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Abstract 

As computer systems become more and more complex, it becomes harder to ensure that 

they are dependable i.e. reliable and secure. Existing dependability techniques do not take 

into account the characteristics of the application and hence detect errors that may not 

manifest in the application. This results in wasteful detections and high overheads. In 

contrast to these techniques, this dissertation proposes a novel paradigm called 

“Application-Aware Dependability”, which leverages application properties to provide 

low-overhead, targeted detection of errors and attacks that impact the application. The 

dissertation focuses on derivation, validation and implementation of application-aware 

error and attack detectors. 

The key insight in this dissertation is that certain data in the program is more important 

than other data from a reliability or security point of view (we call this the critical data). 

Protecting only the critical data provides significant performance improvements while 

achieving high detection coverage. The technique derives error and attack detectors to 

detect corruptions of critical data at runtime using a combination of static and dynamic 

approaches. The derived detectors are validated using both experimental approaches and 

formal verification. The experimental approaches validate the detectors using random 

fault-injection and known security attacks. The formal approach considers the effect of 

all possible errors and attacks according to a given fault or threat model and finds the 

corner cases that escape detection. The detectors have also been implemented in 

reconfigurable hardware in the context of the Reliability and Security Engine (RSE) [1].  
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CHAPTER 1 INTRODUCTION 

1.1 MOTIVATION 

The increasing complexity of computer systems and their deployment in mission- and 

life-critical applications are driving the need to build reliable and secure computer 

systems. Compounding the situation, the Internet‟s ubiquity has made systems much 

more vulnerable to malicious attacks that can have far-reaching implications on our daily 

lives. Traditionally, reliability has meant expensive mainframe computers running in 

lock-step and security has meant access control and cryptography support. However, the 

Internet‟s phenomenal growth has led to the large-scale adoption of networked computer 

systems for a diverse cross section of applications with highly varying requirements. In 

this all-pervasive computing environment, the need for reliability and security has 

expanded from a few expensive, proprietary systems to something that is a basic 

computing necessity. This new paradigm has important consequences: 

 Networked systems stretch the boundary of fault models from a single application or 

node failure to failures that could propagate and affect other components, subsystems, 

and systems, and  

 Attackers can exploit vulnerabilities in operating systems and applications with 

relative ease. Due to the complex interlinking of systems, attacks on even a single 

component of the system can lead to a compromise of the entire system. 
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Users ultimately want their applications to continue to operate without interruption, 

despite attacks and failures, but as systems become more complex, this task becomes 

more difficult. The traditional one-size-fits-all approach to security and reliability is no 

longer sufficient or acceptable from the end-user‟s perspective. Spectacular system 

failures due to malicious tampering or mishandled accidental errors call for novel, 

application-specific approaches. This dissertation proposes the concept of application-

aware dependability as an alternative to traditional heavyweight dependability 

approaches such as duplication and cryptography. 

Application-aware dependability extracts application‟s characteristics and presents it to 

the underlying system, so that the system can tune itself to provide the optimal level of 

reliability and security to the application. This fits in with the idea of utility computing [2, 

3]; or cloud computing [4, 5], in which large computing farms configure themselves to 

execute complex applications for long periods of time with guaranteed performance and 

dependability. In this environment, the reliability or security of the physical hardware on 

which the application executes is less important than the dependability of the application. 

Further, as more and more computing shifts to the cloud, the value of a cloud-computing 

platform is governed more by the services provided to the application (be they for 

enhancing the application‟s performance, reliability or security) than the platform itself.  

Hardware-based techniques have the advantage of low performance overheads because 

the hardware modules can perform security and reliability checking in parallel with the 

application. Because these techniques can detect errors close to their points of 
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occurrence, low levels of detection latency are possible. This in turn ensures speedy 

recovery before errors and attacks can propagate in the system [2].  

Application-aware techniques also expose knowledge of the underlying hardware 

platform to the application, so that the application can invoke the services exposed by the 

hardware at critical points in its execution to request reliability and security support. This 

allows the protection obtained and the performance overheads incurred to be configured 

based on the application‟s needs and characteristics. Clearly, it is very hard for the 

application-developer or system administrator to coordinate this complex interaction with 

the hardware.  Therefore, it is important to develop automated techniques that can (1) 

Extract application properties and expose them to the underlying hardware, (2) Configure 

the hardware-based checks based on the extracted properties and (3) Instrument the 

application‟s code to invoke the hardware-based checks at strategic points in its 

execution.  Further, it is necessary to validate the derived checks and evaluate their 

efficacy against both accidental and malicious errors. 

The research question we address in this dissertation is as follows: How do we 

automatically extract and validate application properties to provide low-latency, high-

coverage error and attack detection using a combination of programmable hardware and 

software? We first provide an overview of the reliability techniques and security 

techniques developed in this dissertation. We then provide an overview of the fault- and 

attack- models considered in this dissertation and outline its main contributions. Finally, 

we detail the overall frameworks developed in this dissertation for derivation, 

implementation and validation of application-aware error and attack detectors.  
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1.2 PROPOSED RELIABILITY TECHNIQUES  

1.2.1 Introduction 

Reliability techniques may be broadly classified into fault-avoidance and fault-tolerance 

techniques. Fault-avoidance techniques attempt to eliminate errors at software 

development time, prior to its deployment. Examples include program testing and static 

analysis techniques. Typically, fault-avoidance techniques target specific classes of errors 

(e.g. memory errors, uninitialized variables). Although these methods have been applied 

extensively, studies have shown that subtle software defects such as timing and 

synchronization errors persist in applications, and lead to application failures in 

operational settings [6-8].  

In contrast to fault-avoidance techniques, fault-tolerance techniques provide detection of 

(and recovery from) general hardware and software errors. By far the most widely 

deployed fault-tolerance technique is duplication, which involves running two or more 

copies of a program and comparing their outputs. While duplication has been 

successfully deployed on selected commercial systems such as IBM mainframes and 

Tandem Non-stop computers [9], it has not found wide acceptance in Commodity Off-

the-Shelf systems (COTS). This is because duplication incurs high performance 

overheads (up to 100 %), and may require the provision of special-purpose hardware to 

alleviate the performance overheads. However, the special hardware requires chip area 

(up to 33 % in the IBM Mainframe G5 processor [10]) and increases the complexity of 

the overall design. Further, the errors detected by duplication-based approaches that may 
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not ultimately matter to the application, due to significant fault masking at the device 

level (80-90 %) [11] and at the architectural level (50-60 %) [12].  

Failure-oblivious computing [13] takes the view that most errors do not affect the 

application‟s execution, and hence does not recover from or correct errors as long as the 

system operates within its acceptability envelope. The acceptability envelope is defined 

as the set of acceptable (but not necessarily correct) behaviors of the system. For 

example, a web-server is considered to be operating within its acceptability envelope if it 

processes a request without writing to an undefined memory location. An aircraft 

controller is operating within its acceptability envelope as long as it does not lead to the 

aircraft accelerating beyond a certain threshold. While failure-oblivious computing is a 

promising approach if the acceptability envelope is well-defined, in practice it is hard to 

isolate the range of acceptable behaviors for a system. Further, failure-oblivious 

computing allows errors to stay undetected and propagate, which in turn can lead to 

massive failures. Hence, the failure-oblivious approach may not be well-suited for 

applications that exhibit high degrees of error propagation before crashing (if they crash). 

This dissertation proposes a novel, low-overhead approach for providing high reliability 

to applications. It proposes insertion of error detectors (runtime checks) in the 

application‟s code based on the application‟s properties. This is achieved by extracting 

application properties using compiler-driven static and dynamic analysis, and converting 

the extracted properties into runtime checks. The properties are obeyed in any error-free 

execution of the program, but not in an erroneous execution. As a result, the checks can 
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detect general hardware and software errors that impact program correctness and are not 

confined to particular types of faults.  

While the detectors are application-specific and are derived on a per-application basis, 

the method for deriving and implementing detectors can be applied to any application. 

The method is completely automated and requires no intervention from the programmer. 

1.2.2 Detector Placement 

Studies have shown that undetected error propagation leads to extended system 

downtimes [14-16]. It is therefore essential, that errors are detected before they propagate 

and cause application failure. An effective error detection mechanism must necessarily 

limit the extent of error propagation and preempt application failure in order to enable 

speedy and sound recovery (after the error is detected). 

The error detectors derived in this dissertation are placed at strategic locations in the 

application in order to prevent error propagation and preempt application failures 

(crashes). The locations encompass both the program variable that must be checked as 

well as the program point at which the check must be performed. The locations are 

chosen based on the application‟s dynamic dependence graph, which is constructed using 

the application‟s execution profile under representative inputs. For example, for a large 

application such as gcc, the detector placement methodology identifies a small number of 

strategic locations (10-100), at which placing (ideal) detectors can provide high coverage 

(80-90%) for errors leading to application failure [17].  
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1.2.3 Detector Derivation 

Once the detector placement points and variables have been identified, error detectors are 

derived for the program variables (critical variables) at the identified points.  The error 

detectors for critical variables are arithmetic and logical expressions that check whether 

the value of the critical variable was computed correctly i.e. according to the 

applications‟ code and/or semantics. Two approaches to derive error detectors are 

proposed as follows: 

1. Based on dynamic execution traces of the application, gathered by instrumenting the 

values of critical variables and executing the application under representative inputs. 

An automatic approach learns the characteristics of the variable(s) based on pre-

defined template patterns, and embeds the learned patterns as runtime checks in the 

application. The runtime checks are implemented in a programmable hardware 

framework, and are invoked through special instructions embedded in the application 

code at the detector placement points. 

2. Based on the statically-generated backward program slice [18] of the critical variables 

at the detector placement points. The backward slice is specialized for each control-

flow path in the application by the detector derivation technique. This specialization 

allows the compiler to optimize the backward slice aggressively and derive a 

minimized symbolic expression for the slice (called the checking expression). 

Programmable hardware is used to track control-paths at runtime and choose the 

checking expression corresponding to the executed path. The checking expression 
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recomputes the value of the critical variable and flags any deviation from the original 

as an error. 

1.2.4 Detector Validation 

Fault-injection is a commonly used approach to evaluate the efficacy of fault-tolerance 

mechanisms [19]. Fault-injection involves perturbing the code or data of the system (for 

example, by flipping a single bit) and studying the behavior of the system under the 

perturbation. We have evaluated the derived detectors through fault-injections in 

application data, and have shown that the detectors provide nearly duplication-levels of 

error-detection coverage for errors that matter to the application (at a fraction of the 

corresponding overheads).  Because fault-injection is statistical in nature, it is not 

guaranteed to expose all errors under which the detector may fail. In order to ensure that 

the errors missed by the derived detectors do not lead to catastrophic consequences in 

safety- or mission- critical systems, it is important to evaluate the derived detectors 

exhaustively under all possible errors. However, exhaustive fault-injection often incurs 

considerable time and resource overheads.  

Formal verification is a complementary approach to fault-injection that can exhaustively 

enumerate the effects of errors on fault-tolerance mechanisms (such as. detectors) and 

expose corner case scenarios that may be missed by traditional fault injection. We build a 

formal verification framework, SymPLFIED, to comprehensively enumerate all errors 

that evade detection and cause the program to fail. SymPLFIED operates directly on the 

assembly language representation of the program, and uses symbolic execution and 
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model-checking to systematically consider the effect of all possible transient errors on the 

program according to a given fault-model. For each error, SymPLFIED finds whether the 

error was detected and if not, whether the error led to a failure in the application.   

1.3 PROPOSED SECURITY TECHNIQUES 

1.3.1 Introduction 

Many existing approaches for security are piece-meal approaches, in the sense that they 

either protect from very specific types of attacks (e.g. Stackguard, which protects from 

certain types of stack-buffer overflow attacks [20]) or they suffer from high false-positive 

rates (e.g. system-call based intrusion detection [21]).  

Techniques such as memory-safety checking [22-24] and taintedness [25-27], while 

providing comprehensive protection from security attacks, incur high performance 

overheads when done in software, which in turn limits their deployment in operational 

settings. When done in hardware, they high-false positive rates thereby necessitating 

traps to software, and in turn incur high performance overheads. Further, they require the 

entire application‟s code to be available for analysis, which is often not the case. Thus, 

they leave open the possibility that an untrusted third-party module may be used to attack 

the application (i.e. insider attacks).  

Randomization is a low-overhead technique that has been used to protect programs from 

targeted attacks. By randomizing the layout of the stack, heap or static data items in a 

program [28-30], it is possible to obscure potential targets of an attacker, and hence foil 

the attack. The randomization can be carried out transparently to the application, with 
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minimal modifications to the hardware or operating system. However, randomization 

based techniques can be broken by repeated undetected attacks on the application [31], or 

by carrying out targeted attacks through information-leaks in the program. Further, 

randomization techniques may not be effective against attacks launched by trusted 

insiders, as an insider may be able to determine the seed value used for randomization 

and hence identify the locations of the target objects. 

Thus, we see that existing security techniques either incur high-performance overheads or 

are ineffective against trusted insiders in the same address space as the application. In 

contrast to these techniques, we propose a technique called Information-Flow Signatures 

(IFS) to protect critical data in applications from both external and insider attacks. The 

technique extracts the properties of the critical data based on the application‟s source 

language semantics, and enforces the extracted properties through runtime monitoring in 

software. Because the monitored properties are based on the inherent properties of the 

application, the technique incurs no false-positives. Further, by focusing on a subset of 

application data (critical data), the technique is able to ensure the integrity of the data 

with modest performance overheads.  

1.3.2 Information-flow Signatures 

Information-flow Signatures (IFS) encapsulate the dependencies among the instructions 

that are allowed to influence the value of the critical variables as per its source-level 

semantics. The reason for memory-corruption and insider attacks is the gap between a 

program‟s source-level semantics and its runtime execution semantics [32]. Hence, the 
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proposed technique derives the Information-flow signature of the program‟s critical 

variables (identified by programmer using annotations) from its source-level semantics 

and checks the program at runtime for conformance to the signature. It is assumed that 

attackers will attempt to influence the critical variable by introducing new code in the 

system (e.g. code-injection attacks and insider attacks) or by overwriting the critical 

variable through instructions that are not allowed to write to the critical variable 

legitimately (e.g. memory corruption attacks). Both categories of attacks will cause the 

runtime behavior of the program to deviate from its statically derived Information-Flow 

Signature, and will hence be detected.  

The proposed technique extracts the information-flow signatures of the program based on 

the backward slice of the critical variables in the program. This is similar to the static 

detector derivation technique in section 1.2.3 (Table 2 presents the main differences).  

1.3.3 Formal Validation 

The formal methodology for verification of error detectors has also been extended to 

verify security attack detectors. Similar to the SymPLFIED tool for evaluating error 

detectors, we developed an automated tool SymPLAID, to systematically enumerate all 

security attacks that evade detection and allow the attacker to achieve his/her goals. The 

attacks considered by SymPLAID include both memory corruption attacks as well as 

insider attacks. Given the application‟s code (in assembly language) and a set of attacker 

goals (in first-order logic), SymPLAID automatically identifies all possible attacks (value 

corruptions) that will allow the attacker to achieve his/her goals. However, unlike 
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SymPLFIED, SymPLAID precisely tracks the propagation of corrupted values in the 

program, thus identifying the value that must be corrupted by the attacker and the precise 

value that must be used to replace the original value in order to carry out the attack. 

1.4 FAULT AND ATTACK MODELS 

This section summarizes the fault- and attack- models used in this dissertation. The goal 

is to provide a broad overview of all faults and attacks that can be addressed using the 

techniques developed in this dissertation, rather than to provide a detailed 

characterization of the coverage of individual techniques (these are discussed in the 

relevant chapters).  

The error and attacks can be classified into four broad categories as follows: 

1. Transient hardware errors: These include soft-errors caused by radiation, 

single-event upsets due to timing and electrical defects or (in rare cases), faults 

due to design bugs in the processor that manifest only in exceptional or stressful 

circumstances. 

2. Transient software errors: These include (1) memory-corruption errors caused 

by pointers writing outside their memory intended region (and corrupting other 

data), (2) race conditions and synchronization errors which may leave a data item 

in an inconsistent or corrupted state, and (3) errors due to missing or incorrect 

initialization of data.  These are caused by software defects and may not be 

repeatable unless the environment and inputs to the program are replicated 
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exactly, which is hard to achieve in practice. Hence, their behavior is similar to 

the behavior of hardware transient errors. 

3. Control and data attacks: These include memory corruption attacks such as 

buffer overflows and format-string attacks, which overwrite the program‟s 

control-flow and data to achieve a malicious purpose (e.g. executing a root shell).  

4. Insider attacks: Insider attacks are those in which parts of the application and/or 

the operating system may be malicious and overwrite the application‟s data or 

alter its control-flow for malicious purposes. These also include code-injection 

attacks and hardware-based attacks (e.g. smart-cards). 

Table 1 shows the coverage of the different techniques considered in this dissertation for 

each category of error or attack. As can be seen from the table, there is no one technique 

that can cover all errors/attack categories, yet together, the techniques cover all categories 

of errors and attacks considered. Thus, the techniques in this dissertation address a wide 

range of both random errors as well as malicious attacks that impact the application and 

cause system failure or compromise. 

Table 1: Coverage of techniques for different error/attack categories 

Fault/Attack Category Dynamically-derived 

detectors 

Statically derived 

Detectors 

Information-flow 

Signatures 

Transient hardware 

errors (e.g. soft errors, 

timing errors, logic 
bugs) 

Yes Yes No 

Transient software 

errors (memory errors, 
race conditions, 

uninitialized variables) 

Yes Yes, except for 

uninitialized variables 

Yes for memory 

corruption errors 

Control and data attacks 
(e.g.  buffer overflow, 

format-string) 

No No Yes 

Insider attacks (e.g. 

malicious third-party 
libraries) 

No No Yes 
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1.5 OVERALL FRAMEWORK 

This dissertation proposes an approach to building dependable (reliable and secure) 

systems using the notion of application-aware dependability, which uses the 

application‟s properties to detect errors and security attacks that matter to the application. 

Application properties are automatically extracted using compiler-based static and 

dynamic analysis techniques, and are converted to error and attack detectors. The 

detectors are formally validated using model-checking and symbolic execution. The 

detectors are implemented efficiently using programmable hardware as a part of the 

Reliability and Security Engine (RSE), which is a hardware framework for executing 

application-aware checks [1].  

The main contribution of this dissertation is a unified approach to reliability and security. 

By treating reliability and security as two sides of the same coin and proposing joint 

solutions for them, it is possible to achieve significant gains in the economy and 

efficiency of the solutions. The dissertation proposes unified frameworks for the 

following.  

1. Deriving application-aware error and attack detectors through compiler analysis, 

2. Validating the efficacy of the derived detectors using formal verification methods,  

3. Implementing the derived detectors in a common, programmable hardware 

framework 
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The first two frameworks are unique contributions of this dissertation, while the third 

framework is based on the RSE framework proposed in prior work [33]. The rest of this 

section provides an overview of each of the above frameworks. 

1.5.1 Unified Framework for Detector Derivation 

This section describes the unified framework for derivation of error and attack detectors, 

which presents a way of unifying the techniques in Sections 1.2 and 1.3.  

 

Figure 1: Conceptual unified framework for reliability and security 

Figure 1shows the components of the framework. The left side of the figure shows the 

process for derivation of error detectors, while the right side shows the process for 

derivation of security attack detectors. The middle of the figure shows the common steps 

in both processes.  
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The major steps in the framework are as follows: 

1) Identification of critical variables: From a reliability perspective, these are variables 

that are highly sensitive to errors in the application. From a security perspective, these 

are variables that are desirable targets for an attacker for taking over the application. 

For reliability, it is possible to automate the selection of sensitive or critical variables 

through Error Propagation Analysis. This can be done based on analysis of the 

dynamic dependences in the application and is described in [17]. For security, we 

require the programmer to identify security-critical variables in the application 

through annotations based on knowledge of the application semantics.  An example 

of a security critical variable is a Boolean variable that indicates whether the user has 

been authenticated, as overwriting the variable can lead to authentication of a user 

with an incorrect password.  

2) Extraction of backward program slice: Once the critical variables and the program 

points at which checks must be placed have been identified, the next step is to derive 

the properties of these variables from the application code. These properties can be 

computed based on the backward program slice of the critical variable from the 

check placement point.  The backward program slice of a variable at a program point 

is defined as the set of all program statements that can potentially affect the value of 

the variable at that program point[18]. The slice is computed through static analysis 

for all legitimate program inputs. For error-detection, we are interested in re-

executing the statements in the slice of the critical variable to ensure that the value of 

the critical variable computed at the check placement point is correct, and hence the 
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slice of the critical variable computed for error-detection needs to preserve the 

execution order of program statements. For attack detection, we are only interested in 

checking that only the statements/instructions in the static program slice of the critical 

variable, in fact, write to the critical variable (directly or indirectly) at runtime.  

3) Encoding of slice: The third step is to encode the slice computed for the critical 

variable in the form of a runtime check. For error-detection, the check takes the form 

of an executable expression that recomputes the critical variable, whereas for attack-

detection, the check takes the form of a signature that contains the addresses of the 

instructions that can write to the critical variable (directly or indirectly). The compiler 

inserts calls to the checks (expressions or signatures) into the executable file and 

configures the hardware monitors with the checks at application load time.  

4) Runtime Checking: The final step is performed at runtime where the application is 

monitored (using hardware or software) and the checks inserted by the compiler are 

executed at the appropriate points in the execution. In the case of error-detection, the 

checks compare the value of the critical variable computed by the original program 

with the value of the expression derived using static analysis. A value mismatch 

indicates an error. In the case of attack-detection, the checks compare the signature 

derived using static analysis with the signature computed at runtime based on the 

instructions that write to the critical variable (directly or indirectly). A signature 

mismatch indicates an attack. In both cases, the execution of the program is stopped 

and suitable recovery action for the error or attack.  
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Table 2 summarizes the differences between the derivation of error and attack detectors 

for each of the steps shown in Figure 1.  

Table 2: Differences in the derivation process for error and attack detectors 

Step Error Detectors Attack Detectors 

Choosing critical variables 
Automatically done based on error 
propagation analysis 

Manually selected based on knowledge of 
security semantics 

Extraction of backward slice 
Needs to preserve execution order of the 

slice to generate a checking expression 

Only needs to preserve instruction-level 

dependences to generate signatures 

Encoding of slice 
Encoded as an expression that captures 
the computation of the critical variable – 

Checking expression 

Encoded as a signature that captures the 

dependences – Information-flow Signature 

Runtime checking 

Recomputation of critical variable by the 

checking expression to check the 
computation in the original program 

Tracking of instruction dependencies to check 

whether they conform to the statically-
extracted information-flow signature 

The error and attack detectors have both been derived through the introduction of new 

passes in the LLVM compilation framework [30]. Currently, the two design flows are 

independent of each other, but it is possible to combine them into a single, unified flow. 

1.5.2 Unified Framework for Detector Validation 

This section describes the unified framework to formally validate the application-aware 

error and attack detectors using formal verification techniques. To the best of our 

knowledge, the framework is the first of its kind to use formal verification to validate the 

properties of arbitrary detectors in general-purpose programs, and can be used to 

identify corner cases of errors and attacks that evade detection. Figure 2 shows a 

conceptual view of the formal framework. 

The input to the framework is an assembly language representation of the program with 

embedded error and/or attack detectors. The advantage of using assembly language is that 

it is possible to represent a wide variety of errors and attacks at the assembly language 

level. This is because the assembly language representation of the program includes (1) 
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the source-level characteristics of the program, (2) runtime libraries that are linked with 

the program, and (3) runtime support code that is added by the compiler (e.g. function 

prologs and epilogs). Thus, the assembly language representation of the program is 

closest to the form that is executed in hardware, and consequently can express both 

software and hardware errors. The program is augmented with special instructions to 

express error and attack detectors in line with its code. 

 

Figure 2: Unified formal framework for validation of detectors 

The framework identifies for each error (attack) in the fault (threat) model, whether the 

error (attack) leads to application failure (compromise) before it is detected. If so, the 

error (attack) is printed along with a detailed trace of how the error (attack) propagated in 

the application. This can help the application developer improve the coverage of the 

detectors if desired. The main advantage of using formal verification is that it can 

enumerate all errors (attacks) that evade detection and cause failure (compromise). This 

can help expose rare corner cases that may be missed by the detectors, which are hard to 

find through manual inspection alone.  
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The formal framework consists of the following key structural components: (1) Machine 

model, which specifies the execution of instructions in the processor, (2) Detection 

model, which specifies the semantics of detectors, and the (3) Fault/threat model, which 

specifies the impact of errors and attacks on the program‟s execution. All three models 

are expressed in rewriting logic and implemented using the Maude system [34]. The 

framework has been implemented in the form of two tools – SymPLFIED for verifying 

error detectors, and SymPLAID for verifying attack detectors. These are described briefly 

as follows: 

SymPLFIED considers the effect of all possible transient hardware errors on 

computation, memory and registers when a program is being executed under a specific 

input. It uses symbolic execution and model-checking to exhaustively reason about the 

effect of the error on the program. The key innovation in SymPLFIED is that it groups an 

entire set of errors into a single abstract class and symbolically reasons about the effects 

of the error class as a whole. This grouping effectively collapses into a single state the 

entire set of errors that would be considered by an exhaustive injection approach. This in 

turn greatly enhances the scalability of SymPLFIED compared to exhaustive fault-

injection. However, the scalability is obtained at the cost of accuracy, as the abstraction 

can lead to false-positives i.e. erroneous outcomes that occur in the model but not in the 

real system. Nevertheless, the loss in accuracy is acceptable in practice as the detectors 

can be conservatively over-designed to protect against a few false-positives. 

SymPLAID considers the effects of insider attacks on the execution of a program. An 

insider is assumed to corrupt one or more elements of a program‟s data at runtime in 
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order to achieve his/her malicious goals. Similar to SymPLFIED, SymPLAID tracks 

corruptions of data values in applications using symbolic execution, and exhaustively 

considers the effects of data corruptions using model-checking. However, the difference 

is that SymPLAID tracks each data corruption individually rather than abstracting 

multiple corruptions into a single class. This is because security attacks are mounted by 

an intelligent adversary (in contrast to randomly occurring errors) and it is important to 

identify the exact steps leading to the attack for effective prevention. Further, unlike 

random errors, an attacker is limited both in the places where the attack may be launched 

as well as in the values used for the attack. This in turn limits the number of (unique) 

attacks that may be launched by an attacker. As a result, SymPLAID emphasizes 

accuracy in tracking individual value corruptions over scalability in terms of the number 

of corruptions that can be tracked. It does this by precisely tracking the dependencies 

among corrupted values using error expressions and solving them at decision points (e.g. 

branches and loads and stores). 

Thus, both SymPLFIED and SymPLAID represent different points in the accuracy versus 

scalability spectrum of formal modeling techniques. Both tools are implemented using a 

common framework and differ only in the details of the implementation. They can be 

combined to jointly reason about errors and attacks on programs.  

1.5.3 Unified Framework for Detector Implementation 

The detectors derived by the technique in Section 1.5.1 are implemented as a part of the 

Reliability and Security Engine (RSE), which is a processor level framework for 



22 

 

application monitoring and error detection [1]. The RSE was proposed as part of Nithin 

Nakka‟s dissertation [33] at the University of Illinois at Urbana-Champaign. 

The RSE interface taps into the processor‟s pipeline and exposes signals to the various 

reliability and security modules. This allows the modules to be oblivious of the 

processor‟s internals and for the processor designer to be unencumbered by the 

implementation details of the RSE modules. A module implements a specific reliability 

or security mechanism using the signals exposed to it by the RSE interface. The RSE has 

been implemented on the LEON-3 processor [35] supporting the SUN SPARC 

instruction set . 

The error and attack detectors derived in this dissertation are implemented as RSE 

modules. Figure 3 shows how the detectors fit into the RSE framework. The left side of 

Figure 3 shows the security modules and the right side shows the reliability modules. The 

figure shows a five-stage in-order pipeline with the signals tapped by the RSE interface.  

 

Figure 3: Hardware implementation of the detectors in the RSE Framework 
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We summarize the RSE modules that implement the derived detectors here. 

1. Information-flow Signatures Module: This module implements the hardware-side 

of the information-flow signature tracking scheme outlined in Chapter 7. It consists of 

a signature accumulator to track the signatures at runtime, as well as a critical 

variable signature map to store the statically derived signature for comparison with 

the accumulated signature. 

2. Critical Variable Recomputation: This module implements the hardware 

components of the statically derived error detectors described in Chapter 4. It consists 

of the path-tracking sub-module and the checking sub-module. The path-tracking sub-

module keeps tracks of the program‟s control-flow path and the checking sub-module 

executes the checking expressions corresponding to the path determined by the path-

tracking sub-module.  

3. Template-based Checking: This module implements the template-based checks 

based on the dynamic execution of the program. The template based checks are pre-

configured into the RSE framework. The method for deriving these checks is 

described in Chapter 3. 

The other two modules shown in Figure 3, namely Pointer Taintedness checking [26] and 

Selective Replication [12] were not developed in this dissertation but are closely related 

to the ideas developed in this dissertation. We hence omit detailed description of these 

modules. 
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1.6 CONTRIBUTIONS 

In addition to the three frameworks described in Section 1.5, this dissertation makes the 

following contributions: 

1. Introduces a methodology to place error detectors in application code to preemptively 

detect errors that result in application failures. The proposed placement method can 

provide 80-90% error detection coverage with relatively few ideal detectors placed at 

the identified locations (Chapter 2). 

2. Derives error detectors based on dynamic characteristics of the application using pre-

defined rule-based templates. The templates are customized to application 

requirements based on dynamic learning over representative inputs to the application 

and embedded as runtime checks in the code (Chapter 3). 

3. Derives error-detectors based on static characteristics of the application. Compiler -

based static analysis is used to extract the backward program slice of critical variables 

in the program. The slices are specialized based on the executed control path to derive 

optimized checking expressions that recompute the value of the critical variable at the 

detector placement points - Critical Variable Recomputation (Chapter 4). 

4. Introduces a formal-verification framework to validate the coverage of the derived 

error detectors and find corner-cases in which the derived detectors may be unable to 

detect the error. The framework uses symbolic execution and model-checking to 

enumerate all failure-causing errors (according to a given fault-model) that evade 

detection (Chapter 5). 
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5. Extends the formal verification framework to automatically discover security attacks 

that evade detection in applications. This includes both memory corruption attacks 

and insider attacks. Memory corruption attacks are usually launched by an external 

attacker, while Insider attacks are launched by a malicious part of the application 

itself (Chapter 6).  

6. Extends the methodology for derivation of error detectors to derive detectors for 

security attacks in applications (also based on static analysis). The proposed 

methodology uses Information Flow Signatures to detect both memory-corruption 

attacks and insider attacks. (Chapter 7).  

1.7 SUMMARY 

Existing techniques for reliability and security are “one-size-fits-all” techniques and incur 

considerable overheads. In contrast to these techniques, this dissertation proposes 

“application-aware dependability”, in which reliability and security checkers exploit 

application-specific properties to detect errors and attacks. The dissertation proposes a 

methodology to extract, validate and implement application-aware error and attack 

detectors.   

The dissertation proposes unified frameworks for reliability and security in order to 

1. Derive detectors using compiler-based static and dynamic analysis for critical 

variables in the application. The detectors are expressed as runtime checks at strategic 

places in the application. 
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2. Validate detectors using symbolic execution and model-checking on the assembly 

code of the application with the detectors embedded in the application. This can be 

used to improve the coverage of the detectors. 

3. Implement the derived detectors as modules in the Reliability and Security Engine 

(RSE) which is a hardware framework for application-aware detection. The detectors 

are executed in parallel with the application to provide concurrent error and attack 

detection with low runtime overheads.  

The dissertation shows that by extracting application properties using automated 

techniques and configuring the properties into reconfigurable hardware, it is possible to 

detect a wide variety of errors and security attacks in the application at a fraction of the 

cost of traditional techniques such as duplication. 

The rest of this dissertation is organized as follows: Chapter 2 presents a technique to 

strategically place error detectors in application code, while Chapter 3 and Chapter 4 

present respectively the dynamic and static techniques to derive error detectors. Chapter 5 

presents the formal technique to validate error detectors, while Chapter 6 presents the 

formal technique to validate attack detectors for insider attacks. Chapter 7 present 

techniques to derive attack detectors for insider attacks, and Chapter 8 concludes. 
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CHAPTER 2 APPLICATION-BASED METRICS FOR 

STRATEGIC PLACEMENT OF DETECTORS 

2.1 INTRODUCTION 

This chapter presents a technique to insert detectors or checks into programs to 

prevent/limit fault propagation due to value errors.  Value errors are errors that can cause 

a divergence from the program values seen during the error-free execution of the 

application. These errors can lead to application crash, hang or fail-silent violations 

(when the program produces an incorrect result). It is a common assumption that crashes 

are benign and that there is a mechanism in a system that ensures that when the program 

encounters an error (that ultimately leads to a crash), the application will crash 

instantaneously (crash-failure semantics). Data from real systems has shown that while 

many crashes are benign, severe system failures often result from latent errors that cause 

undetected error propagation [36]. These latent errors can cause corruption of files [14], 

propagate to other processes in a distributed system [37] or result in checkpoint 

corruption [38] prior to the system crash (if indeed the error leads to a crash).  

To guarantee crash-failure semantics for a program, we need some form of checking 

mechanisms in the system. Such support can take many forms including protection at 

multiple levels and duplication both in hardware and software. Recent commercial 

examples of such approaches include: (i) IBM G5, which, at the processor level, employs 

two fully duplicated lock-step pipelines to enable low-latency detection and rapid 

recovery [10] and (ii) HP NonStop Himalaya, which, at the system level, employs two 
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processors running the same program in locked step. Faults are detected by comparing 

the output of the two processors at the external pins on every clock cycle [39]. Although 

these are very robust solutions, due to their high cost and significant hardware overhead, 

their deployment is restricted to high-end mainframes and servers intended for mission-

critical applications. 

The detector‟s coverage depends on two factors: (i) the effectiveness (coverage) of the 

placement of the detectors, i.e., how many errors manifest at the location where the 

detector is embedded and (ii) the effectiveness (coverage) of the detector itself, i.e., what 

fraction of errors manifested at the detector‟s location are captured.  

This chapter introduces metrics to guide strategic placement of detectors and evaluates 

(using fault injection) the coverage provided by ideal detectors
1
 at program locations 

selected using the computed metrics. Results show that a small number of detectors, 

strategically placed, can achieve a high degree of detection coverage. The issues of 

development of actual detectors and performance implications of embedding the 

detectors into the application code are not addressed in this study. Examples of potential 

detectors are consistency checks on the values in the program, such as range-checks and 

instruction sequence-checks[40].  In this chapter, 

1. The program‟s code and dynamic execution is analyzed and an abstract model of 

the data-dependences in the program called the Dynamic Dependence Graph 

(DDG) is built. 

                                                 

1 An ideal detector is one that detects 100 % of the errors that are manifested at its location in the program. 
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2. Several metrics such as fanout and lifetime are derived from the DDG and used to 

strategically place/embed (i.e., to maximize the coverage) detectors in the 

program code. 

3. The coverage of ideal detectors placed according to the above metrics is evaluated 

using fault-injection experiments.  

The key findings from this work are: 

 A single detector placed using the fanouts metric can achieve 50 to 60 % crash-

detection coverage for large benchmarks (gcc and perl). 

 A small number of detectors placed using the lifetimes metric can achieve high 

coverage for large benchmarks. For example, it is possible to achieve about 80 % 

coverage with 10 detectors and 90 % coverage with 25 detectors embedded in the 

gcc benchmark.  

