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ABSTRACT
Instruction selection is a key component of code generation. High
quality instruction selection is of particular importance in the em-
bedded space where complex instruction sets are common and code
size is a prime concern. Although instruction selection on tree ex-
pressions is a well understood and easily solved problem, instruc-
tion selection on directed acyclic graphs is NP-complete. In this
paper we present NOLTIS, a near-optimal, linear time instruction
selection algorithm for DAG expressions. NOLTIS is easy to im-
plement, fast, and effective with a demonstrated average code size
improvement of 5.1% compared to the traditional tree decomposi-
tion and tiling approach.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code generation,
Compilers, Optimization

General Terms
Algorithm, Performance

Keywords
Instruction Selection

1. INTRODUCTION
The instruction selection problem is to find an efficient mapping

from the compiler’s target-independent intermediate representation
(IR) of a program to a target-specific assembly listing. Instruc-
tion selection is particularly important when targeting architectures
with complex instruction sets, such as the Intel x86 architecture. In
these architectures there are typically several possible implementa-
tions of the same IR operation, each with different properties (e.g.,
on x86 an addition of one can be implemented by an inc, add,
or lea instruction). CISC architectures are popular in the embed-
ded space as a rich, variable-length instruction set can make more
efficient use of limited memory resources.

Code size, which is often ignored in the workstation space, is
an important optimization goal when targeting embedded proces-
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sors. Embedded designs often have a small, fixed amount of on-
chip memory to store and execute code with. A small difference in
code size could necessitate a costly redesign. Instruction selection
is an important part of code size optimization since the instruction
selector is responsible for effectively exploiting the complexity of
the target instruction set. Ideally, the instruction selector would be
able to find the optimal mapping from IR code to assembly code.

In the most general case, instruction selection is undecidable
since an optimal instruction selector could solve the halting prob-
lem (halting side-effect free code would be replaced by a nop and
non-halting code by an empty infinite loop). Because of this, in-
struction selection is usually defined as finding an optimal tiling
of the intermediate code with a set of predefined machine instruc-
tion tiles. Each tile is a mapping from IR code to assembly code
and has an associated cost. An optimal instruction tiling minimizes
the total cost of the tiling. If the IR is a sequence of expression
trees, then efficient optimal tiling algorithms exist [3]. However, if
a more expressive directed acyclic graph (DAG) representation [1]
is used the problem becomes NP-complete [8, 4, 33].

In this paper we describe NOLTIS, a near-optimal, linear time
instruction selection algorithm for expression DAGs. NOLTIS ex-
tends existing instruction selection techniques. Empirically it is
nearly optimal (an optimal result is found more than 99% of the
time and the non-optimal solutions are very close to optimal). We
show that NOLTIS significantly decreases code size compared to
existing heuristics. The primary contribution of this paper is our
near-optimal, linear time DAG tiling algorithm, NOLTIS. In addi-
tion, we

• prove that the DAG tiling problem is NP-complete without
relying on restrictions such as two-address instructions, reg-
ister constraints, or tile label matching,

• describe an optimal 0-1 integer programming formulation of
the DAG tiling problem,

• and provide an extensive evaluation of our algorithm, as well
as an evaluation of other DAG tiling heuristics, including
heuristics which first decompose the DAG into trees and then
optimally tile the trees.

The remainder of this paper is organized as follows. Section 2
provides additional background and related work. Section 3 for-
mally defines the problem we solve as well as proves its hardness.
Section 4 describes the NOLTIS algorithm. Section 5 describes a
0-1 integer program formulation of the problem we use to evalu-
ate the optimality of the NOLTIS algorithm. Section 6 describes
our implementation of the algorithm. Section 7 provides detailed
empirical comparisons of the NOLTIS algorithm with other tech-
niques. Section 8 discusses some limitations of our approach and
opportunities for future work, and Section 9 provides a summary.



2. BACKGROUND
The classical approach to instruction selection has been to per-

form tiling on expression trees. This was initially done using dy-
namic programming [3, 36] for a variety of machine models includ-
ing stack machines, multi-register machines, infinite register ma-
chines, and superscalar machines [7]. These techniques have been
further developed to yield code-generator generators [21, 9] which
take a declarative specification of an architecture and, at compiler-
compile time, generate an instruction selector. These code-genera-
tor generators either perform the dynamic programming at compile
time [2, 16, 14] or use BURS (bottom-up rewrite system) tree pars-
ing theory [34, 32] to move the dynamic programming to compiler-
compile time [17, 35]. In this paper we describe the NOLTIS al-
gorithm, which uses an optimal tree matcher to find a near-optimal
tiling of an expression DAG. Although we use a simple compile-
time dynamic programming matcher, the NOLTIS algorithm could
also easily use a BURS approach to matching.

