
Program Analysis for Compiler Validation ∗

Anna Zaks
New York University
251 Mercer Street

New York, New York
ganna@cs.nyu.edu

Amir Pnueli
New York University
251 Mercer Street

New York, New York
amir@cs.nyu.edu

ABSTRACT
Translation Validation is an approach of ensuring compila-
tion correctness in which each compiler run is followed by
a validation pass that proves that the target code produced
by the compiler is a correct translation (implementation)
of the source code. It has been previously shown that the
problem of translation validation can be reduced to check-
ing if a single system - the corss-product of the source and
target, satisfies a specific property. In this paper, we show
how to adapt the existing program analysis techniques in the
setting of translation validation. In addition, we present a
novel invariant generation algorithm which strengthens our
analysis when the input programs contain dynamically allo-
cated data structures. Finally, we report on the prototype
tool that applies the developed methodology to verification
of the LLVM compiler. The tool handles many of the classi-
cal intraprocedural compiler optimizations such as constant
folding, reassociation, common subexpression elimination,
code motion, dead code elimination, and others.

1. INTRODUCTION
Optimizing compilers are quite large applications and are

bound to have bugs, some of which may alter the behavior
of programs being compiled. In safety critical and high-
assurance software, where the effort of program correctness
verification is extensive, it is highly advisable to ensure that
the transformations performed by a compiler preserve the
semantics of a program. That is precisely the goal of Trans-
lation Validation (TV) [10] - it ensures that compiler trans-
formations preserve program semantics. In essence, instead
of attempting verification of a given compiler, each com-
piler run is followed by a validation pass that automati-
cally checks if the target code, produced by the compiler,
is semantically equivalent to the source code. The Com-
piler Verification by Program Analysis of the Cross-Product

∗This research has been supported in part by a grant from
the Microsoft Phoenix Academic Program and the NSF
CSR–EHS grant CNS-0720581.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’08, Atlanta, Georgia USA
Copyright 2008 ACM 978-1-60558-382-2/08/11 ...5.00.

(CoVaC) framework is a two-step solution to the program
equivalence problem. First, one has to construct a compar-
ison system that represents simultaneous execution of the
source and target programs. Second, one has to check if
the comparison system satisfies a given specification. The
general framework has been described in [15] along with the
algorithm for the comparison system construction. Unlike
the other translation validation frameworks [16, 9, 12], Co-
VaC does not rely on any compiler input (such as the com-
piler debugging information). In order to make the validator
of non-cooperative compilers feasible and effective, the set
of optimizations under consideration is limited to intrapro-
cedural optimizations in which each branch (or a loop) in
the target program corresponds to a branch (or a loop) in
the source program. Many of the classical compiler opti-
mizations such as constant folding, reassociation, induction
variable optimizations, common subexpression elimination,
code motion, register allocation, instruction scheduling, and
others fall into this category.

However, as described in [15], the completeness of the Co-
VaC framework as well as its effectiveness depends on the
methods for generation of the comparison system invariants.
As one of the benefits from following the CoVaC approach,
we can choose any existing invariant generation technique
developed for a single system and plug it into the compiler
verification framework. In this paper, we describe what ex-
isting methods we found to be effective and how they can
be used in the CoVaC setting. We also present a novel
technique for generating the invariants required for check-
ing equivalence of dynamically allocated data structures, as
there were no existing suitable method. Finally, we report
on the experimental results which have been obtained by
applying the CoVaC tool to verification of optimizing trans-
formations performed by LLVM 1.9 [7, 2] - a very aggressive
open-source compiler.

The rest of the paper is organized as follows. Section 2
gives an overview of the CoVaC framework. Section 3 fo-
cuses on the main contributions of this paper. It shows
how the existing program analysis techniques can be ap-
plied in the CoVaC framework. It also presents the novel
approach to generating invariants required for support of
optimizations that involve dynamically allocated data struc-
tures. Finally, Section 4 presents the experimental results.
We discuss the related work in Section 5.

2. THE COVAC FRAMEWORK
Here we briefly describe the CoVaC equivalence checking

framework, which is formally presented in [15].