 Although the placement of detectors is geared towards providing low-latency 

detection and preventing propagation by preemptively detecting potential crashes, 

the placed detectors are also effective at detecting fail-silence violations (i.e., the 

application terminates normally but produces incorrect results) (30% to70%) and 

hangs (50% to 60%). 

2.2 RELATED WORK 

In the recent years, several studies addressed the issue of strategic placement of detectors 

in application code. Hiller et al [40] uses Error Propagation Analysis (EPA) to determine 
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where detectors or checks should be inserted in an embedded control system. It is 

assumed that the checks have ideal coverage (100%) and are inserted at points (signals) at 

which error detection probability is the highest. Voas [41] proposes the “avalanche 

paradigm”, which is a technique to place assertions in programs before faults in the 

program propagate to critical states. Goradia [42] evaluates the sensitivity of data values 

to errors, from a software testing perspective.  

Daikon [43] is a dynamic analysis system for generating likely program invariants to 

detect software bugs. Narayanan et. al. [44] use the invariants produced by DAIKON to 

detect soft errors in the data cache. DAIKON places assertions at the beginning and ends 

of loops and procedure calls. However, this may not be sufficient to provide low-latency 

error detection as the application/system may misbehave long before the assertion point is 

reached. Benso et. al. [45] presents a compiler technique to detect critical values in a 

program. The criticality of a variable is calculated based upon the lifetime of the variable 

and how many other variables it affects. This technique can protect against faults that 

originate in the critical variable and propagate to other variables, but does not protect 

against faults that are propagated to the critical variable from other locations in the 

program. 

2.3 MODELS AND METRICS 

This section presents the computation model, crash model and fault-model used in the 

technique. It also considers metrics derived from the models for detector placement. 
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2.3.1 Computation Model – Dynamic Dependence Graph (DDG) 

The computation is represented in the form of a Dynamic Dependence Graph (DDG), a 

directed-acyclic graph (DAG) which captures the dynamic dependences among the 

values produced in the course of the program execution. In this context, a value is a 

dynamic definition (assignment) of a variable or memory location used by the program at 

runtime. A value may be read many times but it is written only once. If the variable or 

location is rewritten, it is treated as a new value. Thus a single variable or memory 

location may be mapped onto multiple values.  

A node in the DDG represents a value produced in the program, and is associated with 

the dynamic instruction that produced the value. In the DDG, edges are drawn between 

nodes representing the operands of an instruction and nodes representing the value 

produced by the instruction. The edge represents the instruction; the source node of the 

outgoing edge corresponds to an instruction operand and the destination node to the value 

produced by the instruction. Figure 4 shows a sample code fragment and its 

corresponding DDG. The code computes the sum of elements of an array A of 5 integers 

(denoted by size) and stores the sum in the variable sum. The table in the figure shows the 

mapping between the DDG nodes and the instructions, as well as the effect of executing 

the instructions. Not all nodes in the DDG correspond to the instructions, e.g., nodes 1, 3, 

8, 13, 23, and 28 represent memory locations used by the code fragment.  



32 

 

Code Fragement Explanation Nodes in DDG 

               ADDI R1, R0, 0 

               LW R2, [size] 

               ADDI R4, R0, 0  

LOOP:   LW R3, R1[ A ] 

               ADD R4, R4, R3 

               ADDI R1, R1, 1 

               BNE R1, R2, LOOP 

               SW [Sum], R4 

R1  R0                               

R2  [ size ]                               

R4  R0                               

R3  A[ R1 ]                               

R4  R4 + R3                             

R1  R1 + 1                               

If (R1!=R2) then goto Loop       

[Sum]  R4                                 

6 
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0 

5, 10, 15, 20, 25 
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6, 11, 16, 21, 26 
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28 

 

0

4

9

14

19

24

28

5

10

15

20

25

3

8

13

18

23

6

11

16

21

26

7

12

17

22

27

2

1R4

R4

R4

R4

R4

R4

sum

R3

R3

R3

R3

R3

A[0]

A[1]

A[2]

A[3]

A[4]

size

R1

R1

R1

R1

R1

R2

P

P

P

P

P

P

P

P

P

P

P

A

A

A

A

A

P

P

M

M

M

M

M

P

P

P

P

P

P

P

P

P

P

P

P

M

 

Figure 4: Example code fragment and its dynamic dependence graph (DDG)  

The following observation can be made based on the DDG: 

 Every value-producing instruction has a corresponding node in the DDG (shown by 

an arrow from the instruction to its node label in the DDG) 

 Memory locations are represented as DDG nodes when they are first read or written 

e.g., in Figure 4, Nodes 1 and 28 represent memory locations size and sum 

respectively and nodes 3, 8, 13, 18 and 23 represent the array locations A[0] to A[4].  



33 

 

Constants are not represented in the DDG (e.g., 0 and 1 are not represented in the DDG, 

though they appear as instruction operands). Similarly, register names and memory 

addresses are not stored in the DDG (though they are shown in the figure for 

convenience). 

 The same register/memory location can be mapped onto multiple nodes in the DDG 

just as a given register or memory location can have multiple value instances during 

the execution, e.g., in Figure 4, value produced in register R1 is mapped onto nodes 6, 

11, 16, 21, 26, one for each loop iteration.  

 Each edge of the DDG is marked with the letter, which represents the role of the 

operand in the instruction: M – a memory operand, A – an address operand, P – a 

regular operand, B – an operand used as a branch target, F – a function address 

operand and S – a system call operand. 

 The data dependences resulting from control transfer instructions are directly stored 

in the DDG. In Figure 4, the program executes a jump statement and control is 

transferred to the location LOOP at the end of a loop iteration. The data dependences 

across loop iterations are represented directly in the DDG, without storing the fact 

that they are dependent upon the control transfer instruction.  

Function calls and returns are also represented in the DDG (not present in the example in 

Figure 4). Most of the semantics of function calls such as setting up and tearing down of 

the stack frame and parameters passing already present in the assembly code are 

automatically included as part of the DDG. However, calling conventions cannot be 
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extracted from the machine code and are explicitly specified in the DDG. For example, in 

the SPARC architecture, the register R2 is used to store the return value of a function and 

this must be incorporated in the DDG to analyze dependences across function calls and 

returns. The DDG also incorporates dependences caused by system calls (not present in 

the example in Figure 4). 

In this study, the method used to construct the DDG is similar to the one proposed in 

[46]. The reader interested in techniques for DDG generation can refer to [47]. 

2.3.2 Fault Model 

This study considers the impact of faults in data values produced during the course of a 

program‟s execution. Our fault model assumes that any dynamic value in a program can 

be corrupted at the time of the value‟s definition. This corresponds to an incorrect 

computation of the value mainly due to transient (or soft) errors and includes all values 

written to memory, registers and the processor cache. Note that the assumed fault model 

also covers errors that arise due to some categories of software faults, e.g., 

assignment/initialization (an un-initialized or incorrectly initialized value is used) and 

checking (a check performed on the variable fails, which is the equivalent of an incorrect 

value of a variable being used) [48].  

2.3.3 Crash Model 

 Since the ultimate goal is to ensure crash-failure semantics for an application, we first 

introduce a crash model. It is assumed that crashes can occur as a result of: (i) illegal 

memory references (SIGBUS and SIGSEGV), (ii) divide-by-zero and overflow exceptions 
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(DIVBYZERO, OVERFLOW), (iii) invocation of system calls with invalid arguments, and 

(iv) branch to an incorrect or illegal code (SIGILL). These four categories can be 

represented in the Dynamic Dependence Graph (DDG) described in the previous section 

as follows: 

1. A value used as an address operand in a load or store instruction is corrupted and 

causes the reference to be misaligned or outside a valid memory region. 

2. A value used in an arithmetic or logic operation is corrupted and causes a divide-by-

zero exception or arithmetic overflow. 

3. A value used as a system call operand is incorrect or the program does not have the 

permissions to perform a particular system call.  

4. An operand used as the target of a branch or as the target address of an indirect 

function call is corrupted, causing the program to jump to an invalid region or to a 

valid (part of the application) but incorrect (from the point of view of the application 

semantic) region of code. 

Usually, corruption of pointer data is much more likely to cause a crash than non-pointer 

data, as shown by earlier studies, e.g.Kao [49],. Therefore, this study considers only 

crashes due to: (i) corruption of values used as address operands of load/store instructions 

(the first category) and (ii) corruption of values used as targets of branches and function 

calls (the last category discussed above). While the model does not consider corruption of 

system call operands and operands of arithmetic and logic instructions, we found that in 

practice (i.e., in real programs), the percentage of crashes missed by the model is small. 
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Analysis of error propagation. The dynamic execution traces provided by DDG are used 

to reason about error propagation from one value to another. It is assumed that a fault 

originating in a node (value) of the DDG can potentially propagate to all nodes that are 

successors of this node in the DDG.  

2.3.4 Metrics Derived from the Models 

In order to strategically place detectors, we develop a set of metrics for selecting 

locations in the program which can provide high crash detection coverage. The metrics 

are derived based on the DDG of the program. In order to enable placement of detectors 

in the code, a notion of static location of a value is introduced. The static location of a 

value is defined as the address of the instruction that produces the value. Metrics 

employed are as follows: 

1. Fanout: The fanout of a node is the set of all immediate successors of the node in the 

DDG. In terms of values, it is the set of uses of the value represented by the node. 

The fanout of a node indicates how many nodes are directly impacted by an error in 

that node.  

2. Lifetime: The lifetime of a node is the maximum distance (in terms of dynamic 

instructions) between the node and its immediate successors. In terms of values, it is 

the maximum dynamic distance between the def and use of a value. The lifetime 

evaluates the reach of the error in the program‟s execution, as typically values with a 

long lifetime are global variables or global constants, and an error in these values can 

affect values that are distant from the current execution context of the program.  
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3. Execution: The execution of a node is the number of times the static location 

(program counter) associated with the value is executed. Execution reflects the 

intuition that locations that are executed more frequently are a good place to embed a 

detector.  

4. Propagation: The propagation of a node is the number of nodes to which an error in 

this node propagates before causing a crash. The propagation is somewhat similar to 

the fanout, but while the fanout considers only the first level of error propagation, the 

propagation metric characterizes error propagation across multiple levels.  

5. Cover: The cover of a node is the number of nodes from which an error propagates to 

a given node before causing a crash. Nodes with a high cover usually have many 

error-propagation paths passing through them and consequently, these nodes are a 

good location for placing detectors to enable preemptive crash detection. 

Since detectors are placed in the static code of the program, each node selected (based on 

the computed metrics) to place a detector must be mapped onto the static locations in the 

program. Note that multiple nodes in the DDG can be mapped onto a single static 

location.  Consequently, aggregation functions must be defined to compute overall 

metrics corresponding to a given static program location based on the metrics of the 

nodes that map onto this location. In the case of fanout, propagation and cover metrics, 

set union operation is used to compute the aggregate set and the cardinality of the 

aggregate set is calculated as the aggregate fanout, propagation and cover of that 
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location. For lifetimes and execution, the aggregate value of the metric at a location is 

computed as the average of the metric values of the nodes that map onto this location. 

For the example in Figure 4, nodes 6, 11, 16, 21, 26 map onto the value produced by the 

static instruction ADDI R1, R1, 1. The instruction has the following metric values: 

 The aggregate fanout of the instruction is the cardinality of the union of the set of 

immediate successors of 6, 11, 16, 21 and 26, namely the cardinality of the set which is 

equal to 15.  

 The aggregate lifetime of the instruction is the average of the lifetimes of the nodes 6, 

11, 16, 21, and 26. The lifetime of each of these nodes is 4 dynamic instructions (the 

length of a loop iteration), except for 26 for which it is only one dynamic instruction (the 

last loop iteration). Therefore, the aggregate lifetime of the instruction is 4.25.  

 The aggregate execution value for the instruction is 5, as the loop is executed 5 times. 

For computing the propagation and cover metrics, we need to locate the points at which 

the program can crash. The crash-set of a node in the DDG is the set of all nodes at 

which a crash can potentially occur due to an error in that node. The crash-point of a 

node is the earliest point in the error‟s propagation (not to be confused with the 

Propagation metric) at which a crash can occur because of a pointer corruption or 

corruption of a branch/function call target address
2
. For each node N in the DDG, we 

                                                 

2 This follows from the crash model defined in Section 4, in which only corruptions of pointers and function/branch targets are 
assumed to cause crashes. 
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denote by Crash(N)  the crash-point of N
3
. In case there is no crash due to a fault at N, 

we assume that Crash(N) is nil. For the example in Figure 4, the crash-points of nodes 6, 

11, 16, 21 and 26 are nodes 5, 10, 15, 20, 25 respectively as these are used as address 

operands in the instruction LW R3, A(R1).   

The crash-distance of a node is the distance between the node and its crash-point in the 

DDG and can be defined in terms of the successor nodes. 
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The aggregate propagation of a location can be computed as the cardinality of the union 

of the propagation sets of the nodes in the DDG, which map onto this location. For the 

example in Figure 4, the aggregate propagation of the node corresponding to the 

instruction ADDI R1, R1, 1 is 10, as the union of the propagation sets of its DDG nodes 

6, 11, 16, 21, 26 is the set of nodes {6, 11, 16, 21, 26, 5, 10, 15, 20, 25}. Note that 

although the nodes 7, 12, 1, 22, 27 are successors of the nodes 6, 11, 16, 21 and 26, they 

                                                 

3
 In the rare case a node has multiple crash points, we arbitrarily pick one of them to be Crash(N) 
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do not appear in the propagation sets as their distance from these nodes (4) is greater than 

the crash-distance of the nodes (2). 

Once the propagation metric is computed, the cover metric can be computed as follows: 

A node M is in the cover of N if and only if N belongs to the propagation of M. This is 

because any fault in N must propagate to M before causing a crash if M belongs to the 

Cover of N (by definition). In the example in Figure 4, the aggregate cover of the node 

corresponding to the instruction LW R3, R1(A) is the cardinality of the union of the cover 

sets of its nodes in the DDG, namely 5, 10, 15, 20 and 25. This is the set {6, 11, 16, 21, 

26}, as the nodes 5, 10, 15, 20 and 25 collectively appear in the propagation sets of nodes 

6, 16, 11, 21 and 26. Hence, the aggregate cover is 5, which is the cardinality of the set. 

2.4 EXPERIMENTAL SETUP  

This section describes the experimental infrastructure and application workload used to 

evaluate the model and the metrics. The experiment is divided into three parts: 

 Tracing: The application program is executed and a detailed execution trace is 

obtained containing all the dynamic dependences, branches and load/store instructions.  

 Analysis: The trace is analyzed, the dynamic dependence graph (DDG) constructed 

and the metrics for placing detectors are computed; this part is done offline.  

 Fault-injection: Fault-injections are performed to evaluate the choice of the detector 

points. A fault is injected at random into a value used in the program. The values at the 

detector points are recorded and compared with the corresponding values in the golden 
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(error-free) run of the application. Any deviation between the values in the golden run 

and the faulty run indicates successful detection of the error. 

2.4.1 Infrastructure 

The tracing of the application and the fault-injections are performed using a functional 

simulator in SimpleScalar family of processor simulators [50]. The simulator allows fine-

grained tracing of the application without perturbing its state or modifying the application 

code and provides a virtual sandbox to execute the application and study its behavior 

under faults.  

We modified the simulator to track dependences among data values in both registers and 

memory by shadowing each register/location with four extra bytes
4
 (invisible to the 

application) which store a unique tag for that location. For each instruction executed by 

the application, the simulator prints (to the trace file) the tag of the instruction‟s operands 

and the tag of the resulting value to the trace. The trace is analyzed offline by specialized 

scripts to construct the DDG and compute the metrics for placing detectors in the code. 

The top hundred points according to each metric are chosen as locations for inserting 

detectors.  

The effectiveness of the detectors is assessed using fault injection. Fault locations are 

specified randomly from the dynamic set of tags produced in the program. In this mode, 

the tags are tracked by the simulator, but the executed instructions are not written to the 

                                                 

4 This allows upto 2^32 unique tags or IDs to be tracked simultaneously, which was sufficient for the programs in our experiments. 
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trace. When the tag value of the current instruction equals the value of a specified fault 

location, a fault is injected by flipping a single-bit in the value produced by the current 

instruction. Once a fault is injected, the execution sequence is monitored to see if a 

detector location is reached. If so, the value at the detector location is written to a file for 

offline comparison with the golden run of the application. Table 3 shows the errors 

detected by the simulator and their mapping into consequence in a real system. It also 

explains the detection mechanism in the simulator. 

Table 3: Types of errors detected by simulator and their real-world consequences 
Type of error detected Consequence in a real system Simulator detection mechanism 

Invalid Memory Access Crash (SIGSEGV) Consistency checks on address range 

Memory alignment Error Crash ( SIGBUS) Check on memory address alignment 

Divide-by-Zero Crash (SIGFPE) Check before DIV operation 

Integer Overflow Crash (SIGFPE) Check after every integer operation 

Illegal Instruction Crash (SIGILL) Check instruction validity before decoding 

System Call Error Crash (SIGSYS) None, as simulator executes system calls on 

behalf of application 

Infinite loops Program Hang (live-lock) 

Program continuously issues 

instructions and never terminates 

Program executes of a double number of 

instructions as compared with the golden run  

Indefinite wait due to 

blocking system calls or 

interminable I/O  

Program Hang (deadlock) 

Program stops issuing instructions 

and never terminates  

Program execution takes substantially longer 

time (five times in our experiments) than the 

golden run 

Incorrect Output Fail-Silent Violation 

(silent data corruption)  

Compare outputs at the end of the run 

2.4.2 Application Programs 

The system is evaluated with four programs from the Siemens suite [51] and two 

programs from the SPEC95 benchmark suite . These benchmark applications range from 

a few hundred lines of code (Siemens)
5
 to hundreds of thousands of lines of code 

(SPEC95). A brief description of benchmarks is given in Table 4. 

                                                 

5 tcas from the Siemens suite is omitted as it is very small program (less than 200 lines of C code) and there was insufficient 
separation among the different metrics used in the study.  
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Table 4: Benchmarks and their descriptions 
Benchmark Name Suite Description 

Replace Siemens Searches a text file for a regular expression and replaces all occurrences of the 

expression with a specified string 

Schedule2 Siemens A priority scheduler for multiple job tasks 

Print_tokens Siemens Breaks the input stream into a series of lexical tokens according to pre-specified rules 

Tot_info Siemens Offers a series of data analysis functions 

Gcc95 SPEC95 The gcc compiler,  compiled with gcc (optimization level 0) 

Perl SPEC95 The perl interpreter, compiled with gcc (optimization level 0) 

 

Each of these applications is executed for three inputs. For the Siemens programs, the 

inputs are chosen from the provided set of inputs. For gcc95 and perl, we created inputs 

of reduced size (as compared to the original SPEC workloads) since our analysis scripts 

were unable to handle the extremely large dynamic traces of the SPEC workloads. Also, 

for the SPEC benchmarks, infrequently executed dynamic control paths that contributed 

to less than 20 % of the cumulative execution time are removed from the DDG (this 

constitutes 80 % of program paths).  

For each program, the dynamic trace from one of the inputs is chosen to build the DDG 

and to perform the analysis to choose detector points (the top 100 locations according to 

each metric). Fault-injections are then performed at randomly-chosen values in the 

application‟s execution for all three inputs. For each application, input, and metric used to 

choose the detector points, faults are injected at 500 random locations, randomly flipping 

a single bit of a value. This is done 10 times for each location leading to a total of 5000 

fault injections for each combination of application, input and metric. One fault is 

injected per run to eliminate the possibility of latent errors due to earlier injected faults.  
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2.5 RESULTS 

The results obtained from the experiments are analyzed with the objective to answer the 

following questions: 

 What is the detection coverage provided by individual detectors placed according to 

a given metric? 

 What is the rate of benign errors of individual detectors placed according to a given 

metric? 

 What is the detection coverage provided jointly by multiple detectors placed 

according to a given metric? 

 What is the rate of benign errors of multiple detectors placed according to a given 

metric? 

2.5.1 Detection Capability of Metrics for Single Detectors 

This section evaluates the detection coverage provided by individual detectors placed 

according to different metrics. All results represent the average calculated for each 

application across three inputs. The detector points that registered a value deviation for an 

injection are associated with the outcome of the injection. The results for each outcome 

category (crash, hang, fail-silent violation, success) are normalized across the total 

number of errors observed under that category (for each benchmark-metric combination) 

and are shown in Figures 5, 6, 7 and 8 for crash, successes, fail-silent violations, and 

hangs, respectively. The following results can be concluded from the graphs: 
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Detectors placed according to the fanout and propagation metrics are the best at detecting 

crashes. They are followed by detectors placed according to the cover metric. Random 

detector placement is the worst in detecting crashes across all benchmarks (see Figure 5). 

The maximum coverage provided by fanouts and propagation detectors is more than 90 

% for the Siemens benchmarks (with the exception of tot_info). For the SPEC 

benchmarks (and for tot_info), the coverage is between 50% and 60 %.  

The percentage of benign errors is relatively small – less than 2 % for all benchmarks 

except replace (see Figure 6). The higher false positive rates for gcc95 and perl are 

registered by detectors placed using fanout (1.5%) and propagation (2 %) metrics.  

Although the detector points were chosen to support crash-detection, they also detect a 

significant percentage of fail-silent violations (30% to 70 % for detectors placed using 

fanout and propagation metrics as shown in Figure 7).  

Hangs are best detected by detectors placed using the fanout and the propagation metric 

for all benchmarks except tot_info (Figure 8).  The coverage is 80% to 90 % for the 

Siemens benchmarks and 50% to 60 % for the SPEC95 benchmarks. 
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Figure 5: Crashes detected by metrics across benchmarks 
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Figure 6: Benign errors detected by metrics across benchmarks 
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Figure 7: Fail-silent Violations detected by metrics across benchmarks 
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Figure 8: Hangs detected by metrics across benchmarks 
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2.5.2 Discussion 

Locations having high fanouts and propagation are responsible for propagating errors to 

a large number of places in the DDG, and it is likely that at least one of the propagated 

errors causes a crash. Detectors placed using fanouts are marginally better than those 

inserted using propagation. The key reasons for the differences are (i) propagation relies 

on the accuracy of the crash model in deciding on the further propagation of the error 

while fanouts does not take the crash model into account and is more conservative and 

(2) locations with a high fanout are often stack or frame pointers. These locations are 

frequently accessed by the program and hence, an error is likely to crash the program. 

The execution metric is a good indicator for placing detectors in the Siemens benchmarks 

where infrequently executed paths are not pruned. The same metric, however, does not 

perform well in the SPEC benchmarks where paths that contribute to less than 80 % of 

the execution time are already removed. 

The SPEC benchmarks are more complex that the Siemens benchmarks and execute more 

than 1 million dynamic instructions, while the Siemens benchmarks typically execute less 

than 100,000 dynamic instructions (only tot_info in the Siemens suite executes between 

100000 and a million instructions). As a result, the probability of the error reaching the 

detector is higher in the case of the Siemens benchmarks than for the SPEC95 

benchmarks. Hence, the detection coverage for replace, schedule2 and print_tokens 

ranges between 80% and 90 % as compared with 50% to 70 % for gcc, perl and tot_info. 
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Detectors placed using the lifetime metric do not have high crash-detection coverage as 

the error is likely to remain latent for a long time in a high lifetime node and a crash is 

unlikely to occur due to this error.  

The lower effectiveness of detectors placed using the cover metric as compared to 

propagation and fanout stems from the fact that cover aims at placing detectors along 

paths leading to potential crash-points while propagation and fanouts place detectors 

along paths that can potentially spawn errors in many nodes. Typically, the number of 

locations with high fanouts or propagation is small (these metrics follow a Pareto-Zipf 

law like distribution) while the number of potential crash-points of the application is 

much larger.  This result shows that it is more beneficial to place detectors to protect 

these few highly-sensitive values, rather than place detectors along the paths that lead to 

potential crash points.  

The false-positive rate for all metrics is less than 2 % for all benchmarks except replace. 

A false positive means that the error was detected by a detector point, but the program 

completed successfully (and produced correct output). The number of instructions 

executed by replace is around 10000, and hence the probability of an error reaching the 

detector is high even if the error does not trigger a failure. For gcc and perl, the benign 

error detection rates are higher than schedule2, print_tokens and tot_info as hot-paths are 

considered for these two programs. 
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2.5.3 Detection Capabilities of Metrics for Multiple Detectors 

The previous section considered the detection provided by placing a single detector in 

each of the benchmark programs. For the Siemens benchmarks (except tot_info), this was 

sufficient to provide a coverage of 90 %. However, for applications such as gcc and perl, 

a single detector could achieve up to 60 % coverage. In this section, we evaluate the 

coverage provided jointly by multiple detectors placed in the gcc95 and perl applications.  

The top hundred detector locations selected by each metric are grouped into bins of a 

predefined size and the cumulative coverage of detectors placed at locations indicated by 

a bin is evaluated. For example, to evaluate the coverage of the fanout metric with a bin 

size of 10, the top 100 locations with the highest fanouts are arranged in decreasing order 

by their fanout value. The top 10 locations are then grouped into a bin 1, the next ten 

locations into a bin 2 and so on up to a bin 10. The crash-detection coverage of each bin 

as a whole is evaluated and the average coverage of the 10 bins is the crash-detection 

coverage for the fanout metric with the bin size of 10. The results for crash detection, 

benign error detections, fail-silent violations and hangs are shown in Figures 9 to 14 as a 

function of the bin size. The results for gcc95 are summarized below, and similar trends 

are observed for perl. 
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Figure 9: Effect of bin size on crash detection 

coverage for gcc  

 

Crash Detection versus Bin Size (perl)
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Figure 10: Effect of bin size on crash 

detection coverage for perl 
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Figure 11: Effect of bin size on benign error detection 

rate for gcc 
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Figure 12: Effect of bin size on benign 

error detection rate for perl 
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Figure 13: Effect of bin size on fail-silent violation 

coverage for gcc 
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Figure 14: : Effect of bin size on fail-

silent violation coverage for perl 
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For detectors placed using fanouts and propagation, the crash-detection coverage is less 

than 60 % when the bin size is 1 (as discussed in Section 8.1). Increasing the bin size to 

10 improves coverage to 80% (see Figure 9). 

For a bin size of 1, the coverage provided by detectors placed according to lifetime is less 

than 40 %. However, for a bin size of 10, the coverage is almost equal to the one 

provided by detectors placed according to fanout and propagation metrics. For a bin size 

of 25 and 100, it even surpasses the coverage of detectors placed using fanouts, providing 

coverage values of 90 % and 99 %, respectively (see Figure 9). 

The percentage of benign error detections also increases with increasing bin-size, but not 

as much as the crash-detection coverage. For example for detectors placed using the 

fanout metric, the coverage is around 80% when the bin size is 10, but the number of 

benign error detections remains around 5% (see Figure 11).  

The increase in the benign error detection rate for lifetimes is much lesser than fanouts. 

The benign error detection percentage for lifetimes is only 5 % for a bin size of 100 

compared to 10 % for fanouts for the same bin size. When 10 or more detectors are 

considered, placement based on the lifetime metric provides the best coverage and the 

lowest rate of benign error detections (see Figure 11). 

Random detector placement provides coverage of 95 % (see Figure 9) when the bin size 

is 100. Further, it has the smallest percentage of benign error detections (2.5 %; see 

Figure 11), making random placement of multiple detectors a good choice when 

minimizing benign error detections is critical.  
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The fail-silent violation coverage is the highest for detectors placed using the fanout 

metric (70 % for a bin size of 10, see Figure 13). For a bin size of 100, detectors placed 

using the execution metric surpass the detectors placed using fanout.  

2.5.4 Discussion 

For all metrics, the coverage increases with increase in the bin size as the number of 

detector points increases. The increase in the coverage however flattens out as the bin 

size increases, as there is considerable overlap among the multiple detector points in 

detecting crashes. For example, for detectors placed using the fanout metric, grouping 

detectors into bins of size 5 increases the coverage to 75 % (from the 60% coverage 

provided by individual detectors). However, the increase in coverage is lesser when the 

bin size increases to 10 (coverage 80%). 

Detectors at locations with a high lifetime provide limited coverage individually, but 

several of them jointly achieve very high coverage. This is because each detection point 

covers a different set of errors. Closer analysis of the results indicates that there is usually 

one hot-detector in each bin, which detects the majority of errors covered by that bin, and 

the other detectors complement the coverage by detecting errors that escape the hot-

detector. These errors are also not easily detectable by the detectors placed using other 

metrics 

2.5.5 Summary of Results 

This section summarizes the results from the previous two sections as follows: 
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Detectors placed using the fanouts metric have the best coverage in the program, when 

single detectors are considered. The coverage provided is 90 % for the Siemens 

benchmarks and 50-60 % for the SPEC benchmarks. The percentage of benign error 

detections detected by the detectors is less than 5 % for all the programs considered. 

When multiple detectors are placed using the fanouts metric, the coverage increases to 97 

% by inserting detectors at less than 1 % of the hot-paths (and to 80 % at less than 0.1 % 

of the hot-paths). There is considerable overlap in the detection capabilities of assertions 

which leads to the diminishing increase in coverage as the number of assertions is 

increased. The knee of the curve seems to be about 25 detectors. 

In the multiple detector case, the coverage provided by the detectors placed using the 

lifetimes metric is higher than the coverage provided by detectors placed using the 

fanouts metric (when 10 or more detectors are inserted). Further, the percentage of false 

positives for detectors placed using lifetimes is smaller than the percentage of false 

positives for detectors placed using fanouts.  

2.6 CONCLUSIONS  

This chapter explores the problem of detector placement in programs to preemptively 

detect crashes arising due to errors in data values used within the program. A model for 

error propagation and crashes is developed and metrics for placing detectors are derived 

from the model. The metrics are evaluated on six applications, including two SPEC95 

benchmarks. It is found that strategic placement of detectors can increase crash coverage 

by an order-of-magnitude compared to random placement. 
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CHAPTER 3 DYNAMIC DERIVATION OF ERROR 

DETECTORS 

3.1 INTRODUCTION 

This chapter presents a technique to derive and implement error detectors that protect 

programs from data errors. These are errors that cause a divergence in data values from 

those in an error-free execution of the program. Data errors can cause the program to 

crash, hang, or produce incorrect output (fail-silent violations). Such errors can result 

from incorrect computation, and they would not be caught by generic techniques such as 

ECC (in memory).  

Many static and dynamic analysis techniques (Prefix [52], LCLint [53], Daikon [43]) 

have been proposed to find bugs in programs. However, these techniques are not geared 

toward detecting runtime errors as they do not consider error propagation. To detect 

runtime errors, we need mechanisms that can provide high-coverage, low-latency (rapid) 

error detection to: (i) preempt uncontrolled system crash/hang and (ii) prevent 

propagation of erroneous data and limit the extent of the (potential) damage. Eliminating 

error propagation is essential because programs, upon encountering an error that could 

eventually lead to a crash, may execute for billions of cycles before crashing [14]. During 

this time, the program can exhibit unpredictable behavior, such as writing corrupted state 

to a checkpoint [38] or sending a corrupted message to another process [37], which in 

turn could result in extended downtimes [8].  



55 

 

It is common practice for developers to write assertions in programs for detecting runtime 

errors. For example, Andrews [54] discusses the use of executable assertions (checks for 

data reasonableness) to support testing and fault-tolerance. Assertions are usually specific 

to the application require considerable programmer effort and expertise to develop 

correctly.  Further, placing assertions in the wrong places could hinder their detection 

capabilities [55].  

Hiller et al. propose a technique to derive assertions in an embedded application based on 

the high-level behavior of its signals [56]. They facilitate the insertion of assertions by 

means of well-defined classes of signal patterns. In a companion paper, they also describe 

how to place assertions by performing extensive fault-injection experiments[40]. 

However, this technique requires that the programmer has extensive knowledge of the 

application. Further, performing fault-injection may be time-consuming and cumbersome 

for the developer. Therefore, it is desirable to develop an automated technique to derive 

and place detectors in application code.  

Our goal is to devise detectors that preemptively capture errors impacting the 

application and to do so in an automated way without requiring programmer intervention 

or fault-injection into the system. In this chapter, the term “detectors” refers to 

executable assertions used to detect runtime errors. This chapter contributes with the 

following techniques: 

1. Derivation of error detectors based on the dynamic execution traces of the 

application instrumented at strategic points 
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2. Synthesis of custom hardware (VHDL code) to implement the derived detectors, 

in order that they can be executed in parallel with the execution of the application  

3. Evaluation of the coverage of the derived detectors using fault-injection 

experiments,  

4. Evaluation of the overhead of the detector hardware through synthesis of VHDL 

code 

3.2 APPROACH AND FAULT-MODELS 

The derivation and implementation of the error detectors in hardware and software 

encompasses four main phases as depicted in Figure 15. The analysis and design phases 

are related to the derivation of the detectors, while the synthesis and checking phase are 

related to the implementation and deployment of the derived detectors at run-time 

respectively.  

 

Figure 15: Steps in detector derivation and implementation process 
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During the analysis phase, the program locations and variables for placing detectors to 

maximize coverage are identified, based on the Dynamic Dependence Graph (DDG) of 

the program. Fault-injections are not required to choose the detector variables and 

locations. We choose the locations for detector placement based on the Fanouts 

heuristic[17].  

The program code is then instrumented to record the values of the chosen variables at the 

locations selected for detector placement. The recorded values are used during the design 

phase to choose the best detector that matches the observed values for the variable, based 

on a set of pre-determined generic detector classes (Section 3.3).  

After this stage, the detectors can either be integrated into application code as software 

assertions or implemented in hardware. In this chapter we consider a hardware 

implementation of the derived detectors. The synthesis phase converts the generated 

assertions to a HDL (Hardware Description Language) representation that is synthesized 

in hardware. It also inserts special instructions in the application code to invoke and 

configure the hardware detectors. This is explained in Section 3.5.  Finally, during the 

checking phase, the custom hardware detectors are deployed in the system to provide 

low-overhead, concurrent run-time error detection for the application. When a detector 

detects a deviation from the application‟s behavior learned during the design phase, it 

flags an error. 

Fault Model - The fault model covers errors in the data values used in the program‟s 

execution. This includes faults in: (1) the instruction stream that result in the wrong op-
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code being executed or in the wrong registers being read or written by the instruction, (2) 

the functional units of the processor which result in incorrect computations, (3) the 

instruction fetch and decode units, which result in an incorrect instruction being fetched 

or decoded (4) the memory and data bus, which cause wrong values to be fetched or 

written in memory and/or processor register file. Note that these errors would not be 

detected by techniques such as ECC in memory, as they originate in computation. 

The fault-model also represents certain types of software errors that result in data-value 

corruptions such as: (1) synchronization errors or race conditions that result in 

corruptions of data values due to incorrect sequencing of operations, (2) memory 

corruption errors, e.g., buffer-overflows and dangling pointer references that can cause 

arbitrary data values to be overwritten in memory, and (3) use of un-initialized or 

incorrectly initialized values, as these could result in the use of unpredictable values 

depending on the platform and environment.  

3.3 DETECTOR DERIVATION ANALYSIS 

In this chapter, an error detector is an assertion based on the value of a single variable
6
 of 

the program at a specific location in its code. A detector for a variable is placed 

immediately after the instruction that writes to the variable. Since a detector is placed in 

the code, it is invoked each time the program location at which the detector is placed is 

executed. 

                                                 

6 In this chapter, the term variable refers to any register, cache or memory location that is visible at the assembly-code level.  



