9A-3

Memory Subsystem Simulation in Software TLM/T Models

Eric Cheung, Harry Hsieh

University of California Riverside
Riverside, California 92521
{chuncheung,harry } @cs.ucr.edu

Abstract— Design of Multiprocessor System-on-a-Chips re-
quires efficient and accurate simulation of every component.
Since the memory subsystem accounts for up to 50% of the perfor-
mance and energy expenditures, it has to be considered in system-
level design space exploration. In this paper, we present a novel
technique to simulate memory accesses in software TLM/T mod-
els. We use a compiler to automatically expose all memory ac-
cesses in software and annotate them onto efficient TLM/T mod-
els. A reverse address map provides target memory addresses for
accurate cache and memory simulation. Simulating at more than
10MHz, our models allow realistic architectural design space ex-
plorations on memory subsystems. We demonstrate our approach
with a design exploration case study of an industrial-strength
MPEG-2 decoder.

I. INTRODUCTION

Multiprocessor System-on-a-Chips (MPSoC) are highly con-
figurable. The efficiency with which the designers can explore
system-level design space directly impacts the quality of the
implementation. Architectural decisions, such as distribution
of available die area for caches and memories, have significant
consequences in terms of total performance and energy. An
efficient simulation for system-level design space explorations
(DSE) of MPSoC architectures is crucial for a successful im-
plementation.

The most important requirement of the simulation is the abil-
ity to provide a fast and accurate feedback on performance and
energy characteristics of a specific implementation. The mem-
ory subsystem, which accounts for up to 50% of performance
and energy expenses, is one of the most important architectural
decisions to be explored. If the performance or energy con-
sumption of an implementation is not satisfactory, designers
need to be able to quickly try out other implementations. The
simulation must satisfy the following requirements in order to
be efficient in system-level DSE:

e Procedure to generate simulation models for an imple-
mentation must be automatic.

e Architectural components, including the memory subsys-
tem, must be accurately evaluated for their impacts on the
implementation.

e Simulation speed must be sufficiently fast to allow quick
feedback.

None of the current techniques for cache simulation in MP-
SoC satisfies all three requirements. In behavioral-level simu-
lation [1, 5, 8, 12, 13, 15, 21], memory accesses that are gener-
ated when software is compiled are not visible in a high-level
programs. In [6, 7, 9, 14, 17, 20], memory subsystem is not
accurate simulated. In instruction-by-instruction [2, 3, 10, 16,
19, 22], simulation is inefficient and does not provide sufficient
speed for system-level DSE.

978-1-4244-2749-9/09/$25.00 ©2009 IEEE

Felice Balarin

Cadence Design Systems
San Jose, California 95134
felice@cadence.com

In this paper, we introduce a novel technique to simulate MP-
SoC implementations with caches and memories that satisfies
all three requirements. 1. We use a compiler to automatically
generate TLM/T models of software that exposes all memory
accesses. 2. A reverse address map generates target memory
addresses for accurate memory subsystem simulation. 3. simu-
lation runs natively in the host machine in transaction-level for
efficient simulation. The main contributions of this paper in-
clude a practical use of a compiler-annotation technique, and a
novel technique to accurately simulate memory subsystems in
software TLM/T models.

The rest of this paper is organized as follow. In Section II, we
describe some related works. In Section III, we describe soft-
ware TLM/T models in SystemC and their limitations. In Sec-
tion IV, we discuss how we generate software TLM/T models
automatically and simulate caches and memories accurately.
In Section V, we conduct a set of experiments to evaluate our
memory subsystem simulation. We conclude the paper in Sec-
tion VL.

II. RELATED WORK

A number of behavioral-level simulation platforms are
developed to make simulation more efficient. = Metropo-
lis [1], Simulink [8], Sesame [15], MESH [13] and SystemC
transition-level modeling (TLM) [12] provide behavioral-level
simulation for MPSoC. Simulation runs faster by running soft-
ware natively on the machine machine. However, the simu-
lation models often hide memory access details such that the
memory subsystem is not accurately considered. Memory ac-
cesses in the simulation models are omitted, annotated manu-
ally or based on execution trace from ISS. Manual annotation
is not automatic, not accurate, and does not consider implicit
accesses generated in compilation. And execution trace an-
notation, which requires an execution in ISS for every cache
configuration or design modification, is inefficient.

