1.3 Introducing Adobe Flash . 8

1.4 Introducing ActionScript 3.0 . 9

2 Related work 12

2.1 Tracemonkey . 12

2.2 Tamarin . 13

2.2.1 Tamarin central . 13

2.2.2 Tamarin tracing . 14

2.3 Gnash . 14

3 An efficient ActionScript JIT compiler 16

3.1 Motivations . 16

3.2 Definitions . 17

3.3 A naive approach: the interpreter 17

3.4 Our approach . 18

3.4.1 Optimizing stack traffic 19

3.4.2 Exploiting implicit type information 20

3.4.3 Optimizing accesses to method local data 22

4 Results 24

4.1 Testing infrastructure . 24

4.2 Testing results . 25

2

1 Introduction

This work makes extensive use of some non trivial concepts regarding the
stack machine computational model and compilers internals, such as SSA inter-
mediate representation. Moreover, even if the optimization techniques described
are mostly generic, emphasis is put on the current target of the implementation:
the ActionScript 3.0 language and bytecode. The next few sections introduce
some concepts that will be useful for the reader to easily understand this work.
First of all the stack machine and single static assignment (SSA) models will
be described, then ActionScript and the tightly tied Flash framework will be
briefly introduced.

1.1 Introduction to stack machines

A stack machine is a computational model where operands to instructions
are always placed in a LIFO data structure, or a stack. The biggest advantage
of stack machines is the high density of the code, as operands selection is not
encoded in the instructions stream, but they are implicitly gathered from the
top of the stack. The taxonomy of these kind of machines is defined by the
number of stacks and the purposes of each of them. As an example we can cite
the popular Forth programming language that was designed to have two stacks,
one for subroutines control flow and local variables and another for temporary
values [3].

The stack machine model is quite natural and it was first defined in the
’60. It is indeed very handy to describe expression evaluation without any
need for operator precedences rules. Consider the following simple arithmetic
computation 5 − ((1 + 2) · 4) + 3. It can be easily rewritten in Reverse Polish
Notation [8], starting from the deepest parenthesis, as 1, 2,+, 4, ∗, 5,−, 3,+.
This expression can now be evaluated from left to right with the following rules:

• Numeric values are pushed on the stack

• Operators pops the arguments from the stack and pushes the result back.
In this case all operators are binary, but the same approach is extensible
to n-ary functions.

Even if the features of such an architecture were deeply investigated during
the ’80 [26], and several physical platforms were implemented on this model,
current mainstream CPUs are register based, even if a certain degree of stack
support is common.

3

Execution step 1 2 3 4 5 6 7 8 9
Stack contents 1 1,2 3 3,4 12 12,5 17 17,3 14

Table 1: Stack contents during evaluation of the expression 1, 2,+, 4, ∗, 5,−, 3,+
(written in Reverse Polish Notation).

For example the popular x86 architecture reserves one of its few general
purposes register and several instructions for stack management. This kind
of hybrid model is extremely widespread and it’s even expected by the GCC
compiler [29]. A notable exception included in the usual x86 ISA paradigm is
the x87 instruction set, which was the first implementation of IEEE-754 [6]
floating point arithmetics for Intel’s processor, now largely superseded by SSE
and following extensions. The x87 instruction set was originally implemented in
a separate co-processor, and was designed around a register stack. Even if the
x87 co-processor has been integrated in the main CPU since the Intel 486DX
processor, it still as to be managed has an asynchronous independent unit, which
can be considered a limited, special purpose stack machine. This model is still
used only for historical reasons, it should be noted that the same registers used
for the x87 stacks are also aliased as an array to be used by the MMX and other
vectorial instruction set extensions.

st(5)

st(6)

st(7)

st(0)

st(1)

st(2)

st(3)

st(4)

Top of the stack

Registers from the point of view
of the x87 instruction set, reg-
ister indexing starts from the
current top and wraps around if
needed

mm0

mm1

mm2

mm3

mm4

mm5

mm6

mm7

Registers from the point of view
of the MMX instruction set, reg-
ister indexing is fixed

Figure 1: The x87 register stack,

4

Stack machine code x86 code

push 1 mov $1,%eax
push 2 add $2,%eax
add

Figure 2: Typical code example for a generic stack machine and x86

Even if the stack machine model is not really being implemented in current
hardware devices, several modern programming language, for example Java and
the .NET family of languages, have been recently designed to run in a stack
based virtual machine. This layer of indirection is convenient to ensure portabil-
ity and to restrict not trusted application to a limited and secure environment.
The trade off for such advantages is the need for an interpreter, a trusted com-
ponent that translates instructions from the Virtual Machine instruction set to
the native one. The interpreter checks the sanity of the code and virtualize
the access to the resources of the underlying physical machine. The interpreter
should be able to translate the instructions so that the execution can be efficient
on the host. The current mainstream architectures are quite different from the
stack model and are usually based on a limited set of high speed memory regis-
ter and several layers of associative caches to speed up memory access. Usually
instructions can efficiently reference only data stored in registers and, on typ-
ical RICS architectures, memory access are delegated to special instructions.
So a lot clever transformation has to be done to adapt the model to the host
architecture.

An unoptimized and naive approach to support the stack machine model
would generate a huge amount of stack traffic, and with the currently limited
memory bandwidth this would be a serious bottleneck.