1

2.1 Transition Graphs
Our model is similar to that presented in [11] for verifi-

cation of procedural programs. A program (application) A
consists of m + 1 procedures: MAIN , P1, . . . , Pm, where
MAIN represents the main procedure, and P1, . . . , Pm are
procedures which may be called from MAIN or from other
procedures. We use Pi(~x, &~z) to denote the signature of a
procedure. Here, call-by-value parameter passing method is
used for ~x, and call-by-reference is used for ~z. A procedure
may return a result by means of ~z variables. We use ~y to
denote the typed variables of a module. ~y = (~x; ~z; ~w), i.e.
the variables in ~y are partitioned into ~x, ~z, and ~w, where
~x and ~z are the input parameters and ~w denotes the local
variables of the module.

Each procedure is presented as a transition graph. Its
nodes are connected by directed edges labeled by instruc-
tions. There are four types of instructions: guarded assign-
ments, procedure calls, and read/write operations. Consider
a procedure Pi(~x; &~z) with ~y = (~x, ~z, ~w). Let ~u include
variables from ~y; and E(~y) be a list of expressions over ~y.

• A guarded assignment is an instruction of the form
c → [~u := E(~y)], where guard c is a boolean expression.
When the assignment part is empty, we abbreviate the
label to a pure condition c?.

• Read and write instructions are denoted by read(~u)
and write(~u). They are used to express the interac-
tion of the procedure with the outside world; e.g. I/O
instructions.

• Procedure call instruction Pk(E(~y), ~u) denotes a call to
the procedure Pk(~xf ; &~zf), passing input parameters
E(~y) by value and ~u by reference.

Transition graphs can be used to model programs in pro-
cedural languages. In order to construct a formal model
of a program, we first choose a set of program cut points
Υ such that at least one location in each branch (or loop)
belongs to Υ and the locations right before and after each
read/write and call instruction belong to Υ. Each procedure
(or function) whose implementation is given is represented
by a transition graph. We choose the set Υ of a procedure
Pi to be the set of nodes for the corresponding transition
graph. For every pair of locations n, m in Υ, if there exists
a path π from n to m, which does not pass through any
other cut point, we add edge (n, m) to the graph and label
it by the instruction that summarizes the effect of executing
the path π.

2.2 Witness Comparison Graph
Assume we are given two procedures S and T , represent-

ing the source and the target respectively. The main idea
behind CoVaC is that the problem of establishing correct
translation is equivalent to construction of a comparison
graph and checking if it satisfies a set of correctness con-
ditions. The comparison transition graph C = S £ T repre-
sents a simultaneous execution of S and T . The comparison
graph variables consist of the source and target variables.
Each node of the graph is a pair of source and target nodes.
Each edge of the graph is labeled by a pair of instructions of
the same type (both should be either read, write, procedure
calls, or assignments). Note that this implies that the reads
and writes of the two systems are always performed in sync.

The edge labels should be either exactly the same as the
corresponding labels of the input systems or, alternatively,
an assignment in one of the systems may be coupled with
an ε-transition (a skip) in the other. The later signifies the
lack of progress in one of the systems. In addition to the
structural requirements, no computation of C may contain
an infinite sequence of source (or target) ε-transitions; thus,
every computation of the comparison graph has the corre-
sponding computations in both source and target. In the
other direction, each source and target computation must
be represented in C.

An example of a comparison graph is presented in Fig. 1.
We use capital letters to denote the variables of the source
and their lower case counterparts for the target. First, the
source procedure increments Y by 25. Second, both the
source and target read a number from an I/O device. Third,
the target catches up with the source by incrementing y by
25. Finally, both systems print out the products Y ∗X and
y ∗ x.

2,20,0 1,0 2,1 3,3

ε;
write(y ∗ x)

write(Y ∗X);
read(x)
read(X);Y := Y + 12 + 13;

ε y := y + 25

Figure 1: A comparison transition graph for
C(&(Y, y)) = S(&Y) £ T (&y).

A comparison transition graph C is called a witness of
correct translation if there exists a set of program invariants
{ ϕl : l ∈ nodes of C } such that the following holds.