Cache exploration has been a common research topic for
single-processor systems. Cache exploration is usually based
on simulation with a pre-generated memory address trace [6].
However, simulation using traces does not work for MPSoC be-
cause there are multiple interacting programs. Address traces
change with a different implementation of the memory subsys-
tem, especially for implementations with caches that are acces-
sible by more than one processors (i.e. coherent caches).

Analytical and statistical methods have been used to esti-
mate cache performance in MPSoC. A histogram based esti-
mation [14] provides statistical estimations on memory subsys-
tems. However, their estimations, with up to more than 300%
error, are not reliable for DSE. Analytical method in [20] only
works on parallel algorithms with regular data access patterns
and does not work on regular programs in general. Multivariate
models [7] use statistics to estimate memory subsystem perfor-
mance based on the results from a number of simulations. But
such method has not been shown accurate. Predefined mod-
els [9] use a fixed hit/miss rate for a specific cache configura-

811

9A-3

#include “systemc.h”
SC_MODULE tlm_program
{
sc_port<mem_if> mem_port;
SC_CTOR (tlm_program) {
SC_THREAD (main);

/1 declare the software TLM/T module

// memory port

/1 SystemC constructor for tlm_program
/1 register main() with SystemC kernel
}
void main () {
inti, j;
wait (sc_time(18, SC_NS));
for (i=1;1<10; i++) {
for (var[i] =1, j =0; j <i; j++) {
var[i] *=i;
wait (sc_time(15, SC_NS)); // estimation
}
wait (sc_time(24, SC_NS)); // estimation
mem_port->write(0x400,4,&var[i]); // write 4 byte data to address 0x400

// program main function

// estimation

\}Nait (m_never_notify); // program stops here
}

int var[10];

sc_event m_never_notify;

I3

Fig. 1. Software TLM/T model

tion. However, it does not account for the data access patterns
of the programs. Cache simulator is currently the only reliable
way to obtain accurate information about a particular memory
subsystem implementation. Simulation that does not based on
cache simulation with accurate memory address trace tends to
be inaccurate.

Instruction-by-instruction simulation is the traditional way
to evaluate accurately the memory subsystem in MPSoC.
Memory address calculations and memory accesses are all ex-
plicit by emulating the instructions run on the target proces-
sors. In architectural [3, 10] and instruction set simulation
(ISS) level [2, 19] simulation, target instructions are individ-
ually decoded and executed. Improved simulation techniques
using interpretation [22] or compiled instruction [16] also pro-
vide instruction-by-instruction simulation of software and al-
low memory subsystem simulation. However, these techniques
require simulation of many architectural details and are very
slow and inefficient for system-level DSE.

III. SOFTWARE TLM MODEL

A software TLM/T model is a behavioral-level description
of a program annotated with execution time. The model im-
plements SC_MODULE in SystemC and has one SC_.THREAD
to execute the program. Time to execute the program in the
target processor is annotated onto the software TLM/T model
using wait(). wait() adds timing delays to the model and syn-
chronizes with global SystemC time. An example of a software
TLM/T model is shown in Figure 1. main() executes once start-
ing at the beginning of the simulation. The program calculates
a set of numbers and explicitly writes to a memory address with
the TLM interface. The behavior of the program is compiled
into the simulation and executes directly on the host machine.
TLM/T models provide more than two orders of magnitude
speedup over ISS.

Simulation of software TLM/T models directly uses the host
memory allocated to the instances of the models. Since the
program is compiled and directly executes on the host machine,
the memory required to store the variables resides on the host
memory. In the example, the array var and the program stack
for i and j store on the host memory.

Memory accesses of a program that are not explicit in the
TLM/T model are not simulated. Memory accesses can be im-
plicit or explicit in a program. Explicit accesses are specified in
the TLM/T model using read() and write(). However, implicit

unsigned var[10];

int LC2[1] = {(int)var};

void main () {
int a2, a3, a4, a5, a6, a7;
ad=1;
wait(sc_time(3,SC_NS));
mem_port->read((unsigned)LC2,4,NULL); // read literal
a5 = *(int *)((unsigned)LC2); // from memory subsystem
wait(sc_time(3,SC_NS));