59 

 

Consider the sample code fragment in Table 5. Assume that the detector placement 

methodology has identified variable k as the critical variable to be checked within the 

loop. Although this example illustrates a simple loop, our technique is general and does 

not depend on the structure of the source program. In the code sample, variable k is 

initialized at the beginning of the loop and incremented by 1 within the loop. Within the 

loop, the value of k is dependent on its value in the previous iteration. Hence, the rule for 

k can be written as “either the current value of k is zero, or it is greater than the previous 

value of k by 1.” We refer to the current value of the detector variable k as ki and the 

previous value as ki-1. Thus, the detector can be expressed in the form: (ki – ki-1 == 1) or 

(ki == 0). 

Table 5: Example code fragment 

void foo() { 
         int k = 0;   

         for (; k<N; k++) { 

       …. 
      } 

} 

 

As seen from the above example, a detector can be constructed for a target variable by 

observing the dynamic evolution of the variable over time. The detector consists of a rule 

describing the allowed values of the variable at the selected location in the program, and 

an exception condition to cover correct values that do not fall into the rule. If the detector 

rule fails, then the exception condition is checked, and if this also fails, the detector flags 

an error. Detector rules can belong to one of six generic classes and are parameterized for 

the variable checked. The rule classes are shown in Table 6.  
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Table 6: Generic rule classes and their descriptions  

Class Name Generic Rule (ai , ai-1) Description 

Constant ( ai == c ) 
The value of the variable in the current invocation of the detector is a constant 
given by parameter c.  

Alternate 
(( ai == x /\ ai-1== y )) \/ ( ai 

== y /\ ai-1== x ) 

The value of the variable in the current and previous invocations of the detector 

alternates between parameters x and y respectively. 

Constant-
Difference 

 ( ai - ai-1 == c ) 
The value of the variable in the current invocation of the detector differs from its 
value in the previous invocation by a constant c. 

Bounded-

Difference 
( min <= ai - ai-1 <= max ) 

The difference between the values of the variable in the previous and current 

invocations of the detector lies between min and max. 

Multi-Value ai є { x, y, … } 
The value of the variable in the current invocation of the detector is one of the 
set of values x, y,  

Bounded-

Range 
( min <= ai  <= max ) 

The value of the variable in the current invocation of the detector lies between 

the parameters min and max. 

 

These rule classes are broadly based on common observations about the behavior of 

variables in the program. Note that, in all cases, the detector involves only the values of 

the variable in the current invocation (ai ) and/or the previous invocation (ai-1) in the same 

execution. 

The exception condition involves equality constraints on the current and previous values 

of the variable, as well as logical combinations (and, or) of two of these constraints. The 

equality constraints take the following forms: (1) ai == d, where d is a constant 

parameter; (2) ai-1== d, where d is a constant parameter; and (3) ai==ai-1. However, not 

all combinations of the above three clauses are logically consistent. For example, the 

exception condition (ai==1 and ai==2) is logically inconsistent, as ai cannot take two 

different values at the same time. Of the twenty seven possible combinations of the 

clauses, only eight are logically consistent.  

For the example involving the loop index variable k, discussed at the top of this section, 

the rule class is Constant-Difference of 1, and the exception condition is (ki == 0). This 

was derived automatically using the procedure detailed in this section. 
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3.4 DYNAMIC DERIVATION OF DETECTORS 

This section describes our overall methodology for automatically deriving the detectors 

based on the dynamic trace of values produced during the application‟s execution. By 

automatic derivation, we mean the determination of the rule and the exception condition 

for each of the variables targeted for error detection. The basic steps are as follows:  

The program points at which detectors are placed (both variables and locations) are 

chosen based on the Dynamic Dependence Graph (DDG) of the program as shown in 

[17].  

The program is instrumented to record the run-time evolution of the values of detector 

variables at their respective locations, and executed over multiple inputs to obtain 

dynamic-traces of the checked values.  We refer to the sequence of values at a detector 

location as a value stream for that location. 

The dynamic traces of the checked values obtained are analyzed to choose a set of 

detectors (both rule class and exception condition) that matches the observed values.  

A probabilistic model is applied to the set of chosen detectors to find the best detector for 

a given location. The best detector is characterized in terms of its tightness and execution 

cost of the detector. These terms are explained in the next subsection. 

3.4.1 Detector Tightness and Execution Cost 

A qualitative notion of tightness of a detector was first introduced in [57]. However, we 

define tightness in a precise, mathematical sense as the probability that a detector detects 

an erroneous value of the variable it checks. In mathematical terms, the tightness is the 
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probability that the detector detects an error, given that there is an error in the value of the 

variable that it checks. The coverage of the detector, on the other hand, is the probability 

that the detector detects an error given that there is an error in any value used in the 

program. Hence, in addition to the tightness, coverage also depends on the probability 

that an error propagates to the detector variable and location in the first place. The 

estimation of this probability is outside the scope of our technique.   

In order to characterize the tightness of a detector, we need to consider both the rule and 

the exception condition (introduced in section 3.3) as the error will not be detected if 

either passes. The tightness also depends on the parameters of the detector and the 

distribution of the observed stream of data values in a fault-free execution of the 

program. For an incorrect value to go undetected by a detector, either the rule or the 

exception condition or both must evaluate to true. This can happen in one of four 

mutually exclusive ways, as Table 7 shows.  

Table 7: Probability values for computing tightness 

Symbol Explanation 

P( R | R ) Probability that an error in a value that originally satisfied the rule (in a correct execution) also causes 
the incorrect value to satisfy the rule. 

P( R | X ) Probability that an error in a value that originally satisfied the exception condition (in a correct 

execution) causes the incorrect value to satisfy the rule. 

P( X | R ) Probability that an error in a value that originally satisfied the rule (in a correct execution) causes the 
incorrect value to satisfy the exception condition. 

P( X | X ) Probability that an error in a value that originally satisfied the exception condition (in a correct 

execution) causes the incorrect value to satisfy the exception condition. 

 

The tightness of a detector is defined as (1 – P(I)), where P(I) is the probability of an 

incorrect value passing undetected through the detector. This probability can be 

expressed using the terms in Table 7 as follows: 

P(I) =  P( R ) [ P( R | R ) + P( X | R ) ] + P( X ) [ P( R | X) + P( X | X ) ]                      (1) 
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where, P(R) is the probability of the value belonging to the rule, and the P(X) is the 

probability of the value belonging to the exception condition. 

The computation of tightness can be automated, since there are only a limited number of 

rule-exception pairs
7
. These probabilities can be pre-computed as a function of the 

detector‟s parameters as well as on the frequency of elements in the observed data stream 

for each rule-exception pairs. We will not list all the probabilities, but instead illustrate 

with an example. 

Example. Consider a detector in which the rule belongs to the class Bounded-Range with 

parameters min = 5 and max = 100 and the exception condition is of the form (ai==0).  

We make the following assumptions about errors in the program. 

(1) The distribution of errors in the detector variable is uniform across the range of all 

possible values the variable can take (say, N),  

(2) An error in the current value of the variable is not affected by an error in the previous 

value of the variable, and  

(3) Errors in one detector location are independent of errors in another detector location.  

These are optimistic assumptions, and hence the estimation of tightness is an upper bound 

on the actual value of detector tightness (and hence coverage). Relaxing these 

assumptions may require apriori knowledge of the application and error behavior in the 

application. 

                                                 

7 There are six types of rule classes and eight types of exception conditions, leading to a total of 48 rule-exception pairs. 
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Table 8 shows the pre-computed probability values for this detector in terms of N and the 

detector‟s parameters. Substituting these probability values in equation (1), we find: 

P(I) = P(R) [ 95/N + 1/N ] + P(X) [96/N + 0 ] 

 = (96/N)[ P(R) + P(X) ] = 96/N 

The above derivation uses the fact that P(R) + P(X) = 1,since the value must satisfy 

either the rule or the exception in an error-free execution of the program.  

Now, assume that the rule belongs to the Constant class (with parameter 5). Let us 

assume that the exception condition is the same as before. For this new detector,  

P(R|R) = 0, P(R|X) = 1/N, 

P(X|X) = 0 and P(X|R) = 1/N 

Substituting in equation (1), yields the following expression for P(I). 

P(I) = P(R) [ 0 + 1/N ] + P(X) [1/N + 0 ]= (1/N)[ P(R) + P(X) ]= 1/N 

Note that the probability of a missed error in the first detector is 96 times the probability 

of a missed error in the second detector. Hence, the tightness of the first detector is 

correspondingly much less than the tightness of the second detector (which is intuitive 

based on the detectors). 

The above model is used only to compare the relative tightness of the detectors, and not 

to compute the actual probabilities (which may be very small). The range of values for 

the detector variable represented by the symbol N gets eliminated in the comparison 

among detectors for the same variable and does not influence the choice of the detector.  
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Execution Cost. The execution cost of a detector is the amortized additional computation 

involved in invoking the detector over multiple values observed at the detector point. The 

execution cost of a detector is calculated as the number of basic arithmetic and 

comparison operations that is executed in a single invocation of the detector. An 

operation usually corresponds to a single arithmetic or logical operator.  Note that the 

computation of the execution cost assumes an error-free execution of the program. 

Table 8: Probability values for detector “Bounded-Range (5, 100) except: (ai==0)” 

Symbol Probability Value Explanation 

P (R | R) ( 95 / N ) Each rule value can turn into any of the other 95 rule values with equal probability. 

P (R | X) ( 96 / N )  An exception value can turn into one of 96 rule values with equal probability 

 P (X | R) ( 1 / N )  A rule value can incorrectly satisfy the exception condition if it turns into 0. 

P (X | X) 0 An exception value cannot change into another exception value, as there is only one value 

permitted by the exception condition (in this example). 

3.4.2 Detector Derivation Algorithm 

For each location identified by the detector placement analysis, the following steps are 

executed by the algorithm for detector derivation. 

1. To derive the detector, the rule class corresponding to the detector is chosen and 

the associated exception condition is formed. The algorithm to derive a detector 

for a particular variable and location is given below. We refer to the evolution of a 

program variable over time as the stream of values for that variable. 

2. To derive the rule, the rule classes in Table 6 are each tried in sequence against 

the observed value stream to find which of the rule classes satisfy the observed 

value stream. The parameters of the rule are learned based on appropriate samples 

(for each rule class) from the observed stream. For the same location, it is possible 
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to generate multiple rules that are considered as candidates for exception 

derivation in the next step.   

3. For each rule derived, the associated exception condition is derived based on the 

values in the stream that do not satisfy the rule. Each of the values that do not 

satisfy the rule is used as a seed for generating exception conditions for that rule. 

If it is not possible to derive an exception condition for the observed value as per 

the conditions in section 3.2, the current rule is discarded and the next rule is tried 

from the set of rules in step 2.  

4. For each rule-exception pair generated, the tightness and execution cost of the 

detector is calculated. The detector with the maximum tightness to execution cost 

ratio is chosen as the final detector for that location and is embedded as an 

assertion in the program‟s code 

3.5 HARDWARE IMPLEMENTATION 

In this chapter, we discuss the hardware implementation of the derived error detectors 

in context of the Reliability and Security Engine (RSE) framework [1]. The RSE is a 

reconfigurable processor-level framework that can provide a variety of reliability features 

according to the requirements and constraints imposed by the user or the application. The 

RSE Framework hosts (1) RSE modules, providing reliability and security services and 

(2) the RSE Interface that provides a standard, well-defined and extendible interface 

between the modules and the main processor pipeline. The interface collects the 

intermediate pipeline signals and converts it to the format required by the hardware 
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modules. The application interfaces with the RSE modules using special instructions 

called CHECK instructions.  

The detectors are implemented as a separate module of the RSE called the Error 

Detector Module (EDM). The detectors are invoked through the CHECK instructions. 

3.5.1 Synthesis of Error Detector Module 

The output of the algorithm to derive detectors in Section 3.4.2 is a list of detectors, 

one for each location. This list is used to synthesize hardware modules that interface with 

the RSE. The hardware implementation of error detectors chosen in the design stage 

encompasses two steps: (i) instrumentation of the target software application
 
with special 

instructions to invoke the hardware checkers, and (ii) generation of the Error Detector 

Module (EDM), a piece of customized hardware to check at run-time the execution of the 

program, and flag a signal when one of the detectors fires. These two phases are carried 

out at compile time. 

Each detector in the list of detectors derived in the design phases is characterized by the 

following attributes: (1) location of the detector in terms of the Program Counter (PC) 

value at which it is to be invoked, (2) processors‟ registers to check and (3) detector class 

and exception parameters. Special instructions are used to load the detectors into the 

EDM, one for each word of the detector. Figure 16 shows the format of each detector. As 

can be observed, each detector spans 6 words, and hence requires 6 instructions to be 

loaded into the EDM. 
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PC 

Rule Class Exception Condition 

Class 
Logical 
Register 

Param1 Param2 
Combination 
Rule 

Class1 Class2 
Exception 
Param1  

Excepti
on 

Param2 

32 bit 3 bit 5 bit 32 bit 32 bit 2 bit 2 bit 2 bit 32 bit 32 bit 

Figure 16 - Format of each detector and bit width of each field 

In our current deployment, the application code is in the form of assembly code. The 

header of the code is instrumented with CHECK instruction loading all the detectors 

needed for the execution of the entire code. This solution minimizes the performance 

overhead but requires larger storing units in hardware, as explained in Section 7.1. After 

the instrumentation, the modified code is assembled and converted (Assembling/Linking 

phase) into an executable. 

Figure 17 shows the automated design flow starting from the application code to the 

hardware. Given the application code (in the form of assembly code or program binary), 

the design flow delivers the instrumented application code and the hardware description 

of the Error Detector Module tailored for the target application. The target processor 

description (a DLX-like processor in the current implementation [58]) and the 

configuration information are used to extract (from the main pipeline of the processor) 

the signals that are needed by the EDM. 

The output of the Error Detector Module generation phase in Figure 17 is a VHDL 

representation of the EDM. The synthesis procedure then instantiates hardware 

components from the VHDL representation. These are considered in detail in Section 

3.5B.  
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Figure 17: Design flow to instrument application and generate the EDM 

3.5.2 Structure of Error Detector Module 

Figure 18 shows the overall architecture of the Error Detector Module (EDM). As 

mentioned before, the EDM is implemented as a module in the Reliability and Security 

Engine (RSE). 

 

Figure 18: Architectural diagram of synthesized processor 

 



70 

 

The main components of the EDM are as follows: 

Shadow Register File (SRF) – keeps track of current and last values of the 

microprocessor‟s registers checked by the detectors (i.e., ai and ai-1, where a can be any 

architectural register). This component delivers the required values ai and ai-1 when a 

detector is executed as required by the expressions in Table 1. When a new value 

regValue is written at time i by the processor in the register R of the processor file (based 

on the value regSel), a copy of the new value Ri is stored in the SRF. The old value Ri-1 is 

also retained. Since not all the registers of the processor architecture have to be checked 

by the detectors, a mapping between the physical addresses of the microprocessor 

registers and the logical addresses of the corresponding registers in the SRF is kept in the 

block Phys2Log.  

Detector Table – stores the information needed for a detector. The size of the Detector 

Table grows linearly with the number of detectors needed by an application. It is 

implemented by the following component: (1) comparators checking the current PC 

against the PCs of the detectors and triggering them if necessary; (2) a RAM hosting the 

parameters of rules and exceptions. When a detector is triggered by the current PC, the 

Detector Table selects (1) the register R that has to be checked from the SRF forcing the 

values Ri-1 and Ri-1 to be placed on the dual data-path busses, and (2) activates the Rule 

and Exception Checkers to compute the detector conditions. The Error Signal 

Computation flags the Violation Detection signal to indicate a detected error. 
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Rule and Exception Checkers – are the actual data-paths used to carry out the 

computation of the detector rules and exception conditions. A number of checker 

components are instantiated to perform the required computations according to the rule 

classes and exceptions needed by an application. Note that the set of checkers instantiated 

is equal to the number of detector classes and exceptions (at most forty eight) rather than 

to the number of detectors inserted in an application (which are essentially unbounded).  

Architectural Extensions for High-performance Processors – We are currently 

working on extending our work for processors where a larger amount of speculation and 

parallelism is present. This requires enhancing the current architecture of the Error 

Detector Module. Example extensions are discussed below: (1) Targeting a CISC 

architecture requires the Error Detector to access the memory bus of the main processor, 

since some instructions can use memory operands. In the current implementation we 

assume a load/store RISC architecture, which means that only register operands can be 

used, and it is sufficient that the Error Detector checks only the content of the processor 

register file; (2) The use of multiple execution units requires the execution of several 

checks concurrently and hence the need for (i) multi-ported Detector Table and Shadow 

Register file, and (ii) independent execution data-path units in the Error Detector; and (3) 

The use of branch and value speculation requires the ability to execute detectors 

speculatively and a tighter coupling of the Error Detector Module with the reservation 

station to keep track of the issued, ready and committed instructions.  
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3.6 EXPERIMENTAL SETUP 

This section describes the experimental infrastructure and application workload used to 

evaluate the coverage and overheads of the derived detectors.  We use fault-injection to 

evaluate the coverage and implementation on FPGA hardware to evaluate the overheads. 

3.6.1 Application Programs 

The system is evaluated with six of seven programs from the Siemens suite
8
 of programs 

[51]. These programs are comprised of a few hundred lines of C code, and are 

extensively used in software testing and verification. A brief description of benchmarks is 

given in Table 9.  

Table 9: Benchmarks and their descriptions 

Benchmark  Description 

Replace Searches a text file for a regular expression and replaces the expression with a string 

Schedule, 

Schedule2 

A priority scheduler for multiple job tasks 

Print_tokens, 

Print_tokens2 

Breaks the input stream into a series of lexical tokens according to pre-specified rules 

Tot_info Offers a series of data analysis functions 

3.6.2 Infrastructure 

The tracing of the application‟s execution and the fault-injections are performed using a 

functional simulator in SimpleScalar family of processor simulators [50]. The simulator 

allows fine-grained tracing of the application without modifying the application code and 

provides a virtual sandbox to execute the application and study its behavior under faults.  

                                                 

8
 tcas from the Siemens suite is omitted as it is very small  and had insufficient separation among the different metrics in the study  
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We modified the simulator to track dependences among data values in both registers and 

memory by shadowing each register/location with four extra bytes (invisible to the 

application) which store a unique tag for that location. For each instruction executed by 

the application, the simulator prints (to the trace file) the tag of the instruction‟s operands 

and the tag of the resulting value to the trace. The trace is analyzed offline by specialized 

scripts to construct the DDG and compute the metrics for placing detectors in the code 

according to the procedure in Chapter 2.  

The effectiveness of the detectors is assessed using fault injection. Fault locations are 

specified randomly from the dynamic set of tags produced in the program. In this mode, 

the tags are tracked by the simulator, but the executed instructions are not written to the 

trace. When the tag value of the current instruction equals the value of a specified fault 

location, a fault is injected by flipping a single-bit in the value produced by the current 

instruction. Once a fault is injected, the execution sequence is monitored to see if a 

detector location is reached. If so, the value at the detector location is written to a file for 

offline comparison with the derived detectors for the application. The above process is 

continued till the application ends. Note that only a single fault is injected in each 

execution of the application.  

3.6.3 Experimental Procedure 

The experiment is divided into four parts as follows: 

1. Placement of detectors and instrumentation of code. The dynamic instruction trace 

of the program is obtained from the simulator and the Dynamic Dependence Graph 
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(DDG) is constructed from the trace. The detector placement points (both variables 

and locations) are chosen based on the technique described in [17]. For each 

application, up to 100 detector points are chosen by the analysis, which corresponds 

to less than 5% of static instructions in the assembly code of the benchmark programs 

(excluding library functions). 

2. Deriving the detectors based on training set. The simulator records the values of 

the selected variables at the detector locations for representative inputs. The dynamic 

values obtained are used to derive the detectors based on the algorithm in Section 3.4. 

The training set consists of 200 inputs
9
, which are randomly sampled from a test suite 

consisting of 1000 inputs for each program. These test suites are provided as part of 

the Siemens benchmark suite [51]. 

3. Fault-injections and coverage estimation. Fault-injection experiments are 

performed by flipping single bits in data-values chosen at random from the set of all 

data values produced during the course of the program‟s execution. After injecting 

the fault, the data values at the detector locations are recorded and the outcome of the 

simulated program is classified as a crash, hang, fail-silent violation or success 

(benign). The values recorded at the detector locations are then checked offline by the 

derived detectors to assess their coverage.  The coverage of a detector is expressed in 

terms of the type of program outcome it detects i.e. a detector is said to detect a 

                                                 

9
 The rationale for the choice of 200 inputs is explained in Section 3.7.3 
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program crash if the program would have crashed had the detector not detected the 

error.  In case the detector does not detect the error at all, its coverage is counted as 

zero for all four outcome categories. 

For the fault-injection experiments, each application is executed over 10 inputs 

chosen at random from those used in the training phase. For each input, 1000 

locations are chosen at random from the data values produced by the application. A 

fault-injection run consists of a single bit-flip in the one of the 1000 locations. For 

each application-input combination, five runs are performed, which corresponds to a 

total 50,000 fault-injection runs per application. 

4. Computation of false positives.  The application code instrumented with the derived 

detectors is executed for all 1000 inputs, including the 200 inputs that were used for 

training. No faults are injected in these runs. If any one of the derived detectors 

detects an error, then that input is considered to be a false positive (as there was no 

injected error). 

3.7 RESULTS 

3.7.1 Detection Coverage of Derived Detectors 

The coverage of the detectors derived using the algorithm in Section 3.4 is evaluated 

using fault-injections as described in Section 3.6.3.  Figure 19, Figure 20 and Figure 21 

show the coverage for crashes, fail- silence violations (fsv) and hangs obtained for the 

target applications (in percentages) as a function of the number of detectors placed in 

each application (ranging from 1 to 100). Figure 22 shows the percentage of total 
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manifested errors that are detected by the derived detectors. .The coverage for each type 

of failure increases as the number of detectors increases, but less than linearly, as there is 

an overlap among the errors detected by the detectors. The individual error coverage of 

the derived detectors depends on the type of failure (crash, FSV, hang).  

 

Figure 19: Crash coverage of derived detectors 

 

 

Figure 20: FSV coverage of derived detectors 

 

 

Figure 21: Hang coverage of derived detectors 
 

Figure 22: Total error coverage for derived 

detectors 

 
 

 

 

Table 10: Average detection coverage for 100 detectors 

Type of Failure Minimum Coverage Maximum Coverage 

Program Crash 45% (print_tokens) 65% (tot_info) 

Fail-Silent Violation (FSV) 25% (schedule2) 75% (tot_info) 

Program Hang 0% (print_tokens2) 55% (replace) 

Program Failures 

50 %  

(replace, schedule2, print_tokens, 
tot_info) 

75 % 

(schedule, print_tokens2) 
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The coverage obtained for each type of failure is summarized in Table 10 when 100 

detectors are placed in each the application. The derived detectors can detect 50% to 75% 

of the errors that manifest in the application. This is because the majority of errors that 

manifest in an application are crashes (70-75%) and the rest are fail-silent violations (20-

30%) and hangs (0-5%). 

The results for coverage correspond to any error that occurs in the data values used by the 

program, and not just for errors that occur in the detector locations. For example, if even 

a single bit-flip occurs in a single instance of any data value used in the program, and 

this error results in a program crash, hang or fail-silence violation, then one of the 100 

detectors placed will detect the error 50-75 % of the time. As mentioned in Section 3.6.1, 

100 detectors correspond to less than 5% of program locations in the static assembly code 

of the benchmark programs. 

To put these results in perspective, Hiller et al.[56] obtain a coverage of 80% with 7 

assertions for (random) errors that cause failure in an embedded system application. 

However, in their study about 2000 errors are injected into the system during a short 

period of 40 seconds, and if one of their executable assertions detects one of the errors in 

this period, it is considered a successful detection. In contrast, we inject only a single 

error in each run. Furthermore, 7 out of 24 signals are targeted for detection in the 

embedded system considered in their paper, whereas we place detectors in just 5% of the 

instructions in the applications considered. 



78 

 

3.7.2 False Positives 

False positives can occur when a detector flags an error even if there is no error in the 

application. A false positive for an input can occur when the values at the detector points 

for the input do not obey the detector‟s rule and exception condition learned from the 

training inputs (because the training was not comprehensive enough).  

The training set for learning the detectors consists of 200 inputs and the false positives 

are computed across all 1000 inputs for each application. No faults were injected in these 

runs. If even a single detector detects an error for a particular input, then the entire input 

is treated as a false positive even if no other detector detects an error for the input. 

Figure 23 presents the percentage of false positives for each of the target applications 

across 1000 inputs. Across all applications the false positives are no more than 2.5% 

(with 100 detectors). For the replace, schedule2, print_tokens and print_tokens2 

applications, the false positives observed are less than 1%. For the schedule and tot_info 

application, the false positive rate is around 2%. While the number of false positives 

increases as the number of detectors increases, it reaches a plateau as the number of 

detectors is increased beyond 50. This is because a false positive input is likely to trigger 

multiple detectors once the number of detectors passes a certain critical threshold (in our 

case, this critical threshold is 50). However, no such plateau was reached for the coverage 

results in Figure 22. This suggests that inserting more detectors in the application can 

increase coverage without increasing the percentage of false positives.  
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Figure 23: Percentage of false positives for 1000 inputs of each application 

When a detector raises an alarm, we need to determine whether an error was really 

present or whether it is a false-positive. If the error was caused by a transient fault (as we 

assume in this chapter), then it is likely to be wiped out when the program is re-executed 

[22]. If on the other hand, the detection was a false positive and hence, a characteristic of 

the input given to the program, the detector will raise an alarm again during re-execution. 

In this case, the alarm can be ignored, and the program is allowed to continue. Thus, the 

impact of a false positive is essentially a loss in performance due to re-execution 

overhead.  Since the percentage of false positives is less than 2.5%, the overhead of re-

execution is small. It is possible to reduce the overhead further using checkpointing and 

restarting scheme as done in Wang and Patel [59]. 

3.7.3 Effect of Training Set Size  

The results reported so far for coverage and false positives of the derived detectors used a 

training set of 200 inputs from a total of 1000 inputs for each benchmark application. In 

this section, we consider the effects of varying the size of the training set from 100 

inputs, 200 inputs and 300 inputs. In these experiments, the number of detectors is fixed 
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at 100 and the error-detection coverage and false positives are evaluated for each 

application. The results are shown in Figure 24, Figure 25, Figure 26 and Figure 27. 

 
Figure 24: Crash coverage for different training 

set sizes 

 
Figure 25: FSV coverage for different training set 

sizes 

 
Figure 26: Hang coverage for different training set 

sizes 

 
Figure 27: Benign errors for different training set 

sizes 

The following trends may be observed from the graphs: 

 The false positives decrease from 5% to 2% as the training set size is increased 

from 100 inputs to 200 inputs, and to less than 1% for 300 inputs, except tot_info 

(1.5%.). 

 The coverage for crashes and hangs remain constant as the training set size 

increases (Figure 8, Figure 10), except in the case of tot_info where the coverage 
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first decreases from 100 to 200 inputs and then remains constant from 200 to 300 

inputs (for crashes and hangs). 

 The coverage for fail-silent violations decreases marginally as the size of the 

training set increases from 100 inputs to 300 inputs (Figure 9). This decrease in 

fail-silent violations is less than 2% for all benchmarks except tot_info (5%). 

For the applications studied, increasing the training set size from 100 to 200 decreases the 

false positives significantly, while increasing it from 200 to 300 does not have as large an 

impact on false positives. The impact on coverage from increasing the training set size is 

minimal. This suggests that the detectors, once learned, are relatively stable across 

different inputs, and that their detection capabilities are not affected by the input (beyond 

a certain number of training inputs). Hence, in this chapter we choose a training set size 

of 200, which corresponds to 20% of the inputs used for each program.  

3.7.4 Comparison with Best-value Detectors 

As seen in Section 3.7.1, the derived detectors detect about 45-65% of crashes and 25-

80% of fail-silent violations in a program. This section investigates why the remaining 

errors are not detected and how the detectors can be improved.  To form the basis of the 

discussion, we consider a hypothetical detector that keeps track of the entire history of 

data values observed at a detector location and uses this knowledge to flag an error. We 

call these best-value detectors, as they represent the maximum coverage that can be 

obtained by a value-based detector. 
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The best-value detector may not be achievable in practice, as in addition to requiring 

enormous space and time overheads (to store the entire history of values), it assumes 

apriori knowledge of all possible inputs to the program. Nevertheless, the coverage of the 

best-value detector provides an upper bound on the coverage that can be obtained with 

data-value based detectors such as the detectors considered in this chapter
10

. We build the 

best-value detector by executing the program under a specific set of inputs and storing the 

entire sequence of values observed at each location where a detector is placed. This fault-

free execution is referred to as the golden run of the program. In this study, we fix the 

number of best-value detectors in the program to be 100. For each application both the 

best-value detectors and the derived detectors are placed at the same variables and 

locations. The program is executed under the same set of inputs that were used to derive 

the best-value detectors. The same set of faults is injected in both cases. 

Figure 28, Figure 29, Figure 30 and Figure 31 compare the coverage of the derived 

detectors with coverage of the best-value detectors for crashes, fail-silent violations 

(FSV), hangs and manifested errors. The results are summarized below. 

Crashes - the coverage of the derived detectors is between 75% (replace) and 100% 

(schedule2, print_tokens2 ) of the coverage that can be obtained by the best-value 

detectors (Figure 28) 

 

                                                 

10 Note that the best-value detectors are different from the ideal detectors we introduced in Chapter 2. An ideal detector makes use of 
complete timing and data information to detect an error in a variable, whereas the best-value detector employs only data information. 
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Figure 28: Comparison between best-value detectors and derived detectors for crashes 

Comparison with Best-Value Detectors (FSV)
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Figure 29: Comparison between best-value detectors and derived detectors for FSV 

Comparison with Best-Value Detectors (Hangs)
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Figure 30: Comparison between best-value detectors and derived detectors for hangs 

 
Figure 31: Comparison between best value detectors and derived detectors for manifested errors 

 

FSV - the coverage of the derived detectors is between 40% (print_tokens2) and 85% 

(tot_info) of the coverage that can be achieved by the best-value detectors (Figure 29). 

Comparison with Best-Value Detectors (Manifested Errors) 
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Hangs - the coverage of the derived detectors is between 50% (tot_info) and 100% 

(schedule2, print_tokens2) of the coverage of the best-value detectors. (Figure 30). 

Manifested errors - the coverage of the derived detectors is between 70% (replace) and 

90% (print_tokens2) of the coverage that can be achieved by the best data detectors 

(Figure 31) 

We examine the reasons for the difference in coverage between the best-value and 

derived detectors as follows: 

 The best-value detectors are tailored for each input (based on the golden run of 

the application for the input) and have 100% knowledge of the application 

execution for that input. The derived detectors must work across inputs, or they 

will have an increased false-positive rate. One way to address this problem is to 

design detectors that are functions of the input or are based on input 

characteristics;  

 The best-value detectors store the entire history of values observed at the 

detector„s location for that variable in the golden run and can check the value of 

the variable in the actual run against the value observed in the golden run. The 

derived detectors, store only the current and previous value of the variable, and 

use a generic rule and exception condition to check for an error. Thus, increasing 

the amount of historical information stored in the detector can increase its 

coverage. 
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 The derived detectors have much lower coverage compared to the best-value 

detectors, with respect to fail-silent violations. This is because the derived 

detectors are general across program inputs, whereas the best-value detectors are 

specialized for specific inputs.  The coverage for crashes however, is not impacted 

by the generality of the detector, as typically crashes are caused due to corruptions 

of data values that are illegal or invalid across all inputs. However, the coverage 

for a fail-silent violation may be affected as a value that is illegal for one input 

may be valid for another input, but lead to the program printing the wrong output. 

As pointed out earlier, the coverage for FSVs can be improved by making the 

detectors a function of the program‟s inputs. This is a subject of future 

investigation. 

3.8 HARDWARE IMPLEMENTATION RESULTS 

The proposed design of the DLX processor, the RSE Interface and the Error Detector 

Modules for different applications were synthesized using Xilinx ISE 7.1 tools targeting a 

Xilinx Virtex-E FPGA. The Xilinx Virtex series of FPGAs consists mainly of several 

type of logic cells: (1) 4-input Look-Up Tables (LUTs) statically programmed during the 

bootstrap with the configuration bit-stream, (2) flip-flops (FFs), storage elements in the 

user visible system state, and (3) Block RAM (BRAMs), which are memory blocks that 

can store up to 4096 bits. Four LUTs and four FFs compose a logic unit called Slice.  
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Area and Clock Period Overhead - Table 11 reports the synthesis results in terms of 

area (i.e., FFs, LUTs, BRAM and total Slices) and minimum clock frequency, for the 

reference DLX processor and the complete RSE Interface.  

Table 11: Area and timing results for the DLX processor and the RSE Framework 

 FFs LUTs BRAMs Slices 

Clock 
Period 
[ns] 

DLX processor 4873 16395 0 9526 58.8 

Complete RSE Interface 2465 2329 0 1420 2.01 

 

The synthesis results (in terms of area and minimum clock period for different 

configurations show that, for different workloads, the number of slices required for the 

implementation of the Error Detector modules ranges between 2685 and 2915, while the 

number of additional BRAMs is 9. The area overhead (with respect to the single 

superscalar DLX processor) of the single EDM is about 30%, while the area overhead of 

the complete (including the RSE Interface and the Error Detector module) is about 45%.  

Performance Overhead - A measure of the performance overhead is given by the 

formula: 

Overhead = [ Extra Clock Cycles * (TCK, with ED - TCK, without EDM) ] / ( Total Clock Cycles * 

TCK, without EDM) 

where Twith EDM and Twithout EDM are the total execution times with and without Error 

Detector module respectively, Extra clock cycles is the number of additional clock cycles 

required to execute the code instrumented with the CHECK instructions, TCK with ED and 

TCK without ED are the minimum clock period of the overall system with and without the 

Error Detector module, respectively.  In our implementation each CHECK instruction is 
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assumed to load 32 bits and hence 6 CHECK instructions are used for loading a single 

detector. Due to space constraints, we do not report the results for all the workloads, but 

we report only the workload with the largest time overhead, i.e., schedule2. The number 

of extra clock cycle is 594, while the total number of clock cycles is nearly 1 million, TCK 

with ED is 58.82 ns and TCK without ED is 55.55 ns. Plugging these numbers in the time 

overhead formula, we found out that the total execution overhead for the detectors is 

about 5.6%. 

3.9 RELATED WORK 

Broadly, error detection techniques can be classified based on two criteria:  

(1) How the detectors are derived (static or dynamic) and, 

 (2) How the checking is performed (static or dynamic) 

These lead to 4 categories of detectors that span the spectrum of purely static techniques 

(e.g. Prefix  [52], CCured [60], LCLint [53], Engler et al. [61] to purely dynamic 

techniques (e.g. DIDUCE [62], Maxion et al.[63]). This categorization also includes 

hybrid techniques in which the detectors are derived statically and checked dynamically 

(Voas et al.[57], Zenha-Rela et al. [64] and Hiller et al.[56]) and those in which the 

detectors are derived dynamically but checked statically (for example, DAIKON [43]). 

These techniques are described in Table 12.  
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Table 12: Descriptions of related techniques and tools 

Technique Description Drawbacks 

Prefix [52] 
Uses symbolic execution through selected paths 
in a program to find known kinds of errors (e.g. 