• For every edge e from node n to node m labeled by
(write(~uS); write(~uT)),

ϕn → (~uS = ~uT).

• If n is the exit node of the comparison transition graph
S(in : ~xS ; &~zS) £ T (in : ~xT ; &~zT), we check if the
values of the variables passed by reference are equal:

ϕn → (~zS = ~zT).

It has been shown in [15] that in order to check if T is a
correct translation of S it is sufficient to:

1. construct a comparison graph C = S £ T ;

2. check if C is a witness of correct translation.

2.3 Comparison Graph Construction
CoVaC framework can be used in various settings. In some

cases, we may assume full knowledge of the inner workings
of a particular compiler. For example, a self-certifying com-
piler may output a comparison graph. On the other hand,
we may have to accommodate minimal (or no) compiler col-
laboration. Making the most liberal assumption is useful
to users who may have to work with a particular existing
compiler. It can also be of service to compiler developers
to facilitate testing of immature compilers. [15] presents an
algorithm for the comparison system construction that is
suitable in the second setting - it only requires the source
and the target procedures as its input. Here, we present a
simplified version of the algorithm.

The algorithm is iterative and uses WorkList - a list of the
comparison graph nodes, as the discovery frontier. The list
is initialized with the procedure entry node (composed of the
source and target procedure entry nodes). On each iteration,

2

1

0

2

4

5 6

0,4

1,6

(CS ∧ ¬cT)?CS?

read(XS) write(Y S)

¬CS?

S :

cT ? ¬cT ?

read(xT) write(yT)

T :

£ =⇒
read(XS)
write(yT)

Figure 2: Motivation for branch alignment.

a node n from the WorkList is removed and new edges
outgoing from n are discovered via composing the source and
target edges. All the successors reachable by following the
new edges are placed back into the WorkList. The following
rules are used to match the source and target edges:
Rule 1: Only edges of the same type can be composed - both
should be read, write, procedure call, or assignment edges.
Guarded assignments are composed only if either both or
none of the systems are currently at a branch node (or a loop
head depending on the desired granularity). If only one of
the systems can branch (execute a guarded assignment), it
must wait for the other system to catch up using the second
rule.
Rule 2: An ε-label can be matched up with an assignment;
however, it is required that the ε-edge does not introduce an
ε-cycle for any of the systems.
Rule 3: If none of the rules above are applicable, an error
must be raised and the construction of C should be aborted.

There is an obvious efficiency problem with Rule 1 when
we consider two nodes with multiple outgoing assignment
edges. A straightforward approach, where we consider all
possibilities (i.e., cartesian product), may lead to a num-
ber of edges in C being quadratic to the number of edges
in the input graphs. More importantly, if we mismatch the
branches, unreachable nodes could be introduced into the
graph, which may lead to further misalignment down the
road. In particular, read, write, and function call edges may
get out of sync. Consider the example in Fig. 2. Suppose
CS = cT , XS = xT , and Y S = yT . Then one input program
is a correct translation of the other. However, if we compose
the edges (0, 1) and (4, 6) just relying on the fact that they
are both conditional assignments, the algorithm presented
so far will raise an error when examining the newly added
unreachable node 〈1, 6〉. Thus, there is a need for compre-
hensive branch matching. One such method is presented
below; in addition to resolving the misalignment issue, it
usually constructs a comparison graph linear in the size of
the input graphs.

Let Ck be the partially constructed graph obtained after
the kth iteration of the algorithm. We can use the invariants
{ϕk

l | l ∈ nodes of Ck} to facilitate the conditional branch
alignment at iteration k+1. The invariants allow to rule out
the matches that would introduce the infeasible paths into
the comparison graph. Let ϕk

n be the invariant that holds
at node 〈nS , nT 〉 of graph Ck. Let ES

n represent the set of
source edges outgoing from nS s.t. each edge eS

i ∈ ES
n is

labeled by cS
i → [~uS

i := ES
i (~y)]. Similarly, we define ET

n -
the set of target edges outgoing from nT .