The stack machine model needs three insertions and two deletions on the
stack. This means five memory accesses for a simple add. The same operation
can be done using immediate operands on a typical x86 platform. It should be
noted that modern processor architectures [20] have special stack handling units
that can optimize stack accesses, but this is not widespread nor guaranteed.

push 1 push 2 add1 1

2

3

Figure 3: Stack status during execution of the example

5

C code Pseudocode in SSA form

int var=2; var ← 2;
var+=3; var1← var + 3;
var*=2; var2← var1 ∗ 2;

Figure 4: Conversion between imperative and SSA form language. Variables
assigned multiple times are renamed

1.2 The SSA (Single Static Assignment) Model and LLVM

The Single Static Assignment model is based on the assumption that any
variable is defined only once, though it’s actual value may change if the code
is executed more than once, as in loops. When using this representation each
variable can be considered a reference to the instruction returning it and not
an actual value. This model is used as an internal representation by most
commercial and open-source compilers [9]. It is quite easy to translate linear
code from an imperative language (such as C) to SSA form, as shown in Figure 4.

For each variable in the imperative representation that is assigned more than
once we can generate SSA form by renaming the variable to indexed versions.
This is of course only possible on linear code.

To handle control flow we introduce the φ function. The value returned from
φ depends on the code path executed previously. In the example of Figure 5, φ
would yield var if coming from the if block or var1 otherwise. The φ function
can be considered just a fictional notation as its purpose is only to link variable
definitions to usage during code optimization.

It is simpler to run optimization passes over the SSA representation of the
code, as it is easy to build a directed graph representing the instruction de-
pendency. Several optimization tasks such us instruction reordering, duplicate
and dead code elimination and constant propagation becomes trivial using the
obtained dependency graph.

C code Pseudocode in SSA form

int var; if(condition)then
if(condition) var ← 2;

var=2; else
else var1← 3;

var=3; endif
res=var; res← φ(var, var1);

Figure 5: Conversion between imperative and SSA form language. The φ func-
tion choose the right result when control flow merges

6

LLVM [35] is a compiler framework designed to enable effective optimiza-
tion at compile time, link time (whole program optimizations) and at run-time.
LLVM accepts an Intermediate Representation (the IR) that can be loaded
from a textual assembly-like language or built using the LLVM API at run-
time. The IR is strictly typed and portable. Several targets are supported,
such as the x86 family (both 32 and 64 bits wide processors), PowerPC, MIPS
and ARM. For most of those platforms a Just in Time compiler is available.
The IR is based on the SSA model, although for simplicity it is also allowed to
allocate stack memory using the alloca instruction. Memory allocated in this
way can be promoted to registers during optimization using an appropriate pass
(described later). Each assigned variable can be considered a virtual register.
During compilation LLVM will take care of virtual to physical register mapping,
and of spilling : saving register data to memory when no more free registers are
available.

LLVM is recently gaining importance as Clang, the C and C++ compilers
being developed on such framework, matures. In time we may expect Clang to
reach and even exceed GNU Compiler Collection [31] capabilities. At the time
of this writing the major advantages of Clang over GCC are:

• Clang code base is simple and designed as an API, allowing easy interac-
tion and integration with other projects

• Clang is much faster and uses much less memory than GCC [33]

• Clang has very good support for expressive diagnostic of compilation errors
and highlights the exact code location which causes problems.

It should be noted, however, that compiler support for C++ is still far from
complete, while the GCC front-end is mature and well tested.

The LLVM framework provides to Clang and other front-ends a huge set of
optimization passes that can be executed over the intermediate representation.

Pseudocode in SSA form

var1← 7
var2← 2
var3← var1 + var2
var4← 3
var5← var3/var4

var5← var3/var4

var3← var1 + var2

var1← 7 var1← 2

var4← 3

Figure 6: Generating the dependency graph from SSA code

7

This means that the back-end does most of the common optimization work. The
front-end only has to worry about language specific optimization possibilities.

Some examples of the optimization passes provided by LLVM are:

Dead code elimination Aggressively purges code that is not reachable

Condition propagation Propagates information about conditional expressions
to eliminate conditional branches in some cases

Merge duplicate constant Merges duplicated constant into a single shared
one

Constant propagation For each assignment as var = C with C constant the
value is propagated in each use of the variable.

Redundant instructions elimination Eliminates assignments and memory
loads that are redundant, as they do not change the destination variable
value

Loop invariant code motion Tries to remove as much code as possible from
the body of a loop and promotes memory locations used in the loop to
registers, when possible

Loop unrolling Convert finite, short loops into linear code

Promote memory to registers Tries to keep frequently used stack memory
locations in registers.

LLVM does not enforce a user to enable all those passes. A selection of the
best sequence of passes should be made on a case by case basis, although a few
of them are generally useful.

1.3 Introducing Adobe Flash

Adobe Flash (originally developed by Macromedia) is a platform for the de-
velopment of rich, interactive and multimedia enabled web applications. The
content is delivered to the client using a custom file format called SWF (pro-
nounced Swiff and has to be interpreted using a custom browser plugin previ-
ously installed on the client. Adobe claims that his proprietary plugin is installed
on around 90% of the machines in mature markets [12]. The Flash technology is
considered a corner stone of the modern World Wide Web, enabling multimedia
services as the popular YouTube video sharing platform [13].