NULL pointer dereferences) 

1. Requires programmer to write annotations in the 
source code  

2. High false-positive rate due to infeasible paths 

C-Cured [60] 

Verifies that points do not write outside their 

intended memory objects, thereby ensuring 

memory safety 

1. Protects only against errors that violate memory 

safety – does not protect computation errors  
2. Does not handle hardware errors or errors 

originating in unverified code. 

LCLINT [53] 

Checks if a program conforms to its 

specification and if it adheres to predefined 
programming rules 

1. Requires programmer to provide specifications or 
write annotations in code 

2. Only finds those errors that violate the predefined 

rules 

Engler et al. [61]  

Analyzes source files to find application-

specific programming patterns and identifies 
violation of the discovered patterns as bugs 

1. May incur false-positives i.e. the violation of the 
pattern may not necessarily be a bug.  

2. Does not handle runtime errors or hardware faults 

– coverage limited to pattern violations  

DAIKON [43]  
Infers invariants from dynamic execution of 

program based on representative training inputs 

1. Does not take placement of detectors into account 

- program may crash before the execution reaches 

the detector location.  
2. Requires programmer intervention to filter out 

real bugs from false identifications 

Voas et al. [57]  

Considers a general methodology to embed 

detectors in programs to detect errors. 
Characterizes properties of good detectors.  

1. Does not consider how to derive the detectors 

2. Detector placement methodology relies heavily 
on programmer‟s knowledge of application. 

Zenha-Rela et al. 
[64] 

Evaluates the coverage provided by existing 

assertions in a program vis-à-vis control-flow 
error detection techniques and algorithm-based 

fault-tolerance  

Does not consider deriving or embedding assertions 

in a program. Assume that assertions have already 
been inserted by programmer. 

 

Hiller et al. [56] 

Places error detectors in an embedded system 
to detect data errors. Consider different classes 

of detectors based on properties of the signals 

in an embedded system and the detectors are 
placed in the system to maximize the coverage 

1. Programmer needs to specify class and 
parameters of each detector - detector derivation is 

not automated. 

2. Detector placement based on extensive fault-
injections, which are time-consuming 

DIDUCE [62] 

Uses software anomaly detection to locate 

corner cases and find bugs. Formulates strict 

hypothesis about program behavior in 
beginning and gradually relaxes them as 

program executes to learn new behavior. 

1. Program may crash before reaching detector 

point, and the error will not be detected 

2. Does not address errors that occur when 
invariants are being learned (at the beginning of 

program execution) 

Maxion et al. [63] 
Characterize the generic space of anomaly 
detectors for embedded applications.  

Do not define specific types of error detectors or 
how they are derived from the application. 

 

We published this work in the European Conference on Dependable Systems (EDCC) 

[27]. Since then three papers have been published based on the idea of using dynamically 

derived program invariants for runtime error detection. These papers use online or offline 

profiling of the program to build value-based invariants, and use special hardware to 

check the invariants at runtime.  Racunas et al. [65] and Dimitrov and Zhou [66] consider 

detection of transient errors (similar to our technique), while Sahoo et al. [67] consider 

detection of permanent hardware errors.  These techniques are considered in this section. 
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3.9.1 Perturbation-based Fault Screening 

Perturbation-based fault screening detects deviations in the valid value spaces of static 

instructions in a program [65]. They define an instruction‟s valid space as “the set of 

result values that could be produced in the next dynamic instance of the instruction 

without being consistent with the current application state” [65]. A fault-screener is a 

mechanism to detect perturbations. This is similar to our notion of a detector, with the 

difference that we focus on selected critical variables (and the static instructions that 

compute them), whereas [65] considers all static instructions in the program. The fault-

screeners considered in [65] are as follows: 

1) Extended History Scanner: Keeps track of the set of values that a variable can 

assume. This is similar to the Multi-Value detector class in Table 6. 

2) Dynamic Range Scanner: Checks if a value belongs to one or more range sets. 

This is a generalization of the BoundedRange class in Table 6. 

3) Invariance Based Scanner: This checks if specific bits of a value are constant. 

This is a generalization of the Constant class in Table 6. 

The other two fault-scanners considered in [65], namely TLB-based scanner and Bloom 

filter scanner have no corresponding representation in our technique. 

The main difference between our technique and the one in [65] is that we employ 

detectors learned from multiple runs of the program over different inputs. The learning 

algorithm is performed offline and the invariants learned are inserted as detectors in the 

code. The technique in [28] on the other hand, learns the invariants while the program is 
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executing and detects violations of the invariants as errors. This involves running the 

learning algorithm online, and extensive hardware support is required to keep the 

performance overheads low. Further, the fault-screeners are specific to a single execution 

of the application, and are discarded at the end of the execution. Our detectors on the 

other hand, are general across application inputs and are persistent across multiple 

executions. This allows them to detect errors even during the startup phase of the 

application, before the invariants are established. Finally, while a direct comparison of 

coverage between the two techniques is not possible (due to differences in the 

experimental techniques used), our technique detects between 50 to 75 % of manifested 

errors in an application, while the technique in [65] detects between 25 % and 60 % of 

manifested errors. 

3.9.2 Limited Variance in Data Values (LVDV) 

This technique uses hardware support to track program invariants at run-time, and uses 

the learned information to detect both hardware transient errors and selected software 

bugs [66]. The invariant considered in the paper is a value-based invariant known as 

“limited variance in data values (LVDV)”. This capitalizes on the observation that in a 

typical, error-free execution of the program, multiple instances of a static instruction 

differ only a small extent in the result bits [66]. Any large-scale deviation in the result 

bits is attributed to either a soft error (caused by radiation) or a software bug (introduced 

by the application developer).  
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The paper uses a hardware cache called an LVDV table to store the invariant bits of an 

instruction‟s result [66]. The structure is tagged with the instruction‟s address and is 

referenced during every cycle with the program counter (PC) of an instruction. The 

LVDV table is similar to the detector table in our technique, with the difference that the 

detector table is stored separately from the main processor, and is accessed using special 

CHECK instructions.  

The LVDV technique operates in two modes – soft-error protection and software bug 

detection. For soft error protection, the invariants are learned on the fly during the initial 

phase of the program‟s execution and are used for detection in the subsequent phases. 

The main problem with this technique is that the program may experience errors in the 

initial phase or may exhibit substantially different behavior in later phases compared to 

the initial phase. The former may result in false-negatives and the latter may result in 

false-positives. In the software bug detection mode, the invariants learned during an 

execution of the program are reused during another execution. This identifies unusual or 

corner cases in programs, where bugs are likely to congregate. The goal of the LVDV 

technique is to present the violated invariants to the programmer, who can then make a 

judgment about whether the violation was due to a software error. However, this may 

result in both error-propagation (as the program is not stopped due to the error) as well as 

false-positives (as a large deviation in a value need not signify a software bug). 
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3.9.3 Software Anomaly Treatment (SWAT) 

The SWAT technique detects permanent hardware errors by monitoring software for 

anomalies or symptoms [67]. Examples of symptoms include high activity in the 

operating system and fatal traps executed by the application. In addition, SWAT uses 

program-level invariants inserted by the compiler to detect residual errors that do not 

manifest as symptoms [30]. The invariants are derived by executing the program over 

multiple inputs and collecting dynamic traces. The traces are then analyzed offline to 

extract invariants on data values in the program. The only kinds of invariants considered 

in [67] are range-based, i.e. check if a value lies within a range.  

Of the techniques considered in this section, the SWAT technique is closest to our 

work [67]. Both techniques use an offline process to derive error detectors based on 

dynamic execution traces of the application. The main difference between SWAT and our 

technique is that SWAT targets permanent hardware errors whereas we target transient 

hardware and software errors. Examples of permanent errors include stuck-at-faults in the 

decode unit or latch outputs of the integer ALU. These errors typically cause corruptions 

of values in multiple instructions and are consequently easier to detect than transient 

errors. However, false-positives present a much more severe problem as a permanent 

error will not disappear upon re-execution and SWAT uses diagnosis mechanisms to deal 

with false-positives. Table 13 summarizes the other differences between the techniques. 
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Table 13: Comparison of our technique with SWAT 

Category Our Technique SWAT 

Detector Locations Focuses on critical locations where detection 
coverage is likely to be highest 

Focuses on values stored to memory as 
these have high potential to catch faults 

Detector Types Considers six different classes of detectors and eight 

different exception classes (48 in all) 

Considers only single detector type 

encompassing value ranges of variables 

Detector Derivation Based on a probability model to choose the detector 
and exception class 

None required as only a single detector type 
is considered 

Hardware/Compiler 

support 

No compiler support required as we insert detectors 

into the program binary 

Hardware support in the form of reconfigurable 
monitor on the same die 

Compiler support for inserting invariants in 

the program as checking code. 

Hardware support for error detection, 
diagnosis and recovery  in firmware 

Benchmarks and 

Experimental 
Methodology  

Siemens suite (100 to 1000 lines of  C) SpecInt 2K (> 10000 lines of C code) 

Enhanced Simplescalar simulator for coverage 

evaluation and synthesis on FPGA hardware for 
performance evaluation 

Virtutechs Simics full system simulator 

augmented with the Wisconsin GEMS 
timing models for both coverage and 

performance evaluation 

Detection Coverage 50 to 75 % coverage for all manifested errors in the 

program 

33 % coverage for errors that propagate to 

software and cause failures 

Training Set/False-

Positives 

Train with 200 inputs, test with 1000 inputs 

False positive rate is about  2 % 

Train with 12 inputs, unclear how many 

inputs used for testing 

False positive rate is less than 5 %  

3.10 CONCLUSIONS  

This chapter proposed a novel technique for preventing a wide range of data errors from 

corrupting the execution of a generic application. This technique consists of an automated 

methodology to derive fine-grained, application-specific error detectors by an algorithm 

based on dynamic traces of application execution. A set of error detector classes, 

parameters and locations, are derived in order to maximize the error detection coverage 

for a target application. The chapter also presents an automatic framework for 

synthesizing the detectors in hardware to enable low-overhead run-time checking of the 

application execution. The coverage of the derived detectors is evaluated using fault-

injections and the hardware implementation of the detectors is synthesized to obtain area 

and performance overheads.   
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CHAPTER 4 STATIC DERIVATION OF ERROR 

DETECTORS 

4.1 INTRODUCTION 

This chapter presents a methodology to derive error detectors for an application based on 

compiler (static) analysis. The derived detectors protect the application from data errors. 

A data error is defined as a divergence in the data values used in the application from an 

error-free run of the program. Data errors can result from incorrect computation and 

would not be caught by generic techniques such as ECC in memory. They can also arise 

due to software defects (bugs). 

In the past, static analysis [53]and dynamic analysis [43] approaches have been proposed 

to find bugs in programs. These approaches have proven effective in finding known kinds 

of errors prior to deployment of the application in an operational environment. However, 

studies have shown that the kinds of errors encountered by applications in operational 

settings are often subtle errors (such as in timing and synchronization)[6], which are not 

caught by static and dynamic methods.  

Furthermore, programs upon encountering an error, may execute for billions of cycles 

before crashing (if they crash)[14], during which time the error may propagate to 

permanent state[38].  In order to detect runtime errors, we need mechanisms that can 

provide high-coverage, low-latency error detection to preempt uncontrolled system crash 
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or hang and prevent error propagation that can lead to state corruption. This is the focus 

of this chapter. 

Duplication has traditionally been used to provide high-coverage at runtime for software 

errors and hardware-errors [9]. However, in order to prevent error-propagation and 

preempt crashes, a comparison needs to be performed after every instruction, which in 

turn results in high performance overhead. Therefore, duplication techniques compare the 

results of replicated instructions at selected program points such as stores to memory [68, 

69]. While this reduces the performance overhead of duplication, it sacrifices coverage as 

the program may crash before reaching the comparison point. Further, duplication-based 

techniques detect all errors that manifest in instructions and data. It has been found that 

less than 50% of these errors typically result in application failure (crash, hang or 

incorrect output) [70]. Therefore, more than 50% of the errors detected by duplication 

(benign errors) are wasteful. 

The main contribution of this chapter is an approach to derive runtime error detectors 

based on application properties extracted using static analysis. The derived detectors 

preempt crashes and provide high-coverage in detecting errors that result in application 

failures. The coverage of the derived detectors is evaluated using fault-injection 

experiments. The key findings are as follows: 

1. The derived detectors detect around 75% of errors that propagate and cause 

crashes. The percentage of benign errors detected is less than 3%. 
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2. The average performance overhead of the derived detectors across 14 benchmark 

applications is 33% (with hardware support for path-tracking). 

3.  The detectors can be implemented using a combination of software and 

programmable hardware. 

4.2 RELATED WORK 

This section considers related work on locating software bugs using static and dynamic 

analysis as well as on runtime detection of hardware and software errors.  

4.2.1 Static Analysis Techniques 

A multitude of techniques have been proposed to find bugs in programs based on static 

analysis of the application‟s source code [52, 53, 71, 72]. These techniques validate the 

program based on a well-understood fault model, usually specified based on common 

programming errors (e.g. NULL pointer dereferences). The techniques attempt to locate 

errors across all feasible paths in the program (a program path that corresponds to an 

actual execution of the program). Determining feasible paths is known to be an 

impossible problem in the general case. Therefore, these techniques make approximations 

that result in the creation of spurious paths, which are never executed. This in turn can 

result in the approach finding errors that will never occur in a real execution, leading to 

false detections.  

Consider for example, the code fragment in Figure 32. In the code, the pointer str is 

initialized to NULL and the pointer src is initialized to a constant string. The length of 
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the string src is computed in a while loop. If the computed length is greater than zero, a 

new buffer of that length is allocated on the heap and the stored in the pointer pointed to 

by str. Finally, the string pointed to by the pointer src is copied into the buffer pointed to 

by the pointer str. 

int size = 0; 

char* str = NULL; 
char* src = “A String”; 

while (src[size]!=‟\0‟) 

         ++size; 
if (size>0) { 

      str = malloc(size+1); 

} 
strcpy(str,src size ); 

Figure 32: Example code fragment to illustrate feasible path problem faced by static analysis tools 

Consider a static analysis tool that checks for NULL pointer dereferences. In the above 

program, the tool needs to resolve whether the value of str is NULL before the strcpy 

statement. For str to be NULL, the then branch of the if statement should not be executed, 

which in turn means that the predicate in the if statement, namely (size>0) should be 

false. The value of size is initialized to zero outside the while loop and incremented inside 

the loop. The tool needs to statically evaluate the while loop in order to conclude that the 

value of size cannot be zero after execution of the loop and before the if predicate
11

. 

Many static analysis tools would not perform such an evaluation in the interest of 

scalability. In fact, the evaluation of the loop may not even terminate in the general case 

(although in this example, it would terminate since the string is a constant string). 

Therefore the tool would report a potential NULL pointer dereference of str in the call to 

strcpy.  

                                                 

11 In this example, it is enough to evaluate one iteration of the loop to arrive at the conclusion that size cannot be zero. But in the 
general case, it may be necessary to evaluate the entire loop. 



98 

 

The problem arises because the control path in which the then part of the if statement is 

not executed does not correspond to a real execution of the program. However, the static 

analysis tool does not have enough resolution to determine this information and 

consequently over-approximates the set of feasible paths in the program.  

In the general case it is impossible for a static analysis tool to resolve all feasible paths in 

the program. In practice different static analysis tools provide varying degrees of 

approximations to handle the feasible path problem. We consider examples of four static 

analysis tools as follows: 

LCLINT performs data-flow analysis to find common programming errors in C 

programs [53]. The analysis is coarse-grained and approximates branch predicates to be 

both true and false, effectively considering all paths as feasible. LCLINT may produce 

many spurious warnings and requires programmer annotations to suppress such warnings. 

ESP also uses data-flow analysis to determine if the program satisfies a given temporal 

property [71]. However, the dataflow analysis is path-sensitive and takes into account 

specific execution paths in the program. In order to perform exact verification, any 

branch in the program that affects the property being verified must be modeled. The main 

approximation made by ESP is that it is sufficient to model those branches along which 

the property being verified differs on both sides of the branch. ESP is able to correctly 

identify feasible paths when two branches are controlled by the same predicate, or when 

one branch predicate implies another. However, for more complex branch predicates, 

ESP relies on programmer supplied annotations to resolve feasible paths in the program. 
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Prefix avoids the feasible path problem by performing symbolic simulation of the 

program as opposed to data-flow analysis [52]. The Prefix tool follows each path through 

a function and keeps track of the exact state of the program along that path. In order to 

keep the simulation tractable, only a fixed number of paths are explored in each function 

(typically 50). The main approximation made by Prefix is that the incremental benefit of 

finding more defects as the number of paths increases is small. It is unclear if the 

assumption holds for operational defects that may manifest along infrequently executed 

paths in the program. 

SLAM is a model checking tool developed at Microsoft to verify properties of device 

drivers [72]. SLAM  uses a technique known as predicate abstraction[73] to prune 

infeasible paths in the program. Given a C program, SLAM produces an equivalent 

boolean program in which all predicates are approximated as Boolean variables. In a 

Boolean program, there exist only a finite number of values that the predicates can 

assume, as opposed to potentially infinite values in the original program. Hence, it is 

easier to find feasible paths in the Boolean program than in the original program. The 

main problem is that a feasible path in the Boolean program need not correspond to a 

feasible path in the original program, and this can result in false-positives.  

4.2.2 Dynamic Invariant Deduction 

These techniques derive code-specific invariants based on dynamic characteristics of the 

application. An example of a system that uses this technique is DAIKON [43], which 

derives code invariants such as the constancy of variables, boundedness of a variable‟s 
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range, linear relationships among sets of program variables and inequalities involving 

two or more program variables. DAIKON‟s primary purpose is to present the invariants 

to programmers, who can validate them based on their mental model of the application. 

The invariants are derived based on the execution of the application with a representative 

set of inputs, called the training set. Inputs that are not in this set may result in the 

invariants being violated even when there is no error in the application (false-positives). 

In order to avoid false-positives during application deployment in operational settings, 

the training set must well represent the application‟s execution in operational settings.  

DAIKON derives invariants at entries and exits of procedures in the program. The 

assumption is that invariants represented as function pre-conditions and post-conditions 

are more useful to the programmer in finding bugs in the application. This limits the use 

of the generated invariants as assertions for error-detection, since the program may crash 

before reaching the assertions inserted by DAIKON.  

A recent study uses DAIKON to infer data-structure invariants and repair data structures 

at runtime [74]. The idea is to infer constraints about commonly used data-structures in 

the program and monitor the data structure with respect to these constraints at runtime. If 

a constraint violation is detected, the data-structure is “repaired” to satisfy the constraint. 

The repaired data-structure may or may not be the same as the original data-structure, and 

hence the program may produce incorrect output after the repair (although it continues 

without crashing). In general, however, continuing to execute the program after an error 

has been detected can lead to harmful consequences. Further, the technique described in 

[74] considers only errors in the program data structure  being monitored. It is intriguing 
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to analyze how the technique can be extended to detect general faults in the application‟s 

data. To detect general faults, the fault must propagate to the data-structure‟s fields and 

violate one or more of the derived invariants for the data-structure. Our experience 

indicates that it is more likely that the application crashes due to a general error in its 

data, than for the error to propagate to specific locations in the program‟s data, unless the 

locations are chosen taking error propagation into consideration. This observation forms 

the basis for our detector placement technique in Chapter 2. 

DIDUCE [62] is a dynamic invariant detection approach that uses invariants learned 

during an early phase of the program‟s execution (training phase) to detect errors in 

subsequent phases of the execution. The main assumption made by DIDUCE is that 

invariants learned during the training phase well represent the entire application‟s 

execution. It is unclear if this assumption holds in practice, especially for applications 

that exhibit phased behavior
12

. Further, when DIDUCE detects an invariant violation it 

does not stop the program but saves the program state for reporting back to the user, so 

that spurious invariant violations
 
do not stop program execution

13
. This is useful from the 

point of view of debugging operational failures, but not from the point of view of 

providing online error-detection (and hence recovery) for applications. 

                                                 

12 Application behavior varies in phases during program execution 
13.The DIDUCE paper does not present the percentage of spurious invariants found by the tool. 
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4.2.3 Rule-based Detectors 

Rule-based detectors detect errors by checking whether the application satisfies 

predefined properties specified as rules. The checking can be done either statically at 

compile-time or dynamically at runtime.  

Dynamic Rule-based detectors: Hiller et al. [56] provide rule-based templates to the 

programmer for specifying runtime error detectors for embedded applications. Examples 

of rules include a variable being constant, a variable belonging to a range and a 

monotonically increasing variable increasing by a bounded amount. However, the 

programmer needs to choose the right templates as well as the template parameters based 

on their understanding of the application semantics. In a companion paper, Hiller et al. 

[40] describe an automated methodology to place detectors in order to maximize error 

detection coverage. The method places detectors on executable paths in the application 

that have the highest probability of error propagation. Fault-injections into the application 

data are used to measure the error propagation probabilities along application paths. 

While the above technique is useful if the programmer has extensive knowledge of the 

applications and fault-injections can be performed, it is desirable to derive  and place 

detectors without requiring such knowledge and without requiring fault-injections. 

Static Rule-based detectors: Engler et al. [61] also use rule-based templates to find bugs 

in programs. The main differences are (1) The rules learned are based on commonly 

occurring patterns in the application source code rather than being specified by the 

programmer and (2) The rules are checked at compile-time rather than at runtime. 

Violations of the learned rules are considered as program bugs. The main assumption 
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here is that programmers follow implicit rules in writing code that are not often 

documented, and a violation of such rules represents a program error. Static analysis of 

the application is used to extract the rules and statistical analysis is used to determine if a 

rule is significant from the point of view of error detection. The technique has been used 

to find errors and vulnerabilities in the Linux and BSD operating system kernels.  Li et al. 

[75] extend the ideas presented in Engler et al.[61] to extract programming rules using a 

data-mining technique called frequent item-set mining. Their system, PR-Miner, extracts 

implicit programming rules based on static analysis of the application without requiring 

rule-based templates. The rules are extracted from localized code sections (such as 

functions) and applied to the entire code base. Violations of the rules are reported as 

bugs. The technique has been applied to large code-bases including Apache and MySQL, 

in addition to the Linux kernel. 

Static rule-based techniques are useful for finding common programming errors such as 

copy-and-paste errors [75] or an error due to the programmer forgetting to perform an 

operation, such as releasing locks [61]. It is unclear if they can be used for detecting more 

subtle errors that occur in well-tested code, such as timing and synchronization errors, as 

these errors may not be easily localized to particular code sections[7]. Further, these 

techniques have large false-positive rates i.e. many errors do not correspond to real bugs. 

This leads to false detections and the programmer needs to filter out the real detections 

from the false ones.  
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4.2.4 Full Duplication Techniques 

Duplication has traditionally been used to provide high-coverage at runtime for both 

software errors and hardware-errors [9]. Duplication based approaches are useful for 

protecting a system from transient hardware faults. However, they offer limited 

protection from software errors and permanent hardware faults. This is because both the 

original program and the duplicated program can suffer from common mode failures. 

Further, full duplication techniques result in the detection of many errors that have no 

impact on the application (benign errors)[70]. This constitutes a wasteful detection (and 

consequent recovery) from the application‟s viewpoint.  

Duplication can be performed either in software or in hardware. 

Software-based duplication approaches replicate the program at the source-level [45], 

instruction level [68] or at the compiler intermediate code level [69]. In order to prevent 

error-propagation and preempt crashes, software-based approaches must compare the 

duplicated programs after every instruction. However, such a comparison results in high 

performance overhead (2x-3x) [45]. Therefore, software duplication approaches perform 

the comparison only at certain instructions such as stores and branches[68, 69] in the 

program. This results in less than 100% coverage as the program may crash before 

reaching the comparison point. Even with this optimization, software-based duplication 

incurs relatively high performance overhead (60-90%).  

Hardware-based duplication approaches such as those used in IBM G5 processors [10] 

execute redundant copies of each instructions transparent to the application and compare 
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the results of the execution using special-purpose hardware. These techniques reduce the 

performance overhead of duplication, but have significant hardware design complexity 

and area overheads (30-35%)[10]. Simultaneous redundant-threading [76] is a hardware-

based replication technique in which identical copies of the application are executed as 

independent threads in a Simultaneous Multithreaded (SMT) processor. Slipstream 

processors[77] explores a similar idea in the context of Chip Multiprocessor (CMP) 

systems. These techniques mask the performance overhead of replication by loose 

coupling among the redundant threads executing multiple copies of the same program, 

but lead to inefficient use of processor resources. 

4.2.5 Diverse Execution Techniques 

Diverse execution techniques can detect common mode failures that occur during 

duplication. Diversity can be implemented at multiple levels as considered by the 

following techniques: 

N-version programming (NVP) is a design diversity technique [78] in which two or 

more versions of the same program are implemented by independent development teams. 

The versions are executed simultaneously and the results of their execution compared. 

The assumption made by NVP is that the versions produced by the independent teams 

suffer from different kinds of errors and hence an error in any one version of the software 

will be masked. However, Knight and Leveson [79] show that in practice, even 
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independently produced versions of the software are likely to exhibit similar failures
14

. 

Further, NVP requires a tremendous cost in programmer time and resources in order to 

produce software versions that are truly independent. This limits the applicability of NVP 

to mission-critical systems rather than systems built with COTS (Commercial-Off-the-

Shelf) components.  

Data Diversity [80] is a variant of NVP in which a single version of the software is 

executed twice with minor changes in its inputs. The assumption is that software 

sometimes fails for certain values in its input space and by performing minor 

perturbations in the input values, it is possible to mask the failure while producing 

acceptable output. Data diversity can provide protection from both software errors as well 

as hardware errors (transient and permanent). The data diversity technique has been 

applied to certain classes of systems such as real-time control systems in which minor 

changes in the inputs produce acceptable outputs from the application semantics point of 

view. However in general-purpose applications, it may be unacceptable to perform minor 

perturbations in input values as these perturbations can result in totally different output 

values (or even in application failure). This may be unacceptable for the application. 

ED4I [81] is a software-based diversity technique which transforms the original program 

into one in which each data operand is multiplied by a constant value k. The value of k is 

determined empirically to maximize the error-detection coverage based on the usage 

profiles of processor functional units during program execution. The original program 

                                                 

14 Although the errors made by the teams may be different, the error manifestations are similar. 
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and the transformed program are both executed on the same processor and the results are 

compared. A mismatch indicates an error in the program. Since the transformed program 

operates on a different set of data operands than the original program, it is able to mask 

certain kinds of errors in processor functional units and memory (both transient and 

permanent). However, the technique cannot detect software errors that result in incorrect 

computation of data values in both the original program and the transformed program. 

This is because diversity is introduced in the data values but not in the instructions that 

compute the data values.  

TRUMP [82] is a diversity technique that uses AN-codes [83] for error detection. Similar 

to ED4I, TRUMP multiplies each value used in the program by a constant to produce a 

transformed program. However, instead of comparing the value produced by the original 

program and the transformed program, TRUMP checks if the data value in the 

transformed program is divisible by the constant. If this is not the case, then TRUMP 

concludes that either the original program value or the transformed program value 

suffered an error. TRUMP also suffers from the same disadvantage of ED4I, namely, that 

it cannot detect software errors that result in common mode failures between the original 

program and the transformed program.  

4.2.6 Runtime Error Detection Techniques 

Runtime techniques have been proposed to detect errors during program execution. These 

techniques detect specific kinds of errors such as memory safety violations [22, 24, 84], 
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race conditions [85], control-flow errors [86-88] and synchronization errors [89, 90]. 

None of these techniques however, can detect general errors in the program.  

The runtime error detection techniques considered in the literature are as follows: 

Memory Safety Checking techniques check every program store that is performed 

through a pointer (at runtime) to ensure that the write is within the allowed bounds of the 

pointer[22, 24, 84]. The techniques are effective for detecting common problems due to 

buffer overflows and dangling pointer errors. It is unclear whether they are effective in 

detecting random errors that arise due to incorrect computation unless such an error 

results in a pointer writing outside its allowed bounds. The techniques also requires 

checking every memory write, and this can result in prohibitive performance overheads 

(5x-6x)[22]. Smart compile time tricks can reduce the overhead [84], but rely on complex 

compiler transformations such as automatic pool-allocation [91] . 

Race Detection techniques such as Eraser [85] check for race conditions in a multi-

threaded program. A race condition occurs when a shared variable is accessed without 

explicit and appropriate synchronization. A race condition is only one instance of a fault-

class broadly referred to as timing errors. Timing errors can result in corruption of data 

values used in the program and cause the program to produce incorrect outputs. The 

Eraser technique checks for races in lock-based programs by dynamically monitoring 

lock acquisitions and releases. The technique associates lock sets with each shared 

variable and dynamically learns these associations during the program‟s execution. An 
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error is flagged when the lockset is violated. It is unclear how representative are lock set 

violations of generic timing errors in the program.  

Control-flow checking techniques ensure that a program‟s statically derived control-

flow is preserved during its execution [86-88]. This is achieved by adding checks on the 

targets of jump instructions and at entries and exits of basic blocks. However, fault-

injection experiments (at the hardware level) have shown that only 33% of the manifested 

errors result in violations of program control-flow [92] and can hence be detected by 

control-flow checking techniques. 

Runtime-verification techniques attempt to bridge the gap between formal techniques 

such as model checking and runtime checking techniques. These techniques verify 

whether the program violates a programmer-specified safety property [89, 90] by 

constructing a model of the program and checking the model based on the actual program 

execution. The properties checked usually represent synchronization and timing errors in 

the program. However if there is a general error in the program, there is no guarantee that 

the program will reach the check before crashing. Therefore, it is unclear if the 

techniques provide useful runtime coverage for random hardware or software errors. 

4.2.7 Executable Assertions 

The only general way to detect runtime-errors is for the programmer to put assertions in 

the code, as demonstrated in [54, 93]. Rela et al. [64] evaluate the coverage provided by 

programmer-specified assertions in combination with control-flow checking and 
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Algorithm-Based Fault-Tolerance (ABFT)[94]. They find that assertions can significantly 

complement the coverage provided by ABFT and control-flow checking. 

Leveson et al. [55] compare the error detection capabilities of self-checks (assertions) and 

diversity-based duplication techniques. They find that (1) Self-checks provide an order of 

magnitude higher error-detection coverage than diversity-based duplication, (2) For self-

checks to be effective in detecting errors, they must be placed at appropriate locations in 

the application‟s code and (3) Self-checks derived from analysis of the application code 

(by the developer) are much more effective at detecting errors than those derived based 

on program specifications alone.  

The detectors derived in this chapter can be considered as executable assertions that are 

derived automatically based on analysis of the application code (without programmer 

intervention) and placed at strategic locations to minimize error propagation. The 

detectors can be implemented both in hardware and in software.  

4.2.8 Summary 

The static techniques we have discussed are geared towards detecting errors at compile-

time, while the dynamic analysis techniques are geared towards providing feedback to the 

programmer for bug finding. Both these types are fault-avoidance techniques (fault is 

removed before the program is operational) [95]. Despite the existence of these 

techniques and rigorous program testing, subtle but important errors such as timing errors 

persist in a program [6, 7].  
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Runtime-error detection techniques are geared towards addressing subtle software errors 

and also hardware errors. As we have already seen, full reication can detect many of 

these errors; but not only does it incur significant performance overheads, it also results 

in a large number of benign error detections that have no impact on the application[70]. 

Thus, there is a need for a technique that takes advantage of application characteristics 

and detects arbitrary errors at runtime without incurring the overheads of replication. 

The question that we attempt to answer in this chapter is as follows: Is it possible to 

derive runtime error (attack) detectors based on application properties to minimize the 

detection latency and preempt application failures (compromise)? This is crucial for 

performing rapid recovery upon application failure as shown in [8]. 

4.3 APPROACH 

This section presents an overview of the error detector derivation approach.  

4.3.1 Terms and Definitions 

Backward Program Slice of a variable at a program location is defined as the set of all 

program statements/instructions that can affect the value of the variable at that program 

location[96].  

Critical variable: A program variable that exhibits high sensitivity to random data errors 

in the application is a critical variable. Placing checks on critical variables can achieve 

high detection coverage.  
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Checking expression: A checking expression is an optimized sequence of instructions 

that recompute the critical variable. It is computed from the backward slice of the critical 

variable for a specific acyclic control path in the program. 

Detector: The set of all checking expressions for a critical variable, one for each acyclic, 

intra-procedural control path in the program. 

4.3.2 Steps in Detector Derivation 

The main steps in error detector derivation are as follows: 

A. Identification of critical variables. The critical variables are identified based on an 

analysis of the dynamic execution of the program. The application is executed with 

representative inputs to obtain its dynamic execution profile, which is used to choose 

critical variables for detector placement. Critical variables are variables with the highest 

dynamic fanouts in the program, as errors in these variables are likely to propagate to 

many locations in the program and cause program failure. This approach was presented in 

[17], where it was shown to provide up to 85% coverage with 10 critical variables in the 

entire program.  However, in this chapter, critical variables are chosen on a per-function 

basis in the program i.e. each function in the program is considered separately to identify 

critical variables in the function. This is because we consider intra-procedural slices for 

extracting backward slices (as explained below). 

B. Computation of backward slice of critical variables. A backward traversal of the 

static dependence graph of the program is performed starting from the instruction that 

computes the value of the critical variable going back to the beginning of the function. 
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The slice is specialized for each acyclic control path that reaches the computation of the 

critical variable from the top of the function. The slicing algorithm used is a static slicing 

technique that considers all possible dependences between instructions in the program 

regardless of program inputs (based on source language semantics). Hence, the slice will 

be a superset of the actual dependencies during a valid execution of the program.  

C. Check derivation, insertion, instrumentation. 

 Check derivation: The specialized backward slice for each control path is optimized 

considering only the instructions on the corresponding path, to form the checking 

expression. 

 Check insertion: The checking expression is inserted in the program immediately 

after the computation of the critical variable. 

 Instrumentation: Program is instrumented to track control-paths followed at runtime 

in order to choose the checking expression for that specific control path. 

D. Runtime checking in hardware and software. The control path followed is tracked 

(by the inserted instrumentation) in hardware at runtime. The path-specific inserted 

checks are executed at appropriate points in the execution depending on the control path 

followed at runtime. The checks recompute the value of the critical variable for the 

runtime control path. The recomputed value is compared with the original value 

computed by the main program. In case of a mismatch, the original program is stopped 

and recovery is initiated.  

There are two main sources of runtime performance overhead for the detector:  



114 

 

(1) Path Tracking: The overhead of tracking paths is significant (4x) when done in 

software
15

. Therefore, a prototype implementation of path tracking is performed in 

hardware. This hardware is integrated with the Reliability and Security Engine 

(RSE)[1]. RSE is a hardware framework that provides a plug-and-play environment 

for including modules that can perform a variety of checking and monitoring tasks in 

the processor‟s data-path. The path-tracking engine is implemented as a module in the 

RSE. 

(2) Checking: In order to further reduce the performance overhead, the check execution 

itself can be moved to hardware. This would involve implementing the checking 

expressions directly in the RSE and compiling them to Field-Programmable Gate 

Arrays (FPGAs). This is an area of future investigation. 

4.3.3 Example of Derived Detectors  

The derived detectors are illustrated using a simplified example of an if-then-else 

statement in Figure 33. A more realistic example is presented in Section 4.4. In the 

figure, the original code is shown in the left and the checking code added is shown in the 

right. Assume that the detector placement analysis procedure has identified f as one of the 

critical variables that need to be checked before its use in the following basic block. For 

simplicity, only the instructions in the backward slice of variable f are shown in Figure 

33.  