Tiling expression DAGs is significantly more difficult than tiling
expression trees. DAG tiling has been shown to be NP-complete for
one-register machines [8] and for two-address, infinite register ma-
chine models [4]. Two-address machines have instructions of the
form ri ← ri op rj and ri ← rj . Since one of the source operands
gets overwritten, the difficulty lies in minimizing the number of
moves inserted to prevent values from being overwritten. Even with
infinite registers and simple, single node tiles, the move minimiza-
tion problem is NP-complete although approximation algorithms
exist [4]. DAG tiling remains difficult on a three-address, infi-
nite register machine if the exterior tile nodes have labels that must
match [33]. These labels may correspond to value storage locations
(e.g. register classes or memory) or to value types. Such labels are
unnecessary if instruction selection is separated from register allo-
cation and if the IR has already fully determined the value types of
edges in the expression DAG. However, we show in Section 3 that
the problem remains NP-complete even without labels.

Although DAG tiling is NP-complete in general, for some tile
sets it can be solved in polynomial time [15]. If a tree tiling algo-
rithm is adapted to tile a DAG and a DAG optimal tile set is used
to perform the tiling, the result is an optimal tiling of the DAG. Al-
though the tile sets for several architectures were found to be DAG
optimal in [15], these tile sets used a simple cost model and the
DAG optimality of the tile set is not preserved if a more complex
cost model, such as code size, is used. For example, if the tiles in
Figure 1 all had unit cost, they would be DAG optimal, but with the
cost metric shown in Figure 1 they are not.

Traditionally, DAG tiling is performed by using a heuristic to
break up the DAG into a forest of expression trees [5]. More heavy-
weight solutions, which solve the problem optimally, include using
binate covering [27, 28], using constraint logic programming [26],
using integer linear programming [31] or performing exhaustive
search [23]. In addition, we describe a 0-1 integer programming
representation of the problem in Section 5. These techniques all ex-
hibit worst-case exponential behavior. Although these techniques
may be desirable when code quality is of utmost importance and
compile-time costs are immaterial, we believe that our linear time,
near-optimal algorithm provides excellent code quality without sac-
rificing compile-time performance scalability.

An alternative, non-tiling, method of instruction selection, which
is better suited for linear, as opposed to tree-like, IRs, is to incor-
porate instruction selection into peephole optimization [12, 18, 19,
24, 10]. In peephole optimization [30], pattern matching transfor-
mations are performed over a small window of instructions, the
“peephole.” This window may be either a physical window, where
the instructions considered are only those scheduled next to each

other in the current instruction list, or a logical window where the
instructions considered are just those that are data or control re-
lated to the instruction currently being scanned. When perform-
ing peephole-based instruction selection, the peepholer simply con-
verts a window of IR operations into target-specific instructions. If
a logical window is being used, then this technique can be consid-
ered a heuristic method for tiling a DAG.

Instruction selection algorithms have been successfully adapted
to solve the technology mapping problem in the automated circuit
design domain [25]. Many domain-specific extensions to the basic
tiling algorithm have been proposed (see [22, 13] for references),
but, to the best of our knowledge, all DAG tiling algorithms pro-
posed in this area have resorted to simple, domain-specific, heuris-
tics for decomposing the DAG into trees before performing the
tiling.

3. PROBLEM DESCRIPTION
Given an expression DAG which represents the computation of

a basic block and a set of architecture specific instruction tiles, we
wish to find an optimal tiling of the DAG which corresponds to the
minimum cost instruction sequence. The expression DAG consists
of nodes representing operations (such as add or load) and operands
(such as a constant or memory location). We refer to a node with
multiple parents as a shared node. The set of tiles consists of a
collection of expression trees each with an assigned cost. If a leaf
of an expression tree is not an operand, it is assumed that the inputs
for that leaf node will be available from a register1. Similarly, the
output of the tree is assumed to be written to a register. A tile
matches a node in the DAG if the root of the tile is the same kind
of node as the DAG node and the subtrees of the tile recursively
match the children of the DAG node. In order for a tiling to be
legal and complete, the inputs of each tile must be available as the
outputs of other tiles in the tiling, and all the root nodes of the
DAG (those nodes with zero in-degree) must be matched to tiles.
The optimal tiling is the legal and complete tiling where the sum
of the costs of the tiles is minimized. More formally, we define an
optimal instruction tiling as follows:

