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Abstract— We propose an automatic instrumentation method

for embedded software annotation to enable performance model-

ing in high level hardware/software co-simulation environments.

The proposed ”cross-annotation” technique consists of extend-

ing a retargetable compiler infrastructure to allow the automatic

instrumentation of embedded software at the basic block level.

Thus, target and annotated native binaries are guaranteed to have

isomorphic control flow graphs (CFG). The proposed method

takes into account the processor-specific optimizations at the com-

piler level and proves to be accurate with low simulation over-

head.

I. INTRODUCTION

Hardware/software (HW/SW) co-simulation environments

provide a valuable and cost-effective way for early HW/SW

integration, software validation/debug and design space explo-

ration. An heterogeneous multiprocessor co-simulation envi-

ronment can be represented without loss of generality as shown

in Fig.1. The abstraction level of the HW/SW interface deter-

mines the nature of the environment being used. The classic

HW/SW co-simulation environments use instruction set sim-

ulators (ISS) as machine model and correspond to a HW/SW

interface at the instruction set architecture (ISA) abstraction

level. Recently, HW/SW co-simulation approaches at higher

abstraction levels have been proposed. According to these ap-

proaches, embedded software no longer needs to be interpreted

using an ISS. It is instead executed natively by the host ma-

chine, typically within the same (UNIX) process running the

hardware simulator. Two main benefits are advocated: (1) con-

siderable speedup (typically 3 orders of magnitude compared to

a cycle accurate simulation using ISS) and (2) a straightforward

Fig. 1. Hardware Software co-simulation

integration in system-level simulation environments making it

suitable for early design validation/exploration.

Native software simulation has been successfully used for

functional simulation of complex hardware/software interac-

tions at the system level. The software part may include multi-

threaded applications that run on top of abstract (RT)OS sim-

ulation models. Some approaches even allow executing the

real upper layer of the operating system based on a simulation

model of the lower hardware-dependent part [3].

However, from a hardware point of view, native software ex-

ecutes atomically in zero time between two successive synchro-

nization points (e.g I/O operations). To enable time modeling,

annotations are introduced at the software code level in order

to reflect the performance of this code.

The performance of a given piece of software depends on

two orthogonal factors: (1) the software itself i.e the sequence

of instructions composing the code and (2) the underlying hard-

ware executing these instructions. In this paper, we exclusively

focus on the first source of dependency knowing that the sec-

ond one (hardware dependency) can be taken into account in

a complementary way. The software dependency problem can

be stated as follows: how to obtain, in native execution, the

same information than the one obtained by the sequence of

executed target instructions? The annotation process clearly

should answer this question. Two criteria are of primary im-

portance at this level: automation and accuracy. To the best

of our knowledge, there have been no systematic methods for

software annotation in existing native simulation approaches

that guarantees full automation and appropriate accuracy. The

main contribution of this paper is a compiler based annotation

technique, namely the cross-annotation technique, that can be

used in native simulation based approaches and that satisfies

the two above criteria.

The rest of the paper is organized as follows. Section 2 re-

views some existing works in the field of native simulation and

software annotation. Section 3 introduces the annotation prob-

lem. Section 4 details the basic idea and methodology behind

the proposed technique. Section 5 discusses the implementa-

tion of the cross-annotation principle within the LLVM com-

piler infrastructure. Section 6 exposes some experimental re-

sults obtained using the proposed method, and section 7 con-

cludes the paper.
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II. RELATED WORK

Several high level HW/SW co-simulation approaches rely on

software annotation to enable performance modeling. Many of

them require explicit and manual source annotation by the pro-

grammer using dedicated primitives [13, 9, 8]. This is accept-

able for small test cases but quickly becomes very cumbersome

and error prone for real-life applications. In [7], the authors

adopt a different approach by requiring the designer to spec-

ify the overall WCET of a software task making their approach

suitable for the analysis of system real-time properties but not

for performance modeling.