                                                 

15 Based on a previous software-only evaluation of the technique 
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Figure 33: Example code fragment with detectors inserted 

There are two paths in the program slice of f, corresponding to each of the two branches. 

The instructions on each path can be optimized to yield a concise expression that checks 

the value of f along that path (shown in yellow in Figure 33). In the case of the first path 

(path=1), the expression reduces to (2 * c - e) and this is assigned to the temporary 

variable f2. Similarly the expression for the second path (path=2) corresponding to the 

else branch statement reduces to (a + e) and is also assigned to f2. Instrumentation is 

added to keep track of paths at runtime. 

At runtime, when control reaches the use of the variable f, the correct checking 

expression for f is chosen based on the value of the path variable and the value of f2 is 

compared with the value of f computed by the original program. In case there is a 

mismatch, an error is declared and the program is stopped.  

4.3.4 Software Errors Covered 

Since the technique proposed in this chapter enforces the compiler-extracted source-code 

semantics of programs at runtime, it can detect any software error that violates the source 
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program‟s semantics at runtime. This includes software errors caused by pointer 

corruptions in programs (memory corruption errors) as well as those caused by missing 

or incorrect synchronization in concurrent programs (timing errors). We consider how the 

proposed technique detects these errors: 

Memory Corruption Errors: Languages such as C and C++ allow pointers to write 

anywhere in memory (to the stack and heap)[97]. Memory corruption errors are caused 

by pointers in the code writing outside their intended object
16

 (according to source code 

semantics), therby corrupting other objects in memory. However, static analysis 

performed by compilers typically assumes that objects are infinitely far apart in memory 

and that a pointer can only write within its intended object[30]. As a result, the backward 

slice of critical variables extracted by the compiler includes only those dependences that 

arise due to explicit assignment of values to objects via pointers to the object. Therefore, 

the technique detects all memory errors that corrupt one or more variable in the backward 

slice of critical variables, as long as the shared state between the check and the main 

program is not affected (e.g. memory errors that affect function parameters will not be 

detected, as only intra-procedural slices are considered by the technique). 

Figure 34 illustrates an example of a memory corruption error in an application and how 

the proposed technique detects the error. In the figure, function foo computes the running 

sum (stored in sum) of an array of integers (buf) and also the maximum integer (max) in 

the array. If the maximum exceeds a predetermined threshold, the function returns the 

                                                 

16 We use the term object to refer to both program variables as well as heap- and stack- allocated objects. 
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accumulated sum corresponding to the index of the maximum element in the array 

(maxIndex).  

int foo(int buf[]) { 

1:        int sum[bufLen]; 
2:        int max = 0; int maxIndex = 0; 

3:        sum[0] = 0;  

4:        for (int i = 0; i < bufLen; ++i) { 
5:              sum[i + 1] = sum[i] + buf[i];  

6:              if (max < buf[i])  { 

7:                            max = buf[i]; 
8:                            maxIndex = i; 

9:             } 

10:       } 
11:      if (max > threshold)      return sum[maxIndex]; 

12:      return sum[bufLen]; 

} 

Figure 34: Example of a memory corruption error 

In Figure 34, the array sum is declared to be of size bufLen, which is the number of 

elements in the array buf. However, there is a write to buf[i+1] in line 5, where i can take 

values from 0 to bufeLen. As a result, a buffer overflow occurs in the last iteration of the 

loop, leading to the value of the variable max being overwritten by the write in line L5 

(assuming that max is stored immediately after the array buf). The value of max would be 

subsequently overwritten with the value of the sum of all the elements in the array, which 

is something the programmer almost certainly did not expect (this results in a logical 

error).  

In the above example, assume that the variable max has been identified as critical, and is 

being checked in line 9. Recall that the proposed technique will detect a memory 

corruption error if and only if the error causes corruption of the critical variable (which is 

the case in this example). In this case, the checking expression for max will depend on 

whether the branch corresponding to the if statement in line 6 is taken. If the branch is not 

taken, the value of max is the value of max from the previous iteration of the loop. If the 
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branch is taken, then the value of max is computed to be the value buf[i]. These are the 

only possible values for the max variable, and are represented as such in the detector. The 

memory corruption error in line 5 will overwrite the variable max with the value 

sum[bufLen], thereby causing a mismatch in the detector‟s value. Hence, the error will be 

detected by the technique. 

Note that the detector does not check the actual line of code or the variable where the 

memory error occurs. Therefore, it can detect any memory corruption error that affects 

the value of the critical variable, independent of where it occurs. As a result, it does not 

need to instrument all unsafe writes to memory as done by conventional memory-safety 

techniques (e.g.[24]). 

Race Conditions and Synchronization errors: Race conditions occur in concurrent 

programs due to lack of synchronized accesses to shared variables[98]. Static analysis 

techniques typically do not take into account asynchronous modifications of variables 

when extracting dependences in programs. This also holds for the backward dependence 

graph of critical variables in the program. As a result, the backward slice only includes 

modifications to the shared variables made under proper synchronization. Hence, race 

conditions that result in unsynchronized writes to shared variables will be detected 

provided the write(s) are to the variables in the backward slice of critical variables that 

are not shared between the main program and the checking expressions. However, race 

conditions that result in unsynchronized reads may not be detected unless the result read 

by the read propagates to the backward slice of the critical variable. Note that the 

technique would not detect benign races (i.e. race conditions in which the final value of 
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the variable is not affected by the order of the writes), as it checks the value of the 

variable being written to rather than whether the write is synchronized.  

Figure 35 shows a hypothetical example of a race condition in a program. Function foo 

adds a constant value to each element of an array a which is passed into it as a formal 

parameter. It is also passed an array a_lock, which maintains fine-grained locks for each 

element of A. Before operating on an element of the array, the thread acquires the 

appropriate lock from the array a_lock. This ensures that no other thread is able to modify 

the contents of array a[i], provided the other thread tries to acquire the lock before 

modifying a[i]. Therefore, the locks by themselves do not protect the contents of a[i] 

unless all threads adhere to the locking discipline. The property of adherence to the 

locking discipline is hard to verify using static analysis alone because, (1) The thread 

modifying the contents of array a could be in a different module than the one being 

analyzed, and the source code of the other module may not be available at compile time, 

and (2) Precise pointer analysis is required to find the specific element of a being written 

to in the array (it may not even be possible to find this statically if the index is input 

dependent). Such precise analysis is often unscalable, and static analysis techniques 

perform approximations that may result in missed detections (or false-positives). 

The proposed technique, on the other hand, would detect illegal modifications to the 

array a even by threads that do not follow the locking discipline.  Assume that the 

variable a[i] in line 7 has been determined to be a critical variable. The proposed 

technique would place a check on a[i] to recompute it in line 8. Now assume that the 

variable a[i] was modified by an errant thread that does not follow the locking discipline. 
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This may cause the value of a[i] computed in line 7 to be different from what it should 

have been in a correct execution (which is its previous value added to the constant c). 

Therefore, the error is detected by the recomputation check in line 8. 

1: void foo(int* a, mutex* alock, int n, int c) { 

 2:        int i = 0; 
 3:        int sum = 0; 

 4:        for (i=0; i<n; i++) { 

 5:               acquire_mutex( alock[i] ); 
 6:               old_a = a[i]; 

 7:                a[i] = a[i] + c; 

 8:                check( a[i] == old_a + c) 
 9:                release_mutex( alock[i] ); 

 10:       } 

} 

Figure 35: Example for race condition detection 

The following can be noted in the example: (1) The source code of the errant thread is not 

needed to derive the check, (2) The check will fail only if the actual computed value is 

different and is therefore immune to benign races that have no manifestation on the 

computation of the critical variable, and (3) in this example, it is enough for the technique 

to analyze the code of the function foo to derive the check for detecting the race 

condition.   

4.3.5 Hardware Errors Covered 

Hardware transient errors that result in corruption of architectural state are considered in 

the fault-model. Table 14 shows a detailed characterization of the hardware errors 

covered by the technique. Examples of hardware errors covered include, 

 Errors in Instruction Fetch and Decode: Either the wrong instruction is fetched, 

(OR) a correct instruction is decoded incorrectly resulting in data value corruption. 
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Table 14: Detailed characterization of hardware errors and their detection by the technique 
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Incorrect (but valid) instruction is 

fetched 

If instruction affects critical value 

Incorrect (invalid) instruction is 
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Decoded to invalid op-code  
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incorrect address 

If the missed instruction is in the backward slice of critical variable (OR) if new 
instruction affects critical operand 
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Computation errors in integer 
operations 

If instruction belongs to backward slice of critical variable and error is not logically 
masked in ALU 

Computation errors in FP 

operations 

If error occurs in exponent or MSB of mantissa and is not logically masked in ALU 

Computation errors in load/store 
addresses 

If address is valid and the instruction belongs to the backward slice of the critical 
variable 

Errors in resolving branch direction If critical variable‟s value differs on both directions of the branch in question 

Errors in branch target address 

computation 

If address is valid, and new target is not one of allowed targets and the check is reached 
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Data is used in critical operand computation (OR) critical operand is overwritten 

Data not written to memory for L/S Data is used in critical operand computation 

Incorrect value is written to the PC 

on branch 
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Value is not written to the PC on 
branch 

if critical variable‟s value differs on both directions of the branch 

W
ri

te
-b

a
ck

 S
ta

g
e 

(W
B

) 
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ALU instruction written to wrong 

register 

if register used in critical value computation is overwritten (OR) instruction belongs to 

backward slice  

Load instruction stalled indefinitely  

Load instruction written to wrong 

register 

if register used in critical value computation is overwritten (OR) instruction belongs to 

backward slice  

Exception occurs incorrectly during 

commit 

 

Exception omitted during commit Assuming critical value computation throws exception 
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Errors in memory Memory operand used in critical value computation but is not used in the checking 

expression 

Errors in cache If the cached operand is used in original computation and not in checking expression  

Errors in registers If original computation and checking expression use different registers and no value 

forwarding takes place 

Errors in register bus If the same register is reread by the checking expression 

Errors in memory bus If operand is reloaded by the checking expression 
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 Errors in Execute and Memory Units: An ALU instruction is executed incorrectly 

inside a functional unit, (OR) the wrong memory address is computed for a load/store 

instruction, resulting in data value corruption. 

 Errors in Cache/Memory/Register File Errors: A value in the cache, memory, or 

register file experiences a soft error that causes it to be incorrectly interpreted in the 

program (if ECC is not used). 

4.4 STATIC ANALYSIS 

This section describes the static analysis technique to derive detectors and add 

instrumentation for path tracking to a program. The bubble-sort program shown in Figure 

36(a) is used as a working example throughout this section.  We use the LLVM compiler 

infrastructure [99] to derive error detectors for the program. A new compiler pass called 

the Value Recomputation Pass (VRP) was introduced into LLVM. The VRP performs the 

backward slicing starting from the instruction that computes the value of the critical 

variable to the beginning of the function. It also performs check derivation, insertion and 

instrumentation. The output of the VRP is provided as input to the optimization passes of 

LLVM in order to reduce the check to a minimal expression. 
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void Bubble(int srtElements, int* sortList) { 

           int i, j,  top; 
          bInitarr( sortList, srtElements ); 

          top=srtelements; 

         while ( top>1 ) {//Outer-while-loop 
                 i=1; 

                while ( i<top ) {// Inner while-loop 

                          if ( sortlist[i] > sortlist[i+1] ) 
                         { 

                                     j = sortlist[i]; 

                                    sortlist[i] = sortlist[i+1]; 
                                    sortlist[i+1] = j; 

                         } // end-if 

                         i=i+1; 
                } // end-inner-while 

               top=top-1; 

        } // end-outer-while 
} 

(a) 

loopentry:
É

br bool tmp.6, label no_exit, label loop_exit

no_exit:
indvar.i = phi [ 0, loopentry ], [tmp.i, endif ]   

tmp.i = add indvar.i, 1         

i.1 = cast tmp.i to int                

tmp.9 = getArrayElement sortlist, tmp.i            

tmp.10 = load [ tmp.9 ]      

tmp.12 = add i.1, 1                  

tmp.13 = getArrayElement sortlist , tmp.12

tmp.14 = load [tmp.13]           

tmp.15 = setgt tmp.10, tmp.14      

br tmp.15, label then, label endif

then:
store tmp.14, [tmp.9]

store tmp.10, [tmp.13]
br endif

endif: 
tmp.16 = setlt tmp.12, top         

br tmp.16, no_exit, loop_exit

loopexit:

É .

loopentry:
É

br bool tmp.6, label no_exit, label loop_exit

no_exit:
indvar.i = phi [ 0, loopentry ], [tmp.i, endif ]   

tmp.i = add indvar.i, 1         

i.1 = cast tmp.i to int                

tmp.9 = getArrayElement sortlist, tmp.i            

tmp.10 = load [ tmp.9 ]      

tmp.12 = add i.1, 1                  

tmp.13 = getArrayElement sortlist , tmp.12

tmp.14 = load [tmp.13]           

tmp.15 = setgt tmp.10, tmp.14      

br tmp.15, label then, label endif

then:
store tmp.14, [tmp.9]

store tmp.10, [tmp.13]
br endif

endif: 
tmp.16 = setlt tmp.12, top         

br tmp.16, no_exit, loop_exit

loopexit:

É .  
 

(b) 

Figure 36: (a) Example code fragment (b) Corresponding LLVM intermediate code 

LLVM uses Static Single Assignment form (SSA) [100] as its intermediate code 

representation. In deriving the backward program slice, two well understood properties of 

SSA form are used as follows: 
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 In SSA form, each variable (value) is defined exactly once in the program, and the 

definition is assigned a unique name, which facilitates analyzing data dependences 

among instructions.  

 SSA form uses a special static construct called the phi instruction that is used to keep 

track of the data dependences when there is a merging of data values from different 

control edges. The phi instruction includes the variable name for each control edge 

that is merged and the corresponding basic block. This instruction allows the 

specialization of the backward slice based on control-paths by the proposed 

technique. 

A simplified version of the LLVM intermediate code corresponding to the inner-while 

loop in the bubble-sort program is shown in Figure 36b. 

4.4.1 Value Recomputation Pass 

The VRP takes LLVM intermediate code annotated with critical variables and extracts 

their path-specific backward slices. It computes the backward slice by traversing the 

static dependence graph of the program starting from the instruction that computes the 

value of the critical variable up until the beginning of the function. The VRP outputs 

instrumented LLVM intermediate code that tracks paths and invokes detectors. By 

extracting the path-specific backward slice and exposing it to other optimization passes in 

the compiler, the Value Recomputation Pass (VRP) enables aggressive compiler 

optimizations to be performed on the slice that would not be possible otherwise. 
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4.4.1.1 Overall Approach 

The algorithm for performing path-specific slicing is shown in Table 15. To the best of 

our knowledge, this is the first path-specific static slicing algorithm developed to enable 

derivation of error detectors. The algorithm is explained as follows: 

Table 15: Pseudocode of backward traversal algorithm 

Function visit( seedInstruction, pathID, parent ): 

        ActiveSet ={ seedInstruction } 
         if parent==0: 

                  SliceList[ pathID ] = { } 

          else: 
                  SliceList[ pathID ] = SliceList[ parent ] 

         nextPathID = pathID  

         while not empty( ActiveSet ): 
                     I = Remove instruction for ActiveSet 

                     Visited[ BasicBlock(I) ] = true 

                      // Do not consider interprocedural slices 
                     if I is a function argument or constant: 

                               terminal = true          
                     else if I is a non-phi instruction: 

                                 SliceList[ pathID] =  SliceList[PathID]             

                                                                    U { I } 
                                 ActiveSet = ActiveSet U operands( I ) 

                      else if I is a phi instruction: 

                               for  each operand of the phi: 
                                    // Check if a loop is encountered  

                                   // or if  going back multiple iterations 

                                    if not ( Visited [ BasicBlock(operand) ]  
                                       and not CrossingInsn(I, operand) ) 

                                           nextPathID = pathID + 1   

                                           result = Visit(operand,  
                                                                  nextPathID, pathID ) 

                                           terminal = terminal OR ~(result) 

                                    else: 
                                          SeedList = SeedList U { operand }                                                                   

            // Add the path to the pathList if terminal path 

            if (terminal)  
                      PathList = PathList U { pathID } 

          return terminal  

 
Function computeSlices (criticalInstruction): 

         SeedList = {  criticalInstruction } 

         PathList = { } 
          while not empty( SeedList ):  

               seedInstruction=Remove instruction from SeedList 

               call visit( seedInstruction, 0, 0 )                     
          return PathList, SliceList 

 

The instruction that computes the critical variable in the program is called the critical 

instruction.  In order to derive the backward program slice of a critical instruction, the 
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algorithm performs backward traversal of the static data dependence graph.  The traversal 

starts from the critical instruction and terminates when one or more of the following 

conditions are met: 

 The beginning of the current function is reached. It is sufficient to consider intra-

procedural slices in the backward traversal because each function is considered 

separately for the detector placement analysis. For example, in Figure 36a the array 

sortList is passed as an argument to the function Bubble. The slice does not include 

the computation of sortList in the calling function. If sortList is a critical variable in 

the calling function, say foo, then a detector will be derived for it when foo is 

analyzed. 

 A basic block is revisited in a loop. During the backward traversal, if data 

dependence within a loop is encountered, the detector is broken into two detectors, 

one placed on the critical variable and one on the variable that affects the critical 

variable within the loop. This second detector ensures that the variable within the 

loop is computed correctly and hence the variable can be used without recomputing it 

in the first detector. Hence, only acyclic paths are considered by the algorithm. 

 A dependence across loop iterations is encountered. Recomputing critical variables 

across multiple loop iterations can involve loop unrolling or buffering intermediate 

values that are rewritten in the loop. This in turn can complicate the design of the 

detector. Instead, the VRP splits the detector into two detectors, one for the 

dependence-generating variable and one for the critical variable. 
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 A memory operand is encountered.  Memory dependences are not considered 

because LLVM promotes most memory objects to registers prior to running the VRP. 

Since there is an unbounded number of virtual registers for storing variables in SSA 

form, the analysis does not have to be constrained by the number of physical registers 

available on the target machine. However it may not always be possible to promote a 

memory objects to a register e.g. pointer references to dynamically allocated data. In 

such cases, the VRP duplicates the load of the memory object, provided the load 

address is not modified along the control path from the load instruction to the critical 

instruction.  

4.4.1.2 VRP Algorithm Details 

During the backward traversal, when a phi-instruction is encountered indicating a merge 

in control-flow paths, the slice is forked for each control path that is merged at the phi. 

The algorithm maintains the list of instructions in each path-specific slice in the array 

SliceList. The function computeSlices takes as input the critical instruction and outputs 

the SliceList array, which contains the instructions in the backwards slice for each acyclic 

path in the function.  

The actual traversal of the dependence graph occurs in the function visit, which takes as 

input the starting instruction, an ID (number) corresponding to the control-flow path it 

traverses (index of the path in the SliceList array), and the index of the parent path. The 

computeSlices function calls the visit function for each critical instruction. The visit 

function visits each operand of an instruction in turn, adding it to the SliceList of the 
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current path. When a phi instruction is encountered, a new path is spawned for each 

operand of the phi instruction (by calling the visit function recursively on the operand 

with a new path ID and the current path as the parent). The traversal is then continued 

along this new path. Only terminal paths are added to the final list of paths (PathList) 

returned by the ComputeSlice procedure. A terminal path is defined as one that terminates 

without spawning any new paths (as a result of forking).  

Certain instructions cannot be recomputed in the checking expression, because 

performing recomputation of such instructions can alter the semantics of the program. 

Examples are mallocs, frees, function calls and function returns. Omitting mallocs and 

frees does not seem to impact coverage except for allocation intensive programs, as 

shown by our results in section 4.6.2. Omitting function calls and returns does not impact 

coverage for program functions because the detector placement analysis considers each 

function separately (section 4.3.2).  

Assuming that the critical variable chosen for the example in Figure 36a is sortlist[i], the 

intermediate code representation for this variable is the instruction tmp.10 in Figure 36b. 

The VRP computes the backward slice of tmp.10, which consists of the two paths shown 

in Figure 37.   

Path 0: no_exit  loopentry 
indvar.i = 0 

tmp.i = add  indvar.i, 1 

tmp.9 =getArrayElement  sortlist,tmp.i 
tmp.10 = load[  tmp.9 ] 

Path 1: endif  loopentry 
indvar.i = tmp.i 

tmp.i = add indvar.i, 1 

tmp.9 = getArrayElement  sortlist,tmp.i 
tmp.10 = load [ tmp.9 ] 

Figure 37: Path-specific slices for example 
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4.4.1.3 VRP and Other Optimization Passes 

After extracting the path-specific slices, the VRP performs the following operations on 

the slices: 

 Places the instructions in the backward slice of the critical variable corresponding to 

each control path in its own basic block.  

 Replaces the phi instructions in the slice with the incoming value corresponding to 

the control edges for the path. This allows subsequent compiler optimization passes to 

substitute the phi values directly in their uses through either constant propagation or 

copy propagation [101]. 

 Creates copies of variables used in the path-specific slices that are not live at the 

detector insertion point. For example, the value of tmp.i is overwritten in the loop 

before the detector can be reached and a copy old.tmp.i is created before the value is 

overwritten.  

 Renames the operands in the slices to avoid conflicts with the main program and 

thereby ensure that SSA form is preserved by the slice. 

 Instruments program branches with path identifiers considered by the backward 

slicing algorithm. This includes introduction of special instructions at branches 

pertaining to the paths in the slice, and also at function entry and exit points.  

The standard LLVM optimization passes are invoked on the path-specific backward 

slices extracted by the VRP. The optimization passes yield reduced instruction sequences 

that compute the critical variables for the corresponding paths. Further, since there are no 
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control-transfers within the sequence of instructions for each path, the compiler is able to 

optimize the instruction sequence for the path much more aggressively than it would have 

otherwise. This is because the compiler does not usually consider specific control paths 

when performing optimizations for reasons of space and time efficiency. However, by 

selectively extracting the backward slices for critical variables and by specializing them 

for specific control paths, the VRP is able to keep the space and time overheads 

manageable (see Section 4.4.1.5) 

4.4.1.4 VRP Output 

The LLVM intermediate code from Figure 36 with the checks inserted by the VRP is 

shown in Figure 38.  

The VRP creates two different instruction sequences to compute the value of the critical 

variable corresponding to the control paths in the code. The first control path corresponds 

to the control transfer from the basic block loopentry to the basic block no_exit in Figure 

38. The optimized set of instructions corresponding to the first control path is encoded as 

a checking expression in the block path0 in Figure 38. The second control path 

corresponds to the control transfer from the basic block endif to the basic block no_exit in 

Figure 36. The optimized set of instructions corresponding to the second control path is 

encoded as a checking expression in the block path1 in Figure 38. 

The instructions in the basic blocks path0 and path1 recompute the value of the critical 

variable tmp.10. These instruction sequences constitute the checking expressions for the 

critical variable tmp.10 and comprise of 2 instructions and 3 instructions respectively.  
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no_exit: .
indvar = phi  [0, loopentry], [tmp.i, then ], [tmp.i, en dif ]   

old.tmp..i = tmp..i 

tmp.i = add indvar.i, 1         

i.1 = cast tmp.i to int                

tmp.9 = getArrayIndex sortlist, tmp.i             

tmp.10 = load [ tmp.9 ]      

pathVal = getState( ) 

br pathVal, path.0, path.1

path0:
new.0.tmp.9 = getArrayIndex sortList, 1

new.0.tmp.10 = load [ new.0.tmp.9 ]          

br Check

path1:
new.1.tmp.i = add old.tmp.i, 1         

new.1.tmp.9 = getArrayIndex sortlist, new.1.tmp.i        

new.1.tmp.10 = load [ new.1.tmp.9 ]     

br Check

Check:
new.tmp.10 = phi [new.0.tmp, path0], [new.1.tmp, path1]

compare = seteq new.10, tmp.10

br compare, errorBlock, restBlock

restBlock:

tmp.12 = add int i.1, 1                  

tmp.13 = getArrayIndex sortlist, tmp.12             

tmp.14 = load tmp.13

tmp.15 = setgt tmp.10, tmp.14       

br bool tmp.15, label then, label endif

errorBlock:

call errFunc()

 

Figure 38: LLVM code with checks inserted by VRP 

The basic block Check in Figure 38 compares the value computed by the checking 

expressions to the value computed in the original program. A mismatch signals an error 

and the appropriate error handler is invoked in the basic block error. Otherwise, control 

is transferred to the basic block restBlock, which contains the instructions following the 

computation of tmp.10 in the original program. 

4.4.1.5 Scalability 

This section discusses factors that could potentially limit the scalability of the VRP 

algorithm and how these are addressed by the proposed technique.  

 Number of control paths: This is addressed by considering only intra-procedural, 

acyclic paths in the program corresponding to the backward slices of critical variables 

in the program. At worst, this can be exponential in the number of branch instructions 
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in the program. In practice however, the number of control paths is polynomial in the 

number of branch instructions (unless the program is performing decision tree like 

computations). 

 Size of checking expression: The size of the checking expression depends on the 

number of levels in the dependence tree of the critical variable considered by the 

algorithm. Terminating the dependency tree at loop and function boundaries naturally 

limits the checking expression‟s size.  

 Number of detectors: The number of critical variables per function is a tradeoff 

between the desired coverage and an acceptable performance overhead.  Placing more 

detectors achieves higher coverage but may result in higher overheads. The algorithm 

may introduce additional detectors, for example, when splitting a detector into two 

detectors across loop iterations, but this reduces the size of each checking expression. 

Therefore, for a given number of critical variables, the number of detectors varies 

inversely as the size of each checking expression. 

4.4.1.6 Coverage 

The VRP operates on program variables at the compiler‟s intermediate representation 

(IR) level. In the LLVM infrastructure, the IR is close to the program‟s source code 

[99]and abstracts many of the low-level details of the underlying architecture. For 

example, the IR has an infinite number of virtual registers, uses Static Single  Assignment  

(SSA), and has native support for memory allocation (malloc and alloca) and pointer 
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arithmetic (getElementPtr
17

 instruction). Moreover, the runtime mechanisms for stack 

manipulations and function calls are transparent to the IR. As a result, the VRP may not 

protect data that is not visible at the IR level. Therefore, the VRP is best suited for 

detecting errors that impact program state visible at the source level. Note that the generic 

approach presented in Section 4.3, however, is not tied to a specific level of compilation 

and can be implemented at any level. 

The VRP operates on LLVM‟s intermediate code, which does not include common 

runtime mechanisms such as manipulation of the stack and base pointers. Moreover, the 

intermediate code assumes that the target machine has an infinite register file and does 

not take into account the physical limitations of the machine.   

Data errors in a program can occur in three possible places (locations): (1) Source-level 

variables or memory objects, (2) Precompiled Libraries linked with the application, and 

(3) Code added by the compiler‟s target-specific code generator for common runtime 

operations such as stack manipulation and handling register-file spills. The technique 

presented in the chapter aims at detecting errors in the first category, and can be extended 

to detect errors in the second category provided the source code of the library is available 

or the library is compiled with the proposed technique. However, errors in the third 

category, namely those that occur in the code added by the compiler‟s code generator 

cannot be detected using the proposed technique unless the error affects one or more 

                                                 

17 This is the general case of the getArrayElement instruction introduced previously 
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source-level variables or memory objects. This is because the code added by the compiler 

is transparent to the VRP and hence cannot be protected by the derived detectors.  

The steps in compiling a program with LLVM are as follows: First, the application‟s 

source code along with the source (or intermediate) code of runtime libraries are 

converted to LLVM‟s generic intermediate code form. This intermediate form is in-turn 

compiled onto the target architecture‟s object code, which is then linked with pre- 

compiled libraries to form the final executable.  The process is similar to conventional 

compilation, except that the application and the source libraries are first compiled to the 

intermediate code format (by a modified gcc front-end) before being converted to object 

code. Each level of compilation progressively adds more state (code and data) to the 

program. Table 16 shows the data elements of the program‟s state visible at each level of 

compilation. 

It can be observed from the table that the intermediate code level does not include many 

data elements in the final executable as these are added by the compiler and linker. Since 

the VRP operates at the intermediate code level, it does not see the elements in the lower 

levels and the derived detectors may not detect errors in these levels. This can be 

addressed by implementing the technique at lower compilation levels. 

Table 16: Information about the program that is available at different levels of compilation 

Code Level Elements of program state that are visible 

Source Level  (1) local variables, (2) global variables and (3) dynamic data allocated on heap 

Intermediate Code (1)  Branch addresses of if statements, loops , and case statements,  (2) 
Temporary variables used in evaluation of  complex expressions 

Object Code (1) Temporary variables to handle register file  spills, (2) Stack manipulation 

mechanisms and (3) Temporary variables to convert out of SSA form 
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4.4.2 State Machine Generation 

The VRP extracts a set of checking expressions for each detector in the program. Each 

checking expression in the set corresponds to an acyclic, intra-procedural control path 

leading up to the critical variable from the top of the function. The VRP also inserts 

instrumentation to notify the runtime system when the program takes a branch belonging 

to one of the paths in the set. This is done by inserting a special operation called 

EmitEdge that identifies the source and destination basic blocks of the branch with 

unique identifiers. The VRP then exports the basic block identifiers of the branches along 

each path in a separate text file for each detector in the program.  

A post-processing analysis then parses these text files and builds a state-machine 

representation of the paths for each check. The state machines are constructed such that 

every instrumented branch in the program causes state transitions in one or more state 

machines. A complete sequence of branches corresponding to a control path for which a 

checking expression has been derived, will drive the state machine for the check to an 

accepting state corresponding to the checking expression. 

 The algorithm used by the post-processing analysis to convert the control edge 

sequences to finite state machines is shown in Table 17. The algorithm processes the 

path files for each check, and adds states to the state machine corresponding to the 

check. The aim is to distinguish one path from another in the check, while at the same 

time introducing the least number of states to the state machine. This is because each 

state occupies a fixed number of bits in hardware, and our goal is to minimize the total 
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number of bits that must be stored by the hardware module for path-tracking and 

consequently the area occupied by it. 

 The algorithm in Table 17 works as follows: It starts in the starting state of the state 

machine and processes each edge in the list of edges for the path.  It adds a new state 

for an edge if and only if there no transition exists for the edge from the current state in 

the state machine. If such a transition exists, it transitions to the state leading from the 

current state corresponding to the edge, and processes the next edge in the path. It 

continues until it has processed all the edges of the path, and marks the last state added 

as the accepting state for the path in the state machine. When the algorithm terminates, 

it outputs the transition table for the state machines, as well as the list of accepting 

states corresponding to each path of the check.  The states are programmed into the 

hardware module for path-tracking (Section 4.8) at application load time. 

Table 17: Algorithm to convert paths to state machines 

for each critical variable V in the program: 

           open the path-file corresponding to the variable 
            for each path in the path-file: 

                    PathNumber  Read path ID in path file 

                      Read an edge e = (src, sink) from the path file 
                     S  Start_State 

                    Create an accepting state “A” for the path 

                    if this is the only edge for the path: 
                           if Transition[S, A] does not contain e     

                                Transition[S, A] <- Transition[S,A] U e 

                     else: 
                          current = S 

                           for each edge e in the path 

                                 if there exists a state K such that  
                                    (Transition[current,K] contains e): 

                                       current  K                      
                                 else: 

                                      Create a new state L 

                                      Transition[current, L]  e    
                                      current  L 

                            endfor 

                            Set current as the accepting state for path 
              endfor 

              close the path file for the critical variable 

endfor   
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Figure 39 shows an example control-flow graph (CFG) of a program for which paths 

must be tracked. Each basic block in the CFG has been assigned a unique index by the 

VRP. Assume that the critical variable is computed in basic block with identifier 6.  

The VRP has identified 4 acyclic paths in the backward slice of this critical variable 

labeled A to D. The paths consist of edge sequences that distinguish one path from 

another in the set of paths for a detector.  Note that the edges in each path correspond to 

the control edges that result in the VRP forking a new path during the backward traversal 

shown in Table 15. 

The state machine derived by the algorithm for the control-flow graph in Figure 39 is 

shown in Figure 40.The algorithm has introduced two new states E and F  in addition to 

four accepting states A, B, C and D that constitute the accepting states for the four paths. 

Note that the transitions between states correspond to the edges identified by the VRP to 

distinguish one path from another. These correspond to the edges that merge paths in the 

SSA graph corresponding to the backward slice of critical variables. 

The time-complexity of the algorithm in Table 17 is O(|V| *  |P| * |E|), where |V| is the 

number of critical variables in the program, |P| is the maximum number of control-paths 

in the backward slice of the variable and |E| is the maximum number of control-edges the 

control paths corresponding to each critical variable. The space complexity of the 

technique is O(|V| *|Ů E|* H ), where |H| is the maximum number of shared edges among 

control-paths corresponding to the critical variables, and Ů E represents the union of all 

the edges in the program‟s control paths.  



138 

 

 

Figure 39: Example Control-flow graph and paths 

 

Figure 40: State machine corresponding to the Control Flow Graph 

 

4.5 EXPERIMENTAL SETUP 

This section describes the mechanisms for measurement of performance and coverage 

provided by the proposed technique. It also describes the benchmarks used for evaluating 

the technique. 
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4.5.1 Performance Measurement 

All experiments are carried out on a single core Pentium 4 machine with 1GB RAM and 

2.0 Ghz clock speed running the Linux operating system. The performance overheads of 

each component introduced by the proposed technique can be measured as follows: 

Modification overhead: Performance overhead due to the extra code introduced by the 

VRP for instrumentation and checking. This code may cause cache misses and branch 

mispredictions and lead to performance overhead. 

Checking overhead: Performance overhead of executing the instructions in each check to 

recompute the critical variable and compare the recomputed value with the original value. 

The overhead of path-tracking is not considered in measuring performance overheads 

because the path tracking is done in parallel with the execution of the main program 

using a specialized hardware module. The path-tracking module and can execute 

asynchronously and needs to be synchronized with the main processor only when the 

check is performed (see Section 4.8 for a detailed description).  

We implemented the path-tracking module using software emulation and measured the 

performance overheads of the application with both path-tracking and checking enabled. 

We then measure the application overhead with only path-tracking enabled and subtract it 

from the earlier result in order to obtain the checking overheads. In order to obtain the 

code modification overheads, we executed the application with both path-tracking and 

checking disabled and measured the increase in execution time over the unmodified 

application. 
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4.5.2 Coverage Measurements 

Fault Injections: In order to measure the coverage of the derived detectors, we inject 

faults into the data of the application protected with the derived detectors. A new LLVM 

pass inserts calls to a special faultInject function (invoked after the optimization phases) 

after the computation of each program variable in the original program. The variable to 

be injected is passed as an argument to the faultInject function. The uses of the program 

variable in the original program are substituted with the return value of the faultInject 

function.  

At runtime, the call to the faultInject function corrupts the value of a single program 

variable by flipping a single bit in its value. The value into which the fault is injected is 

chosen at random from the entire set of dynamic values used in an error-free execution of 

the program (that are visible at the compiler‟s intermediate code level). In order to ensure 

controllability, only a single fault is injected in each execution of the application. 

Error Detection: After a fault is injected, the following program outcomes are possible: 

(1) the program may terminate by taking an exception (crash), (2) the program may 

continue and produce correct output (success), (3) the program may continue and produce 

incorrect output (fail-silent violation) or (4) the program may timeout (hang). The 

injected fault may also cause one of the inserted detectors to detect the error and flag a 

violation.  