L2: mem_port->write(a5,4,NULL); /1 write to
*(int *)a5 = 1; /1 array element var[i]
a3=1;
a2=0;
wait(sc_time(9,SC_NS));
L3:a2=a2+1;

a3 =a3*a4;
if(a2 < a4) {wait(sc_time(15,SC_NS)); goto L3;}
wait(sc_time(9,SC_NS));
mem_port->write(a5,4,NULL); // write to
*(int *)a5 = a3; /1 array element var[i]
wait(sc_time(3,SC_NS));
mem_port->write(0x400,4, &a5);
ad=a4+1;
a5=a5+4;
if(a4 != 10) {wait(sc_time(18,SC_NS)); goto L2;}
wait(sc_time(12,SC_NS))
block(never_notify_event);

/1 literal

/1 registers

/1 explicit write to 0x400

Fig. 2. Generated Software TLM/T Model

accesses, such as reading or writing a de-referenced address,
an array, a volatile variable, or a program stack due to lack of
registers, are not specified in the TLM/T model.

Although some estimations allow performance of a partic-
ular private cache to be included based on a simulation trace
from ISS, they are not flexible to allow memory subsystem
DSE and require estimations to be generated from ISS every
time the memory subsystem changes.

IV. CACHE AND MEMORY SIMULATION

Cache and memory configurations are very important in MP-
SoC. Different programs have different memory requirements
and cache access characteristics. It is important to configure
the caches and memories such that the programs run efficiently
under the constraints in performance, area and power. Analyz-
ing cache and memory configurations for MPSoC is difficult
because programs on different processors complexly interact.
Memory address traces differ dramatically with a minor change
in the implementation. Therefore, the address traces generated
by ISS cannot be reused for DSE. To efficiently evaluate differ-
ent cache and memory configurations and explore the memory
subsystem design space, our generated software TLM/T mod-
els provide dynamic target memory addresses within simula-
tion such that caches and memories are accurately simulated.

A. Generated Software TLM/T Model

Since memory accesses can be explicit or implicit, a com-
piler is utilized to expose all memory accesses in the programs.
We develop a SystemC backend for the compiler to generate
TLM/T models in SystemC for software [4]. C programs are
run through the compiler. Explicit memory addresses are spec-
ified to be unmodified. The program is portable that it does not
assume the memory addresses of its data or the relationships
between the addresses of different data. The compiler first
converts a program into an optimized low level intermediate
representation (IR). Then the backend of the compiler gener-
ates SystemC TLM/T codes based on performance and energy
estimations in the IR [23]. Procedures to generate software

812

TLM/T models with annotations are completely automatic and
transparent to the designers.

Simulating caches and memories is possible because all
memory accesses are accurately visible in the IR. Explicit ac-
cesses are specified by the designers. Implicit accesses gener-
ated by the compiler are converted into load and store instruc-
tions, which represent accesses to the memory. The number
and locations of the implicit accesses depend on the optimiza-
tion levels in the compiler. Therefore, as shown in Figure 2, the
memory accesses are annotated onto the TLM/T model using
read() and write() by the compiler backend. Note that the im-
plicit accesses only simulate the accesses of the addresses but
do not actually read or write (specified by NULL) because these
accesses are internal to the programs. Without using the com-
piler to analyze the program, implicit memory accesses cannot
be exposed accurately. Instruction accesses, on the other hand,
can be annotated based on [17].

With read() and write() annotated onto the TLM/T models,
memory accesses can be simulated for performance and energy
estimations of different cache and memory configurations. To
our knowledge, no other system-level design platform is able to
simulate caches alongside behavioral-level models (annotated
or otherwise) with the same level of accuracy and efficiency.
We consider this a great deficiency when the memory subsys-
tem typically accounts for at least 20% of the energy and per-
formance degradation. We will show that it is possible to sim-
ulate caches in software TLM/T models with a small loss in
simulation speed.

B. Reverse Address Mapping

In addition to exposing all memory accesses in the TLM/T
models, we need to determine the target memory addresses for
the memory accesses to simulate the memory subsystem accu-
rately. Data in the implementation is mapped to specific target
memory addresses. The target memory addresses determine
the runtime characteristics of the caches and memories. The
caches behave differently with different addresses.

In general, it is impossible to determine target memory ad-
dresses for loads and stores in compile time. Statically deter-
mining target memory addresses for all accesses in compile
time is a NP-hard problem, especially when pointer manipu-
lations are involved.