A pair (eS
i , eT

j) ∈ ES
n × ET

n is matched if and only if
- it does not yet belong to the comparison graph and
- (ϕk

n ∧ cS
i ∧ cT

j) is satisfiable.
We only want to add an edge if there exists an execution
through Ck in which eS

i and eT
j are enabled simultaneously.

3. INVARIANT GENERATION
The completeness and efficiency of the CoVaC approach

heavily depends on invariant generation algorithms. The
framework relies on auxiliary invariants to generate the com-
parison graph and to check if a generated graph is a witness
of correct translation. We follow two strategies to obtain a
practical solution. First, the assertions that are generated
are goal oriented. In particular, it assumes that we only
need to check for the validity of the formulas of the form
exp1 = exp2. Second, we utilize a two-phase strategy where
each phase provides a certain balance of precision and effi-
ciency. In the first phase, we apply fast lightweight analysis.
When it is not sufficient, we resort to deep and precise anal-
ysis. The overall work flow of the CoVaC tool is presented
in Fig. 3.

3.1 Equivalence Checking
Instead of a general purpose invariant generation algo-

rithm, CoVaC tool uses an oracle that checks if two input
expressions are equivalent at a particular program location.
Checking two expressions for equivalence is sufficient when
confirming whether a graph is a witness of correct trans-
lation. We just need to ensure that at every node preced-
ing the write instruction, the values that are being printed
by the source and the target are the same. Another place
where we need auxiliary invariants is branch alignment. We
optimize the general approach and align branches by check-
ing equivalence of the corresponding conditions instead of
checking the satisfiability of the conjunctions as described
at the end of Section 2. While this approach is less precise,
it is still powerful enough to handle most classical compiler
optimizations.

Each time we have to align the conditional assignments,
we essentially match a branch instruction (or an if-statement)
on the source with the one on the target. Assume the source
edge eS

+ is taken when CS holds; and eS
− is taken when ¬ CS

holds. Similarly, there are two edges on the target: eT
+ and

eT
−, which are conditioned on cT . Instead of checking the

four formulas for satisfiability (following the method in Sec-
tion 2), we use the fact that we are dealing with branch in-
structions, where the conditions are negations of each other,
and consider the following cases:

• (CS ⇔ cT) is valid - the conditions are equal; thus, the
following edges are matched: (eS

+, eT
+) and (eS

−, eT
−).

• (CS ⇔ ¬ cT) is valid - one condition is the negation of
the other; the following edges are matched: (eS

+, eT
−)

and (eS
−, eT

+).

• Otherwise, we assume that the conditions are not re-
lated, so either all possible matches have to be made:
(eS

+, eT
+), (eS

−, eT
−), (eS

+, eT
−), and (eS

−, eT
+), or we

can use an ε-transition and freeze the execution of

3

No

Y
es

Assertion Checker CVC

Value Numbering
Oracle

Equivalence Checking

Construct C = S £ T

Check if C is a witness

S

Error Success

T

(exp1 = exp2)?
equal?

Figure 3: The Work Flow of the CoVaC tool.

the source system, obtaining the following matches:
(eS

+, ε); (eS
−, ε). The second option turns out to

be better suitable in practice. It corresponds to an
optimization in which both branches of a source if -
statement are removed by an optimizer.

The only case that we have not yet considered is when
the conditions overlap. For example, CS = (x ≥ 5) and
cT = (x ≥ 6). In this case, the set of the edges should be
(eS

+, eT
+); (eS

+, eT
−); (eS

−, eT
−). We would have to use the gen-

eral matching rule to determine this dependency. However,
the checks for such overlaps are rarely needed when dealing
with proving translation in presence of compiler optimiza-
tions. The only exception is when one of the branches of a
source if-statement is removed due to branch simplification.
To address this optimization, we execute a pre-processing
phase on both input programs in which we simplify the con-
ditionals that evaluate to true.

3.2 Suitable Existing Techniques
In order to cover most common compiler optimizations,

the algorithm has to reason in abstractions of uninterpreted
functions and linear arithmetic. The problem of checking
equality assertions in programs abstracted in the combined
theory of linear arithmetic and uninterpreted functions, and
whose conditionals are treated as non-deterministic, is coNP-
hard [6]. Nevertheless, there exist efficient methods that are
useful in determining the relationships between source and
target expressions.