8

The Flash technology success can be acknowledged to a number of factors.

Easy interface design Since the first versions of Flash, Macromedia (now
Adobe) produced an easy to use design suite to develop interactive an-
imations and applications.

Advanced graphics and interactivity capabilities Flash offered an impres-
sive support for advanced graphics element, such as alpha blending (trans-
parency), Bzier splines, texturing support with both images and several
kind of color gradients. It should be noted that a somehow standard re-
placement for such capabilities can only be found in the not yet released
HTML5 standard [36]. Moreover, all those graphics elements could easily
interact with user input from the keyboard and mouse.

Rendering consistency An highly attractive feature of the Flash player is
the guaranteed consistency of the results for every client. This was quite
an impressive feature in the past, when HTML was still plagued by the
non standard features added during the so called “Browser War” [1]

Flexible scripting language Flash features a flexible scripting language: Ac-
tionScript (more detail on this in the following section). Being a dynami-
cally typed language, similarly to JavaScript it allows for rapid application
prototyping and it’s easy and intuitive enough to be used by non profes-
sional programmers.

There are open-source efforts to develop an alternative to the proprietary
Flash plugin. The most important of them is Gnash [32] which is heavily spon-
sored and considered a priority by the Free Software Foundation. The author of
this work is currently working on a different project called Lightspark [27], which
is designed to be very efficient by exploiting the features of modern platforms.
This work is derived from the efforts on such project.

1.4 Introducing ActionScript 3.0

Most of the success of the Flash technology can be acknowledged to Action-
Script, a simple though powerful scripting language embedded in SWF files,
which allows for a great degree of control over the graphic elements and inter-
activity features of the movie. ActionScript was first introduced in version 2
of Macromedia Flash Player. At first only basic playback control such as play,
stop, getURL and gotoAndPlay was offered, but over time new features were in-
troduced as conditional branches, looping construct and class inheritance, and
the language evolved to a general purpose though primitive one.

9

To overcame several limitations in the original design Adobe introduced Ac-
tionScript 3 in 2006 with the release of version 9 of the Flash player and devel-
opment tools. The new design it’s quite different from the previous versions and
extremely expressive. The language is mostly based on ECMAScript 3 (which
is also the base for the popular JavaScript language), but several new features
are added to the standard, such as optional variable typing. The ActionScript
specification defines a binary format and bytecode to encode the scripts so that
no language parsing has to be done on the clients. Moreover a huge runtime
library is provided, integrated with the graphics and multimedia features of the
flash player. This work targets mostly the core part of the language and the
implementation of the runtime component is considered for further development
of the Lightspark project.

The ECMAScript and ActionScript model allows even primitive types as
the integer and the number to be fully fledged generic objects. Moreover simple
instructions, as the add are polymorphic and so the actual execution depends
on the arguments types. This layer of indirection implies that even very simple
operations has to be handled in an interpreted way, as we have no information
on the nature of the data until runtime.

The ActionScript bytecode offers several kind of opcodes:

Arithmetic and logic operations such as add, bitand, bitnot, increment and
equals. Those instructions are specified to convert input arguments to the
number or int type, and to return a similar numerical type. This do
not hold for add that is polymorphic and can add as well numbers and
concatenate strings (The algorithm follows the specifications of ECMA-
262 section 11.6 [21] and ECMA-357 section 11.4 [22])

Runtime type information and type conversion such as astype, instanceof,coerce,
convert b and convert i. ActionScript supports to a great extend the han-
dling and manipulation of object types at runtime, and a lot of polymor-
phic interfaces are offered in the runtime library.

Control flow such as callproperty, returnvalue, ifeq, ifle, iftrue, jump and label.
The control flow instructions only allows for relative jumps and no absolute
destination is encodable. Moreover the label instruction is actually a No-
Op and it is used to point out the destination of backward jumps, this
feature enables a single pass Just-In-Time compilation. As there are no
indirect jumps, it’s not possible to implement class polymorphism and
interfaces using the classic virtual table approach and we have to use
callproperty and similar instructions, as these invoke a function by name
from objects properties which are overridable

10

Object manipulation such as construct, newarray and newobject. The root
of the ActionScript class hierarchy is the Object class. Objects are no
more than associative containers from names to other Object or Object
subclasses instances. To build a new object you can use the construct
instruction. Also the newarray instruction is provided as a shorthand for
the Array constructor

Stack manipulation such as dup, pushbyte, pushint, pushundefined and pop.
ActionScript is based on a stack machine, so several instructions are pro-
vided for stack manipulation. Beside the classic push for various types and
pop, we can also see the dup and swap instruction. The former duplicate
the last entry on the stack, the latter invert the positions of the last two
entries.

Object properties manipulation such as findproperty, getlex and getslot.
Object properties can be accessed using these functions both by name
and by index for better performance.

Resolution scope manipulation such as pushscope and getscopeobject. Sev-
eral of the instruction that finds properties are designed to search first
in objects on the scope stack, before searching the Global object. These
instruction manipulate the scope stack.

Local variables manipulation such as setlocal and getlocal. Beside the stack
ActionScript also provide a fast local storage, this instructions are used
to access values stored there. From an high level point of view locals are
a simple array of objects, and the values are accessed using indexes and
not names.

