Program Analysis for Bug Detection using Parfait
Invited Talk

Cristina Cifuentes

Nathan Keynes

Lian Li Bernhard Scholz*

Sun Microsystems Laboratories
Brisbane, Australia

{cristina.cifuentes,nathan.keynes,lian.li}@sun.com

Abstract

The goal of the Parfait project is to find bugs in C source code
in a scalable and precise way. To this end, Parfait was designed
as a framework with layers of sound program analyses, multiple
layers per bug type, to identify bugs in a program more quickly and
accurately.

Parfait also aims to identify security bugs, i.e., bugs that may
be exploited by a malicious user. To this end, an optional pre-
processing step is available to reduce the scope of potential bugs
of interest.

To evaluate Parfait’s precision and recall, we have developed
BegBunch, a bug benchmarking suite that contains existing syn-
thetic benchmarks and samples of bugs (“bug kernels”) taken from
open source code.

Categories and Subject Descriptors D.2.4 [Sofiware Engineer-
ing]: Software/Program Verification; D.2.8 [Software Engineer-
ing]: Metrics

General Terms Verification

Keywords Constant propagation, Partial evaluation, Symbolic
analysis

1. Introduction

Recently, sophisticated bug checking tools that use a variety of
program analyses and verification methods have become available,
with greater precision than that obtained by tools such as lint (John-
son 1978). Current tools check for bugs using an abstraction or a
model of the program, either one procedure/method at a time (i.e.,
intra-procedurally) or globally (i.e., inter-procedurally). However,
the noise level of these tools is still high in practice: each reported
bug needs to be manually verified to determine if indeed it is a bug
(i.e., a true positive) or not a bug (i.c., a false positive), resulting
in much time and effort wasted in validating the results of the tool.
Precision (the number of true positives divided by the total number
of reported bugs) is an issue.

*While on sabbatical leave from The University of Sydney,
scholz@it.usyd.edu.au

Copyright is held by Sun Microsystems, Inc.

PEPM’09, January 19-20, 2009, Savannah, Georgia, USA.
ACM 978-1-60558-327-3/09/01.

Despite the speed of today’s processors, advanced program
analyses and verification methods remain too computationally ex-
pensive to be able to analyse large code bases in a timely fashion.
A tool that requires more than a week to run over a large code base
cannot be integrated into the day-to-day software development pro-
cess. Scalability is an issue.

Users of bug checking tools may use filters to deal with false
positives, but they have no way of knowing about the tool’s false
negative rate (i.e., what bugs exist in the code, but are not reported
by the tool). Lack of this information may lead to a false sense of
security. Recall (the number of true positives divided by the total
number of bugs in the code) is an issue.

Software that is online constantly is especially vulnerable, as
(well-known) attacks to the software may uncover an unknown
bug and exploit it to bring down the software, obtain unauthorised
access, etc. Security is an issue.

2. Parfait Design

The Parfait design addresses the requirements of precision, scala-
bility, and recall (Cifuentes and Scholz 2008) by defining an exten-
sible framework composed of layers of program analyses.

For greater precision and scalability in bug checking, the design
employs an ensemble of sound static program analyses that vary in
complexity and expense. Analyses are ordered from least to more
(time) expensive, ensuring that each buggy statement is detected
with the cheapest program analysis capable of detecting it, effec-
tively achieving higher precision with smaller runtime overheads.

For recall, Parfait compiles a sound list of potentially buggy
statements per bug type for the framework to process. Each sound
analysis can then determine one of three things about a potential
buggy statement: it can confirm it is a bug, it can reject it as a non-
bug, or it cannot tell either way. There are three lists attached to
these three results: real bugs, no bugs, and potential bugs. After
the ensemble of analyses is run, the user can see the real bugs list
(which has high precision) and the potential bugs list (to get an idea
of the recall rate; these results need to be manually verified by the
user).

To overcome the computational program analysis bottleneck,
we employ demand driven program analysis instead of traditional
whole program analyses. The demand driven analyses effectively
generate a slice of a program starting at each potential buggy
statement, limiting the scope to a small and relevant subset of the
code.

2.1 Layers of Program Analyses — An Example

To detect buffer read/write overruns (i.e., buffer overflows and read
outside array bounds), three analyses have been implemented in
Parfait: constant bounds checks, partial evaluation, and symbolic
analysis; all intra-procedural at present.



For constant bounds checks we perform constant propagation
and folding (Aho et al. 1986) to trivially check array references
with constant indexes against valid array bounds.

For statements with statically-computable dependencies on an
array index, we use partial evaluation (Futamura 1971) techniques
to specialize a slice of code around the buggy statement with the
constant inputs, and execute the slice in an interpreter to determine
whether the index is within valid bounds or not.

For other statements we use symbolic analysis (Cheatham et al.
1979) to compute the symbolic range of variables. The symbolic
range of an array index variable will then be compared with the
array bounds to determine whether or not the array reference is out
of bounds.