As depicted in Fig. 3, we employ a value numbering al-
gorithm first. Global value numbering [8] assigns the same
value number to provably equivalent variables and expres-
sions throughout the procedure. This technique is particu-
larly effective since we need an oracle to decide the validity
of the formula exp1 = exp2. Value numbering is both fast
and capable of detecting many value matches between the
source and target expressions, especially, in the code frag-
ments that have not been heavily optimized. Note that even
when no optimizations are applied and the input systems
are identical up to the renaming of the variables, there must
be a technique in place capable of efficiently determining
if the corresponding two variables are equal. We use the
algorithm by Simpson [14], which provides a good balance
between reasoning in theories of uninterpreted functions and
linear arithmetic: it can detect a vast majority of equalities
of expressions whose operators are treated as uninterpreted
functions but also can easily handle simple constant folding
and algebraic identities.

When value numbering is not strong enough to determine
if two expressions are equivalent (due to excessive optimiza-

tion), we resort to assertion checking - a static program
verification technique based on computation of a weakest-
precondition [5]. We generally follow methods like the one
described in [3], for development of our assertion checker. A
typical assertion checker (or a static program verifier) takes
as an input a program and some assertion and generates
from these a verification condition that implies the validity
of the assertion in the program. The validity of the veri-
fication condition is checked by a theorem prover. We use
CVC3 [1], an automatic theorem prover for the Satisfiability
Modulo Theories, as a back end validity checker. Uninter-
preted functions are used to represent the operators that are
not supported by CVC3. As long as the compiler does not
perform any simplifications based on the semantics of these
operators, there is no loss of precision. The negative result
- the expressions are not equal, is reported if we are unable
to determine if two expressions are equivalent (for example,
when the theorem prover is not strong enough to determine
the validity of a verification condition). This ensures sound-
ness of the method.

As a preprocessing step to the assertion checker, we sim-
plify the input procedure based on the results of the value
numbering: the same name is used to represent the variables
with the same value number. This turns out to be crucial for
both precision and efficiency of the assertion checker. Addi-
tional loop invariants, similar to those used in general pur-
pose static verifiers [13], are used by the assertion checker.
In addition to using the existing invariant generation tech-
niques, we have developed the novel method that we use for
proving equivalence of unbounded heaps. It is described in
the next section.

3.3 Proving Equivalence of Unbounded Heaps
The program heap is modeled by unbounded arrays in

CVC3 (Ex: ARRAY INT OF REAL), which allows to em-
ploy CVC3’s theory of arrays. Consider the comparison sys-
tem example in Fig. 4. Here, HS and HT denote the heaps
of the source and the target programs. We assume that a
and b are aliases. Since HS [b] is being assigned to by the
edge (1, 3), the assignment to the source heap HS [a] := x
is redundant and is removed in the target. The assignment
HS [k] := i is also redundant since k is not updated within
the loop and the value of HS [k] is altered by the edge (1, 3).
In order to determine if the constructed graph is a witness,
the assertion checker needs to determine if the values at the
corresponding heap locations are equal: (HS [l] = HT [l]), for
some address l. Since the heaps are dynamically updated
within the loop, the number of locations which have to be
considered can be unbounded. In addition, due to various

4

HS [b] := 5; HT [b] := 5;

1

2

3 4
write(HS [l]); write(HT [l])

0

HS [i] := y; HT [i] := y;

ϕ1 : (a = b)
HS [a] := x HS [k] := z; HT [k] := z

HS [k] := i;

Figure 4: Heaps equivalence example. Only operations that involve HS and HT are shown. Source and target
operations share the same variables as a result of value numbering.

optimizations like code motion and dead code elimination,
the source and target heaps are not equal to each other at
each node of the comparison program. Going back to our ex-
ample, since the redundant stores HS [a] := x and HS [k] := i
are eliminated in the target program, HS may not be equal
to HT at the graph nodes 1 and 2. The key assumption we
use is that, at each node n of the graph, the heaps only dif-
fer from each other at a finite set of memory locations and
the values at the rest of heap locations are equivalent. This
assumption is fair in a setting of compiler validation.