Definition Let K be a set of node kinds; G = (V, E) be a directed
acyclic graph where each node v ∈ V has a kind k(v) ∈ K, a set of
children ch(v) ∈ 2V such that ∀c∈ch(v)(v → c) ∈ E, and a unique
ordering of its children nodes ov : ch(v) → {1, 2, ...|ch(v)|};
T be a set of tree tiles ti = (Vi, Ei) where similarly every node
vi ∈ Vi has a kind k(vi) ∈ K

S
{◦} such that k(vi) = ◦ implies

outdegree(vi) = 0 (nodes with kind ◦ denote the edge of a tile
and, instead of corresponding to an operation or operand, serve to
link tiles together), children nodes ch(vi) ∈ 2Vi , and an ordering
ovi ; and cost : T → Z+ be a cost function which assigns a cost
to each tree tile. We say a node v ∈ V matches tree ti with root
r ∈ Vi iff k(v) = k(r), |ch(v)| = |ch(r)|, and, for all c ∈ ch(v)
and ci ∈ ch(r), ov(c) = or(ci) implies that either k(ci) = ◦ or c
matches the tree rooted at ci. For a given matching of v and ti and
a tree tile node vi ∈ Vi, we define mv,ti : Vi → V to return the
node in V that matches with the subtree rooted at vi. A mapping
f : V → 2T from each DAG node to a set of tree tiles is legal iff
∀v ∈ V :

ti ∈ f(v) =⇒ v matches ti

indegree(v) = 0 =⇒ |f(v)| > 0

∀ti ∈ f(v),∀vi ∈ ti, k(vi) = ◦ =⇒ |f(mv,ti(vi))| > 0

1These are unallocated temporaries, not actual hard registers.
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Figure 1: An example of instruction selection on a DAG. (a) The tile set used (commutative tiles are omitted). (b) Two possible tilings.
In a simple cost model where every tile has a unit cost the top tiling would be optimal, but with the cost model shown the lower tiling
is optimal.

An optimal instruction tiling is a legal mapping f which minimizesX
v∈V

X
ti∈f(v)

cost(ti)

In some versions of the instruction tiling problem, the name of
the storage location a tile writes or reads is important. For example,
some tiles might write to memory or read from a specific register
class. In this case, there is an additional constraint that a tile’s in-
puts must not only match with other tiles’ outputs, but the names
of the respective input and output must also match. In practice, if
instruction selection is performed independently of register alloca-
tion, the names of storage locations are irrelevant. Although pre-
vious proofs of the hardness of instruction selection have relied on
complications such as storage location naming [33] or two-address
instructions [4], we now show that even without these restrictions
the problem remains NP-complete.

THEOREM 3.1. The optimal instruction tiling problem (is there
an optimal instruction tiling of cost less than kconst?) is NP-
complete.

PROOF. Inspired by [33], we perform a reduction from satisfi-
ability of Boolean expressions [20]. Given a Boolean expression
consisting of variables u ∈ U and Boolean connectives {∨,∧,¬},
we construct an instance of the optimal instruction tiling problem
as follows:

Let the set of node kinds K be {∨,∧,¬, �, R, v}. We refer to
nodes with kind � as box nodes. For every variable u ∈ U , create
two nodes u1 and u2 and a directed edge (u1 → u2) in G such that
k(u1) = � and k(u2) = v. Similarly, for every Boolean operator

op create two nodes op1 and op2 and a directed edge (op1 → op2)
such that k(op1) = � and k(op2) is the corresponding operation.
Next, for every operation a op b create edges (op2 → a1) and
(op2 → b1) where k(a1) = k(b1) = � (in the case of the unary
¬ operation a single edge is created). Note the ordering of child
nodes is irrelevant since the Boolean operators are commutative.
Finally, create a node r and edge (r → op) such that k(r) = R
and op is the root operation of the expression. An example of such
a DAG is shown in Figure 2(a). Note that the only nodes with
potentially more than one parent in this DAG are those box nodes
corresponding to variables.