11

2 Related work

ActionScript per se has not been subject of many studies. But as it is a
very near relative of the JavaScript language it is interesting to show the ap-
proaches used by a current generation JavaScript engine: Tracemonkey, included
in Mozilla derived web browsers, such as Firefox. Moreover the architecture of
the Tamarin and Gnash engine will be described, being respectively the Adobe
and GNU sponsored implementation of the language.

2.1 Tracemonkey

Tracemonkey is the JavaScript engine currently used in Firefox 3.5 and other
Mozilla derived browser. The engine is an evolution of the preceding Spidermon-
key enhanced using the Trace Tree technique, described in [18]. This approach
is based on the assumption that most of the execution time is usually spent on
loops, and so it’s sensible to invest computation power and memory to compile
only those critical, computational expensive code to native using the Just In
Time compiler.

Sample C code Resulting hot trace

var i; var i;
for(i=0;i < 100; i++) for(i=0;i < 100; i++)
{ {

if(i < 10) { assert(!(i < 10));
print("Low value"); assert(i < 60);

} print("Mid value");
else if(i < 60) { }

print("Mid value");
}
else {

print("High value");
}

}

Figure 7: A JavaScript code snippet and it’s representation as an hot trace.
Each time the loop backward jump is executed a counter is incremented, when
a threshold is reached the trace is recorded. In the example the threshold is 15
and the second case of the loop is recorded in the trace. The trace itself contains
the two assertions that makes the trace valid. If an assertion fails a side exit
happens and the execution is resumed using the interpreter. As side exits are
expensive a counter is increment also for each of them, when one is executed
enough times the corresponding code path is added to the trace.

12

Loops are discovered using a simple heuristic: a loop candidate starts at the
target of a backward jump and ends when the same location is reached again.
Code start being executed using an interpreter, during execution a counter
for each backward jump target is maintained and incremented every time a
branch to the target is taken. When a threshold is reached the branch target
is considered an anchor for a hot loop. Following instructions are recorded,
until the anchor is reached again, or a maximum length is reached. When a
conditional branch is encountered only the currently taken branch is considered
and recorded. For the other case a so called side exit is generated. When a side
exit is executed the dynamic context used in the native code is synchronized
to the one expected by the virtual machine, and interpretation is resumed. Of
course if the hit count of a side exit becomes big enough, also that code path will
be translated to native code. This event is called trace extension. When a trace
is extended the preceding instructions are shared with the container trace, while
following instruction are duplicated. This approach minimize the complexity of
the control flow graph, so that compilation can be extremely fast. The speed
of the compiler makes it possible to recompile the whole trace each time an
extension happens, to take advantage of new optimizations opportunities that
may be discovered by looking at the newly added code in the context of the
surrounding trace.

2.2 Tamarin

In 2006 Adobe released his own ActionScript3 engine as an open-source
project for inclusion in the Mozilla project. The name of this new project is
Tamarin. The architecture of this project evolved over time, the main features
of the different approaches are briefly described below.

2.2.1 Tamarin central

Tamarin central is the stable version of the engine. It is based on a very
simple architecture and code is compiled on a method-at-once basis. The engine
features both an interpreter and a JIT compiler engine (NanoJIT) [7], which
accepts a custom intermediate representation (LIR) and targets several platform
(x86, x86-64, PPC, ARM). A simple heuristic is used to choose between the two
modes of execution: basically the initialization methods are run trough the
interpreter, others methods are converted to native code.

When a method has to be compiled, his ActionScript bytecode is parsed
and statically verified. From the bytecode the LIR representation is derived,

13

one opcode at a time. The resulting LIR buffer can then be passed to NanoJIT.
Some optimization steps can be done on the buffer by using filters, although the
engine is designed for simplicity and speed and not for heavyweight optimization.
Compiled code can then be directly executed on the physical processor. To
handle unexpected condition in the native code, guards are inserted. Guards
are runtime checks which assert that the data used in the method is compatible
with the assumptions made by the JIT compiler, for example numerical type
can be checked against an allowed range of values.

2.2.2 Tamarin tracing

Tamarin tracing is the new development branch of the project. It imple-
ments the tracing approach described in the previous section 2.1. The most
interesting aspect of the project is that Forth is used as a back-end for Action-
Script bytecode compilation. So actually this engine does a double round of
translation. ActionScript bytecode is first translated into a Forth intermediate
representation, which is then translated to the NanoJIT intermediate represen-
tation, and in the end compiled. Forth is itself a stack based language, so the
first translation is mostly natural, probably this design originated to leverage
the experience with Forth compilers for the advantage of the new language. For
a long time after the open-source release of Tamarin there were attempts to
merge it as the JavaScript engine for Mozilla browsers, the project was called
ActionMonkey. In the mean time the SpiderMonkey engine was being enhanced
by TraceMonkey, and in 2008 the ActionMonkey project was abandoned, as
Tamarin has not yet reached the stability and performance results of the cur-
rent mature engine.

2.3 Gnash

Given the extremely high market penetration of the Flash technology, for a
long time the creation of an open source Flash player was considered a priority
by the Free Software Foundation. In the beginning the GPLFlash [4] project
was primarily supported. Nowadays most of the developer of that project moved
to Gnash, released under the GPL, which itself derives from the code base of
GameSWF.