For our analysis, we assume that the input comparison
system is in SSA form [4]. Let NC denote the set of nodes of
the comparison graph C (which can be either a partially or a
fully constructed comparison graph). Next, we describe the
procedure that computes ∆n : n ∈ NC - the set of symbolic
heap locations at which the heaps may possibly differ.

For every node n, ∆n is initialized with ∅. Then, we
iterate and at each iteration update the deltas according to
the equation below. We stop when there is no change. In
other words, the set of deltas is computed as the minimal
fixed point of the equation.
Data Flow Equation: Let En be the set of edges incoming
into node n. For an edge e ∈ En, let head(e) denote the head
node of e; and let δe denote the set of heap locations that
have been updated by the instructions of e.

∆n := ∆n

⋃
reduce(

⋃
e∈En

{∆head(e)

⋃
δe}, n)

For every edge e incoming into n, we add to the set ∆n the
locations at which the heaps may differ prior to executing the
instructions of e and the locations that have been updated by
e. Note that e may update HS and HT by storing the same
expression at a location l. In that case, the HS [l] = HT [l]
at n and ∆n should not include l. The reduce procedure
removes the locations at which the heaps will become equal
once we arrive at location n:

reduce (SymbolicLocationsSet Xn, Node n)
for each l ∈ Xn :

if (check assertion(HS [l] = HT [l], n))
Xn = (Xn \ l);

return Xn;

In the pseudocode above, we use the assertion checker to
determine if the values stored at the two heap locations are
equal at node n. The assertion checker uses the invariants
based on alias analysis and the invariants generated from
the ∆i, i ∈ NC computed at the previous iteration. The
invariant generation is described below.

Additional check has to be performed if the edge e =
(m, n) is a loop back edge. If any address from the set
∆m \ ∆n is modified in the loop (a possibly different heap

location is modified on each iteration of the loop), we report
an error - the number of locations at which the heaps differ
may be unbounded.
Invariant Generation: Given the computed ∆n, we gen-
erate the following invariant for a node n:

ϕn = ∀i ∈ Z (
∧

∀l∈∆n

i 6= l → HS [i] = HT [i])

Going back to the example from Fig. 4, below are the
generated delta sets after each iteration.

∆0 ∆1 ∆2 ∆3 ∆4

Initialization ∅ ∅ ∅ ∅ ∅
Iteration 1 ∅ {a} {k} ∅ ∅
Iteration 2 ∅ {a, k} {a, k} ∅ ∅
Iteration 3 ∅ {a, k} {a, k} ∅ ∅

Let’s consider the second iteration of the algorithm. When
considering node 1, ∆1 = {a}⋃

reduce(δ(0,1)

⋃
∆2, 1) =

{a}⋃
reduce({a, k}, 1) = {a, k}. Next, node 2 is processed

and we compute ∆2 = {k}⋃
reduce(∆1

⋃
δ(1,2), 2) =

{k}⋃
reduce({a, i, k}, 2) = {a, k}. Since the edge (2, 1) is

a back edge, we check that k is not updated within the loop.
When node 3 is processed, ∆3 = reduce(∆1

⋃
δ(1,3), 3) =

reduce({a, k, b}, 3) = ∅. All the locations are removed by
reduce since a and b are aliases, and the source and tar-
get heaps are overwritten with the same values at k and b.
Finally, we compute ∆4 = reduce(∆3, 4) = ∅. The compu-
tation stabilizes after three iterations.

The corresponding invariants can be encoded as the fol-
lowing predicates in CVC3:
ϕ0 = ϕ3 = ϕ4 : FORALL (i : INT) : (HS [i] = HT [i])
ϕ1 = ϕ2 : FORALL (i : INT) : ((i 6= a)&(i 6= k))

=> (HS [i] = HT [i])
Below is a more efficient version, which can also be used if
the theorem prover does not support quantification:
ϕ0 = ϕ3 = ϕ4 : Hs = Ht
ϕ1 = ϕ2 : ((HS WITH [a] := HT [a])

WITH [k] := HT [k]) = Ht

Claim 1 If the algorithm terminates without an error, for
every n ∈ NC, the generated ϕn is invariant at n.