Now let the tree tile set T be as shown in Figure 2(b) where
each tile contains a single non-box node and has unit cost. These
tiles are designed so that it can be shown that a truth assignment of
a Boolean expression corresponds directly with a legal tiling of a
DAG constructed as described above. If a variable is true, then its
corresponding node is covered with the tile v : T , otherwise it is
covered with v : F . The rest of the tiling is built up in the natural
way suggested from the tile names in Figure 2(b). This tiling is
optimal since every leaf node of the DAG will have exactly one tile
covering it (corresponding to the truth assignment of that variable)
and, since the parents of leaf nodes are the only shared nodes in
the DAG (they may have multiple parents), no other non-box node
in the DAG can be covered by more than one tile in this tiling.
Therefore, the cost of the tiling is equal to the number of non-box
nodes and is optimal.

Given an optimal tiling of a DAG derived from a Boolean ex-
pression, if the cost of the tiling is equal to the number of non-box
nodes, then we can easily construct a truth assignment that satisfies
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Figure 2: (a) An example of an expression DAG that represents a Boolean expression. (b) The tiles used to cover such an expression
DAG. Each tile has unit cost. The tiles representing ∧ are omitted, but are similar to the ∨ tiles with the two middle tiles having an
additional box node at the root.

the expression by observing the tiles used to cover the leaves of the
DAG. If the cost of the tiling is greater than the number of non-box
nodes then the expression is not satisfiable. If it were, a cheaper
tiling would have to exist..

We have shown the boolean satisfiability reduces to the optimal
instruction tiling problem, and, therefore, the optimal instruction
tiling problem is NP-complete.

4. NOLTIS
The NP-complete nature of the optimal instruction tiling prob-

lem necessitates the use of heuristics when performing instruction
selection. A common approach is to first decompose the DAG into
a forest of trees and then use an optimal tree tiling algorithm to tile
each tree. Every common subexpression in the DAG is therefore
at the root of a tree in the forest. However, as we will show in
Section 7, this approach is not as successful as algorithms which
work directly on the DAG. For example, if all the tiles in Figure 1
were assigned a unit cost, the tree decomposition solution would be
suboptimal.

In this section we present NOLTIS, a linear-time algorithm which
obtains near-optimal tilings of expression DAGs. The algorithm
applies tree tiling directly to the DAG without first performing tree
decomposition, uses this tiling to decide which parts of the DAG
can be productively decomposed into trees, and then retiles the par-
tially decomposed DAG.

First we apply dynamic programming on the DAG ignoring the
presence of shared nodes using the procedure BOTTOMUPDP from
Listing 1. Conceptually, we are tiling the tree that would be formed
if every shared node (and its descendants) was duplicated to convert
the DAG into a potentially exponentially larger tree. However, the
algorithm remains linear since each node is visited only once. Once
dynamic programming has labeled each node with the best tile for
that node, a top down pass, TOPDOWNSELECT, creates a tiling

of the DAG. The existence of shared nodes may result in a tiling
where nodes are covered by multiple tiles (i.e., the tiles overlap).
However, since no node will be at the root of two tiles (this would
imply that the exact same value would be computed twice), the
number of tiles in a tiling is proportional to the number of nodes.
Consequently, the top down pass, which traverses tiles, has linear
time complexity.

The tiling found by the first tiling pass ignores the impact of
shared nodes in the DAG and therefore may have excessive amounts
of overlap. In the next step of the algorithm, we identify shared
nodes where removing overlap locally improves the overall tiling.
These nodes are added to the fixedNodes set. We then perform
another tiling pass. In this pass, tiles are prohibited from spanning
nodes in the fixedNodes set; these nodes must be matched to the
root of a tile.

The procedure IMPROVECSEDECISIONS (Listing 2) is used to
determine if a shared node should be fixed. For each shared node
n with overlap we compute the cost of the overlap at n using the
GETOVERLAPCOST function in Listing 3. This function computes
the cost of the local area of overlap at n. Note that, in the rare case
that the area of overlap subsumes another shared node, it is possible
that IMPROVECSEDECISIONS will have super-linear time com-
plexity; however, this can be addressed through the use of mem-
oization, a detail which is not shown in the pseudocode.