Gnash offers complete support for Flash version 7, and for some features
of version 8 and 9. Flash video playback is supported through the FFmpeg or
GStreamer libraries [2] [5].

This project includes a good support for the ActionScript 1.0 and 2.0 lan-

14

guages. For a long time an ActionScript 3.0 implementation has been under
work, but it’s still in early testing. Moreover, only the interpreter is supported
as there is no JIT compiler ready. The Open Media Now foundation has founded
a summer of code project to boost the work on the Virtual Machine, but right
now any results is yet to be seen.

15

3 An efficient ActionScript JIT compiler

3.1 Motivations

During the last years of the ’90 we’ve seen the conversion and explosion of
the Web as a platform for multimedia contents distribution. The launch of video
sharing platforms such as Youtube and Vimeo [14] preceded by a long time the
availability of a standard for video content on the web, which actually was only
proposed with the working draft of HTML5 in 2008 [36]. Since 1998 every
vendor has tried to push its own solution for streaming media, the main com-
petitors were RealPlayer, Microsoft’s Windows Media and Apple’s QuickTime.
Each one needed a custom plugin installed in the browser. In the meantime the
first versions of Macromedia Flash were gaining popularity for interactive con-
tents and animations. When in 2002 video playing capabilities were added to
Flash it basically imposed itself as a new de facto standard. In 2006 Macrome-
dia was acquired by Adobe and a major rework was done on the Flash scripting
language, giving birth to ActionScript 3. This new versatile language, together
with the multimedia and interactive features already provided by Flash are now
a fundamental component of current web technologies. The dominant position
of Flash has been recently questioned by Microsoft’s Silverlight based on .NET,
but nowadays is not yet clear if there will be a shift in the market share of those
technologies. [15]

It has to be noted that the current position of Flash as a cornerstone of
the modern web is totally out of any standardization. This poses the risk of a
jeopardization of the usability of the web, in a similar way to what happened
during the “browser war” when every vendor tried to push its own implemen-
tation by adding non overlapping sets of non standard features [23]. However
Adobe seems to be interested in converting de facto to actual standards [11].

For example Adobe PDF (Portable Document Format) has been an open
specification for a long time and in 2008 it became an ISO standard (ISO 32000).
Even if Flash has not yet been proposed for a standardization procedure, it’s
complete specification has been available since 2009. As Flash is a key compo-
nent of the Web the Free Software Foundation considers a priority to have an
Open Source implementation of the Flash Player [17]. The Gnash project had
reverse engineered most of the SWF (Flash binary format) prior to the official
release of the specification, but it yet misses an efficient implementation of the
new generation scripting language, ActionScript3 which powers most of the new
applications.

Lightspark is a modern Open Source implementation of the Flash Player

16

[28], written from scratch and designed to be efficient exploiting the current
multi-core architectures and programmable graphic cards. A primary feature
of the project is the very good support for the new features introduced in Ac-
tionScript3, as class and interface inheritance. In this chapter we are going to
discuss the implementation challenges and optimizations developed to achieve
this results.

3.2 Definitions

First we define some keyword that will be used frequently

Just in Time compiler A system to transform high level source code or byte-
code to native machine code at runtime, just before the actual invocation
of the code. Just-In-Time (JIT) compilation is a mainstream technique
currently implemented by all major Virtual Machines such as Microsoft’s
.NET and Java [30] [25]. Compiling code at runtime causes a performance
penalty over static (off line) compilation, but brings many advantages such
as the ability to optimize the code for the specific processor of the host
and a chance to enforce security policies and type safety. Hot code paths
can also be cached so that after an initial slow setup time most of the code
will be already translated.

Basic Block A linear sequence of instructions ending on a branch (conditional
or unconditional)

Trace A linear sequence of instruction ending with an unconditional branch.
The trace concept is useful as most often conditional branches are short
and may fall inside the trace itself, increasing optimizations possibilities

Method A collection of Basic Blocks linked by branches. Each method has a
private stack and local data storage.

3.3 A naive approach: the interpreter

The simplest approach for executing a bytecode would be an interpreter : a
system that decodes one instruction at a time and execute it by using routines
written in a high level language. In ActionScript each method declares statically
the maximum amount of stack and local data storage needed. So the interpreter
should allocate for each method an array of pointers to Objects for the stack
and the locals. The routines implementing the opcodes semantics would pop
arguments and push return values from the stack array. This approach is very

17

method()
begin :

op
op
op
op
branch if equal

op
op
op
jump

op
op
...
ret

end

method

trace

basic
block

Figure 8: A method is composed by basic blocks linked by branches. A trace is
a sequence o operations that ends on a unconditional branch

simple to implement and indeed very functional for code executed only once, as
there is no need for code analysis and compilation. The major disadvantages
are the huge amount of memory traffic involved even for simple operations, and
the very frequent creation and destruction of object used for temporary objects,
which causes a large overhead

3.4 Our approach

We introduce a Just-In-Time compiler for the ActionScript3 bytecode. JIT
compilers can be designed to translate code at various granularities. A common
choice is to translate traces or methods at once. We choose the latter approach.
The ActionScript bytecode is loaded from the SWF file, if embedded in a Flash
movie, or from standalone ABC files [10]. The bytecode for each method is
parsed and split into basic blocks. In general this analysis should be done in two
passes:

1. Detection of jumps targets, as those are the starting point for basic blocks.
For conditional branch both the actual target and the fall-through instruc-
tion are considered as targets.