When a violation is flagged, the program is allowed to continue (although in reality it 

would be stopped) in order that the final outcome of the program under the error can be 



141 

 

observed.  The coverage of the detector is classified based on the observed program 

outcome. For example, a detector is said to detect a crash if the detector upon 

encountering the error, flags a violation, after which the program crashes. Hence, when a 

detector detects a crash, it is in reality, preempting the crash of the program. 

Error Propagation: Our goal is to measure the effectiveness of the detectors in detecting 

errors that propagate before causing the program to crash. For errors that do not 

propagate before the crash, the crash itself may be considered the detection mechanism 

(as the state can be recovered from a clean checkpoint). Hence, coverage provided by the 

derived detectors for non-propagated errors is not reported. In the experiments, error 

propagation is tracked by observing whether an instruction that uses the erroneous 

variable‟s value is executed after the fault has been injected. If the original value into 

which the error was injected is overwritten, the error propagation is no longer tracked. 

The program is instrumented to track error-propagation and the instrumentation is 

automatically inserted by a new LLVM pass that we introduced. 

4.5.3 Benchmarks  

Table 18 describes the programs used to evaluate the technique and their characteristics.  

The first 9 programs in the table are from the Stanford benchmark suite[102] and the next 

5 programs are from the Olden benchmark suite[103]. The former benchmark set consists 

of small programs performing a multitude of common tasks. The latter benchmark set 

consists of pointer-intensive programs commonly used to evaluate memory systems. 
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Table 18: Benchmark programs and characteristics 

Benchmark Lines of C  Description of program 

IntMM 159 Matrix multiplication of integers 

RealMM 161 Matrix multiplication of floating-points 

FFT 270 Computes Fast-Fourier Transform 

Quicksort 174 Sorts a list of numbers using quicksort 

Bubblesort 171 Sorts a list of numbers using bubblesort  

Treesort 187 Sorts a list of numbers using treesort 

Perm  169 Computes all permutations of a string 

Queens 188 Solves the N-Queens problem 

Towers 218 Solves the Towers of Hanoi problem 

Health 409 Discrete-event simulation using double linked lists 

Em3d 639 Electro-magnetic wave propagation in 3D (using single linked lists) 

Mst 389 Computes minimum spanning tree (graphs) 

Barnes-Hut 1427 Solves N-body force computation problem using octrees 

Tsp 572 Solves traveling salesman problem using binary trees 

4.6 RESULTS 

This section presents the performance (Section 4.6.1), and coverage results (Section 

4.6.2) obtained from the experimental evaluation of the proposed technique. The results 

are reported for the case when 5 critical variables were chosen in each function by the 

placement analysis. We do not report results for other cases due to space constraints 

(these numbers are available on request).   

4.6.1 Performance Overheads 

The performance overhead of the derived detectors relative to the normal 

(uninstrumented) program‟s execution is shown in Figure 41.  The results are 

summarized below:  

 The average checking overhead introduced by the detectors is 25%, while the 

average code modification overhead is 8%. Therefore, the total performance overhead 

introduced by the detectors is 33%. 
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 The worst-case overheads are incurred in the case of the tsp application, which has a 

total overhead of nearly 80%. This is because tsp is a compute-intensive program 

involving tight loops. Placing checks within a loop introduces extra branch instructions 

and increases its execution time.  

Figure 41: Performance overhead when 5 critical variables are chosen per function 

4.6.2 Detection Coverage 

For each application, 1000 faults are injected, one in each execution of the application. 

The error-detection coverage (when 5 critical variables are chosen in each function) for 

different classes of failure are reported in Table 19.  

A blank entry in the table indicates that no faults of the type were manifested for the 

application. For example, no hangs were manifested for the IntMM application in the 

fault injection experiments. The second column of the table shows the number of errors 

that propagate and lead to the application crashing. The numbers within the braces in this 

column indicate the percentage of propagated, crash-causing errors that are detected 

before propagation. 
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Table 19: Coverage with 5 critical variables per function 

Apps 
Prop. 

Crashes (%) 

FSV 

(%) 

Hang 

(%) 

Success 

(%) 

IntMM 100 (97) 100  9 

RealMM 100 (98)   0 

FFT 57 (34) 7 60 0.5 

Quicksort 90 (57) 44 100 4 

Bubblesort 100 (73) 100 0 5 

Treesort 75 (68) 50  3 

Perm 100 (55) 16  0.9 

Queens 79 (61) 20  3 

Towers 79 (78) 39 100 2 

Health 39 (39) 0 0 0 

Em3d 79 (79)   1 

Mst 83 (53) 79 0 5 

Barnes-Hut 49 (39)  23  

Tsp 64 (64)  0 0 

Average 77 (64) 41 35 2.5 

 

The results in Table 19 are summarized as follows: 

 The derived detectors detect 77% of errors that propagate and crash the program. 

64% of crash-causing errors that propagate are detected before first propagation. These 

correspond to 83% of the propagated crash-causing errors that are detected by the derived 

detectors. 

 The derived detectors detect 41% of errors that result in fail-silent violations 

(incorrect outputs) and 35% of errors that result in hangs on average across applications. 

 The number of benign errors detected is 2.5% on average across applications. Recall 

that these errors have no effect on the execution of the application. 

 The worst-case coverage for errors causing crashes (that exhibit error propagation) is 

obtained in the case of the Olden program health (39%). The health program is 

allocation-intensive, and spends a substantial fraction (over 50%) of its time in malloc 
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calls. Our technique does not protect the return value of mallocs as duplicating malloc 

calls changes the semantics of the program. Further, the technique does not place 

detectors within the body of the malloc function, as it does not have access to the source-

code of library functions. This can be remedied by releasing versions of libraries 

compiled using the technique described in this chapter. 

4.6.3 Discussion 

The results indicate that our technique achieves 77% coverage for errors that propagate 

and cause the program to crash. Full-duplication approaches can provide 100% coverage 

if they perform comparisons after every instruction. In practice, this is very expensive 

and full-duplication approaches compare instructions only before store and branch 

instructions [68, 69]. With this optimization, the coverage provided by full-duplication is 

less than 100%. The papers that describe these techniques do not quantify the coverage in 

terms of error propagation, so a direct comparison with our technique is not possible.  

The performance overhead of the technique is only 33 % (when 5 detectors are placed in 

each function), compared to full-duplication, which incurs an overhead of 60-100% when 

performed in software. Further, the proposed technique detects just 2.5 % of benign 

errors in an application compared to full-duplication, in which over 50% of the detected 

errors are benign [12].  
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4.7 COMPARISON WITH DDVF AND ARGUS 

4.7.1 DDVF 

DDVF [104] is an approach to detect errors in the processor by checking if the program‟s 

static dataflow graph (DFG) is followed at runtime – i.e. the runtime DFG corresponds to 

the static DFG. The static data-flow graph is constructed by analyzing the program binary 

and the runtime dataflow graph is tracked using processor modifications. Since 

computing the whole program data-flow graph is infeasible in practice, DDVF computes 

the DFG on a per-basic block basis and enforce the DFG for each basic block separately. 

In other words, it breaks down the problem of computing the static DFG for the program 

into the easier problem of computing the DFG for each basic block in the program. Thus, 

it can detect (hardware) errors that affect the intra-block DFG, but not those that affect 

the inter-block DFG. Further, it does not track memory dependences in the DFG - instead 

it approximates memory to be a single node in the DFG and consider memory loads and 

stores as in- and out- edges for the node. In effect, the DDVF scheme tracks intra-block, 

register dependences among program  instructions. Table 20 compares the coverage of 

the DDVF technique with the Critical Variable Recomputation (CVR) technique. From 

Table 20, it can be observed that DDVF provides coverage for a much narrower range of 

errors and attacks compared to the CVR technique. On the other hand, the coverage 

provided by the DDVF technique is not limited to the backward slices of critical variables 

in the code. Further, DDVF requires no modifications to the compiler as the signatures 

are derived by direct analysis of the binary. This limits its coverage considerably as it 

does not consider memory dependences or inter-block control-flow.  
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Table 20: Comparison between the CVR and DDVF techniques in terms of coverage 

Error Class Explanation DDVF detected ? CVR detected ? 

Code Errors  Corruption of program 
instructions 

Yes, provided the number of bits in 
the signatures is large enough 

Yes, If instruction belongs to the 
backward slice of critical variable (CV) 

Control-flow 

Errors 

Corruption of program‟s 

control-flow graph 

Errors in Intra-block control-flow, 

but not in inter-block control-flow  

Yes, If it bypasses an instruction used in 

CV computation or results in extra writes 

to the CV 

Data Value 

Corruptions 

Corruption of data values 

used in program 

Errors in cache and registers, but 

not computation 

Yes, If data value is in backward slice of 

critical variable 

Software 

Errors 

Memory corruption 

errors, race conditions in 
multi-threaded programs 

No, because the program binary is 

used to derive the signatures 

Yes, if the error violated the source-level 

properties of the critical variable (i.e. error 
leads to undefined source-level behavior) 

4.7.2 Argus 

In Argus [105],  Meixner and Sorin deploy the DDVF scheme in a full-fledged 

implementation of a simple in-order processor on a FPGA. They present an enhanced 

version of the DDVF scheme called DCS (Dataflow and Control Signature). The main 

difference is that instead of embedding the signature of each basic block within itself, the 

signature of the (legal) successor blocks of a basic block are embedded within it. At 

runtime, the checker determines which of the legal successor‟s should be executed (based 

on the program‟s state) and compares the signature computed for the basic block with the 

signature stored in the chosen successor. In case of a mismatch, the program will be 

halted. A mismatch indicates that either the wrong successor to the basic block was 

chosen (control-flow error) or the signature computed for the basic block at runtime was 

incorrect (code error).  

Argus is also equipped with standard fault-tolerance techniques such as watchdog timers, 

self-checking arithmetic and logical units (using modulo arithmetic) and parity bits on the 

address/data bus. The paper claims that taken together these techniques offer protection 

from 98.8 % of errors (both transient and permanent) for 12 % area overhead and 3.5 % 

performance overhead. These results are based on a model of a simple in-order core 
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written in VHDL and synthesized using an FPGA and are likely to be higher in more 

complex processors.  

Argus provides detection of errors in the code, control and data, but does not protect from 

errors where a legal but invalid (for that input) path is executed. Detecting legal but 

incorrect paths will require whole program analysis, rather than just basic-block level 

analysis as done by Argus. Further, our technique is able to provide protection from a 

much wider range of errors as we enforce “source-level invariants” as opposed to Argus, 

which only enforces “binary-level” invariants. Consequently, we can detect errors and 

attacks that break source-level invariants but not binary-level invariants e.g. memory 

corruption errors, race conditions and insider attacks.  

4.8 HARDWARE IMPLEMENTATION 

This section discusses the hardware module for tracking control paths in the program 

based on the finite state machines derived in section 4.4.2. The state machines are 

programmed into a reconfigurable hardware module at application load time. They keep 

track of the control path executed by the application for the derived detectors.  

Related Work: Software-based path-profiling approaches [106] incur high overheads in 

space and time (up to 35 %) compared to hardware-based approaches[107, 108].  

Vaswani et al. [107] propose a generic co-processor for profiling paths in hardware. The 

goal of this approach is to create statistical aggregates of application behavior, rather than 

track specific paths. Further, this approach requires a much higher degree of coupling 

with the pipeline, compared to our approach. 
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Zhang et al. [108] propose a hardware module that interfaces with the processor pipeline 

to track paths for detecting security attacks. However, their approach requires every 

branch in the program to be instrumented, which can lead to prohibitive overheads. Our 

approach is aimed at tracking specific control-paths in the program (for which checks are 

derived), and requires only selected control edges (branches) to be instrumented. 

Implementation 

As explained in Section 4.3.2, the path-tracking hardware is implemented as a module in 

the Reliability and Security Engine (RSE) and monitors the main processor‟s data path. It 

keeps track of the control path executed by the program, encoded as finite state machines.  

Interface with the main processor: The main processor uses special instructions (called 

CHECK) to invoke the RSE modules. The path tracking module supports three primitive 

operations encoded as CHECK instructions. The operations are as follows: 

emitEdge(from, to): Triggers transitions in the state machines corresponding to one or 

more detectors. Each basic block in the program is assigned a unique identifier assigned 

by the VRP. This operation indicates that control is transferred from the basic block with 

identifier from to the basic block with identifier to.  

getState(checkID): Returns the current state of the state machine corresponding to the 

check, and is invoked just before the execution of the check in the program. 

resetState(checkID): Resets the state-machine for the check given by checkID. This 

operation is invoked after the execution of the check in the program. 

Module Components: The structure of the path-tracking module is shown in Figure 42. 
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Figure 42: Hardware path-tracking module 

The components of the path-tracking module are as follows: 

1) Edge Table: Stores the mapping from control-flow edges to edge-identifiers for 

instrumented edges in the program. Each instrumented control-flow edge is assigned 

a unique index and is mapped to the identifiers assigned to the source and sink basic 

blocks for that edge (by the VRP).  

2) State Vector: Holds the current state of the state machine corresponding to the 

detectors, with one entry for each detector inserted in the program. 

3) State Transition Table: Contains the transitions corresponding to the state machines. 

The rows of the state transition table correspond to the edge indices, while the 

columns correspond to the checks. The cells of the table contain the transitions that 

are fired for each check when an instrumented branch is executed. 
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RSE Interface: This converts the CHECK instructions from the main processor into 

signals specific to the path-tracking module. This is done by tapping the Fetch_out signal 

from the main pipeline. The Fetch_out is one of the signals provided by the RSE 

framework [1]. Similarly, it converts signals from the path-tracking module into flags in 

the main processor. These are represented as special-purpose registers in the main 

processor 

Module Operation: The operation of the path-tracking module for each of the primitive 

operations (executed in the main processor) is considered below: 

CHECK instruction with emitEdge operation is executed in the main processor:  

 RSE interface asserts the emitEdge signal and sends the basic block identifiers 

that constitute the edge in the from and to lines.  

 The from and to identifiers are looked up in the edge table and the edge index 

corresponding to the edge is sent to the state transition table.  

 The row corresponding to the edge is looked up in the state transition table.  

 For each non-empty table-entry in the column corresponding to the checks, the 

states in the LHS of the transitions stored in the table entry are compared to the 

current state of the check in the state vector.  

 If the states match, then the transition is fired and the state vector entry 

corresponding to the check is updated with the state in the RHS of the transition 

that matched.  
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CHECK instruction with the getState operation is executed in the main processor:  

 RSE interface asserts the getState signal and sends the identifier of the check on the 

checkID line to the path-tracking module.  

 The path tracking module looks up the state in the state vector and sends it to the RSE 

interface through the currentState line. This in turn is sent to the main processor and 

is returned as the value of the CHECK instruction (through a special register in the 

RSE). 

CHECK instruction with resetState operation is executed in the main processor: This is 

similar to the getState operation, but no value is returned to the RSE interface. 

Function calls/returns: Since the technique tracks only intra-procedural paths, the state 

vector needs to be preserved across function calls and returns. This is done by pushing 

the state vector on a separate stack (different from the function call stack) along with the 

return address upon a function call and by popping the stack upon a return.  The VRP 

generates code that uses special CHECK instructions to manipulate the stack on function 

calls/returns.  

4.8.1 Area Overheads 

The area overheads for the hardware module are dominated by the three main 

components of the module presented in Section 0. The other components are mainly glue 

combinational logic and occupy negligible area.  
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Table 21 presents the formulas used in estimating the size of the dominant hardware 

components. The size of each of these components depends on (1) the number of control-

flow edges corresponding to state transitions (m), (2) the number of checks that must be 

tracked for the application (n) and, (3) the maximum number of transitions in each entry 

of the transition table because the table must be big enough to hold the biggest entry (k).  

Table 21: Formulas for estimating hardware overheads 

Hardware 

Component 

Size (bits) Explanation 

Edge Table m * 16 * 3 Each entry has 3 fields from, to and edgeIndex. Each  fiels consists of 16 bits. 

State Vector n * 8 Each entry of the state vector consists of 8 bits, number of bits used for states 

Transition Table n * m * k * 16 Each state transition has two 8-bit fields to encode the starting and ending states  

 

Table 22 presents the values of m, n  and k for each application as well as the number of 

bits occupied by each structure. The sizes of the hardware structures (in bits) are 

calculated based on Table 21.  

Table 22: Sizes of hardware structures (in bits) 

App Name m n k Size (bits) 

IntMM 10 21 3 1278 

RealMM 10 21 3 1278 

FFT 17 30 4 3096 

Quicksort 19 29 5 3899 

Bubblesort 5 11 1 383 

Treesort 10 20 4 1440 

Perm 16 27 1 1416 

Queens 5 20 1 500 

Towers 11 31 1 1117 

Health 9 52 1 1316 

Em3d 8 30 3 1344 

Mst 17 33 10 6690 

Barnes-Hut 43 118 6 33452 

Tsp 9 48 2 1680 

Average 14 37 4 4928 
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The average number of bits stored by the hardware module is estimated to be 4928. This 

corresponds to less than 1 KB of storage space in the hardware. The application 

exhibiting the worst-case overhead (Barnes-hut) occupies 33452 bits, corresponding to 

less than 4KB of memory. This easily fits into a standard FPGA BRAM cell which has 

5096KB of memory. 

4.8.2 Performance Overheads 

The path-tracking module needs to be synchronized with the main processor only at the 

getState operation, and can execute asynchronously the rest of the time. Note that in our 

implementation of the path-tracking module the getState operation is simply a lookup in 

the state vector and takes constant time. Hence, the getState operation takes constant 

time. The emitEdge, enterFunc and leaveFunc operations can be buffered by the path-

tracking module, while the application continues to execute on the main processor. These 

operations can then be performed asynchronously by the path-tracking module. We found 

that a buffer size of 1 sufficed to store the operations from the main processor. 

4.9 CONCLUSION 

This chapter presented a technique to derive error detectors for protecting an application 

from data errors. The error detectors were derived automatically using compiler-based 

static analysis from the backward program slice of critical variables in the program. The 

slice is optimized aggressively based on specific control-paths in the application, to form 

a checking expression. At runtime, the control path executed by the progrm is tracked 

using specialized hardware and the corresponding checking expressions are executed.  
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CHAPTER 5 FORMAL VERIFICATION OF ERROR 

DETECTORS  

5.1 INTRODUCTION 

Error detection mechanisms are vital for building highly reliable systems. However, 

generic detection mechanisms such as exception handlers can take millions of processor 

cycles to detect errors in programs [14]. In the intervening time, the program can execute 

with the activated error and perform harmful actions such as writing incorrect state to the 

file-system. There has been significant work on efficiently placing [17, 40] and deriving 

[56, 109, 110] error detectors for programs. An important challenge is to enumerate the 

set of errors the mechanism fails to detect, either from a known set or an unknown set. 

Typically, verification techniques target the defined set of errors the detector is supposed 

to detect. However, one cannot predict the kinds of errors that may occur in the field, and 

hence it is important to evaluate detectors under arbitrary conditions.   

Fault-injection is a well-established to evaluate the coverage of error detection 

mechanisms [19].   However, there is a compelling need to develop a formal framework 

to reason about the efficiency of error detectors as a complement to traditional fault 

injection. This chapter shows how this can uncover possible “corner cases” which may be 

missed by conventional fault injection due to its inherent statistical nature. While there 

have been formal frameworks, each addresses a specific error detection mechanism (for 

example replication [111]), and cannot be easily extended to general detection 

mechanisms.  
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This chapter presents SymPLFIED, a framework for verifying error detectors in 

programs using symbolic execution and model-checking. The goal of the framework is to 

expose error cases that would potentially escape detection and cause program failure. The 

focus is on transient hardware errors. The framework makes the following unique 

contributions: 

 Introduces a formal model to represent programs expressed in a generic assembly 

language, and reasons about the effects of errors originating in hardware and 

propagating to the application without assuming specific detection mechanisms, 

 Specifies the semantics of general error detectors using the same formalism, 

which allows verification of their  detection capabilities, 

 Represents errors using a single symbol, thereby coalescing multiple error values 

into a single symbolic value in the program. This includes both single- and multi-

bit errors in the register file, main memory, cache, as well as errors in 

computation. 

To the best of our knowledge, this is the first framework that models the effect of 

arbitrary hardware errors on software, independent of the underlying detection 

mechanism. It uses model checking [112] to exhaustively enumerate the consequences of 

the symbolic errors on the program. The analysis is completely automated and does not 

miss errors that might occur in a real execution. However as a result of symbolically 

abstracting erroneous values, it may discover errors that may not manifest in the real 

execution of the program i.e. false-positives. 
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Previous work [113] has analyzed the effect of hardware errors on programs expressed in 

a high-level language (e.g. Java). Errors are modeled as bit flips in single data variable(s) 

in the program. While this is an important step, there are several limitations, namely (1) 

low-level hardware errors can affect multiple program variables as well as impact the 

program‟s control-flow, (2) errors in special-purpose registers such as the stack pointer 

are difficult to model in the high-level language, (3) Errors in the language runtime 

system (and libraries) cannot be modeled as they may be written in a different language.  

This chapter considers programs represented at the assembly language level. The value of 

using assembly language is that any low-level hardware error that impacts the program 

can be represented at the assembly language level (as shown in section 5.3.3). Further, 

the entire application, including runtime libraries is amenable to analysis at the assembly 

language level. 

It can be argued that in order to really analyze the impact of hardware errors, we need to 

model systems at even lower levels, e.g the register-transfer level (RTL). However, the 

consequent state space explosion when analyzing the entire program at such low levels 

can impact the practicality of the model.  An assembly language representation is a 

judicious tradeoff between the size of the model and the representativeness of hardware 

errors that can be considered in the model. 

In order to evaluate the framework, the effects of hardware transient errors are considered 

on a commercially deployed application, tcas. The framework identified errors that lead 

to a catastrophic outcome in the application, while a random fault injection experiment 
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did not find any catastrophic scenario in a comparable amount of time. The framework is 

also demonstrated on a larger program, replace, to find instances of incorrect program 

outcomes due to hardware transient errors. 

5.2 RELATED WORK 

Prior literature related to this work is classified into the following categories: 

Error Detection: Many error detection mechanisms have been proposed in the literature, 

along with formal proofs of their correctness [114, 115]. However, the verification 

methodology is usually tightly coupled with the mechanism under study. For example, 

Nicolescu et al. [116] proposes and verifies a control-flow checking technique by 

constructing a hypothetical program augmented with the technique and model-checks the 

program for missed detections. The program is carefully constructed to exercise all 

possible cases of the control-flow checking technique. It is non-trivial to construct such 

programs for other error-detection mechanisms. 

Perry et al. [111] proposes the use of type-checking to verify the fault-tolerance provided 

by a specific error-detection mechanism namely, compiler-based instruction duplication. 

The paper proposes a detailed machine model for executing programs. The faults in the 

fault model (Single-Event Upsets) are represented as transitions in this machine model. 

The advantage of the technique is that it allows reasoning about the effect of low-level 

hardware faults on the whole program, rather than on individual instructions or data. 

However, the detection mechanism (duplication) is tightly coupled with the machine 
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model, due to inherent assumptions that limit error propagation in the program and may 

not hold in non-duplicated programs.  

Further, the type-checking technique in [111] either accepts or rejects a program based on 

whether the program has been duplicated correctly, but does not consider the 

consequences of the error on the program. As a result, the program may be rejected by 

the technique even though the error is benign and has no effect on the program‟s output.  

Symbolic execution has been used for a wide variety of software testing and 

maintenance purposes [117]. The main idea in these techniques is to execute the program 

with symbolic values rather than concrete values and to abstract the program state as 

symbolic expressions. An example of a commercially deployed symbolic execution 

technique to find bugs in programs is Prefix [52]. However, Prefix assumes that the 

hardware does not experience errors during program execution. 

A symbolic approach for injecting faults into programs was introduced by Larrson and 

Hahnle [113]. The goals of this approach are similar to ours, namely to verify properties 

of fault-tolerance mechanisms in the presence of hardware errors. The technique reasons 

on programs written in Java and considers the effect of bit-flips in program variables. 

However, a hardware error can have wide-ranging consequences on the program, 

including changing its control-flow and affecting the runtime support mechanisms for the 

language (such as the program stack and libraries). These errors are not considered by the 

technique. 
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Further, the technique presented in [113] uses theorem-proving to verify the error-

resilience of programs. Theorem-proving has the intrinsic advantage that it is naturally 

symbolic and can reason about the non-determinism introduced by errors. However, as it 

stands today, theorem proving requires considerable programmer intervention and 

expertise, and cannot be completely automated for many important classes of programs.  

Program verification techniques have been used to prove that a program‟s code 

satisfies a programmer-supplied specification [118].The specification precisely outlines 

the expected result of the program given certain initial conditions. Typically, program 

verification techniques are geared towards finding software defects and assume that the 

hardware and the program environment are error-free. In other words, they prove that the 

program satisfies the specification provided the hardware platform on which the program 

is executed does not experience errors. 

Further, program verification techniques operate on an abstract representation of the 

program (such as a state machine) extracted from the program code [72, 119].The 

abstractions are derived based on the specific property being checked and cannot be used 

for evaluating the program under arbitrary hardware errors as such errors may not 

manifest in the abstraction. 

Formal techniques have also been extensively applied to microprocessor verification 

[120]. The techniques attempt to prove that the implementation of the processor conforms 

to an architectural specification usually in the form of a processor reference manual. 
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Processor verification techniques focus on unmasking hardware design defects, as 

opposed to transient errors due to electrical disturbances or radiation.  

Soft-errors in Hardware: Krautz et al. [121] and Seshia et al. [122] consider the effects 

of hardware transient errors (soft errors) on error-detection mechanisms implemented in 

hardware. While these techniques are useful for applications implemented as hardware 

circuits, it is not clear how the technique can be extended for reasoning about the effects 

of errors on programs. This is because programs are normally executed on general-

purpose processors in which the manifestation of a low-level error is different from an 

error in an ASIC implementing the application. 

Summary: The formal techniques considered in this section predominantly fall into the 

category of software-only techniques which do not consider hardware errors [118], or 

into the category of hardware-only techniques which do not consider the effects of errors 

on software [120].  Further, existing verification techniques are often coupled with the 

detection mechanism (e.g. duplication) being verified [111, 116]. 

Therefore, there exists no generic technique that allows reasoning about the effects of 

arbitrary hardware faults on software, and can be combined with an arbitrary fault model 

and detection technique(s). This is important for enumerating all hardware transient 

errors that would escape detection and cause programs to fail. Moreover, the technique 

must be automated in order to ensure wide adoption, and should not require programmer 

intervention.  
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This chapter attempts to answer the question: “Is it possible to develop a framework to 

reason about the effects of arbitrary hardware errors on applications in an automated 

fashion, in order to understand where error detection mechanisms fail in detecting 

errors?  

5.3 APPROACH 

This section, introduces the conceptual model of the SymPLFIED framework and also 

the technique used by SymPLFIED to symbolically propagate errors in the program. The 

fault-model used by the technique is also discussed.  

5.3.1 Framework 

The SymPLFIED framework accepts a program protected with error detectors and 

enumerates all errors (in a particular class) that would not be detected by the detectors in 

the program. Figure 43 presents the conceptual design flow of the SymPLFIED 

framework.  

Inputs: The inputs to the framework are (1) a program written in a target assembly 

language (e.g. MIPS), (2) error detectors embedded in the program code, and (3) a class 

of hardware errors to be considered (e.g. control-flow errors, register file errors). 

Assembly Language: We define a generic assembly language in which programs are 

represented for formal analysis by the framework. Because the language defines a set of 

architectural abstractions found in many common RISC processor architectures, it is 

currentl portable across these architectures, with an architecture specific front-end. The 
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assembly language has direct support for (1) Input/Output operations, so that programs 

can be analyzed independent of the Operating System (OS), and (2) Invocation of error 

detectors using special annotations, called CHECK, which allows detectors to be 

represented in line with the program.   

 

Machine Model 
(Memory, Registers, 

Instructions)

Error Model 
(Register errors, 
memory errors, 

control-flow errors)

Detector Model
(Specification and 

execution model for 
detectors )

Assembly Language Program Detectors

Proof that program is resistant to errors (OR)
Enumeration of all possible errors that evade detection

Error
Class

SymPLFIED
Components

User
supplied

Output

User /System 
supplied

 

Figure 43: Conceptual design flow of SymPLFIED 

Operation: The program behavior is abstracted using a generic assembly language 

described in Section 5.5. This is automatically translated into a formal mathematical 

model that can be represented in the Maude system [34]. Since the abstraction is close to 

the actual program in assembly language it is sufficient for the user to formulate generic 

specifications, such as an incorrect program outcome or an exception being thrown. Such 

a low-level abstraction of the program is useful to reason about hardware errors. The 

formal model can then be rigorously analyzed under error conditions against the above 

specifications using techniques such as model-checking and theorem-proving. In this 
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chapter, model-checking is used because it is completely automated and requires no 

programmer intervention.  

Outputs: The framework uses the technique described in section 5.3.2 and outputs either 

of the following: 

1. Proof that the program with the embedded detectors is resilient to the error class 

considered, OR 

2. A comprehensive set of all errors belonging to the error class that evade detection 

and potentially lead to program failure (crash, hang or incorrect output).  

Components: The framework consists of the following formal models, 

 Machine Model: Models the formal semantics of the machine on which the 

program is to be executed (e.g. registers, memory, instructions etc.).  

 Error Model: Specifies error classes and error manifestations in the machine on 

which the program is executed e.g. errors in the class register errors can manifest 

in any register in the machine. 

 Detector Model: Specifies the format of error detectors and their execution 

semantics. It also includes the action taken upon detecting the error e.g. halting 

the program. 

By representing all three models in the same formal framework, we can reason about the 

effects of errors (in the error model) on both programs, represented in the machine 

model and on detectors, represented in the detector model, in a unified fashion. 



165 

 

Correctness: In order for the results of the formal analysis to be trustworthy, the model 

must be provably correct. There are two aspects to correctness, namely, 

1. The model must satisfy certain desirable properties such as termination, 

coherence and sufficient completeness [34], AND 

2. The model must be an accurate representation of the system being modeled.  

The first requirement can be satisfied by formally analyzing the specification using 

automated checking tools for each desirable property listed above. This is obtained 

almost for free by expressing the model using Maude as formal checking tools are 

available to check the conformance of the model to the properties [123].  

However, the second requirement is much harder to ensure as it cannot be checked by 

formal tools and is usually left to the model creator. We have attempted to validate the 

model by rigorously analyzing the behavior of errors in the model and comparing them 

with the behavior of the real system (Section 5.6.3). 

5.3.2 Symbolic Fault Propagation 

The SymPLFIED approach represents the state of all erroneous values in the program 

using the abstract symbol err. The err symbol is propagated to different locations in the 

program during execution using simple error propagation rules (shown in section 5.5.2). 

The symbol also introduces non-determinism in the program when used in the context of 

comparison and branch instructions or as a pointer operand in memory operations. 

Because the same symbol is used to represent all erroneous values in the program, the 

approach distinguishes program states based on where errors occur rather than on the 
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nature of the individual error(s). As a result, it avoids state explosion and can keep track 

of all possible places in the program the error may propagate to starting from its origin.  

However, because errors in data values are not distinguished from each other, the set of 

error states corresponding to a fault is over-approximated. This can result in the technique 

finding erroneous program outcomes that may not occur in a real execution. For example, 

if an error propagates from a program variable A to another variable B, the variable B‟s 

value is constrained by the value of the variable A. In other words, given a concrete value 

of A after it has been affected by the error, the value of B can be uniquely determined due 

to the error propagating from A to B.  

The SymPLFIED technique on the other hand, would assign a symbolic value of err to 

both variables, and would not capture the constraint on B due to the variable A. As a 

result, it would not be able to determine that the value in register B even when given the 

value in register A. This may result in the technique discovering spurious program 

outcomes. Such spurious outcomes are termed false-positives.  

While SymPLFIED may uncover false-positives, it will never miss an outcome that may 

occur in the program due to the error (in a real execution). This is because SymPLFIED 

systematically explores the space of all possible manifestations of the error on the 

program. Hence, the technique is sound, meaning it finds all error manifestations, but is 

not always accurate, meaning that it may find false-positives.  
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Soundness is more important than accuracy from the point of view of designing detection 

mechanisms, as we can always augment the set of error detectors to conservatively 

protect against a few false-positives (due to the inaccuracies introduced).  

While a small number of false-positives can be tolerated, it must be ensured that the 

technique does not find too many false-positives as the cost of developing detectors to 

protect against the false-positives can overwhelm the benefits provided by detection. The 

SymPLFIED technique uses a custom constraint solver to remove false-positives in the 

search-space. The constraint solver also considerably limits state space explosion and 

quickly prunes infeasible paths. More details may be found in Section 5.5.2.  

5.3.3 Fault Model 

The fault-model considered by SymPLFIED includes transient errors in memory/registers 

and computation.  

 Errors in memory/registers are modeled by replacing the contents of the memory 

location or register by the symbol err. No distinction is made between single- and 

multi-bit errors. 

 Errors in computation are modeled based on where they occur in the processor 

pipeline and how they affect the architectural state as shown in Table 23. 

 Errors in processor control-logic (such as in the register renaming unit) are not 

considered by the fault-model. 
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The reason it is possible to represent such a broad class of errors in the model is because 

the program is represented in assembly language, which makes the elements of its state 

explicit to the analysis framework. 

Table 23: Computation error categories and how they are modeled by SymPLFIED 

Fault origin 
Error 

Symptom 

Conditions 

under which 

Modeled 

Modeling procedure 

Instruction 

Decoder 

One of the 
fields of an 

instruction is 

corrupted 

One valid 

instruction is 

converted to 

another valid 

instruction 

Instructions writing to a destination (e.g., 

add) - change the output target  

err in the original and new 

targets (register or memory) 

Instructions with no target (e.g., nop) – 
replace with instructions with targets 

(e.g. add) 

err in the new wrong target 
(register or memory) 

Instructions with a single destination 
(e.g.add) – replace with instruction with 

no target (e.g. nop) 

err in the original target location 
(register or memory) 

Address or 

Data Bus 

Data read 

from memory, 

cache or 
register file is 

corrupted 

Single and 

multiple bit 
errors in the 

bus during 

instruction 
execution 

Errors in register data bus 
err in source register(s) of the 

current instruction 

Error in cache bus 
err in target registers of load 

instructions to the location 

Error in memory bus 
err in target register of load 
instructions to the location 

Processor 

Functional 
Unit 

Functional 

unit output is 
corrupted  

Single and 

multiple bit 

errors in 
registers/me

mory 

Functional Unit output to register or 

memory 

err in register or memory file 

being written to by the current 

instruction 

Instruction 

Fetch 
Mechanism 

Errors in the 

fetch unit 

Single or 
multiple bit 

errors in PC 

or instruction 

Fetch from an erroneous location due to 
error in PC 

PC is changed to an arbitrary but 
valid code location 

Error in instruction while fetching 
Modeled as Decode Errors  

5.3.4 Scalability 

As in most model-checking approaches, the exhaustive search performed by SymPLFIED 

can be exponential in the number of instructions executed by the program in the worst 

case. In spite of this limitation, model-checking techniques have been successfully scaled 

to large code-bases such as operating system kernels and web-servers [72, 119]. These 

approaches consider only parts of the system that are relevant to the property being 

verified. The relevant code portions are typically extracted by static analysis. However, 

static analysis is not very useful for dealing with runtime errors that may occur in 

hardware. 
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However, the error detection mechanisms in the program can be used to optimize the 

state space exploration process. For example, if a certain code component protected with 

detectors is proved to be resilient to all errors of a particular class, then such errors can be 

ignored when considering the space of errors that can occur in the system as a whole. 