The next step is to compute the cost which would be incurred if
the tiles covering n were cut so that only a single tile, rooted at n,
covered n. The cost of the tile tree rooted at n can be determined
from the results of dynamic programming. To this cost we add the
costs of cutting the tiles currently covering n, which are computed
using the function GETTILECUTCOST shown in Listing 4. In deter-
mining the cost of cutting a tile t with root r at node n, we consider
every tile which also matches at r and has n as an edge node. We
then compute the cost difference between using this tile to match
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Figure 3: The application of the NOLTIS algorithm to the example from Figure 1. (a) BOTTOMPUPDP computes the dynamic
programming solution for the DAG, initializing bestChoiceForNode . (b) TOPDOWNSELECT determines a tiling from the dynamic
programming solution, initializing coveringTiles . (c) IMPROVECSEDECISIONS evaluates the shared node and determines it should
be fixed. (d) The dynamic programming is then recomputed with the requirement that the fixed node not be overlapped and the
optimal solution is found.

r and using t. We choose the minimum cost difference as the cost
of cutting the tile. If the cost of the current overlapping tiling is
more than the cost of removing the overlap and cutting the tiles,
then we have found a local transformation which improves the ex-
isting tiling. Instead of immediately applying this transformation,
we choose to fix node n, disabling overlap when we compute a
new tiling. This results in a potentially better solution as the new
tiling need not be limited to tiles rooted at r. Figure 3 shows the
execution of the NOLTIS algorithm on the example from Figure 1.

The NOLTIS algorithm is not optimal as it depends upon several
assumptions which do not necessarily hold. We assume that it is
always possible to cut tiles at a shared node without affecting the
tileability of the DAG. We assume that the best place to cut tiles
to eliminate overlap is at a shared node. We assume the decision
to fix a shared node can be made independently of other shared
nodes. When deciding to fix a shared node we assume we can
represent the impact of fixing the node by examining simple tile
cuts. Despite these assumptions, in practice the NOLTIS algorithm
achieves near-optimal results.

5. 0-1 PROGRAMMING SOLUTION
In order to establish the near-optimality of our algorithm, we

formulate the instruction tiling problem as a 0-1 integer program
which can be solved to optimality using a commercial solver. The
formulation of the problem is straightforward. For every node i and
tile j we have binary variable Mi,j which is one if tile j matches
node i (the root of tile j is at node i) in the tiling, zero otherwise.
Let costj be the cost of tile j, roots be the root nodes of the DAG,
and edgeNodes(i, j) be the nodes at the edge of tile j when rooted
at node i, then the optimal instruction tiling problem is:

min
X
i,j

costjMi,j

subject to

∀i∈roots

X
j

Mi,j >= 1 (1)

∀i,j∀i′∈edgeNodes(i,j)Mi,j −
X
j′

Mi′,j′ ≤ 0 (2)



Listing 1 Dynamic programming instruction selection with modi-
fications for near-optimal DAG selection
1: DAG : expression DAG
2: bestChoiceForNode : Node → (Tile × int)
3: fixedNodes : set of Node
4: matchedTiles : set of Tile
5: coveringTiles : Node → set of Tile

6: procedure SELECT
7: fixedNodes← {}
8: BOTTOMUPDP() . initializes bestChoiceForNode
9: TOPDOWNSELECT() . initializes coveringTiles

10: IMPROVECSEDECISIONS() . initializes fixedNodes
11: BOTTOMUPDP() . uses fixedNodes
12: TOPDOWNSELECT() . puts final tiling in matchedTiles

13: procedure BOTTOMUPDP
14: for n ∈ reverseTopologicalSort(DAG) do
15: bestChoiceForNode[n].cost ←∞
16: for tn ∈ matchingTiles(n) do
17: if ¬hasInteriorFixedNode(tn , fixedNodes) then
18: val ← cost(t)+P

n′∈edgeNodes(tn ) bestChoiceForNode[n ′].cost

19: if val < bestChoiceForNode[n].cost then
20: bestChoiceForNode[n].cost ← val
21: bestChoiceForNode[n].tile ← tn

22: procedure TOPDOWNSELECT
23: matchedTiles.clear()
24: coveringTiles.clear()
25: q .push(roots(DAG))
26: while ¬q .empty() do
27: n ← q .pop()
28: bestTile ← bestChoiceForNode[n].tile
29: matchedTiles.add(bestTile)
30: for every node nt covered by bestTile do
31: coveringTiles[nt ].add(bestTile)

32: for n ′ ∈ edgeNodes(bestTile) do
33: q .push(n ′)

where (1) requires that the root nodes of the DAG be matched to
tiles and (2) requires that if a tile matches a node, then all of the
inputs to that tile must be matched to tiles.