2. Building of basic blocks, which is now trivial as they start from a jump
target and ends on a branch.

18

For ActionScript this analysis can be done in a single pass, as the targets of
backward jumps are marked by a special opcode. During this phase we also find
and prune out dead code: instructions that are not in any block. Moreover we
extensively validate relative branches to guarantee that the targets are actually
inside the function body. For a long time the official Adobe player missed this
check and it was possible to jump to an arbitrary byte offset inside the file. It
is actually very common for malicious Flash files to carry the exploit payload
obfuscated in unsuspected data, such as compressed images. [16]

From each basic block we build an LLVM compatible SSA representation,
using the LLVM API [34]. The resulting blocks are linked using branches. As
ActionScript only allows relative jumps the linking can be completely done at
compile time. For each method we invoke the LLVM JIT compiler to get a func-
tion pointer to native code, this pointer is then used to invoke the corresponding
code. The generation of native code is done only once at the first invocation of
the method, the resulting code pointer is cached so that subsequent calls incurs
in no overhead. To maintain compatibility and interfacing with C++ code a
small wrapper is used to invoke the generated code. The wrapper allocates the
private stack and the local data storage. Conforming to ActionScript calling
convention, arguments are copied onto the first elements of the local data array
(See section 3.4.3).

Our implementation guarantees compatibility between routines written in
C++ and compiled ActionScript code and it’s possible to arbitrarily mix and
nest both kind of code. This makes it really easy to implement ActionScript
opcodes using high level routines written in C++, similarly to the interpreter
approach. To write complex functionality such as variable lookup from asso-
ciative arrays we make use of the convenient features of the Standard Template
Library. High level routines are extremely inefficient for frequently used sim-
ple operations. As described later in section 3.4.2 several optimizations can
be made by specializing the generic, high level operations to a simpler native
version, exploiting implicit type information in the code.

3.4.1 Optimizing stack traffic

A first optimization on the ActionScript model is to purge as much traffic
stack as possible. For each basic block we maintain a static stack and for
each method a runtime stack. Push and pop operations are only done on the
static stack at compile time. Code is translated so that each instruction that
would have popped N arguments from the stack accept N arguments, and each
instruction that would have pushed a value assigns the value to a variable, which

19

in SSA form can be considered a virtual register. The static stack keeps track
of which virtual register holds the value that would be on the corresponding
stack slot, so it’s possible to resolve stack traffic at compile time inside each
basic block. At the block boundary each stack value pushed in the block but
not yet consumed is flushed to the runtime stack. Pop operations which cannot
be served from the static stack are going to be resolved on the runtime one. In
such case the popped value will reference a memory load.

The described optimization is extremely effective as most of the values
pushed on the stack are extremely short lived, and often are consumed by the
following instruction. Moreover looping constructs usually have no impact on
the runtime stack as they consumes every value they push onto the stack. As
the virtual registers have a short lifespan this do not increase register pressure
on architectures which are register starved such as x86.

3.4.2 Exploiting implicit type information

ActionScript, being derived from ECMAScript reaches an extremely high
level of abstraction, and embraces totally the object oriented model. Everything
in the language is an instance of Object, even functions and primitive types, such
as integers and floating point values. This is obtained by subclassing each class
from the basic Object. This kind of abstraction allows for a great flexibility and
a polymorphic behavior. The ADD instruction for example will do arithmetic
addiction when applied to numerical typed values, and string concatenation if
either argument is a String. The right operation is resolved at runtime.

This of course have a large overhead over the use of native data types. The
overhead is caused by two major factors: first of all the runtime checks needed
to determine the object type, but also by the high memory traffic on the heap.
In the naive approach, the creation and destruction of short lived object would
represent a large share of the execution time. A first optimization to solve the
latter problem is to grab frequently used objects such as Integers and Numbers
from a pool. Objects gathered from the pool are not going to destroy themselves
when their reference count goes to zero, but will get back to their manager. It
possible to verify that in real life scenarios, even a very small pool of around
10 object is enough to fulfill all the request for temporary objects. Figure 9
describes the relationship between the objects and their manager.

It also possible to exploit the strong typing information that is implicit in the
semantic of several instructions. For example instructions that returns numer-
ical constants gives us a very strong information about the type of the object.
Moreover most arithmetical operators are specified to output a Number and

20

Manager<Type>
pool: vector<Type*>
put(obj: Type*): void
get(): Type*

Type
refCount: int
Manager<Type>* manager
...
incRef(): void
decRef(): void
...

void decRef()
{
 refCount–;
 if(refCount==0)
 {
 if(manager)
 manager->put(this);
 else
 delete this;
 }
}

Figure 9: Relation between the object pool manager and the object instances.
When reference count reaches zero unmanaged object are destroyed and man-
aged objects go back to their pool

will convert their input values to Integer or Number type, using the conversion
operators that most object offers. This kind of information, which is already
known at compile time, can be used to convert the primitive data types to fully
fledged object only lazily. This technique is called Boxing and Unboxing and it
has been implemented first in Java [19]. As the static stack is not really tied to
any memory, the value it references can be of any type. So we keep values as
primitive types during the code parsing and compilation phases. For each value
in the static stack we also store the data type known at compile time.