This lends itself to a hierarchical or compositional approach, where first the detection 

mechanisms deployed in small components are proved to protect that component from 

errors of a particular class, and then inter-component interactions are considered. This is 

an area of future investigation. 

5.4 EXAMPLES 

This section illustrates the SymPLFIED approach in the context of an application that 

calculates the factorial of a number shown in Figure 2. The program is represented in the 

generic assembly language presented in Section 5.3.1. 

5.4.1 Error Injection 

We illustrate our approach with an example of an injected error in the program shown in 

Figure 43. Assume that a fault occurs in register $3 (which holds the value of the loop 

counter variable) in line 8 of the program after the loop counter is decremented (subi $3 

$3 1). The effect of the fault is to replace the contents of the register $3 with err. The 

loop back-edge is then executed and the loop condition is evaluated by (setgt $5 $3 $4). 

Since $3 has the value err in it, it cannot be determined if the loop condition evaluates to 

true or false. Therefore, the execution is forked so that the loop condition evaluates to 

true in one case and to false in the other case. The true case exits immediately and prints 
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the value stored in $2. Since the error can occur in any loop iteration, the value printed 

can be any of the following: 1!, 2!, 3!, 4!, 5!. All these outcomes are found by 

SymPLFIED.  

1            ori  $2  $0  #1      --- initial product p = 1 

2             read $1                 --- read i from input 
3             mov $3, $1 

4            ori $4 $0 #1         --- for comparison  purposes 

 loop:     setgt $5 $3 $4      --- start of loop 
6             beq  $5 0 exit      ---- loop condition : $3 > $4 

7             mult $2 $2 $3              ---- p = p * i 

8            subi $3 $3 #1               ---- i = i - 1 
9             beq  $0 #0 loop           --- loop backedge 

exit:     prints "Factorial = " 

11             print $2         
12             halt             

Figure 44: Program to compute factorial in MIPS-like assembly language 

The false case continues executing the loop and the err value is propagated from register 

$3 to register $2 due to the multiplication operation (mul $2 $2 $3). The program then 

executes the loop back-edge and evaluates the branch condition. Again, the condition 

cannot be resolved as register $3 is still err. The execution is forked again and the 

process is repeated ad-infinitum. In practical terms, the loop is terminated after a certain 

number of instructions and the value err is printed, or the program times out
18

 and is 

stopped. 

Complexity: Note that in order for a physical fault-injection approach to discover the 

same set of outcomes for the program as SymPLFIED, it would need to inject into all 

possible values (in the integer range) into the loop counter variable. This can correspond 

to 2
k
 cases in the worst case, where k is the number of bits used to represent an integer. In 

                                                 

18 We assume that a watchdog mechanism is present in the program to monitor for infinite loops and hangs. 
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contrast, SymPLFIED considers at-most (n+1) possible cases, in this example, where n is 

the number of iterations of the loop. This is because each fork of the execution at the loop 

condition results in the true case exiting the loop and the program. In the general case 

though, SymPLFIED may need to consider 2
n
 possible cases. However, by upper-

bounding the number of instructions executed in the program, the growth in the search-

space can be controlled.  

False-positives: In the example, not all errors in the loop counter variables will cause the 

loop to terminate early. For example, an error in the higher-order bits of the loop counter 

variable in register $3 may still cause the loop condition ($3 > $4) to be false. However, 

SymPLFIED would conservatively assume that both the true and false cases are possible, 

as it does not distinguish between errors in different bit-positions of variables. Note that 

in practice, false-positives were not a major concern, as shown in section 5.6.2. 

5.4.2 Error Detection 

We now discuss how SymPLFIED supports error-detection mechanisms in the program. 

Figure 45 shows the same program in Figure 44, augmented with error detectors. Recall 

that detectors are invoked through special CHECK annotations as explained in Section 

5.3.1. The error detectors together with their supporting instructions (mov instruction in 

line 8) are shown in bold. 



172 

 

1           ori  $2  $0  #1                   --- initial product p = 1 

2           read $1                              --- read i from input 
3           mov $3, $1 

4           ori $4 $0 #1                       --- for comparison purposes 

 loop:  setgt $5 $3 $4                     --- start of loop 
6             beq  $5 0 exit  

7            check ($4 < $3) 

8             mov $6, $2 

9            mult $2 $2 $3          ---- p = p * i 

10            check ($2 >= $6 * $1) 

11           subi $3 $3 #1          ---- i = i - 1 
12            beq  $0 #0 loop       --- loop backedge 

exit:     prints "Factorial = " 

14            print $2         
15            halt             

Figure 45: Factorial program with error detectors inserted 

The same error is injected as before in register $3 (the new line number is 11). As shown 

in Section 5.4.1, the loop back-edge is executed and the execution is forked at the loop 

condition ($3 > $4). 

The true case exits immediately, while the false case continues executing the loop. The 

false case “remembers” that the loop condition ($3 < $4) is false by adding this as a 

constraint to the search. The false case then encounters the first detector that checks if ($4 

< $3). The check always evaluates to true because of the constraint and hence does not 

detect the error. 

The program continues execution and the error propagates to $2 in the mul instruction. 

However, the value of $2 from the previous iteration does not have an error in it, and this 

value is copied to register $6 by the mov instruction in line 8. Therefore, when the second 

detector is encountered within the loop (line 10), the LHS of the check evaluates to err 

and the RHS evaluates to ($6 * $1), which is an integer.  

The execution is forked once again at the second detector into true and false cases. The 

true case continues execution and propagates the error in the program as before. The false 

case of the check throws an exception and the detector fails, thereby detecting the error.  
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The constraints for the false case, namely, ($6 * $3 >= $6 * $1) are also remembered. 

Based on this constraint, as well as the earlier constraint ($3 > $4), the constraint-solver 

deduces that the second detector will detect the error if and only if the fault in register $3 

causes it to have a value greater than the initial value read from the input (stored in 

register $1).  

The programmer can then formulate a detector to handle the case when the error causes 

the value of register $3 to be lesser than the original value in register $1. Therefore, the 

errors that evade detection are made explicit to the programmer (or to an automated 

mechanism) who can make an informed decision about handling the errors.  

The error considered above is only one of many possible errors that may occur in the 

program. These errors are too numerous for manual inspection and analysis as done in 

this example. Moreover, not all these errors evade detection in the program and lead to 

program failure. 

The main advantage of SymPLFIED is that it can quickly isolate the errors that would 

evade detection and cause program failure from the set of all possible transient errors 

that can occur in the program. It can also show an execution trace of how the error 

evaded detection and led to the failure. This is important in order to understand the 

weaknesses in existing detection mechanisms and improve them. 

5.5 IMPLEMENTATION 

We have implemented the SymPLFIED framework using the Maude rewriting logic 

system.  
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Rewriting logic is a general-purpose logical framework for specification of programming 

languages and systems [124].  

Maude is a high-performance reflective language and system supporting both equational 

and rewriting logic specification and programming for a wide range of applications [34].  

The main advantage of Maude is that it allows a wide variety of formal analysis 

techniques to be applied on the same specification.  

Supporting Tools: In order to make programs for existing architectures compatible with 

SymPLFIED, we provide a facility (through means of a Perl script) to translate programs 

written directly in the target architecture‟s assembly language into SymPLFIED‟s 

assembly language. In theory, any architecture can be supported but for now we support 

only the MIPS instruction set. We also built a query generator to explore the behavior of 

the program under common hardware error categories. Note that while the SymPLFIED 

framework can support arbitrary error classes, pre-defined error categories allow 

programmers to verify the resilience of their programs without having to write complex 

specifications (or any specifications).  

In this section, we describe the details of the machine, detector and error models and 

show how the resilience of programs to hardware errors can be verified through 

exhaustive search i.e. bounded model-checking.  

5.5.1 Machine Model 

This section describes the machine model for executing assembly language programs 

using Maude.  
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Equations and Rules: As far as possible, we have used equations instead of rewrite rules 

for specifying the models. The main advantage of using equations is that Maude performs 

rewriting using equations much faster than using rewrite rules. However, equations must 

be deterministic and cannot accommodate ambiguity. The machine model is completely 

deterministic because for a given instruction sequence, the final state can be uniquely 

determined in the absence of errors. Therefore the machine model can be represented 

entirely using equations. However, the error model is non-deterministic and hence 

requires rewrite rules. 

Assumptions: The following assumptions are made by the machine model when 

executing a program. 

1. An attempt to fetch an instruction from an invalid code address results in an 

“illegal instruction” exception being thrown. The set of valid addresses is defined 

at program load time by the loader. 

2. Memory locations are defined when they are first written to (by store 

instructions). An attempt to read from undefined memory location results in an 

“illegal address” exception being thrown. It is assumed that the program loader 

initializes all locations prior to their first use in the program. 

3. Program instructions are assumed to be immutable and hence cannot be 

overwritten during execution.  

4. Arithmetic operations are supported only on integers and not on floating point 

numbers. 
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Machine State: The central abstraction used in the machine model is the notion of 

machine state, which consists of the mutable components of the processor‟s structures. 

The machine state is carried from instruction to instruction in program execution order, 

with each instruction optionally looking up and/or updating the state‟s contents. The 

machine state is obtained by concatenating one or more of the machine elements in a 

single „soup‟ of entities. For example, the soup, PC(pc) regs(R) mem(M) input(In) 

output(out) represents a machine state in which the (1) current program counter is 

denoted by pc, (2) register file is denoted by R, (3) memory is denoted by M and (4) input 

and output streams are in and out respectively.  

Execute Sub-Model: We consider example instructions from each instruction class and 

illustrate the equations used to model them. These equations are defined in the execute 

sub-model and use primitives defined in other sub-models (e.g. the fetch primitive). 

1. Arithmetic Instruction: Consider the execution of the addi instruction, which adds 

the value19 v to the register given by rs and stores the results in register rd. In the 

equation given below, the <_,_> operator represents the machine state obtained by 

executing an instruction (given by the first argument) on a machine state (given by 

the second argument). C represents the code of the program and is written outside the 

state to enable faster rewriting by Maude (as it is assumed to be immutable). The 

{_,_} groups together the code and the machine-state. The elements of the machine 

                                                 

19
 The term value is used to refer to both integers and the err symbol 
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state in the equations are composable, and hence can be matched with a generic 

symbol S representing the “rest of the state”. This allows new machine-state elements 

can be added without modifying existing equations.  

eq { C,  < addi rd rs v , PC(pc) regs(R) S > } = { C, < fetch( C, pc ), PC(next(pc)) regs(R[rd] <- R[rs] + v) S > } . 

2. Branch Instructions:  Consider the example of the beq rs, v, l instruction, which 

branches to the code label l if and only if the register rs contains the constant value v. 

The equation for beq is similar to the equation for the addi operation except that it 

uses the in-built if-then-else operator of Maude. Note the use of the isEqual primitive 

rather than a direct == to compare the values of the register rs and the constant value 

v. This is because the register rs may contain the symbolic constant err and hence 

needs to be resolved accordingly (by the error model). 

eq { C , < beq rs v l , pc(PC) regs(R) S > =    if isEqual(R[rs], v)   then { C, < fetch(C, pc), PC(next(pc)) regs(R) S >}  else { C, < 

fetch(C, l), PC(l) regs(R) S >} fi . 

3. Load/Store Instructions:  Consider the example of the ldi rt, rs, a which loads the 

value in the memory location at the address given by adding the offset a to the value 

in the register rs.  However, the load address needs to be checked for validity before 

loading the value. This is done by the isValid primitive (defined in the Memory 

Submodel). 

eq { C , < ldi rt rs a , PC(pc) regs(R) mem(M) S > =  if ( isValid(R[rd] + a, M)  )  then { C, < fetch(C, pc), C(next(pc)) mem(M) 

regs(R[rt] <- M[a + R[rs]]) > } else { C, < throw “Illegal addr”, PC(next(pc)) mem(M) regs(R) > } fi . 
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4. Input/Output Operations: Input and output operations are supported natively on the 

machine since the operating system is not modeled. An example is the print 

instruction whose equation is as follows: 

eq { C, < print rs, PC(pc) regs(R) output(O) S > } = { C, < fetch(C, pc), PC(next(pc)) regs(R) output(O << R[rd]) S > } . 

5. Special Instructions: These instructions are responsible for starting and stopping the 

program. e.g. halt and throw instructions to terminate the program. The halt 

instruction transforms the super-state prior to their execution into a machine state in 

order to facilitate the search for final solutions by the model-checker (section 5.5.4). 

Its equation is given by: 

eq { C, < halt , PC(pc) S > } = PC(done) S .  

5.5.2 Error Model 

The overall approach to error injection and propagation was discussed in Section 5.3.2, 

but in this section we discuss the implementation of the approach using rewriting logic in 

Maude. The implementation of the error model is divided into five sub-models as 

follows: 

Error Injection Sub-Model: The error-injection sub-model is responsible for 

introducing symbolic errors into the program during its execution. The injector can be 

used to inject the err symbol into registers, memory locations or the program counter 

when the program reaches a specific location in the code. This is implemented by adding 

a breakpoint mechanism to the machine model described in Section 5.5.1 The choice of 
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which register or memory location to inject into is made non-deterministically by the 

injection sub-model using rewrite rules. 

Error Propagation Sub-Model: Once an error has been injected, it is allowed to 

propagate through the equations for executing the program in the machine model. The 

rules for error propagation are also described by equations as shown below. In the 

equations that follow, I represents an integer.  

eq err + err = err .    eq err + I = err  .     eq I + err = err .   

eq err – err = err .    eq err – I = err  .     eq I – err = err . 

eq err * I = if (I==0) then 0 else err fi .     

 eq I * err = if (I==0) then 0 else err fi .  

eq err / I = if (I==0) then throw “div--zero”  else err fi . 

eq I / err = if isEqual(err, 0) then throw “div- zero” else err fi   

eq err * err = if isEqual(err, 0) then 0 else err fi . 

eq err / err = if isEqual(err, 0) then throw “div-zero” else err fi        

In other words, any arithmetic operation involving the err value also evaluates to err 

(unless it is multiplied by 0). Note also how the divide-by-zero case is handled.   

Comparison Handling Sub-Model: The rules for comparisons involving one or more 

err values are expressed as rewrite-rules as they are non-deterministic in nature. For 

example, the rewrite rules for the isEqual operator used in section 5.5.1 are as follows: 

 rl isEqual(I, err) => true .  rl isEqual(I, err) => false .  

rl  isEqual(err, err) => true .  rl isEqual(err, err) => false . 
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The comparison operators involving err operands evaluate to either true or false non-

deterministically. This is equivalent to forking the program‟s execution into the true and 

false cases. However, once the execution has been forked, the outcome of the comparison 

is deterministic and subsequent comparisons involving the same unmodified locations 

must return the same outcome (otherwise false-positives will result). This can be 

accomplished by updating the state (after forking the execution) with the results of the 

comparison. In the true case of the isEqual primitive, the location being compared can be 

updated with the value it is being compared to. However, the false case is not as simple, 

as it needs to “remember” that the location involved in the comparison is not equal to the 

value it is being compared with. The same issue arises in the case of non-equality 

comparisons, such as isGreaterThan, isLesserThan, isNotGreaterThan and 

isNotLesserThan.  

The constraint tracking and solving sub-model remembers these constraints and 

determines if a set of constraints is satisfiable, and if not, truncates the state-space 

exploration for the case corresponding to the constraint. This helps avoid reporting false-

positives.  

Constraint Tracking and Solving Sub-Model: A new structure called the 

ConstraintMap is added to the machine state in Section 5.5.1. The ConstraintMap 

structure maps each register or memory location containing err to a set of constraints that 

are satisfied by the value in the location. An example of a set of constraints for a location 

is the following: notGreaterThan(5) notEqualTo(2) greaterThan(0). This indicates that 

the location can take any integer value between 0 and 5 excluding 0 and 2 but including 
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5. The constraints for a location are updated whenever a comparison is made based on the 

location if and only if it contains the value err. Constraints are also updated by arithmetic 

and logic operations in the program. 

For a given location, it may not be possible to find a value that satisfies all its constraints 

simultaneously. Such constraints are deemed un-satisfiable and the model-checker can 

terminate the search when it comes to a state with an un-satisfiable set of constraints 

(such a state represents a false-positive). The constraint solver determines whether a set 

of constraints is un-satisfiable and eliminates redundancies in the constraint-set. 

Memory- and Control Handling Sub-Model: Memory and Control errors are also 

handled non-deterministically using rewrite rules as follows:  

Errors in jump or branch targets: The program either jumps to an arbitrary (but valid) 

code location or throws an “illegal instruction” exception.  

Errors in pointer values of loads:  The program either retrieves the contents of an 

arbitrary memory location or throws an “illegal-address” exception. 

Errors in pointer values of stores: The program either overwrites the contents of an 

arbitrary memory location, or creates a new value in memory. 

5.5.3 Detector Model 

Error detectors are defined as executable checks in the program that test whether a given 

memory location or register satisfies an arithmetic or logical expression. For example, a 

detector can check if the value of register $(5) equals the sum of the values in the register 
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$(3) and memory location (1000) at a given program counter location. If the values do 

not match, an exception is thrown and the program is halted.  

In our implementation, each detector is assigned a unique identifier and the CHECK 

instructions encode the identifier of the detector they want to invoke in their operand 

fields. The detectors themselves are written outside the program, and the same detector 

can be invoked at multiple places within the program‟s code.  

We assume that the execution of a detector does not fail i.e. the detectors themselves are 

free of errors.  

A detector is written in the following format: 

det (ID, Register Name or Memory Location to Check, Comparison Operation, 

Arithmetic Expression ) 

1. The arguments of the detector are as follows: 

2. The first argument of the detector is its identifier.  

3. The second argument is the register or memory location checked by the detector. 

4. The third argument is the comparison operation, which can be any of ==, =/=, >, 

<, <= or >=.  

5. The final argument is the arithmetic expression that is used to check the detector‟s 

register or memory location and is expressed in the following format: 

Expr :: = Expr + Expr | Expr – Expr | Expr * Expr | Expr / Expr | (c) | (Reg Name) | *(memory address) 

Using the above notation, the detector introduced earlier would be written as: 
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det(4,  $(5), == , ( $3 ) + *(1000) ). 

The equations for the detector‟s execution are independent of the equations in the 

machine model, and hence are not affected by errors introduced in the machine other than 

those that are present in the registers or memory locations used in the detector‟s 

expression.  Execution of a detector also updates the constraints for the location being 

checked in the ConstraintMap structure described in section 5.5.2. 

5.5.4 Model-checking 

The exhaustive search feature of Maude is used to model-check programs [123]. The aim 

of the search command is to expose interesting “outcomes” of the program caused by 

errors in a particular category. The “outcome” is a user-defined function on the machine 

state described in Section 5.5.1 and must be specified in the search command.  For 

example, the following search command obtains the set of executions of the program that 

will print a value of err under all single errors in registers (one per execution). 

search regErrors( start(program, first, detectors) ) =>! (S:MachineState) such that ( output(S) contains err ) . 

The search command systematically explores the search space in a breadth-first manner 

starting from the initial state and obtaining all final states that satisfy the user-defined 

predicate, which can be any formula in first-order logic. The programmer can query how 

specific final states were obtained or print out the search graph, which will contain the 

entire set of states that have been explored by the model checking. This can help the 

programmer understand how the injected error(s) lead to the outcome(s) printed by the 

search. 
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Termination: In the absence of errors, most programs can be modeled as finite-space 

systems provided (1) they terminate after a finite amount of time or (2) they perform 

repetitive actions without terminating but revisit states. However, errors can cause the 

state space to become infinitely large, as the program may loop infinitely due to the error, 

never revisiting earlier states. In practice, this is impossible, since the program data is 

physically represented as bits and there are only a finite number of bits available in a 

machine. However, the state space would be so large that it is practically impossible to 

explore in full.  

In order to ensure that the model-checking terminates, the number of instructions that is 

allowed to be executed by the program must be bounded. This bound is referred to as the 

timeout and must be conservatively chosen to encompass the number of instructions 

executed by the program during all possible correct executions (in the absence of errors). 

After the specified number of instructions is exceeded, a “timed out” exception is thrown 

and the program is halted. We assume that the processor has a watchdog mechanism. 

5.6 CASE STUDY 

We have implemented SymPLFIED using Maude version 2.1. Our implementation 

consists of about 2000 lines of uncommented Maude code split into 35 modules. It has 54 

rewrite rules and 384 equations.  

This section reports our experience in using SymPLFIED on the tcas application [125], 

which is widely used as an advisory tool in air traffic control for ensuring minimum 

vertical separation between two aircrafts and hence avoid collisions. The application 
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consists of about 140 lines of C code, which is compiled to 913 lines of MIPS assembly 

code, which in turn is translated to 800 lines of SymPLFIED‟s assembly code (by our 

custom translator). In the later part of this section, we describe how we apply 

SymPLFIED on the replace program of the Siemens program suite [51] to understand the 

effects of scaling to larger programs. 

tcas takes as input a set of 12 parameters indicating the positions of the two aircrafts and 

prints a single number as its output. The output can be one of the following values: 0, 1 or 

2, where 0 indicates that the condition is unresolved, 1 indicates an upward advisory and 

2 indicates a downward advisory. Based on these advisories, the aircraft operator can 

choose to increase or decrease the aircraft‟s altitude.  

5.6.1 Experiment Setup 

Our goal is to find whether a transient error in the register file during the execution of 

tcas can lead to the program producing an incorrect output (in this case, an advisory). We 

chose an input for tcas in which the upward advisory (value of 1) would be produced 

under error-free execution.  

We directed SymPLFIED to search for runs in which the program did not throw an 

exception and produced a value other than 1 under the assumption of a single register 

error in each execution. The search command is identical to the one shown in section 

5.5.4. 

This constitutes about (800 * 32) possible injections, since there are 32 registers in the 

machine, and each instruction in the program is chosen as a breakpoint. In order to reduce 



186 

 

the search space, at each breakpoint, only the register(s) used by the instruction was 

injected. This ensures that the fault is activated in the program.  

In order to ensure quick turn-around time for the injections, they were started on a cluster 

of 150 dual-processor AMD Opteron machines. The search command is split into 

multiple smaller searches, each of which sweeps a particular section of the program code 

looking for errors that satisfy the search conditions. The smaller searches can performed 

independently by each node in the cluster, and the results pooled together to find the 

overall set of errors. The maximum number of errors found by each search task was 

capped at 10, and a maximum time of 30 minutes was allotted for task completion (after 

which the task was killed). 

In order to validate the results from SymPLFIED, we augmented the Simplescalar 

simulator [50] with the capability to inject errors into the source and destination registers 

of all instructions, one at a time. For each register we injected three extreme values in the 

integer range as well as three random values, so that a representative sample of the errors 

in each value can be considered.  

5.6.2 SymPLFIED Results 

For the tcas application, we found only one case where an output of 1 is converted to an 

output of 2 by the fault injections. This can potentially be catastrophic as it is hard to 

distinguish from the correct outcome of tcas. None of the other injections found any other 

such case. We also found cases where (1) tcas printed an output of 0 (unresolved) in 

place of 1, (2) the output was outside the range of the allowed values printed by tcas and 
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(3) numerous cases where the program crashed. We do not report these cases as tcas is 

only an advisory tool and the operator can ignore the advisory if he or she determines that 

the output produced by tcas is incorrect. 

We also found violations in which the value is computed correctly but printed incorrectly. 

We do not consider these cases as the output method may be different in the commercial 

implementation of tcas. 

Running Time: Of the 150 search tasks started on the cluster, 85 tasks completed within 

the allotted time of 30 minutes. The remaining 65 tasks did not complete in the allotted 

time (as the timeout chosen was too large). We report results only from the tasks that 

completed. Of the 85 tasks that completed, 70 tasks did not find any errors that satisfy the 

conditions in the search command (as either the error was benign or the program crashed 

due to the error). These 70 tasks completed within 1 minute overall.  

The time taken by the 15 completed tasks that found errors satisfying the search 

condition, (including the catastrophic outcome) is less than 4 minutes, and the average 

time for task completion is 64 seconds. Even without considering the incomplete tasks we 

were able to find the catastrophic outcome for tcas, shown below. 

Initially, we were surprised by the unusually low number of catastrophic failures reported 

in tcas. However, closer inspection revealed that the code has been extremely well-

engineered to prevent precisely these kinds of error from resulting in catastrophic 

failures. The tcas application has been extensively verified and checked for safety 

violations by multiple studies [126-128]. Nevertheless, the fact that SymPLFIED found 



188 

 

this failure at all is testimony to its comprehensive evaluation capabilities. Further, this 

failure was not exposed by the injections performed using Simplescalar. In order to 

understand better the error that lead to tcas printing the incorrect value of 2, we show an 

excerpt from the tcas code in Figure 46. 

int alt_sep_test()  

{ 
    enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) && (Cur_Vertical_Sep > MAXALTDIFF); 

    tcas_equipped = Other_Capability == TCAS_TA; 

    intent_not_known = Two_of_Three_Reports_Valid &&               (Other_RAC == NO_INTENT); 
    alt_sep = UNRESOLVED; 

    if (enabled && ((tcas_equipped && intent_not_known) || !tcas_equipped)) { 

 need_upward_RA = Non_Crossing_Biased_Climb() && Own_Below_Threat(); 
 need_downward_RA = Non_Crossing_Biased_Descend() && Own_Above_Threat(); 

 if (need_upward_RA && need_downward_RA) 

     alt_sep = UNRESOLVED; 
 else if (need_upward_RA) 

     alt_sep = UPWARD_RA; 

 else if (need_downward_RA) 
     alt_sep = DOWNWARD_RA; 

 else 

     alt_sep = UNRESOLVED; 
    } 

        return alt_sep; 

} 

Figure 46: Portion of tcas code corresponding to error 

Optimizations: In order to reduce the number of states explored by the model-checker, 

we inject errors only into the registers used in each instruction of the program. Further, 

we inject the error just before the instruction that uses the register, in order to ensure fault 

activation. The effect of the injection is equivalent to injecting the register at an arbitrary 

code location so that the error is activated at the instruction.  

The code shown in Figure 46 corresponds to the function alt_sep_test, which tests the 

minimum vertical separation between two aircrafts and returns an advisory. This function 

in turn calls the function Non_Crossing_Biased_Climb() and the Own_Above_Threat() 

function to decide if an upward advisory is needed for the aircraft. It then checks if a 

downward advisory is needed by calling the function Non_Crossing_Biased_Descend() 
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and the function Own_Below_Threat(). If neither or both advisories are needed, it returns 

the value 0 (unresolved). Otherwise, it returns the advisory computed in the function. 

The error under consideration occurs in the body of the called function 

Non_Crossing_Biased_Climb() and corrupts the value of register $31which holds the 

function return address. Therefore, instead of control being transferred to the instruction 

following the call to the function Non_Crossing_Biased_Climb() in alt_sep_test(), the 

control gets transferred to the statement alt_sep = DOWNWARD_RA in the function. This 

causes the function to return the value 2 instead of the value 1, which is printed by the 

program. We have verified that the error exposed above corresponds to a real error and is 

not a false-positive by injecting these faults into the augmented Simplescalar simulator.  

Note that the above error occurs in the stack, which is part of the runtime support added 

by the compiler. Hence, in order to discover this error, we need a technique like 

SymPFLIED that can reason at the assembly language (or lower) level. 

5.6.3 SimpleScalar Results 

We performed over 6000 fault-injection runs on the tcas application using the modified 

Simplescalar simulator to see if we can find the catastrophic outcome outlined above. We 

ensured that both SymPLFIED and Simple-scalar were run for the same time to find these 

outcomes. The SymPLFIED injections were run with 150 tasks, and each completed task 

took a maximum time of 4 minutes. This constitutes 10 hours in total. We were able to 

perform 6000 automated fault-injection experiments with Simplescalar in that time. The 

results are summarized in column 2 of Table 24. 
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Table 24: SimpleScalar fault-injection results 

Program Outcome Percentage 

# faults = 6253 # faults = 41082 

0 1.86% (117)  2.33% (960) 

1 53.7% (3364) 56.33% (23143) 

2 0% (0) 0% (0) 

Other 0.5% (29) 1.0% (404) 

Crash 43.4% (2718) 40.43% (16208) 

Hang 0.4% (25) 0.8% (327) 

 

Table 24 shows that even though we injected exhaustively into registers of all 

instructions in the program, Simplescalar was unable to uncover even a single scenario 

with the catastrophic outcome of „2‟, whereas the symbolic error injection performed by 

SymPLFIED was able to uncover these scenarios with relative ease. This is because in 

order to find an error scenario using random fault injections, not only must the error be 

injected at the right place in the program (for example, register $31 in the 

Non_Crossing_Biased_Climb function), but also the right value must be chosen during 

the injection (for example, the address of the assignment statement must be chosen in the 

alt_sep_test function in Figure 46. Otherwise the program may crash due to the error or 

the error may be benign in the program.  

We also extended the SimpleScalar based fault injection campaign to inject 41000 

register faults to check if such an injection discovers errors causing the catatrophic 

outcome. The injection campaign completed in 35 hours but was still unable to find such 

an error. The results of this extended set of injections in shown in column 3 of Table 24. 
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5.6.4 Application to Larger Programs 

In order to evaluate the effectiveness of the formal analysis as we scale to larger 

applications, we analyzed the replace program using SymPLFIED. replace is the largest 

of the Siemens benchmarks[51], used extensively in software testing. The replace 

program matches a given string pattern in the input string and replaces it with another 

given string. The code translates to about 1550 lines of assembly code spanning 22 

functions. Table 25 lists some key functions. 

Table 25: Important functions in replace 

makepat Constructs pattern to be matched from input reg  exp 

getccl Called by makepat when scanning a „[„ character 

dodash Called by getccl for any character ranges in pattern 

amatch Returns the position where pattern matched  

locate Called by amatch to find whether the pattern appears at a string index 

 

Using the same experimental setup as described in Section 5.6.1, we ran SymPLFIED on 

the replace program to find all single register errors (one per execution) that lead to an 

incorrect outcome of the program. The overall search was decomposed into 312 search 

tasks.  

Results: Of these 202 completed execution within the allotted time of 30 minutes. In 148 

of the completed search tasks, either the error was benign or the program crashed due to 

the error, while 54 of the search tasks found error(s) leading to incorrect outcome. We 

consider the execution trace of an example error. 

Example Scenario: An input parameter to the dodash function that holds the delimiter 

(„]‟) for a character range was injected. An erroneous pattern is constructed, which leads 
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to a failure in the pattern match. As a result, the program returns the original string 

without the substitution. The analysis completed in an average of 4 minutes where no 

erroneous solutions where found. For the injection runs that found an erroneous outcome 

the analysis took an average of 10 minutes.  

5.7 CONCLUSION 

This chapter presented SymPLFIED a modular, flexible framework for performing 

symbolic fault-injection and evaluating error-detectors in programs. We have 

implemented the SymPLFIED framework for a MIPS-like processor using the Maude 

rewriting logic engine. We demonstrate the SymPLFIED framework on a widely-

deployed application tcas, and use it to find a non-trivial case of a hardware transient 

error that can lead to catastrophic consequences for the tcas system. We also demonstrate 

the technique on the replace program to illustrate its scalability. 
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CHAPTER 6 FORMAL VERIFICATION OF ATTACK 

DETECTORS 

6.1 INTRODUCTION 

Insider threats have gained prominence as an emerging and important class of security 

threats [129-131]. An insider is a person who is part of the organization and either steals 

secrets or subverts the working of the organization by exploiting hidden system flaws for 

malicious purposes. This chapter considers application-level insider attacks. For example, 

an insider may load a malicious plugin into a web browser that overwrites the address bar 

with the address of a phishing website. Or a disgruntled programmer may plant a logical 

flaw in a banking application that allows an external user to fraudulently withdraw 

money. Both are examples of how a trusted insider can compromise an application and 

subvert it for malicious purposes. 

We define an application-level insider attack as one in which a malicious insider attempts 

to overwrite one or more data items in the application, in order to achieve a specific 

attack goal. The overwriting may be carried out by exploiting existing vulnerabilities in 

the application (e.g. buffer overflows), by introducing logical flaws in the application 

code or through malicious third-party libraries. It is also possible (though not required) to 

launch insider attacks from a malicious operating system or higher-privileged process. 

Application-level insider attacks are particularly insidious because, (1) by attacking the 

application an insider can evade detection by mimicking its normal behavior (from the 

point of view of the system), and (2) to attack the application, it is enough for the insider 
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to have the same privilege as that of the application, whereas attacking the network or 

operating system may require super-user privileges. 

Before defending against insider attacks, we need a model for reasoning about insiders. 

Previous work has modeled insider attacks at the network and operating system (OS) 

levels using higher-level formalisms such as attack graphs [132-134] and process calculi 

[135]. However, modeling application-level insider attacks requires analysis of the 

application‟s code as an insider has access to the application and can hence launch attacks 

on the application‟s implementation. Higher-level models are too coarse grained to 

enable reasoning about attacks that can be launched at the application code level. Further, 

higher-level models typically require application vulnerabilities (if present) to be 

identified up-front in order to reason about insider attacks on the system. 

This chapter introduces a technique to formally model application-level insider attacks on 

the application code expressed in assembly language. The advantage of modeling at the 

assembly code-level is that the assembly code includes the program, its libraries, and any 

state added by the compiler (e.g. stack pointer, return addresses). Therefore, all software-

based insider attacks on the application can be modeled at the assembly-code level. 

The proposed technique uses a combination of symbolic execution and model checking to 

systematically enumerate all possible insider attacks in a given application corresponding 

to an attack goal. The technique can be automatically deployed on the application‟s code 

and no formal specifications need to be provided other than generic specifications about 

the attacker‟s end goal(s) (with regard to the application‟s state or final output).   
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The value of the analysis performed by the proposed technique is that it can expose non-

intuitive cases of insider attacks that may be missed by manual code inspection. This is 

because the technique exhaustively considers corruptions of data items used in the 

application (under a given input), and enumerates all corruptions that lead to a successful 

attack (based on the specified attack goal). Thus, it is able to identify all vulnerable data 

items in the application corresponding to the attack goal. The results of the analysis can 

be used to guide the development of defense mechanisms (eg. assertions) to protect the 

application. 

We have implemented the proposed technique as a tool, SymPLAID, which directly 

analyzes MIPS-based assembly code. The tool identifies for each attack, (1) The program 

point at which the attack must be launched, (2) The data item that must be overwritten by 

the attacker, and (3) The value that must be used for overwriting the data item in order to 

carry out the attack. 

SymPLAID is built as an enhancement of our earlier tool, SymPLFIED [136], used to 

evaluate the effect of transient errors on the application. SymPLFIED also builds a formal 

model of the application at the assembly code level. However, SymPLFIED groups 

individual errors into a single abstract class (err), and considers the effect of the entire 

class of errors on the program. This is because in the case of randomly occurring errors, 

we are more interested in the propagation of the error rather than the precise set of 

circumstances that caused the error.  
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In contrast, security attacks are launched by an intelligent adversary and hence it is 

important to know precisely what values are corrupted by the attacker (and how the 

corruption is carried out) in order to design efficient defense mechanisms against the 

attack(s). Therefore, SymPLAID was built from the ground up to emphasize precision in 

terms of identifying the specific conditions for an attack. Thus, rather than abstracting the 

attacker‟s behavior into a single class, the effect of each value corruption is considered 

individually, and its propagation tracked in the program. While this may appear to 

sacrifice scalability, the gains due to the extra precision in terms of evaluating fewer 

program forks outweigh the losses (see Section 6.4.4 for details).   