6. IMPLEMENTATION
We have implemented our algorithm in the LLVM 2.1 [29] com-

piler infrastructure targeting the Intel x86 architecture on the Ubuntu
7.10 Linux operating system. The default LLVM instruction se-
lector constructs an expression DAG of target independent nodes
and then performs a maximal munch algorithm [6]. Tiles are se-
lected from the top-down. The largest tile (the tile that covers the
most nodes) is greedily selected. Tile costs are only used to break
ties. We have modified the LLVM algorithm to use code size when
breaking ties.

In addition to the default LLVM algorithm and the NOLTIS al-
gorithm, we have implemented three other algorithms:

cse-all The expression DAG is completely decomposed into trees
and dynamic programming is performed on each tree. That
is, every shared node is fixed. This is the conventional method
for applying tree tiling to a DAG [5].

Listing 2 Given a DAG matching that ignored the effect of shared
nodes, decide if the solution would be improved by pulling shared
nodes out into common subexpressions (eliminating tile overlap).

1: procedure IMPROVECSEDECISIONS
2: for n ∈ sharedNodes(DAG) do
3: if coveringTiles[n].size() > 1 then . has overlap
4: overlapCost ← getOverlapCost(n, coveringTiles)
5: cseCost ← bestChoiceForNode[n].cost
6: for tn ∈ coveringTiles[n] do
7: cseCost ← cseCost + getTileCutCost(tn , n)

8: if cseCost < overlapCost then
9: fixedNodes.add(n)

Listing 3 Given a shared node n with overlapping tiles, compute
the cost of the tree of tiles rooted at the tiles overlapping n without
double counting areas where the tile trees do not overlap.
1: function GETOVERLAPCOST(n)
2: cost ← 0
3: seen ← {}
4: for t ∈ coveringTiles[n] do
5: q .push(t)
6: seen.add(t)

7: while ¬q .empty() do
8: t ← q .pop()
9: cost ← cost + cost(tile)

10: for n ′ ∈ edgeNodes(t) do
11: if n′ is reachable from n then
12: t ′ ← bestChoiceForNode[t ′].tile
13: if coveringTiles[n ′].size() = 1 then
14: cost ← cost + bestChoiceForNode[n ′].cost
15: else if t ′ 6∈ seen then
16: seen.add(t ′)
17: q .push(t ′)

18: return cost

cse-leaves The expression DAG is partially decomposed into trees
and dynamic programming is performed. If the subgraph
rooted at a shared node can be fully covered by a single tile,
the shared node remain unaltered, otherwise shared nodes be-
come roots of trees to be tiled. That is, shared nodes are fixed
unless they represent an expression that can be fully covered
by a single tile.

cse-none The expression DAG is not decomposed into trees and
dynamic programming is performed. That is, no shared nodes
are fixed (this is equivalent to the solution found before the
IMPROVECSEDECISIONS procedure is executed in the NOL-
TIS algorithm).

All algorithms use the same tile set. The cost of each tile is
the size in bytes of the corresponding x86 instruction(s). We do
not allow tiles to overlap memory operations (i.e., a load or store
node in the expression DAG will only be executed once). Similarly,
as an implementation detail2, overlap of function call addresses is
not allowed. Valueless token edges enforce ordering dependencies
in the expression DAG. Despite the two-address nature of the x86
architecture, all tiles represent three-address instructions. A pass
after instruction selection converts the code to two-address form.
A scheduling pass, which converts the code from DAG form into

2LLVM’s support for different relocation models requires that
function call addresses be part of the call instruction.
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Figure 4: The improvement in tiling cost relative to the default maximal munch algorithm for individual SPEC CPU2006 bench-
marks. The average improvements of the cse-all, cse-leaves, cse-none, and NOLTIS algorithms are -1.28%, 0.94%, 1.15%, and 2.68%
respectively.

an assembly listing, attempts to minimize the register pressure of
the schedule using Sethi-Ullman numbering [36].

7. RESULTS
We evaluate the various instruction selection algorithms by com-

piling the C and C++ benchmarks of the SPEC CPU2006 [39],
MediaBench [37], MiBench [38], and VersaBench [40] benchmark
suites and observing both the immediate, post-selection cost of the
tiling and the final code size of the benchmark. We evaluate the
optimality of the NOLTIS algorithm, demonstrate its superiority
compared to existing heuristics, investigate its impact on the code
size of fully compiled code, and describe its compile-time behavior.