In tests over the 6-million line Solaris™ Operating System ON
(Operating system and Networking) consolidation code base, these
analyses have found more than 300 buffer read/write overrun bugs
in under 30 minutes on an AMD Opteron 2.8 GHz with 16 GB of
memory. These bugs have been manually confirmed to be real bugs
and are being submitted into the bug tracking system for Solaris.

Full support for the C language requires support for the C li-
brary; an ISO standard that specifies well-defined semantics for the
various functions in the library (WG14 2005). In Parfait, we make
use of pre-conditions to support checking of C library function se-
mantics. Post-conditions will be added in the future.

3. Security Vulnerabilities

For security vulnerabilities (defined as those that can be exploited
by an attacker), we have developed a pre-processing analysis pass
over the Parfait framework to reduce the full set of potential buggy
statements gathered by Parfait, to just those statements that are
reachable from user input. This user-input dependence analysis
over the whole program is mapped onto a reachability graph: a
point in the graph is either reachable or not from external in-
put (Scholz et al. 2008).

More complex definitions of security vulnerability require fur-
ther layers of analyses to be put in place over the Parfait framework,
to be able to detect vulnerabilities such as denial of service, weak
passwords, etc.

4. BegBunch — Quantifying Precision and Recall

To compare bug checking tools, it is necessary to measure objec-
tively their level of correctness. To do this, we have compiled two
sets of sample bugged source (benchmark suites), and written a
framework to run the tool on the samples (Cifuentes et al. 2009).

The suite is composed of synthetic (e.g., (Kratkiewicz and Lipp-
mann 2005), (NIST 2006)) and real bug kernels extracted from
open source projects (Zitser et al. 2004; Lu et al. 2005; Cifuentes
et al. 2009). Each benchmark is annotated with the type and lo-
cations of bugs exposed in the benchmark. Given a bug checking
tool’s output, BegBunch’s harness computes how many bugs were
reported correctly (computing the precision rate), and how many
bugs were missed (computing the recall rate). Currently, for buffer
read/write overruns from the BegBunch suite, Parfait obtains 100%
precision and 75% recall rates.

Acknowledgments

Several students have contributed to the Parfait effort while on in-
ternships or as part of student projects with our group; we thank
them all for their contribution: Erica Mealy, Chenyi Zhang, Si-
mon Long, David Gwynne, and Jimmy Ti. We also thank Michael
Mounteney who contracted with us to make BegBunch a reality.
And, of course, we thank the LLVM (Lattner and Adve 2004) team
for their infrastructure, upon which Parfait is built.

Thanks also to Scott Rotondo for providing requirements for a
bug-checking tool for the Solaris OS, Sharon Liu and Chok Poh for
providing requirements for the native part of the JDK™ software,
Liang Chen for suggesting bug-checking as an interesting area
to work in, and Douglas Walls for historical information on bug
checking at Sun.

References

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers. Addison-
Wesley, 1986.

T. E. Cheatham, G. H. Holloway, and J. A. Townley. Symbolic evaluation
and the analysis of programs. [EEE Trans. Softw. Eng., 5(4):402—417,
1979.

Cristina Cifuentes and Bernhard Scholz. Parfait — designing a scalable
bug checker. In Proceedings of the ACM SIGPLAN Static Analysis
Workshop, pages 4—11, 12 June 2008.

Cristina Cifuentes, Bernhard Scholz, Michael Mounteney, Erica Mealy,
Nathan Keynes, and Lian Li. BegBunch: A benchmarker for C-source
bug detection tools. Submitted for publication, January 2009.

Yoshihiko Futamura. Partial evaluation of computation process — an ap-
proach to a compiler-compiler. Systems, Computers, Controls, 2:45-50,
1971.

S.C. Johnson. Lint, a C program checker. Technical Report 65, Bell
Laboratories, 1978.

Kendra Kratkiewicz and Richard Lippmann. Using a diagnostic corpus of C
programs to evaluate buffer overflow detection by static analysis tools.
In Proc. of Workshop on the Evaluation of Software Defect Detection
Tools, June 2005.

Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proceedings of the

2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, March 2004.

Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou.
BugBench: A benchmark for evaluating bug detection tools. In Proc.
of Workshop on the Evaluation of Software Defect Detection Tools, June
2005.

NIST. National Institute of Standards and Technology SAMATE Refer-
ence Dataset (SRD) project. http://samate.nist.gov/SRD, January
2006.

Bernhard Scholz, Chenyi Zhang, and Cristina Cifuentes. User-input depen-
dence analysis via graph reachability. In Proceedings of the Eighth IEEE
Working Conference on Source Code Analysis and Manipulation, pages
25-34, 28-29 September 2008.

WG14. ISO C 99 Standard - TC2. ISO/IEC Working Group 14, 9899:TC2
edition, May 2005.

Misha Zitser, Richard Lippmann, and Tim Leek. Testing static analysis
tools using exploitable buffer overflows from open source code. In
Proceedings of the 12th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 97-106. ACM Press, 2004.