B.1 Target Memory Address

The memory map of the implementation is provided to the
TLM/T models to map the data into their target memory ad-
dresses. For a target executable, a linker maps data to specific
memory addresses based on a linker script. The linker script
specifies the memory address for each section: bss, literal,
stack, heap, etc. Data can be placed to specific sections using
compiler directives in the programs. To provide accurate target
memory addresses for simulation, such memory map should be
provided.

Without a provided memory map, which is common for early
system-level DSE, one memory map can be generated. The
generated memory map maintains the spatial and temporal lo-
calities of the memory accesses. Memory subsystem DSE can
be done with minor loss in accuracy. If the exploration result
is satisfactory, the generated memory map can be used to con-
struct a linker script that keeps the same memory map as used
in the explorations.

B.2 Address Lookup

A simulation time lookup procedure is used to determine the
target memory address for each implicit memory access. For

9A-3

each load or store in the compiler-generated codes, the TLM/T
model reads or writes to an address in the host memory where
the data allocates. The host memory address indicates the data
that is accessed. Therefore, using the host memory address,
we can use a reverse address mapping procedure to determine
the target memory addresses during the simulation. A similar
”Address Recovery” technique [5] has been proposed to for-
ward memory address from the target memory space to the host
memory space. However, the technique does not support any
pointer manipulations, which are very common in multimedia
applications. Our reverse address mapping allows pointer ma-
nipulations on the host memory addresses and is able to map
addresses from pointer manipulations to their correct corre-
sponding target memory addresses.

Reverse memory map (mmap) is a set of tuples with three
fields: host memory address € H, length € N and target mem-
ory address € T. H is the set of host memory addresses that
are accessible directly from the TLM/T models. N is a natural
number that represents the size of the data. 7' is the set of target
memory addresses of the data in the implementation.

Property 1. Uniqueness of host memory addresses:

ﬂ(hl, ll,tl), (hg, lg,tg) € mmap
such that (h1 = hg) A (tl 75 tg)

Property 2. Non-overlapping addresses:

ﬂ(hl, ll,tl), (hg, lg,tg) € mmap
such that (hl < hg) A\ (hl + 11 > hg)

Since SystemC simulation is simulated in one host memory
space, each data in the TLM/T models allocates a specific ad-
dress in the host memory. No host memory addresses of two
data are the same or overlapped. The data in software, when
in scope, has unique host memory addresses. Each instance of
a TLM/T model allocates a different memory address. There-
fore, when a data goes into scope, register() is invoked to add
a new entry into mmap (Algorithm 1). When the data goes out
of scope, unregister() is invoked to remove the entry from
mmap. The entries in mmap always obey Property 1 and 2.
mmap also applies to stacks and heaps as they are simply big
chunks of memory allocated to the programs.

Algorithm 1: Register Reverse Address Map

1 mmap =

2 register(h € Hyl € N,t € T)

3 check against lemma 1 and 2
4 mmap =mmapU{(h,[,t)}
5 unregister(h € H)

6 mmap = mmap/{(h,*,*)}

On the other hand, target memory addresses are not unique
and can overlap. Unlike host memory which is in one memory
space, programs in different processors can have asymmetric
memory views and access different data with the same memory
address.

Property 3. In-order memory addresses:

(V(h,1,t) € mmap) A (Vi < 1)
— lookup(h+1i) =t+1

Memory for a data (including an array or a structure) is al-
ways contiguous. We use data-types for data of the same size.
Therefore, in the program point of view, if the host memory ad-
dress h with size [maps to the target memory address ¢, an off-
set added to the host memory address (h + ©), as long as ¢ < [,

813

9A-3

maps to the same offset of the target memory address (¢t + 7).
This property (Property 3) allows pointers (data addresses) to
be used to lookup their corresponding target memory addresses
after pointer manipulations.

Algorithm 2: Lookup Reverse Address Map

1 sort mmap with increasing order of h
2 lookup(s € H)
3 use binary search for last (h,[,t) € mmap such that h < s

4 ifh+ 1 < sthen

5 return ERROR

6 else

7 return (¢ + (s — h))
8 end

The reverse address map allows the target memory addresses
to be generated dynamically during simulation regardless of
pointer manipulations in the programs. The function lookup :
H — T (Algorithm 2) is used to determine the target memory
addresses based on the host memory addresses. The complex-
ity of such lookup is O(InN'), which N is the number of entries
in mmap. Hence, such lookup is scalable for big designs. Dur-
ing the simulation, pointer manipulations are applied directly
on the host memory addresses, and the resulting addresses are
used to lookup the target memory addresses. A valid pointer
manipulation always ends up in a memory address of a data
that is properly declared in the host memory and registered in
the reverse address map. Unless the programs try to access
memory that is not properly declared and registered, we can
handle pointer manipulations without difficulty.