7.1 Optimality
In order to determine an optimal solution for an expression DAG,

we create a 0-1 integer programming problem as described in Sec-
tion 5 and then solve it using ILOG CPLEX 10.0 [11]. We eval-
uated all the basic blocks of the SPEC CPU2006 benchmarks, re-
sulting in nearly half million tiling problems We utilized a cluster
of Pentium 4 machines ranging in speed from 2.8Ghz to 3.0Ghz
to solve the problems. CPLEX was able to find a provably opti-
mal solution within a 15 minute time limit for 99.8% of the tiling
problems. Of the problems with provably optimal solutions, the
NOLTIS algorithm successfully found the optimal solution 99.7%
of the time. Furthermore, suboptimal solutions were typically very

close to optimal (only a few bytes larger). Of the 0.2% of prob-
lems where CPLEX did not find a provably optimal solution, the
NOLTIS algorithm found a solution as good as, and in some cases
better than, the best solution found by CPLEX 75% of the time im-
plying our algorithm is effective even for very difficult tiling prob-
lems.

The overall improvement obtained by using the best CPLEX so-
lution versus using the NOLTIS algorithm was a negligible 0.05%.
We feel these results clearly demonstrate that the NOLTIS algo-
rithm is, in fact, near-optimal.

7.2 Comparison of Algorithms
In addition to being near-optimal, the NOLTIS algorithm pro-

vides significantly better solutions to the tiling problem than con-
ventional heuristics. Detailed results for the SPEC CPU2006 bench-
marks are shown in Figure 4 and average improvements are shown
in Figure 5. The cse-all algorithm, despite finding an optimal tiling
for each tree in the full tree decomposition of the DAG, performs
poorly relative to all other algorithms suggesting that DAG tiling
algorithms are necessary for maximum code quality. Both the cse-
leaves and cse-none algorithms benefit from using dynamic pro-
gramming and outperform the greedy algorithm, although neither
algorithm is clearly superior to the other. The NOLTIS algorithm,
as expected, significantly outperforms the other algorithms and has
the best improvement in every benchmark.
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Figure 6: The final code size improvement relative to the default maximal munch algorithm for individual SPEC CPU2006 bench-
marks. The average improvements of the cse-all, cse-leaves, cse-none, and NOLTIS algorithms are -4.03%, -0.09%, 0.81%, and
1.20% respectively. The average improvement of the NOLTIS algorithm relative to the more traditional cse-all algorithm is 4.42%.

7.3 Impact on Code Size
Instruction tiling is only one component of code generation. The

two-address conversion pass, scheduling pass, and register alloca-
tion pass all further impact the final quality of the compiled code.
Final code size results for the SPEC CPU2006 benchmarks are
shown in Figure 6 and average improvements are shown in Fig-
ure 7.

Although the average code size improvements exhibited by the
NOLTIS algorithm may seem marginal, even such seemingly small
code size reductions may be significant when targeting highly con-
strained embedded architectures. Furthermore, it is important to
note that these results are relative to an algorithm that has already
been adapted to work directly on expression DAGs. Compared to
the classical textbook approach of tree decomposition (the cse-all
algorithm), the NOLTIS algorithm exhibits an overall average code
size improvement of 5.1%.

The mixed nature of the final code size results appears to be
mostly caused by the interaction with the register allocator, in par-
ticular the number of loads and stores the allocator inserts. Decom-
posing the graph into trees results in the creation of temporaries
with multiple uses. These potentially long-lived temporaries re-
sult in more register pressure and more values must be spilled to
memory. Hence the cse-all algorithm performs particularly poorly.
Allowing unlimited overlap can also have a negative effect on reg-
ister allocation as the inputs of overlapping tiles are also potentially

long lived temporaries. Another factor influencing register alloca-
tion is the number of tiles. If more, smaller, tiles are used, there are
correspondingly more temporaries to allocate.

Ultimately, the interaction between instruction selection and reg-
ister allocation cannot be easily characterized and is beyond the
scope of this work. It is likely that architectures with complex in-
struction sets but plentiful (e.g., more than eight) registers would
see more benefit from the NOLTIS algorithm. Furthermore, given
a framework for characterizing the interaction between instruction
selection and register allocation, the near-optimality of the NOLTIS
algorithm would make it the natural choice for performing tiling.