Other high level co-simulation approaches provide partial

solutions to automate the annotation process. In [12], the au-

thors propose to automate the instrumentation by analyzing the

target assembly code and for each assembly instruction, an-

notate the corresponding source code line. However, they re-

ported the difficulty of assembly to source code mapping when

enabling optimizations. Another approach [1] relies on a pre-

characterization and instrumentation of embedded software in a

target independent way. A retargeting phase is then performed

once the target architecture is fixed and the result is used to per-

form fast simulation and design space exploration. The authors

however did not comment on how to handle processor specific

optimizations. A completely different approach [10] exploits

the ability to overload basic language (C++) operators to au-

tomatically inject performance counters during run-time native

execution, as [4] also did. The authors reported a quite rea-

sonable accuracy but it’s not clear whether the obtained results

take into account compiler target specific optimizations.

[5] proposes a method that exploits the intermediate repre-

sentation (IR) resulting from the compiler front-end to apply

retargetable performance analysis taking into account archi-

tecture related issues. From the modified IR, time annotated

C/C++ code is regenerated and used for high level HW/SW co-

simulation. However, given that the analysis task is performed

on the result of the compiler front-end, it seems not to take

into account the different target-specific optimizations that oc-

cur during the compiler back-end stage.

One major contribution of this paper is to clearly separate

the annotation process (where and how to put annotations in

the code) from the performance estimation problem (value of

the delay associated with the annotations). The first problem

is purely software dependent (including the effect of the tar-

get processor instruction set architecture) while the second de-

pends on the hardware architecture (pipeline implementation,

caches, bus contentions etc.). We propose a solution to the first

annotation process problem that is fully automatic and accurate

from this perspective.

III. ANNOTATION BASICS AND CHALLENGES

Given a piece of software source code (Fig.2.a), the purpose

of annotation is to instrument the native version of the code to

reflect the execution of the same code on the target processor.

Host and target processors are different in general.

The first difficulty inherent to annotation is the data depen-

dent behavior of the software program itself. Unlike static ap-

proaches where performance estimation is needed before pro-

gram execution, we are placed in a run-time context where per-

formance is evaluated while the program runs. One solution to

Fig. 2. Annotation techniques (a) original source code (b) non-optimized

target (ARM) code (c) annotated native (x86) code (d) optimized target code

(e) source level annotation.

the data-dependency problem is then to ”follow” the execution

control flow of the target program. Practically, this means that

annotation should be performed at the basic block level of the

cross-compiled program1.

Since the simulated program is the one compiled for the host

processor, the problem is then to find an instrumentation strat-

egy working on the host compiled program while reflecting the

control flow graph (CFG) of the target (cross-compiled) pro-

gram.

The object-level annotation directly instruments the native

object code (here x86) by inserting calls to the crunch function

(Fig.2.c). The argument passed to crunch represents the iden-

tifier of the corresponding basic block in the target object code

(Fig.2.b). In this example, basic blocks are numbered 1, 2 and

3. This method assumes a one-to-one mapping between the na-

tive and target CFG, which is generally not the case even when

using the same compiler toolchain due to processor-specific op-

timizations. For example, the corresponding ARM optimized

code has a completely different CFG exploiting the ARM con-

ditional instruction (Fig.2.d).

The source level annotation strategy (Fig.2.e) tries to get

rid of host processor dependency by instrumenting the original

source code. The source code is first instrumented using infor-

mation coming from target object code analysis, before being

compiled to the host processor. This method is however diffi-

cult to implement in practice. In fact, finding the basic block

boundaries in the source code and inserting the instrumenta-

tion call used to be a very difficult task due to the complex and

rich syntax of the source code itself combined with the effect

of compiler optimizations (both processor dependent and inde-

1A basic block is a set of consecutive instructions having exactly one entry

and one exit point.
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pendent ones). The same difficulty is for example behind the

inaccuracy of source level debugging when dealing with com-

piler optimization enabled programs.

IV. COMPILER-BASED CROSS ANNOTATION

A. Solution overview

The proposed solution to the annotation problem draws on

the advantages of both source and object level annotation meth-

ods. The main idea is to use the compiler intermediate repre-

sentation (IR) format as target to the instrumentation process.