B.3 Address Map Example

An example of a reverse address mapping is shown in Figure
3. First, when a data is allocated, register() adds an entry to
mmap. In the example, the array ary of total size 12 bytes
resides in the host memory starting at 0xa044. The host mem-
ory address of the array may be different every time the sim-
ulation runs, however it always map to the same target mem-
ory address. The target memory address for the array ary is
0x100, provided by a memory map. In register(), the entry
(0xa044, 12,0x100) is added to mmap. Second, the address
ptr is calculated by the pointer manipulations. As a result ptr
points to 0xa04c in the host memory, the third element in ary.
Third, ptr is then used in a load instruction, where it is used
in lookup() for the target memory address. An offset of 8 is

Simulation Model

Declaration: { (0xa000, 16, 0x204) }

int ary[3]; (Oxb104 8, 0x304)
mmap.register(ary,sizeof(int)*3,0x100);
/1 &ary = Oxa044

Memory Map

(0xa000, 16, 0x204)
(0xa044, 12, 0x100)

(0xb104 8, Ox304)}

Array Manipulation:
int *ptr = ary; // ptr = 0xa044
ptr +=2; // ptr = Oxa04c
X = *ptr;

Host address:
0xa04c
mem.load(
mmap.loow Targgt eliggress:
X

Out of Scope:
mmap.unregister(ary); { (0xa000, 16, 0x204) }

Memory Access:
(quOOO 16, 0x204)

0xa044, 12, 0x100)
(Oxb104 8, 0x304)

(0xb104, 8, 0x304)

Fig. 3. Address Map Example

then applied to the address 0x100, which results in the target
memory address 0x108. The address corresponds to the third
element of ary in the target memory. In general, for a legal
load or store, the host memory address must point to a memory
space that is properly declared, hence the address can always
map to a target memory address. Last, when ary goes out of
scope, the entry in mmap is deleted with unregister(). Entries
in mmap are dynamically added and deleted when variables
and arrays go in and out of scope during simulation. This dy-
namic operation is necessary since the same host memory space
can be reused by the simulator for multiple data where their life
times do not overlap

C. Memory Subsystem Modeling

A transaction-level memory subsystem modeling is used to
simulate caches and memories in the target MPSoC system.
Caches and memories are modeled in SystemC TLM/T [22] to
provide fast efficient simulation. The cache model is highly
configurable. It can be configured with any combination of
valid cache size, associativity, block size and replacement pol-
icy. Cache coherency can also be implemented to match the
target memory subsystem implementation.

We integrate CACTI library [18] in our cache and memory
models to accurately estimate the access times and the energy
consumptions of caches and memories with different configu-
rations. CACTI is an integrated model of cache access time,
area, aspect ratio, and power based on the capability of accu-
rately calculated wire capacitances and resistances of address
and data routings.

V. EXPERIMENTS & RESULTS

In this section, we present a set of experiments for MPSoC
memory subsystem simulation evaluations and design space
explorations. We implement our SystemC backend in LLVM
compiler infrastructure [11], which utilizes the GCC C/C++
frontend and a set of common global and inter-procedural opti-
mizations. The backend creates software TLM/T models with
performance and energy estimations.

We use Tensilica’s Xtensa LX2 processors [19] in our MP-
SoC architecture. We use the typical configuration generated
using Xtensa Processor Generator without instruction exten-
sion. All experiments run on a Pentium 4 3.3GHz machine
with 1GB of memory. Xtensa tools run on Linux and Sys-
temC simulation is compiled using GCC and OSCI SystemC
library. All timing, energy and area estimations are based on
0.12u technology [24].

A. Simulation Time Evaluation

We demonstrate our memory subsystem simulation and de-
sign space explorations using an industrial-strength MPEG-2
decoder design (Figure 4). The design is written in Kahn Pro-
cess Network. It is composed of nine programs that are par-
titioned and mapped into processors. MPEG-2 decoder is a
stream-based application that is suitable to be implemented in
MPSoC. Global accesses from the programs using read and
write calls are explicitly defined in the design.