It’s possible to propagate type information for returned values using a single
pass over the code. To take advantage of the implicit conversions on arguments
we need a multi-pass approach. During the first iteration, for each value pushed
on the stack, we record if it’s going to be converted and what the final type is
going to be. Then we try to generate code that proactively casts the value to
their final type before pushing them on the stack. This approach propagates
type information backwards in the instruction flow, allowing a very effective
optimization, especially for object properties access. The dynamic nature of
ActionScript Objects gives, in general, no guarantees over the type of the prop-
erties stored in the object, but if we find that a certain property will be casted
before being used we can safely ask the object to return the property already
converted to the final desired type. If the object internally stores the property
as a primitive type it can be returned without boxing it, otherwise it will just
be casted ahead of time.

This implicit data type information that we extracted from the code flow

21

can be used to specialize polymorphic operations at compile time. For example
the previously discussed ADD opcode can be converted to the native processor
operation when both arguments are known to be numbers or integers, if we
do not have any type information for an argument we can call the generic
implementation of the instruction.

3.4.3 Optimizing accesses to method local data

One of the major disadvantage of a canonical stack machine is that no access
is allowed to values not on top of the stack, so it is difficult to store long lived
values such as loop counter or global data. On mainstream architectures that
supports the stack semantics (such as x86), this problem is resolve by allowing
relative addressing from the top of the stack, usually referred by a special stack
pointer register. This allows to store on the stack both temporary values and
local data for methods.

ActionScript adhere strictly to the stack machine model and only to the top
of the stack is accessible. But a different data storage is available for long lived
and frequently used values. Those locations are called Locals. Each method has
to statically declare how many locals will be used, and those are referred to by
their index. The first few locals are reserved by the calling convention for the
this pointer and the function arguments, as shown in Figure 10

Locals data can only be manipulated using the setLocal and getLocal

operations, the former takes the value from the top of the stack and moves it
to a local, the latter copy a value from a local to the stack. Moreover a special
instruction called kill set a local to the Undefined state, effectively signaling
the end of the variable life. As seen for the stack values, we also try to exploit
implicit type information for locals. During Just in Time compilation we build
a static locals data structure where we keep both a reference to the current
value stored in each local and the corresponding type, in a similar way to the
static stack structure. When translating the setLocal/getLocal operations we
also propagate type information. Of course the type information can only easily
handled on linear code. When we reach a branch we would have to synchronize
our static locals to the actual locals array in memory by creating a fully fledged
object for values stored in native types. This can be evaded by doing inter block

this arg0 arg1 ... local local ...

Figure 10: Locals data is used for long lived values. The first locations are
reserved for the this pointer and the function arguments.

22

analysis.

An iterative approach is applied to propagate type informations from each
block to each possible subsequent block. During this operations we also finds
out when local values will no longer be used and so their value can be safely
discarded.

For each method, before final code generation:

1. Set the types of the static locals for each block to Object, as we have not
yet any information on the types.

2. For each block

(a) We load the current known types of the static locals at the beginning
of this block

(b) If the code of this block effectively reset a local to a known value,
we flag the local as resetted. A locals is considered resetted when a
block invokes a setLocal or a kill before any getLocal on the index.

(c) We parse the code and extract object type informations. When ap-
propriate type information is propagated to the static locals. Each
iteration will gather more information about the local variables’ type
and more operations will be specialized to native versions.

(d) At the end of the block we save the current locals’ type.

3. For each block: we check if local at index n is of the same type for each
predecessor block. If so we propagate this information to the types at the
beginning of this block.

4. If any of the known types at the beginning of a block changed we get back
to step 2

At the end of this loop we are going to do the actual code generation, ex-
ploiting all the type informations that we gathered. At the end of each block a
different epilogue code is generated for each successor, to cast object to the ex-
pected data types. Locals that are going to be resetted in a block are discarded
during the epilogue.

23

4 Results

4.1 Testing infrastructure

To have faithful performance comparison against other engines we used the
test suite from the Tamarin project. The actual tests are derived from the Java
Grande Benchmark suite [24]. A version of the tests ported to ActionScript
is included in the Tamarin source tree and can be compiled to ActionScript
bytecode using Adobe’s ASC compiler. The tests are run against Lightspark
and the development branches of Tamarin, both the classic one and the tracing
version.

The suite includes the following tests

Crypt Encrypts and decrypts random data using the IDEA symmetric algo-
rithm. This test implies a great deal of integer and logic operations.

FFT Calculate the Fast Fourier Transform over random data. This test stress
floating point calculation.

Series Calculate the first N coefficients of a Fourier series. This test makes a
lot of calls to functions members of the Math class

SOR Calculate the solution of a linear system using the Successive over-relaxation
method

SparseMatMult Execute matrix multiplication over a sparse matrix. This
test makes heavy use of indirect memory accesses.

24

4.2 Testing results

From Figure 11 is clear that Lightspark is lagging slightly behind Tamarin,
but the running times are actually on the same order of magnitude. Those
results depends on several factors:

1. Tamarin is a mature project which has been developed by a professional
team over several year, while Lightspark has not yet undergone the nec-
essary tuning and performance profiling process

2. Moreover also the LLVM framework is very young and Lightspark will
automatically take advantage of the improvements on that framework,
both on compilation speed and code optimization.