Proof. Assume that is not the case. Let the path π from
the procedure entry r to some node n be a shortest counter-
example. Then, there exists a heap location i, such that
HS [i] 6= HT [i] at n, while ϕn asserts otherwise. Meaning,
there is no symbolic location l ∈ ∆n that evaluates to i at
n.

Consider the last time node n is processed. Suppose, the
edge (v, w) is the last edge on the path π that assigned to
the heap at location i. Then, there is a location l ∈ δ(v,w)

5

that evaluates to i. The location l will be propagated to
n according to the data flow equation, unless it is reduced
or the value of l is changed by a loop (the second would
lead to an early termination with an error). Let’s show
that l cannot be reduced and thus belongs to ∆n. As-
sume wrongly that check assertion(HS [l] = HT [l], u) re-
turns true for some node u along the path from w to n.
However, since HS [l] 6= HT [l] at u for the execution π, it
must be that one of the invariants associated with the nodes
appearing on π from the beginning up to the last occurrence
of u, but not including u, does not hold. Therefore, the coun-
terexample π can be truncated starting from u, resulting in
a shorter counterexample, which is a contradiction.

To finish the proof, we just need to show that l must
evaluate to i at the last state of π. Note that l evaluates
to i when we were taking the edge (v, w). The value is
unchanged since the procedure is in SSA form and l is not
being assigned in a loop.

Claim 2 The algorithm terminates.

Proof. Termination is guaranteed since the number of
locations added to ∆n : n ∈ NC monotonically grows; and
the number of symbolic locations is limited by the number
of program expressions.

The number of iterations is bounded by NC ∗ c, where c is
the number of heap assignments. In practice, we rarely need
to iterate for that long. First, we process the nodes in the
topological order and use the most recently computed deltas,
instead of the results obtained at the previous iteration. In
addition, since loops usually have zero net effect on delta, it
is uncomon that a node is processed more than twice.
Sound Treatment of Procedure Calls: Our analysis is in-
traprocedural. To ensure soundness, we check for the follow-
ing:

• If an edge from a node n to a node m is a call to proce-
dure foo, the procedure foo must not access the heaps
at the locations in ∆n. In fact, when dealing with com-
piler verification, either ∆n is an empty set, or simple
alias analysis are sufficient to check the condition.

• If a node r is the procedure exit node, ∆r = ∅. For
the entry node t, it is assumed that ∆t = ∅ (Recall
that the ∆t is initialized with ∅ and is never updated
by the algorithm since the entry node does not admit
any input edges). This condition ensures the zero net
effect of the procedure. Consequently, for a call edge
e, δe = ∅.

4. EXPERIMENTAL RESULTS
We have constructed a prototype CoVaC tool based on

the presented techniques and used it to verify the optimiza-
tions performed by LLVM compiler. LLVM [2] is an open
source compiler for C and C++. We currently support a
subset of C, which does not include function pointers, vari-
able argument function calls, jumps.

We have tested the tool on a set of procedures with the
total line count of 2K of LLVM bytecode, compiled from the
selected LLVM and CoVaC feature tests and third party im-
plementation of the classical algorithms like binary search,

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140

R
un

ni
ng

 ti
m

e
(s

ec
)

Procedure size (lines of LLVM bytecode)

Figure 5: Dependency between the running time
and the size of the procedure.

in-place heapsort, mergesort, Qsort, strcmp, primality test-
ing, shortest paths, etc. All the presented benchmarks con-
tain dynamically allocated data structures; thus, they re-
quire the heap equivalence analysis presented in Section 3.3.
On average, when validating highly optimized code (1/2 op-
timizations per line), CoVaC spends 0.02 seconds per every
line of code. Fig. 5 shows the dependency of CoVaC tool
running time on the procedure size. The size of the ‘cross’ is
proportional to the number of optimizations performed. The
most time is spent on assertion checking, which is dispatched
once per every 8 lines when it is difficult to find a strong in-
variant with value numbering alone. This explains why the
dependency of running time on the procedure size and the
number of optimizations is not always consistent. We believe
that the prototype’s performance provides a strong evidence
that a practical validator can be constructed (note that un-
like a compiler, the tool is used few times per program’s
lifetime).