The target implementation architecture is shown in Figure
5. Multiple processor subsystems, each with a processor, a
private instruction memory and a private data cache, are con-
nected using a crossbar. For energy efficiency, cache coherency
is not used because it generally keeps the caches and the cross-
bar busy. Instead shared objects are allocated in memory and
are not cached in the private cache. A shared buffer is used
to increase efficiency of the memory by caching the memory
accesses.

814

Memory accesses from each program are transactionally cor-
rect. Because memory accesses are exactly represented in the
software TLM/T models and the reverse address mapping maps
the accesses correctly into target memory addresses with a pro-
vided memory map, memory accesses from each program have
no error. Since the accuracy of the overall simulation also de-
pends on other factors, such as the accuracy of the timing es-
timation of the software models and the modeling of intercon-
nects, overall accuracy results are not representative here. In
our experiments, we obtain an overall simulation performance
within 10% from the results of ISS, including the inaccuracies
from the software timing estimation and interconnect model-
ing.

Sim. Time | Speed-Proc | Speedup
ISS 2 hrs 100 kHz 1
Interpretation 7 min 1.5 MHz 15
TLM/T 19 sec 37 Mhz 370
TLM/T & Cache 41 sec 16 MHz 160
TABLE I

SIMULATION SPEED COMPARISON

Our cache and memory simulation in software TLM/T mod-
els provides efficient simulation for memory subsystem DSE.
Table I shows the simulation speeds of TLM/T models with
and without memory subsystem simulation. We compare the
simulation speeds to the results of ISS and interpretation,
two instruction-by-instruction simulation techniques that allow
memory subsystem simulation reported in literatures [19, 22].
Although simulating caches and memories reduces the simula-
tion speed because of the overhead for additional timing delay
calls, reverse address lookups and memory subsystem simula-
tion, our simulation still simulates in excess of 10MHz. Our
TLM/T models with memory subsystem simulation simulate
two orders of magnitude faster than ISS and one order of mag-
nitude faster than interpretation. Such simulation speed allows
complete implementation developments and DSE with realistic
inputs. Hence the designers can choose the best implementa-
tion based on performance and energy characteristics.

B. Design Point Analysis

The strength of our simulation is the ability to explore var-
ious implementations efficiently for MPSoC. Here we explore
the number of processors and memory subsystem configura-
tions.

B.1 Processor and Cache Allocation

In MPSoC, the die area is shared by both processors and
caches. It is the designers’ choice to allocate area for more
processors or for bigger caches. This problem is previous ig-
nored because DSE platforms based on ISS are too slow and
behavioral simulations do not support memory subsystem sim-
ulation.

Tisiq H Tidct Jf

Toutput

TwriteMB

(MPEG-2 Stream)
010010001...

Fig. 4. MPEG-2 Decoder Design

9A-3

Processor Subsystem 1 Processor Subsystem 2

Instruction
Memory ™

Instruction
Memory

=
Embedded
Processor

Embedded
Processor

Data Data
Cache Cache

Crossbar ‘

Data Shared Buffer
Cache

Instruction Memory

Memory

Embedded
Processor

Processor Subsystem 3 Memory Subsystem

Fig. 5. MPSoC Architecture

Mapping
1 proc {Tvld,Tisiq,Thdr,Tidct,TdecMV,
Tpredict, Tadd, TwriteMB, Toutput }
2 proc {Tvld,Thdr,Tidct, TdecMV,Tadd },
{Tisiq, Tpredict, TwriteMB, Toutput }
3 proc {Tvld,Thdr,Tidct,TdecMV },
{Tisiq, Tadd, TwriteMB },{ Tpredict, Toutput }
4 proc || {Tvld, Thdr,TdecMV,TwriteMB },{Tisiq, Tidct},
{Tadd,Toutput },{ Tpredict}
5 proc {Thdr,TdecMV,Tadd},{Tisiq, TwriteMB },
{Tvld,Toutput},{ Tpredict},{Tidct}
6 proc {Tvld,Thdr,TdecMV },{Tisiq, Toutput},
{TwriteMB},{Tadd},{Tidct},{ Tpredict}

TABLE I
PROGRAM MAPPINGS

We use one to six processors in our target implementation ar-
chitecture and homogeneous configurations for all private data
caches. Program mapping is based on load balancing and is
shown in Table II. Total area for all processors and caches is
limited to 5 mm?.