3. ActionScript 3 introduced an optional strict typization for function local
variables. Basically typed locals are declared inside an activation object,
and accessed as normal properties. This feature is not yet completely
supported by Lightspark.

4. Several frequently called functions, for example the ones in the Math class,
could be linked at compile time, without resorting to a slow map lookup
at runtime.

Tamarin tracing

Tamarin redux

Lightspark

Crypt FFT SOR SparseMatmult

Figure 11: Normalized execution times for the test cases. The reference time is
from Tamarin redux, which is the development branch of the stable version of
Tamarin. Lightspark is not yet mature enough to outperform Tamarin, but the
results in the Crypt test are very encouraging. The tests were run on a 64bit
Intel Pentium D machine. It must be noted that the comparison with Tamarin
tracing is not completely fair, as the x86 64 platform is not yet supported, and
so the 32bit version was used.

25

References

[1] Browser War article on wikipedia.
http://en.wikipedia.org/wiki/Browser_war.

[2] FFmpeg project homepage.
http://ffmpeg.org/.

[3] Forth language article on wikipedia.
http://en.wikipedia.org/wiki/Forth_(programming_language).

[4] GPLFlash project homepage.
http://gplflash.sourceforge.net/.

[5] GStreamer project homepage.
http://gstreamer.freedesktop.org/.

[6] IEEE standard for floating-point arithmetic (IEEE 754) article on
wikipedia.
http://en.wikipedia.org/wiki/IEEE-754.

[7] NanoJIT project homepage.
https://developer.mozilla.org/En/Nanojit.

[8] Reverse Polish Notation article on wikipedia.
http://en.wikipedia.org/wiki/Reverse_Polish_notation.

[9] Static Single Assignment article on wikipedia.
http://en.wikipedia.org/wiki/Static_single_assignment_form#

Compilers_using_SSA_form.

[10] Adobe. Actionscript virtual machine 2 overview.
http://www.adobe.com/devnet/actionscript/articles/

avm2overview.pdf.

[11] Adobe. Adobe and industry standards.
http://www.adobe.com/enterprise/standards/.

[12] Adobe. Adobe flash player version penetration. "http://www.adobe.com/
products/player_census/flashplayer/version_penetration.html".

[13] M. Cha, H. Kwak, P. Rodriguez, Y.Y. Ahn, and S. Moon. I Tube, You
Tube, Everybody Tubes: Analyzing the Worlds Largest User Generated
Content Video System.

26

[14] X. Cheng, C. Dale, and J. Liu. Understanding the Characteristics of Inter-
net Short Video Sharing: YouTube as a Case Study. ArXiv e-prints, July
2007.

[15] Dragos-Paul. Introducing Microsoft Silverlight.

[16] S. Ford, M. Cova, C. Kruegel, and G. Vigna. Analyzing and Detecting
Malicious Flash Advertisements.

[17] Free Software Foundation. High priority free software projects.
http://www.fsf.org/campaigns/priority.html.

[18] A. Gal and M. Franz. Incremental dynamic code generation with trace
trees. Technical report, Citeseer, 2006.

[19] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java (TM) Language Specifi-
cation, The (Java (Addison-Wesley)). Addison-Wesley Professional, 2005.

[20] Intel. Intel 64 and ia-32 architectures software developer’s manual.
http://www.intel.com/products/processor/manuals/.

[21] Ecma International. The ECMA-262 specification.
www.ecma-international.org/publications/files/ECMA-ST/

ECMA-262.pdf.

[22] Ecma International. The ECMA-357 specification.
www.ecma-international.org/publications/files/ECMA-ST/

Ecma-357.pdf.

[23] M. Jenkins, P. Liu, R. Matzkin, and D.L. McFadden. The browser war:
Econometric analysis of Markov perfect equilibrium in markets with net-
work effects. Unpublished manuscript, University of California, Berkeley,
2005.

[24] JA Mathew, PD Coddington, and KA Hawick. Analysis and Development
of Java Grande Benchmarks.

[25] E. Meijer, WA Redmond, J. Gough, and A. Brisbane. Technical Overview
of the Common Language Runtime. 29:7.

[26] Jr. Philip J. Koopman. Stack Computers: the new wave. Ellis Horwood,
1989.

[27] Alessandro Pignotti. Lightspark project homepage.
http://lightspark.sourceforge.net.

27

[28] Alessandro Pignotti. Lightspark: An high performance flash player imple-
mentation.
http://lightspark.sourceforge.net.

[29] J. Singer. Gcc .neta feasibility study. Journal of .NET Technologies.

[30] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito,
K. Ishizaki, H. Komatsu, and T. Nakatani. Overview of the IBM Java
just-in-time compiler. IBM Systems Journal, 39(1):175–193, 2000.

[31] The GCC team. Gnu compiler collection project homepage.
http://gcc.gnu.org/.

[32] The Gnash team. Gnash project homepage.
http://www.gnu.org/software/gnash/.

[33] The LLVM team. Clan vs other open source compilers.
http://clang.llvm.org/comparison.html.

[34] The LLVM team. Llvm api documentation.
http://www.llvm.org/doxygen/.

[35] The LLVM team. Llvm project homepage.
http://www.llvm.org/.

[36] W3C. A vocabulary and associated apis for html and xhtml.
http://www.w3.org/TR/html5/.

28