Many advantages result from this choice. (1) Like the source

level approach, this allows to be host independent, since the

instrumentation process is kept prior to the host processor spe-

cific back-end. (2) The annotation is independent from the used

high level language (C, C++, etc). (3) The IR already contains

control flow graph related information. (4) The IR generally

has equivalent in-memory data structures and associated pro-

gramming interfaces for easy implementation of processing al-

gorithms.

To take into account target-specific transformations of the

CFG within the back-end, we propose to extend the IR scope

throughout the back-end (Fig.3.b). We define the concept of

cross intermediate representation (cross-IR) to keep track of

any processor specific CFG transformation while still being

processor independent.

The processor specific CFG transformations can be ex-

plained by the semantic variation between the instruction set

architecture (ISA) of the target processor and that of the virtual

machine representing the IR (Fig.4).

B. Cross-IR construction

Given the initial IR input to the back-end stage, cross-IR is

first constructed as a copy of this initial IR. In a conventional

compiler back-end, the initial IR is generally transformed into

more target-specific representation format(s) that undergoes a

series of target-specific transformations before the ultimate bi-

nary object emission step. At this level, the control flow graph

of the binary object (or equivalently the latest target-specific

representation format) and that of the IR are likely to be differ-

ent.

Fig. 3. Intermediate representation (IR) based annotation (a) original

compiler (b) proposed extended compiler

Cross-IR is used to keep track of the transformations that af-

fect the CFG within the different passes of the back-end. When

a pass performs a transformation on the CFG of the target-

specific representation format, this transformation is detected

and the cross-IR CFG is updated to reflect the corresponding

change in the CFG of the target-specific representation for-

mat. Of course, the cross-IR transformation should preserve

the target-independent characteristic of the cross-IR. At the

end of the back-end stage, a one-to-one mapping is obtained

between the control flow graphs of the cross-IR and the lat-

est target-specific representation format. This mapping is used

to annotate each basic block of the cross-IR using information

from the ”dual” basic block in the target-specific representa-

tion.

Fig.5 shows two typical cases of CFG transformations dur-

ing the back-end stage, corresponding to the two paths identi-

fied in Fig.4. The first case (Fig.5.a) exemplifies the A → B

path. Here a complex IR instruction (e.g set on condition) is

translated to a set of target instructions (dark area in the tar-

get CFG) inferring additional basic block and leading to the

diamond-like structure. Such translation is used in case the tar-

get processor doesn’t support the complex instruction and typi-

cally occurs at the starting of the back-end during the selection

phase. In parallel, the cross-IR CFG is modified to reproduce

the same diamond-like control structure by using instructions

from the IR domain that are semantically equivalent to the used

target instructions (point B is still covered by the IR instruction

set in Figure 4).

The second case (Fig.5.b) corresponds to target dependent

optimizations performed on the target CFG itself. Two situa-

tions are distinguished:

• The optimizing transformation does not introduce new in-

structions from the target ISA domain with no equivalent

in the IR domain. This situation is handled in the same

way as the previous case from a cross-IR point of view.

• The optimizing transformation takes benefit of a target-

specific instruction having no direct equivalent in the IR

ISA domain and leading to target CFG modification as

shown in Fig.5.b. The example shown in the figure ex-

ploits the sum-of-absolute-differences (SAD) instruction

available on many DSP enabled processors. Assuming

this instruction has no equivalent in the IR domain, the

solution is to replace it by a call to an ”emulating” func-

tion in the cross-IR CFG. In this way, the cross-IR CFG

Fig. 4. ISA semantic overlap
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Fig. 5. CFG transformations at the back-end level

can be reduced to one basic block just like the optimized

target CFG. Of course, the implementation of the function

emulating the specialized target instruction should not un-

dergo the annotation process (it will simply be linked to

the annotated binary at the link stage).