Figure 6 shows the result of the processor/cache exploration.
Power consumption increases with the number of processors
because the same area used for processors consumes more
power than caches. However, if too little area is devoted to
computation (i.e. 1 and 2 processors), the execution time
lengthens and it results in higher energy consumption. From
one to five processors, performance increases with the num-
ber of processors. With six processors, however, performance
gets worse as the caches become too small and memory ac-
cesses regularly go to the main memory. Therefore, we get

0.7 *
3 0.65 6 Proc w/ 1K/direct
c :
o ; R
2 06 1 Proc w/ 64K/8-way
E 0.55 5 Proc w/ 2K/2-way ¢
0 2 Proc w/ 32K/4-way
5 05 4 Procw/ 4K/2-way ¢
o @
5 0.45 3 Proc w/ 16»_K‘/>"2‘—way
3
b 04

0.5 0.7 0.9 1.1 1.3

Execution Time (s)

Fig. 6. Processor and Cache Allocation

815

9A-3

0.55 *
= 32K/2+2K/2+1K/
S 0.53 L 2
=1 2K/ +16K/4+1KA
0.51
EO. 8K/2+8K/4+8K/4
[2]
€ 0.49 , 16K/2+BK/2+4K/4
© @ 4K/248K/244K/2
> 0.47
(3]
c
W .45
0.7 0.75 0.8 0.85 0.9

Execution Time (s)

Fig. 7. Cache Configuration

the best performance with five processors and the best energy
consumption with three processors.

B.2 Cache Configuration

Memory subsystem design space in an MPSoC implementation
is very large. Each cache can be configured with more than a
hundred configurations. In our experiment, we use three pro-
cessors in our target architecture with three private data caches.
Total area for all processors and caches is limited to 5 mm?.

Figure 7 shows the result of the heterogeneous cache explo-
ration. In our experiment, a bad cache configuration can take
20% more execution time and energy compared to a good con-
figuration. Good configurations are heterogeneous. Each pri-
vate data cache is configured according to the memory access
characteristics of the programs that are mapped to the proces-
sors. Hence it is important to explore memory subsystem de-
sign space to achieve a good implementation. We get the best
performance with 8K/2, 8K/4, 8K/4 for the three caches re-
spectively and the best energy consumption with 2K/2, 4K/2,
16K/2 respectively.

As shown in our analysis, the memory subsystem has a huge
impact on the performance and energy characteristics of an im-
plementation. Designers need to be able to explore different
cache and memory configurations. It requires fast and auto-
matic system-level simulation models that allow memory sub-
system simulation. Our software TLM/T models provide ac-
curate simulation for memory accesses and allow designers to
explore system-level design space like never before.

VI. CONCLUSION

In this paper, we introduce a technique to simulate mem-
ory subsystems in software TLM/T models. We present an
automatic annotation for getting quantitative memory accesses
into efficient software TLM/T models. And we present a re-
verse address map to make it possible to accurately simulate
caches alongside TLM/T models. Our technique is able to ef-
ficiently explore complex architectural issues such as distribu-
tion of available die area for caches and memories. Our ap-
proach opens up design space explorations that is not possible
before.

REFERENCES

[1] F. Balarin, Y. Watanabe, et al. Metropolis: An integrated elec-
tronic system design environment. Computer, 36(4):45-52,
2003.

[2] L. Benini, D. Bertozzi, et al. Mparm: Exploring the multi-
processor soc design space with systemc. J. VLSI Signal Pro-
cess. Syst., 41(2):169-182, 2005.

816

(3]

(4]
(5]

(6]

(71

(8]

[16]

(17]

(18]

[19]
(20]

(21]

[22]

(23]

(24]

D. Brooks, V. Tiwari, et al. Wattch: a framework for
architectural-level power analysis and optimizations. In ISCA
’00: Proceedings of the 27th annual international symposium
on Computer architecture, pages 83-94, New York, NY, USA,
2000. ACM.

E. Cheung, H. Hsieh, et al. Framework for fast and accurate
performance simulation of multiprocessor systems, Nov. 2007.
L. Gao, K. Karuri, et al. Multiprocessor performance estimation
using hybrid simulation. In DAC ’08: Proceedings of the 45th
annual conference on Design automation, pages 325-330, New
York, NY, USA, 2008. ACM.