5. CONCLUSION AND RELATED WORK
We presented a novel data flow analysis useful in proving

equivalence of two unbounded memory regions in a single
program. In addition, we showed how this and the other
existing program analysis techniques can be plugged into
the CoVaC framework, in which the program equivalence
problem is reduced to analysis of a single comparison pro-
gram. Good examples of the existing translation validation
frameworks that support a similar set of optimizations are
[17], [12], and [9]. Similarly to CoVaC, the frameworks try
to establish the relation between the source and target pro-
gram locations and expressions. The difference is that the
other frameworks rely on the compiler debug annotations
and use program analysis and proof rules specialized to pro-
gram equivalence checking. For example, [17] uses the debug
information to construct a set of candidate expressions that
might be equal and then checks which of them are indeed
equivalent. The approach of [9] relies on compiler annota-
tions to detect the related branches of the if-statements. It
presents a set of rewrite rules that are used to check if an
expression of the source is equivalent to an expression on
the target. In addition, [9] introduced the notion of memory
equivalence in which the memory is equal except possibly at
a finite set of heap locations.

6

6. REFERENCES
[1] CVC3: An Automatic Theorem Prover for

Satisfiability Modulo Theories (SMT).

[2] The LLVM Compiler Infrastructure Project.
http://llvm.org.

[3] Mike Barnett and K. Rustan M. Leino.
Weakest-precondition of unstructured programs. In
PASTE, 2005.

[4] Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck. Efficiently
computing static single assignment form and the
control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451–490,
Oct 1991.

[5] Edsger W. Dijkstra. A Discipline of Programming.
Prentice Hall, 1976.

[6] Sumit Gulwani and Ashish Tiwari. Assertion checking
over combined abstraction of linear arithmetic and
uninterpreted functions. In The 15th European
Symposium on Programming, pages 279–293. Springer,
March 2006.

[7] Chris Lattner and Vikram Adve. LLVM: A
compilation framework for lifelong program analysis &
transformation. In Proceedings of the 2004
International Symposium on Code Generation and
Optimization, 2004.

[8] Steven S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[9] George C. Necula. Translation validation for an
optimizing compiler. In Programming Language Design
and Implementation, pages 83–95. ACM Press, 2000.

[10] A. Pnueli, M. Siegel, and E. Singerman. Translation
validation. Lecture Notes in Computer Science,
1384:151–166, 1998.

[11] Amir Pnueli. Verification of procedural programs. In
We Will Show Them! Essays in Honour of Dov
Gabbay, Volume Two, pages 543–590. College
Publications, 2005.

[12] Xavier Rival. Symbolic transfer function-based
approaches to certified compilation. In 31st
Symposium on Principles of Programming Languages,
pages 1–13. ACM Press, 2004.

[13] S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful
techniques for the automatic generation of invariants.
In Rajeev Alur and Thomas A. Henzinger, editors,
Proceedings of the Eighth International Conference on
Computer Aided Verification CAV, volume 1102, pages
323–335, New Brunswick, NJ, USA, / 1996. Springer
Verlag.

[14] Loren Taylor Simpson. Value-Driven Redundancy
Elimination. PhD thesis, Rice University, 1996.

[15] Anna Zaks and Amir Pnueli. CoVaC: Compiler
validation by program analysis of the cross-product. In
International Symposium on Formal Methods (FM
2008), Turku, Finland, May 2008.

[16] Lenore Zuck, Amir Pnueli, Yi Fang, and Benjamin
Goldberg. VOC: A methodology for the translation
validation of optimizing compilers. Journal of
Universal Computer Science, 9(3):223–247, 2003.

[17] Lenore Zuck, Amir Pnueli, Benjamin Goldberg, Clark
Barrett, Yi Fang, and Ying Hu. Translation and
run-time validation of loop tranformations. Formal

Methods in System Design, 27(3):335–360, 2005.

7