V. IMPLEMENTATION IN LLVM

A. LLVM overview

The Low Level Virtual Machine (LLVM) is an open source

compiler infrastructure [6], i.e a collection of modular and

reusable components for building compilers. Fig.6 shows the

architecture of LLVM. The backbone of the architecture is the

LLVM intermediate representation, still called LLVM that is

designed to allow the implementation of low level transforma-

tions and optimizations at the middle-end level. LLVM fol-

lows the single static assignment (SSA) approach and has three

equivalent formats: in-memory format, disk format for storage

(bytecode) and textual human readable format.

LLVM makes use of the GNU C Compiler as front-end

throughout the llvm-gcc tool which is actually a port of gcc

to the LLVM ISA. It also provides the infrastructure for build-

ing processor specific back-ends through the Machine-LLVM

low level in-memory representation. All processing on the

LLVM and Machine-LLVM intermediate representations is or-

ganized as a set of passes managed by a pass manager. In figure

7, passes are denoted by rounded rectangles and their relative

vertical position indicates the order of their execution.

B. LLVM back-end extension

Fig.7 shows an overall view of the extensions introduced

at the LLVM back-end level to support the proposed cross-

annotation method. The added parts are those colored in dark

gray and modified parts are those colored in light gray in the

figure.

B.1 Cross-LLVM

The cross-IR concept is mapped to the cross-LLVM intermedi-

ate format as follows:

Fig. 6. LLVM architecture organization

• Initially, cross-LLVM is just a copy of the middle-end pro-

duced LLVM.

• During the code generation process (and especially the se-

lection step), when a situation corresponding to the A →
B path of Fig.4 is encountered, cross-LLVM is updated

according to Fig.5.a. Example of such transformation is

the translation of the LLVM select instruction for proces-

sors having no conditional execution instructions (such as

ARM Thumb). The code generator translates this by in-

serting a diamond-like control structure. In cross-LLVM

the SELECT CC instructions is replaced by the equivalent

control structure (Fig.8).

• During the processor specific optimization passes, cross-

LLVM is updated according to Fig.5.b. In the particular

case of the ARM back-end with the subset of supported

instructions, we did not encounter such situation.

B.2 Analysis and annotation pass

Analysis and annotation is implemented as a pass that takes

place at the end of the back-end, just before the ultimate object

code emission pass. At this level, there is a one-to-one rela-

tion between cross-LLVM and the latest Machine-LLVM rep-

resentation (that maps directly to the final target binary). The

analysis and annotation pass simply performs a static analysis

of each basic block in the Machine-LLVM and inserts an in-

strumentation stub at the beginning of the corresponding basic

block of the cross-LLVM. Finally, the in-memory cross-LLVM

is emitted as bytecode file to be processed by the host back-end

before generating the instrumented native executable.

We implemented two kinds of instrumentation stubs. The

first simply insert a call to a special function (named crunch

in Fig.2) passing the identifier (index) of the basic block. The

crunch function is then responsible of updating the BB trace
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Fig. 7. Cross-annotation flow implementation in LLVM

Fig. 8. Translation of the LLVM select instruction: (a) source code (b)

original LLVM (c) Thumb generated code (d) cross-LLVM corresponding

code.

(Fig.9). Notice that we call the performance estimation func-

tion (do perf estimation) only when the trace is full. The

actual implementation of this function is out of the scope of

this paper. For our purpose, it’s just kept empty.

The second implementation variant is to directly inline the

content of the crunch function at the beginning of each basic

block to avoid the runtime cost of the call instruction. This will

be analyzed with more details in the experimentation section.

void crunch(unsigned int index) {

if (bb_count >= trace_size){

bb_count = 0; do_perf_estimation();

}

trace[bb_count] = index;

}

Fig. 9. crunch function behavior

Fig. 10. characterisation of the divsi3 for ARM

B.3 ”Black box” code characterization

Embedded software often includes parts that are available only

under the object format. This is particularly true for hand

optimized performance critical algorithms. The performance

of such parts cannot be evaluated by the proposed cross-

annotation technique. We rely on off-line manual performance

characterization of such ”black box” software. This character-

ization has to be made only once.