A. Ghosh and T. Givargis. Analytical design space exploration
of caches for embedded systems. In DATE ’03: Proceedings of
the conference on Design, Automation and Test in Europe, page
10650, Washington, DC, USA, 2003. IEEE Computer Society.
I. Gluhovsky and B. O’Kratka. Comprehensive multiproces-
sor cache miss rate generation using multivariate models. ACM
Trans. Comput. Syst., 23(2):111-145, 2005.

K. Huang, S. il Han, et al. Simulink-based mpsoc design flow:
case study of motion-jpeg and h.264. In DAC '07: Proceedings
of the 44th annual conference on Design automation, pages 39—
42, New York, NY, USA, 2007. ACM Press.

Y. Hwang, S. Abdi, et al. Cycle-approximate retargetable per-
formance estimation at the transaction level. In Design, Automa-
tion and Test in Europe, 2008. DATE ’08, pages 3-8, Munich,
Germany,, Mar. 2008.

S. Lee, S. Das, et al. Circuit-aware architectural simulation. In
DAC ’04: Proceedings of the 41st annual conference on Design
automation, pages 305-310, New York, NY, USA, 2004. ACM.
LLVM Compiler Infrastructure Project. http://www.llvm.org.
Open SystemC Initiative. http://www.systemc.org.

J. M. Paul, A. Bobrek, et al. Schedulers as mode%—based design
elements in programmable heterogeneous multiprocessors. In
DAC ’03: Proceedings of the 40th conference on Design au-
tomation, pages 408—411, New York, NY, USA, 2003. ACM.

J. J. Pieper, A. Mellan, et al. High level cache simulation for
heterogeneous multiprocessors. In DAC *04: Proceedings of the
41st annual conference on Design automation, pages 287-292,
New York, NY, USA, 2004. ACM.

S. Polstra. A systematic approach to exploring embedded sys-
tem architectures at multiple abstraction levels. IEEE Transa-
tions on Computers, 55(2):99-112, 2006. Member-Andy D. Pi-
mentel and Student Member-Cagkan Erbas.

M. Reshadi, P. Mishra, et al. Instruction set compiled simula-
tion: a technique for fast and flexible instruction set simulation.
In DAC °03: Proceedings of the 40th conference on Design au-
tomation, pages 758-763, New York, NY, USA, 2003. ACM.

J. Schnerr, O. Bringmann, et al. High-performance timing sim-
ulation of embedded software. In DAC ’08: Proceedings of the
45th annual conference on Design automation, pages 290-295,
New York, NY, USA, 2008. ACM.

P. Shivakumar and N. P. Jouppi. Cacti 3.0: An integrated cache
timin%, power, and area model.

Tensilica Xtensa processors. http://www.tensilica.com.

J. Tsai and A. Agarwal. Analyzing multiprocessor cache behav-
ior through data reference modeling. In SIGMETRICS ’93: Pro-
ceedings of the 1993 ACM SIGMETRICS conference on Mea-
surement and modeling of computer systems, pages 236247,
New York, NY, USA, 1993. ACM.

P. van der Wolf, E. de Kock, et al. Design and programming of
embedded multiprocessors: an interface-centric approach. In
CODES+ISSS '04: Proceedings of the 2nd IEEE/ACM/IFIP
international conference on Hardware/software codesign and
system synthesis, pages 206-217, New York, NY, USA, 2004.
ACM Press.

E. Viaud, F. Pécheux, et al. An efficient tlm/t modeling and
simulation environment based on conservative parallel discrete
event principles. In DATE ’06: Proceedings of the conference
on Design, automation and test in Europe, pages 94-99, Leu-
ven, Belgium, Belgium, 2006. European Design and Automa-
tiop Association.

T. Simuni¢, L. Benini, et al. Cycle-accurate simulation of energy
consumption in embedded systems. In DAC ’99: Proceedings
of the 36th ACM/IEEE conference on Design automation, pages
867-872, New York, NY, USA, 1999. ACM.

T. Wolf and J. S. Turner. Design issues for high-performance
active routers. IEEE Journal on Selected Areas in Communica-
tions, 19(3):404-409, Mar. 2001.