7.4 Compile Time Performance
As shown in Figure 8, the two pass nature of the NOLTIS algo-

rithm means that its running time is slightly more than twice that
of the other dynamic programming based algorithms. The dynamic
programming algorithms are approximately 30% slower than the
greedy algorithm since they must perform a tile selection opera-
tion at every node of the expression DAG. The greedy algorithm
can ignore any nodes which are completely covered by the greedily
selected tile.

8. LIMITATIONS AND FUTURE WORK
Instruction selection algorithms have been used successfully to

solve the technology mapping problem in the automated circuit de-



Listing 4 Given a tile t and node n, determine the cost of cutting t
at node n so that the root of t remains the same but n becomes an
edge node.
1: function GETTILECUTCOST(t,n)
2: bestCost ←∞
3: r ← root(tile)
4: for t ′ ∈ matchingTiles(r) do
5: if n ∈ edgeNodes(t ′) then
6: cost ← cost(t ′)
7: for n ′ ∈ edgeNodes(t ′) ∧ n ′ 6= n do
8: cost ← cost + bestChoiceForNode[n ′].cost

9: if cost < bestCost then
10: bestCost ← cost
11: for n ′ ∈ edgeNodes(t) do . Subtract edge costs of

original tile
12: if path r ; n ′ ∈ t does not contain n then
13: bestCost ← bestCost

−bestChoiceForNode[n ′].cost

14: return bestCost

-4%

-3%

-2%

-1%

0%

1%

2%

3%

4%

5%

SPEC MediaBench mibench VersaBench

A
v

er
a

g
e 

im
p

ro
v

em
en

t 
in

 t
il

in
g

 c
o

st

cse-all cse-leaves cse-none NOLTIS

Figure 5: The average improvement in tiling cost relative to the
default maximal munch algorithm for four benchmark suites.

sign domain. It remains an open question whether the NOLTIS
algorithm can be successfully adapted to this domain where mul-
tiple optimization goals (area, delay, routing resources) must be
simultaneously addressed.

Although the NOLTIS algorithm is linear in the size of the pro-
gram, its running time is largely determined by how efficiently the
matching of a single node to a set of tiles can be performed. The
algorithm, as we have presented it, uses a simple, but inefficient,
matching algorithm. More efficient algorithms, such as tree pars-
ing, exist [17, 35, 32, 2] and should be used in a production imple-
mentation. Additionally, the second pass of dynamic programming
could be made more efficient by intelligently recomputing only por-
tions of the DAG.

The classical representation of instruction selection as a tiling
problem relies on instructions being represented by tree tiles. In
some cases, such as with single instruction multiple data (SIMD)
instructions and instructions with side-effects, an instruction can-
not be represented as a tree of data dependences. Additional, non-
tiling, techniques are required to handle such instructions.

The abstract machine model used by our tiling algorithms is a
three-address, infinite register machine. Finding a linear time, near-
optimal algorithm that does not depend upon these assumptions re-
mains an open problem. Given the hardness of the register alloca-
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Figure 7: The average final code size improvement relative
to the default maximal munch algorithm for four benchmark
suites.
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Figure 8: The total slowdown of each instruction selection al-
gorithm relative to the cse-all algorithm. The two pass nature
of the NOLTIS algorithm results in it taking slightly more that
twice as long as the other dynamic programming based algo-
rithms.

tion problem, it seems unlikely that such an algorithm exists. How-
ever, it may be possible to construct a framework which integrates
register allocation and instruction selection. The two passes would
then work cooperatively with the instruction selector guiding regis-
ter allocation decisions and vice versa. For example, the instruction
selector might generate an approximate tiling which the register al-
locator is responsible for finalizing based on register availability.
Or the register allocator might provide feedback to the instruction
selector which changes the costs of tiles. We believe that NOLTIS
would be valuable part of such a framework.

9. SUMMARY
In this paper we have described NOLTIS, an easy to implement,

fast, and effective algorithm for finding an instruction tiling of an
expression DAG. We have shown empirically that the NOLTIS al-
gorithm achieves near-optimal results and significantly outperforms
existing tiling heuristics. Although the interaction between instruc-
tion selection and register allocation bears further study, we have
shown that NOLTIS is capable of improving code size compared to
existing techniques.
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