Examples of such black box software include some calls

to the C standard library which are implicitly introduced by

the compiler back-end. For instance, if the target processor

doesn’t support integer division, the compiler back-end re-

places the unsupported instruction by a call to the software

routine ( divsi3) emulating the integer division and imple-

mented in assembly language. In this case, the extended LLVM

back-end automatically inserts another call to the characteriz-

ing function (called divsi3 perf in Fig.10). Another possible

approach would be to take benefit of recent advances in the de-

compilation domain to automatically recover the intermediate

representation from the target assembly [11].

VI. EXPERIMENTATION

To validate our approach, we applied the cross-annotation

flow on a set of test applications taken mostly from the

MiBench embedded testbench collection [2]. Fig.11 depicts the

environment used for the experiments. We considered ARM as

target processor. The bolded parts in the figure highlight the

features enabled by the cross-annotation approach.

To assess for the accuracy of the proposed method, we com-

pared the basic block traces generated by the ISS based simu-

lation and the annotated native execution. To enable BB trace

generation at the ISS level, the ISS is modified to accept a

watchpoint configuration file containing addresses of the first

instruction of each BB in the target binary along with the as-

sociated BB index. This file is generated by the analysis and

annotation pass within the extended LLVM. For all applica-

tions in our testbench, we obtained a perfect match between
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Fig. 11. experimentaion environment setup

TABLE I

PERFORMANCE RESULTS OF THE PROPOSED APPROACH

Bench BB Slowdown
(compared to bare

native execution)

Speedup
(compared to

ISS)

Program

memory

overhead

name size call inline call inline call inline

aac 9.3 2.6 1.2 1408 3087 21% 64%

qsort 4.3 7.4 2.6 526 1312 46% 139%

bitcount 5.8 6.0 2.3 609 1634 34% 103%

strsearch 6.1 5.2 2.0 765 1898 33% 101%

rijndael 107.5 1.1 1.0 3486 3567 1.8% 5%

dijkstra 5.8 5.6 2.1 743 1792 34% 103%

crc32 5.3 6.3 2.4 654 1564 37% 113%

gsm 5.46 6.0 2.2 667 1654 36% 109%

adpcm 7.9 3.4 1.3 1209 2752 25% 76%

the two BB traces proving the 100% accuracy of the proposed

method. Of course this accuracy is only with respect to the an-

notation problem, i.e where to put instrumentation in the code

to reproduce the same target BB trace. Using this trace, dy-

namic performance estimation can be performed with more or

less accuracy given details on the target hardware architecture

(outside the scope of this paper).

To evaluate the performance of the cross-annotation ap-

proach, we computed the slowdown as a ratio of the annotated

binary execution speed by the non-annotated version. This

slowdown is computed both for inlined and non-inlined instru-

mentation techniques. The memory overhead introduced by the

instrumentation is also evaluated in both cases.

From table 1, we see that the simulation slowdown depends

on the average size of all executed basic blocks. When this

size increases, the relative overhead introduced by the instru-

mentation stub in each basic block decreases (almost null for

rijndael). In all cases, this overhead is smaller using the inlined

instrumentation stub that avoids the function call cost. This

comes with an increase in the program memory size, which is

not critical from a host point of view. For the average case of

BB size (4 ∼ 6), the annotated native binary executes about

two times slower than the non-annotated version (for the in-

lined case) which is very interesting from a performance enable

high level HW/SW co-simulation point of view. This slow-

down factor has to be compared with that of an ISS. In our

case, the execution of the annotated native binary is almost 3

orders of magnitude (x1000) faster than ISS.

VII. CONCLUSION

We presented a compiler-based approach for automatic and

accurate annotation of embedded software that targets perfor-

mance modeling in high level hardware/software cosimula-

tion approaches. While not restricted to a particular compiler,

the proposed method has been implemented within the LLVM

compiler infrastructure that offers many attractive features sim-

plifying such implementation. Experiments on various test ap-

plications showed the effectiveness of the proposed method

both in terms of accuracy and simulation overhead.
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