The chapter makes the following key contributions: 

 Introduces a formal model for reasoning about application-level insider attacks at 

the assembly-code level, 

 Shows how application-level insiders may be able to subvert the execution of the 

application for malicious purposes, 

 Describes a technique to automatically discover all possible insider attacks in an 

application using symbolic execution and model checking on the application 

code, 

 Demonstrates the proposed techniques using a case-study drawn from the 

OpenSSH application[137], and finds all possible insider attacks, including 

several non-intuitive attacks that may be missed by simple, manual inspection.  
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6.2 INSIDER ATTACK MODEL  

This section describes the attack model for insider attacks and an example scenario for an 

insider attack. The example scenario is considered in more detail in Section 6.3. 

6.2.1 Characterization of Insider  

Capabilities: The insider is a part of the application and has unfettered access to the 

program‟s address space. This includes the ability to both read and write the program‟s 

memory and registers. However, we assume that the insider cannot modify the program‟s 

code, which is reasonable since in most programs the code segment is marked read-only.   

An attacker may get into the application and become an insider in the following ways: 

 By a logical loophole in the application planted by a disgruntled or malicious 

programmer, 

 Through a malicious (or buggy) third-party library loaded into the address space 

of the application,  

 By exploiting known security loopholes such as buffer overflow attacks and 

planting the attack code,  

 By overwriting the process‟s registers or memory from another process (with 

higher privilege) or debugger, 

 Through a security vulnerability in the operating system or virtual machine (if 

present) 
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In each of the above scenarios, the insider can corrupt the values of either memory 

locations or registers while the application is executing. The first three scenarios only 

require the insider to have the same privileges as the applications, while the last two 

require higher privileges. 

Goal: The attacker‟s goal is to subvert the application to perform malicious functions on 

behalf of the attacker. However, the attacker wants to elude detection or culpability (as 

far as possible), so the attacker‟s code may not directly carry out the attack, but may 

instead overwrite elements of the program‟s data or control in order to achieve the 

attacker‟s aims. From an external perspective, it will appear as though the attack 

originated due to an application malfunction, and hence the attack code will not be 

blamed. Full execution replay may be able to find the attack [138], but it incurs 

considerable time and resource overheads. Therefore, the attacker can execute code to 

overwrite crucial elements of the program‟s data or control elements.  

It is assumed that the attacker does not want to crash the application, but wants to subvert 

its execution for some malicious purpose. The attack is typically launched only under a 

specific set of inputs to the program (known to the attacker), and the input sequence that 

launches the attack is indistinguishable from a legitimate input for the program. Even if 

the insider is unable to launch the attack by himself/herself, he/she may have a colluding 

user who supplies the required inputs to launch the attack. Note that the colluding user 

does not need to have the same privileges as the insider in order to launch the attack. 
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6.2.2 Attack Scenario 

Figure 47 shows an example attack scenario where the insider has planted a “logic bomb” 

in the application which is triggered under a specific set of inputs. The bomb could have 

been planted by the insider through the first, second or third scenario considered in 

section 6.2.1. .Normal users are unlikely to accidentally supply the trigger sequence and 

will be able to use the application without any problems. However, a colluding user 

knows about the bomb and supplies the trigger sequence as input. Perimeter based 

protection techniques such as firewalls will not notice anything amiss as the trigger 

sequence is indistinguishable from a regular input for all practical purposes. However, the 

input will trigger the bomb in the application thereby launching the security attack on 

behalf of the insider.  

 

Figure 47: Attack scenario of an insider attack 

6.2.3 Problem Definition 

The problem of attack generation from the insider‟s point of view may be summed up as 

follows: “If the input sequence to trigger the attack is known (AND) the attacker‟s code 
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is executed at specific points in the program, what data items in the program should be 

corrupted and in what way to achieve the attack goal?” 

This chapter develops a technique to automatically discover conditions for insider attacks 

in an application given (i) the inputs to trigger the attack (e.g. a specific user-name as 

input), (ii) the attacker‟s objective stated in terms of the final state of the application (e.g. 

to allow a particular user to log in with the wrong password) and (iii) the attacker‟s 

capabilities in terms of the points from which the attack can be launched (e.g. within a 

specific function). The analysis identifies both the target data to be corrupted and what 

value it should be replaced with to achieve the attacker‟s goal.   

To facilitate the analysis, the following assumptions are made about the attacker by the 

technique.  

1. Only one value can be corrupted, but the corrupted value can be any valid value. 

This assumption ensures that the footprint of the attack is kept small and is hence 

easier to evade detection (from a defense technique) 

2. The corruption is only allowed at fixed program points. This assumption reflects 

the fact that an insider may be able launch their attacks only at fixed program 

points.  

We are working on relaxing these assumptions to consider attackers with higher 

capabilities or privileges. However, as we show in Section 6.3.1, even under these 

assumptions, a malicious insider can mount a significant number of attacks.  
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6.3 EXAMPLE CODE AND ATTACKS 

This section considers an example code fragment to illustrate the attack scenario in 

Section 6.2.2.  This is motivated by the OpenSSH program [137]. We consider the real 

OpenSSH application in Section 6.5. The example is also used in Section 6.5 to 

demonstrate the operation of the SymPLAID tool. 

Figure 48 shows an example code fragment containing the authenticate function. The 

authenticate function copies the value of the system password into the src buffer and the 

value entered by the user into the dest buffer (in both cases it reads them into the tmp 

buffer first to validate the values). It then compares the values in the src and dest buffers 

and if they match, it returns the value 1 (authenticated). Otherwise it returns the value 0 

(unauthenticated) to the calling function. 

int authenticate(void* src, void* dest, void* temp, int len){ 

     1: readInput(temp); 

     2: strncpy(src, temp, len) 

     3: readInput(temp); 

     4: strncpy(dest, temp, len); 

     5: if (! strncmp(dest, src, len) ) return 1; 
     return 0; 

}  

Figure 48: Code of authenticate function 

6.3.1 Insider Attacks   

We first take the attacker‟s perspective in coming up with insider attacks on the code in 

Figure 48. The attacker‟s goal is to allow a colluding user
20

 to be validated even if he/she 

has entered the wrong password. The following assumptions are made in this example, 

for simplicity of explanation: 

                                                 

20 The colluding user may be the same person as the attacker (who wants to evade detection), but we distinguish between these two 
roles in this chapter. 
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 The attack can be invoked only within the body of the authenticate function.  

 The attacker can overwrite the value of any register or local variable, but not 

global variables and heap buffers (due to practical limitations such as not knowing 

the exact address of globals and dynamic memory).  

 The attack points are at function calls within the authenticate function, i.e., the 

arguments to any of the functions called by the authenticate function may be 

overwritten prior to the function call.  

Table 26 shows the set of all possible attacks the attacker could launch in the above 

function. The first column shows the program point at which the attack is launched, the 

second column shows the variable to overwrite and the third column shows the value that 

should be written to the variable. The fourth column explains the attack in more detail. 

A particularly interesting attack found is presented in row 6 of Table 26, where the dest 

argument of the strncpy function was set to overlay the src string in memory. This 

replaces the first character of the src string with „\0‟, effectively converting it to a NULL 

string. The dest string also becomes NULL as the dest buffer is not filled by the strncpy 

function. As a result, the two strings will match when compared and the authenticate 

function will return „1‟ (authenticated). 

As Table 1 shows, discovering all possible insider attacks manually (by inspection) is 

cumbersome and non-trivial even for the modestly sized piece of code that is considered 

in Figure 48. Therefore, we have developed a tool to generate the attacks automatically - 
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SymPLAID. Although the tool works on assembly language programs, we have shown 

the program as C-language code in Figure 48 for simplicity.  

Table 26: Insider attacks on the authenticate function 

Program 

Point 

Variable  to be 

corrupted 

Corrupted value 

of variable 
Comments/Explanation 

strncmp point 

(line 5) 

dest src buf The src buffer is compared with itself 

src dest buf The dest buffer is compared with itself 

src tmp buf 
The dest buffer is compared with the tmp buffer which 

contains the same string 

len <= 0  
The strncmp function terminates early and returns 0 (the 
strings are identical) 

strncpy point 

(line 4) 

temp src buf 
This copies the string in the source buffer to the 

destination buffer, thereby ensuring that the strings match 

dest 
srcBuf – 

strlen(buf) 

This writes a „\0‟ character in the src buffer, effectively 
converting it to a empty string. The dst buffer is also  

empty as it is not initialized, and hence the strings match. 

readInput point 

(line 3) 

temp dest buf 
The value in the tmp buffer is left unchanged, and is 

copied to the dst buffer. This value is also stored in the 
src buffer and hence the strings match.  

temp 
Any unused 
location in 

memory  

 

We have validated the attacks shown in Table 26 using the GNU debugger (gdb) to 

corrupt the values of chosen variables in the application on an AMD machine running the 

Linux operating system. All the attacks shown in Table 26 were found to be successful 

i.e. they led to the user being authenticated in spite of providing the wrong password.  

6.3.2 Defense Techniques 

We now take the defender‟s perspective in designing protection mechanisms for insider 

attacks.  

The attacks in Table 26 consist of both “obvious attacks” as well as surprising corner 

cases. It can be argued that finding obvious attacks is not very useful as they are likely to 

be revealed by manual inspection of the code. However, the power of the proposed 

technique is that it can reveal all such attacks on the code, whereas a human operator may 
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miss one or more attacks. This is especially important from the developer‟s perspective, 

as all the security holes in the application need to be plugged before it can be claimed 

that the application is secure (as all the attacker needs to exploit is a single vulnerability). 

Moreover, the ability to discover corner-case attacks is the real benefit of using an 

automated approach.  

Below we discuss some examples of detection mechanisms for the example presented in 

Figure 48. The mechanisms are designed based on the attacks discovered in Table 26. 

 We insert a check before the call to the strncmp function. In particular, we check 

that the src and dest buffers of the strncmp function do not overlap with each 

other or with the temp buffer. We also check whether the length argument is 

greater than 0. This prevents attacks in rows 1 to 4 of Table 26. Note that the 

check is stronger than necessary. 

 We insert a check after the call to the readInput function in line 3 to ensure that 

the temp buffer is non-empty. This prevents attacks in the rows 7 to 8 of Table 26.  

 We insert a check before the call to the strncpy function to ensure that neither the 

temp buffer nor the dest  buffer overlap with the src buffer. 

If any of the above conditions is violated, the application is aborted and an attack is 

detected. The insider cannot corrupt the values in both the checks and the program as 

only one value in the application is allowed to be corrupted (as per our assumptions). 

Figure 49 shows the code in Figure 48 with the above checks inserted.  The checks are 

represented as assert statements.  
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int authenticate(void* src, void* dest, void* temp, int len){ 

     1: readInput(temp); 
     2: strncpy(src, temp, len) 

     3: readInput(temp); 

 assert( isNotEmpty(temp) );  
 assert( noOverlap(temp, src) and noOverlap(temp, dest) ) 

     4: strncpy(dest, temp, len); 

 assert( noOverlap(src, dest) and noOverlap(src, temp) ); 
 assert( len > 0 ); 

     5: if (! strncmp(dest, src, len) ) return 1; 

     return 0; 
}  

Figure 49: Code of authenticate function with assertions 

6.4 TECHNIQUE AND TOOL 

As mentioned in the previous section, enumerating insider attacks by hand is 

cumbersome and non-trivial. Therefore, automating the discovery of insider attacks is 

essential. This section describes the key techniques used in the automation and the design 

of a tool to perform the discovery. 

6.4.1 Symbolic Execution Technique 

We represent an insider attack as a corruption of data values at specific points in the 

program‟s execution i.e. attack points. The attack points are chosen by the program 

developer based on knowledge of where an insider can attack the application. For 

example, all the places where the application calls an untrusted third-party library are 

attack points as an insider can launch an attack from these points. In the worst-case, every 

instruction in the application can be an attack point.  

The program is executed with a known (concrete) input, and when one of the specified 

execution points is reached, a single variable
21

 is chosen from the set of all variables in 

                                                 

21 We use the term variable to refer to both registers and memory locations in the program. This includes stack, heap and static data. 
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the program and assigned to a symbolic value (i.e. not a concrete value). The program 

execution is continued with the symbolic value. The above procedure is repeated 

exhaustively for each data value in the program at each of the specified attack points. 

This allows enumeration of all insider attacks on a given program. 

The key technique used to comprehensively enumerate insider attacks is symbolic 

execution-based model checking. This means that the program is executed with a 

combination of concrete values and symbolic values, and model-checking is used to “fill-

in” the symbolic values as and when needed. Symbolic values are treated similar to 

concrete values in arithmetic and logical computations performed in the system. The 

main difference is in how branches and memory accesses based on expressions involving 

symbolic values are handled as follows: 

When a branch decision involving a symbolic expression is reached, the program is 

forked – one fork executes the branch assuming that the branch decision is true, and the 

other fork executes the branch assuming that the branch decision is false. The branch 

decision is added as a constraint to the program state, and the symbolic expression is 

evaluated based on the constraint. In case the solution converges to a single value, all 

symbolic expressions in the state are replaced with their concrete values. Otherwise, the 

constraint is added to a pool of constraints and the program‟s execution is continued. The 

global pool of constraints is maintained in parallel with the concrete program state, and 

updated on each branch executed by the program. 
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When a memory read (write) involving a symbolic expression in the address operand is 

encountered, the entire memory space of the system is scanned
22

 and each location in 

memory is considered to be a potential target for the memory read (write). For each 

potential target, the execution of the program is forked and the symbolic expression is 

assigned to be equal to one of the addresses in memory. The value read (written) is 

assigned to the value stored in the corresponding address. As a result, the symbolic 

expression will evaluate to a unique value, which is then substituted in all symbolic 

expressions in the state. Thus, a memory access with a symbolic expression as the pointer 

operand converts the state into one in which all values are concrete. 

Symbolic expressions are also used to represent indirect control transfers in the program 

(through a function pointer, for example). Indirect control transfers are treated similar to 

memory accesses through symbolic pointer expressions. In other words, each code 

location is treated as a potential target for the indirect branch, and the execution is forked 

with the constraint for the expression added to the fork.  

For each program fork encountered above, the model checker checks whether (1) The 

fork is a viable one, based on the past constraints of the symbolic expressions, and (2) 

whether the fork leads to a desired outcome (of the attacker). If these two conditions are 

satisfied, the model checker will print the state of the program corresponding to the fork 

i.e. attack state. 

                                                 

22 The exhaustive search may incur significant overheads. Section 6.6.5 presents ways to make this search less performance intensive.  
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6.4.2 SymPLAID Tool 

The symbolic execution technique described in the previous section has been 

implemented in an automated tool – SymPLAID (Symbolic Program Level Attack 

Injection and Detection). This is based on our earlier tool, SymPLFIED, used to study the 

effect of transient errors on programs [136]. The differences between SymPLAID and 

SymPLFIED are explained in Section 6.4.3.  

SymPLAID accepts the following inputs: (1) an assembly language program along with 

libraries (if any), (2) a set of pre-defined inputs for the program, (3) a specification of the 

desired goal of the attacker (expressed as a formula in first-order logic) and (4) a set of 

attack points in the application. It generates a comprehensive set of insider attacks that 

lead to the goal state.  

For each attack, SymPLAID generates both the location (memory or register) to be 

corrupted as well as the value that must be written to the location by the attacker. Figure 

50 shows the conceptual view of SymPLAID from a user‟s perspective.  

 

Figure 50: Conceptual view of SymPLAID's usage model 
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SymPLAID directly parses and interprets assembly language programs for a MIPS 

processor. The current implementation supports the entire range of MIPS instructions, 

including (1) arithmetic/logical instructions, (2) memory accesses (both aligned and 

unaligned) and (3) branches (both direct and indirect). However, it does not support 

system calls. The lack of system call support is compensated for by the provision of 

native support for input/output operations. Floating point operations are also not 

considered by SymPLAID. This is reasonable as floating-point operations are not 

typically used by security-critical code in the majority of applications.  

SymPLAID is implemented using Maude, a high-performance language and system that 

supports specification and programming in rewriting logic [34]. SymPLAID models the 

execution semantics of an assembly language program using both equations and rewriting 

rules. Equations are used to model the concrete semantics of the machine, while rewriting 

rules are used for introducing non-determinism due to symbolic evaluation.  

6.4.3 Differences with SymPLFIED 

This section discusses the differences between the analysis performed by the 

SymPLFIED and SymPLAID tools. The first column of Table 27 shows an example code 

fragment (in a MIPS-like assembly language). The state of each register in the program 

as determined by SymPLFIED and SymPLAID (after executing the instruction in the 

row) is shown in the second and third columns of Table 27 respectively.  

Assume that the value in register $2 has been corrupted (either by a transient error or by 

an insider attack) in instruction 2. Both SymPLAID and SymPLFIED represent the value 
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in register $2 using the abstract symbol err. Until this point, the state of the program in 

both SymPLFIED and SymPLAID is the same. Then instruction 3 is executed, which 

subtracts 5 from the value in register $2. At this point, the states diverge: SymPLFIED 

represents the value in register $5 also with the symbol err, thereby approximating the 

dependencies among the value. On the other hand, SymPLAID represents the value in 

register $5 by the symbolic expression (err – 5), which is more precise.  

Table 27: Example code illustrate SymPLFIED and SymPLAID 

Code SymPLFIED SymPLAID 

[ 1 | movi $3, #(10) ] $3 = 10 
$2 = err [ 2 | addi $2, 0, #(err)   ] 

[ 3 | subi $5, $2, #(5)  ] $5 = err  $5 = err – 5 

[ 4 | muli $4, $(5), #(2) ] $4 = 2 * err $4 = 2 * (err – 5)  

[ 5 | bne  $4, $3, 7 ]  $4 == 1 or 0 ? $4 = 1 or 0 ? 

[ 6 | print $5  ] $2 = err 
$3 = 10, 

$4 = 10 

$5 = err 
output: err  

$2 = 10 
$3 = 10 

$4 = 10 

$5 = 5 
output: 5 

 

The execution then continues on to instruction 4, which multiplies the value in register $5 

with a constant 2. SymPLFIED once again approximates the value in register $5 with the 

symbol err, whereas SymPLAID stores the symbolic expression 2 * (err – 5) in register 

$5.  

Finally, execution reaches instruction 5, which checks if the value in register $2 is not 

equal to the constant 10. If so, the program branches to location 7 and bypasses 

instruction 6. Otherwise, it executes instruction 6 which prints the value stored in register 

$5.  

In the case of both SymPLFIED and SymPLAID, the execution is forked at instruction 5. 

This is because the value in register $4 contains a symbolic expression involving err in 
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the case of SymPLAID, and the symbol err in the case of SymPLFIED. In both cases, the 

value cannot be uniquely evaluated. Hence, the tool must consider both the case where 

the equality holds and the case where it does not by forking the program‟s execution.  

Let us consider the fork where the equality holds and the branch is not taken. In this case, 

the control reaches statement 6 and the value in register $6 is printed by the program. 

SymPLFIED and SymPLAID would print a different value at this instruction.  

In the case of SymPLFIED, when the branch in instruction 5 is not taken, the value in 

register $4 is set to 10. No other changes are made to the registers. Hence, when 

instruction 6 is reached, register $5 contains the value err, which is printed. 

In the case of SymPLAID, when the branch is not taken, the value of register $4 is set to 

10 as done in the case of SymPLFIED. However, the assignment to register $4 triggers a 

wave of updates in the system. This is because the symbolic expression in register $4, 

which is (err – 5) * 2 is set equal to 10. The value of err is then uniquely determined to 

be 5 by solving the above equation. The values of registers $2, $4 and $5 are updated 

based on the solved value to be 10, 10 and 5 respectively. This effectively converts all 

symbolic expressions in the state to concrete ones and is an example of condition 1 in 

section 6.4.1. Hence, when instruction 6 is reached, register $5 contains the value 5, 

which is printed.  

The above example illustrates how SymPLAID is able to achieve higher precision than 

SymPLFIED by tracking dependencies among the corrupted values in registers and 

memory. As a result, it is able to isolate the value(s) that must be injected by an attacker 



212 

 

to achieve their attack goal. In this example, if the attacker wants to make the program 

print the value 5, he/she must overwrite the value in register $2 at instruction 2 with the 

value 5. The attack is automatically discovered by SymPLAID but not by SymPLFIED. 

The other differences with SymPLFIED are that SymPLAID supports a wider range of 

instructions (e.g. unaligned loads and stores) and has a more precise constraint solver.  

6.4.4 Precision and Scalability 

SymPLAID maintains precise dependencies both in terms of arithmetic and logical 

constraints and solves them using a custom constraint solver. However, calls to the 

constraint solver can be expensive, and are minimized as follows: 

 SymPLAID keeps track of symbolic expressions as part of the application state, 

and does not solve them until a decision point is reached, viz., branches, memory 

accesses and indirect control transfers.  

 SymPLAID maintains simple linear constraints in a separate constraint map, and 

can identify infeasible states (such as the same erroneous location being assigned 

to multiple values) without invoking the constraint solver.  

 Finally, SymPLAID replaces symbolic states with concrete states at the earliest 

opportunities, thereby reducing calls to the constraint solver and also minimizing 

the number of forks in the program. 

There are two cases where SymPLAID performs approximations to conserve space. 

These are as follows: First, SymPLAID can only solve linear constraints. In practice, few 



213 

 

security critical branches or memory access operations involve non-linear constraints and 

hence this does not result in false-positives.The second approximation occurs when an 

unaligned memory access is performed in SymPLAID. In order to conserve space, 

SymPLAID stores values in memory as integral values over the entire word, and hence 

cannot model corruptions of individual bytes in a word. This can result in loss of 

precision leading to false-positives.  

6.5 DETAILED ANALYSIS 

This section illustrates how SymPLAID identifies conditions for successful insider 

attacks in the context of the example considered in Section 6.3. The code shown in Figure 

51 is a modified version of the MIPS assembly code for the example in Figure 49.  

In Figure 51, instructions and labels are expressed within „[„, „]‟, and a | character 

separates the instruction from its label. Comments are prefixed with a --- and can follow 

the instruction. For ease of analysis, we generated simplified versions of the standard 

library functions, but with the same functionality as the original functions. 

Figure 51 shows the assembly code of the strncmp function and an excerpt from the 

authenticate function that calls the strncmp function. In this section, we will consider 

how SymPLAID analyzes the effect of data value corruptions introduced in the 

authenticate function to generate the set of attacks in the first three rows of Table 26. 

Consider the attacks that can be launched at the call site of the strncmp function in 

instruction 44 of the authenticate function. This is the attack point in this example. We 
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assume that the insider can only corrupt values in registers. The following discussion 

considers only the cases that lead to successful attacks.   

Strncmp: ------- String comparison routine  

          [ 0 | ldo $(16) #(4) $(esp)  ]    --- load the src 
          [ 1 | ldo $(17) #(8) $(esp)  ]    --- load the dest 

          [ 2 | ldo $(18) #(12) $(esp) ]    --- load the length 

          [ 3 | movi $(1) #(1)           ]      --- result to return 
          [ 4 | bltzi $(18) #(15)        ]   --- while length > 0 

          [ 5 | lbu $(19) #(0) $(16)   ]   --- load of src 

          [ 6 | lbu $(20) #(0) $(17)   ]   --- load of dest 
          [ 7 | seq $(21) $(19) $(20)  ]   --- is *src==*dest ? 

          [ 8 | beqii $(21) #(0) #(15) ]   --- if not equal, break 

          [ 9 | beqii $(19) #(0) #(16) ]  ---if end of string, break 
          [ 10 | addi $(16) $(16) #(1) ]           --- increment src 

          [ 11 | addi $(17) $(17) #(1) ]           --- increment dest 

          [ 12 | subi $(18) $(18) #(1) ]   --- decrement length 
          [ 13 | beqii $(0) #(0) #(4)  ]   --- loop backedge 

          [ 14 | movi $(1) #(0)        ]   --- store in register 1 

          [ 15 | return                ]   --- return 
 

Authenticate Function Excerpt: … 

[ 21 | ldo $(1) #(tmpAddr) $(0)    ]  --- Retrieve temp 
[ 22 | ldo $(2) #(srcAddr) $(0)    ] --- Retrieve the src  

[ 23 | ldo $(3) #(lengthAddr) $(0) ] --- Retrieve the length 

[ 24 | sto $(1) #(4) $(esp)        ] --- Push parameters on stack 
[ 25 | sto $(2) #(8) $(esp)       ] 

[ 26 | sto $(3) #(12) $(esp)     ] 

[ 27 | call #(strncpyLoc)   ] --- call the string copy function 
[ 28 | ldo $(1) #(tmpAddr) $(0)    ] --- load the temp buf 

[ 29 | sto $(1) #(4) $(esp)        ] --- push buffer onto stack 

[ 30 | call #(readInputLoc)  ] --- call the readInput function  
[ 31 | ldo $(1) #(tmpAddr) $(0)    ] --- Retrieve src address 

[ 32 | ldo $(2) #(destAddr) $(0)   ] --- Retrieve dest address 

[ 33 | ldo $(3) #(lengthAddr) $(0) ] --- Retrieve the length 
[ 34 | sto $(1) #(4) $(esp)        ] --- Push parameters on stack 

[ 35 | sto $(2) #(8) $(esp)        ] 

[ 36 | sto $(3) #(12) $(esp)       ] 
[ 37 | call #(strncpyLoc)   ] --- call the string copy function 

[ 38 | ldo $(1) #(srcAddr) $(0)     ] --- load the source  

[ 39 | ldo $(2) #(destAddr) $(0)    ] --- load the dest address 
[ 40 | ldo $(3) #(lengthAddr) $(0)  ] --- load the length 

[ 41 | sto $(1) #(4) $(esp)         ] --- push the parameters 

[ 42 | sto $(2) #(8) $(esp)         ] 
[ 43 | sto $(3) #(12) $(esp)        ] 

[ 44 | call #(strncmpLoc)           ] --- call strncmp function 

[ 45 | beqii $(1) #(0) #(48) ] --- if equal to 0, goto 48 
[ 46 | movi $(1) #(0)           ] ---unequal 

[ 47 | beqii $(0) #(0) #(49)    ] --- go to the end 
[ 48 | movi $(1) #(1)             ] --- equal 

[ 49 | return                                    ] 

 

Figure 51: Assembly code corresponding to Figure 2 

Case 1: Assume that the insider has corrupted the value of register $3, which contains the 

length of the string. To model this attack, SymPLAID replaces the value in register $3 

with the symbol (err) just prior to calling the strncmp function. Consequently, the value 
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err is pushed onto the stack as an argument to the function. The strncmp function loads 

the value err into register $(18) (instruction 2 of strncmp). It then initializes the result of 

the comparison in register $1 to 1, and evaluates if the value in register $18 is lesser than 

0 (instruction 4 of strncmp). If so, it branches to instruction 15 of the strncmp function, 

which in turn returns the value in register $1 to the authenticate function.  

When SymPLAID encounters the comparison instruction 4 (in strncmp), it cannot 

uniquely resolve the comparison as it has no information on the value in register $18 

(which is err). Consequently, it forks the execution into two – one fork sets the value of 

register $1 to be lesser than 0, and the other sets the value to be greater than or equal to 0. 

The former case takes the branch to instruction 15, and exits the function, thereby 

returning the value 1 to the authenticate function. This causes the authenticate function to 

return the value 1 to its caller – which is the desired goal of the attacker. The latter fork in 

which the value of register $(18) is set to be greater than 0 does not however result in the 

outcome desired by the attacker. Therefore, in the above example, SymPLAID discovers 

that by setting the value of the length parameter of the strncmp function to a value lesser 

than 0, the attacker successfully achieves the goal of authenticating the user.  

Case 2: Assume that the attacker overwrites the value in register $2, which holds the 

address of the dest string. This is passed as an argument to the strncmp function, and 

copied into register $17 by instruction 2 of the function. SymPLAID represents the value 

in register $2 by the symbol err and tracks its propagation to register $17. This value is 

used as a pointer argument to by the load-byte-unsigned (instruction 6) in strncmp. At 

this point, symPLAID cannot uniquely determine the memory address that the register 
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refers to, and hence it forks the execution so that each fork evaluates the symbolic 

expression to a different address. 

The memory state of the program is generated by executing the code of the authenticate 

function until the fork point. SymPLAID assigns the value in register $17 to each of the 

memory addresses in succession. Simultaneously, it assigns the value loaded into register 

$6 to the value stored in the corresponding address. Of all the possibilities, only one of 

them leads to a state that satisfies the attacker‟s goal (which is that the authenticate 

function returns 1). This occurs when the address of the src buffer is passed to the 

function, as it will match the other argument which is also src.  

Case 3: A similar case arises when the value in register $1 is corrupted prior to the call to 

strncmp. The value in register $1 holds the value of the string src, which is passed as the 

first argument to the strncmp function. The value is stored in register $16 by instruction 1 

and is used as as a pointer in instruction 9 of the strncmp function. As in the previous 

case, SymPLAID assigns a value of err to the register, and forks the execution at 

instruction 9, assigning each memory address in succession to the pointer value in 

register $16. Of all the values considered by SymPLAID, only two values (dest and tmp) 

satisfy the attacker‟s goal, and are hence reported by SymPLAID as attacks. 

Summary: Note that the output from SymPLAID is in the form of raw data and may 

consist of repetitive or redundant states. The output needs to be post-processed in order to 

identify more generic classes of potential attacks to drive the development of defense 
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mechanisms that can protect the application against a range of discovered attacks.  The 

post-processing is currently done manually.  

6.6 CASE STUDY 

To evaluate the SymPLAID tool on a real application, we considered a reduced version 

of the OpenSSH application [137] involving only the user-authentication part. This is 

because SymPLAID does not support all the features used in the complete SSH 

application, e.g. system calls. We retain the core functions in the authentication part of 

OpenSSH with little or no modifications, and replace the more complex ones with stub 

versions – i.e. simplified functions that approximate the behavior of their original 

versions. We also replace the system calls with stubs. The reduced version is called the 

authentication module.  

The authentication module emulates the behavior of the SSH application starting from the 

point after the user enters his/her username and password to the point that he/she is 

authenticated (or denied authentication) by the system. The authentication module 

consists of about 250 lines of C code (excluding standard libraries). The functions in the 

module are shown in Table 26.  

Table 28: Functions in the OpenSSH authentication module 

Function Name LOC(C) Functionality 

fakepw 15 Fills a structure with a default (fake) password and returns it 

shadow_pw 7 Stub version of a system call to retrieve the hash of the password 

getpwnam 19 Stub version of a system call to retrieve password for a username 

pwcopy 22 Makes a field-by-field copy of the password structure 

sys_auth_passwd 29 Checks if the user supplied password matches system password 

allowed_user 6 Stub version of a complex function to check if a user is in the list of allowed users 

xcrypt 7 Stub version of a system call to encrypt the password using a salt value (based on username) 

getpwnam-allow 43 
Checks if a user is allowed to login and if so retrieves their password record makes a copy 

using pwcopy 

auth_password 14 Checks if the username is allowed AND the user password is correct 

main  47 Reads in the username and password and calls the above functions in the expected order 
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We ran SymPLAID on the authentication module after compiling it to MIPS assembly 

using the gcc compiler. As before, the goal is to find insider attacks that will allow the 

user to be authenticated. It is assumed that the insider can overwrite the value of a 

register in any instruction within the authentication module. The input to the 

authentication module is the username and password. The username may or may not be a 

valid username in the system, and the password may or may not be correct. These lead to 

four possible categories, of which one is legitimate and three are attacks. SymPLAID 

discovered attacks corresponding to the categories where an invalid username is supplied 

with a valid password (for the application) and where a valid user-name is supplied with 

an incorrect password. In this section, we consider both categories of attacks. 

6.6.1 Category 1: Invalid User-name 

The authentication part of SSH works as follows
23

: when the user enters his/her name, the 

program first checks the user-name against a list of users who are allowed to log into the 

system. If the user is allowed to log into the system, the user record is assigned to a data-

structure called an authctxt and the user details are stored into the authctxt structure. If 

the name is not found on the list, the record is assigned to a special data-structure in 

memory called as fake. fake is also an authctxt structure, except that it holds a dummy 

username and password. This ensures that there is no observable difference in the time it 

                                                 

23
 We consider only the case where authentication is done using the keyboard. 
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takes to process legitimate and illegitimate users (which may enable attackers to learn if a 

username is valid by repeated attempts to login). 

In order to prevent potential attackers from logging on by providing this dummy 

password, the authctxt structure has an additional field called valid. This field is set to 

true only for legitimate authctxt records i.e. those for which the username is in the list of 

valid users for the system. The fake structure has the valid field set to false by default. In 

order for the authentication to succeed, the encrypted value of the user password must 

match the (encrypted) system password, and the valid flag of the authctxt record must be 

set to the value 1.  

Figure 53 shows the auth_password function that performs the above checks. The 

function first calls the sys_auth_passwd to check if the passwords match, and then checks 

if the valid flag is set in the authctxt record. Only if both conditions are true will the 

function return 1 (authenticated) to its caller. 

int sys_auth_passwd(Authctxt *authctxt, const char *password) { 

1: struct passwd *pw = authctxt->pw; 
2: char *encrypted_password; 

3: char *pw_password = authctxt->valid ?  

4:                                     shadow_pw(pw) : pw->pw_passwd; 

5: if (strcmp(pw_password, "") == 0 &&  

6:                    strcmp(password, "") == 0) 

7:  return (1); 
8: encrypted_password = xcrypt(password, 

9:                            (pw_password[0] && pw_password[1]) ?                                                             

10:                                    pw_password : "xx"); 
11:    return (strcmp(encrypted_password, pw_password) == 0); 

} 
int auth_password(Authctxt *authctxt, const char *password) { 

12:                int permit_empty_passwd = 0; 

13: struct passwd * pw = authctxt->pw; 
14: int result, ok = authctxt->valid; 

15: if (*password == '\0' && permit_empty_passwd == 0) 

16:  return 0; 
17: result = sys_auth_passwd(authctxt, password); 

18: if (authctxt->force_pwchange) 

19:  disable_forwarding(); 
20: return (result && ok); 

} 

Figure 52: SSH code fragment corresponding to the attack 
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An insider can launch an attack by setting the valid flag to true for the fake authctxt 

structure. This will authenticate a user who enters an invalid user name, but enters the 

password stored in the fake structure. The password in the fake structure is a string that is 

hardcoded into the program. 

To mimic this attack, we supply an invalid user-name and a password that matches the 

fake (dummy) password. We expected SymPLAID to find the attack where the insider 

overwrites the valid flag of the fake structure. SymPLAID found this attack, but it also 

found a host of other attacks that overwrite the frame pointer of the function. We describe 

a particularly interesting attack found by SymPLAID here. 

The attack occurs in the sys_auth_password function, at line 11 before the call to the 

strcmp function (in Figure 52) .At this point, the insider corrupts the value of the stack 

pointer (stored in register $30 in the MIPS architecture) to point within the stack frame of 

the caller function, namely auth_password. When the strcmp function is called, it pushes 

the current frame pointer onto the stack, increments the stack pointer and sets its frame 

pointer to be equal to the value of the stack pointer (corrupted by the attacker). Figure 53 

shows the stack layout when the function is called (only the variables relevant to the 

attack are shown). 

 

Figure 53: Stack layout when strcmp is called 
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The top-row of Figure 53 shows the frame-pointers of the functions on the stack due to 

the attack. Observe that the attack causes the stack frame of the strcmp function to 

overlap with that of the auth_password function. The strcmp function is invoked with the 

addresses of the encrypted_pasword and the pw_password buffers in registers
24

 $3 and 

$4. The function copies the contents of these registers to locations within its stack frame 

at offsets of 4 and 8 respectively from its frame pointer. This overwrites the value of the 

local variable ok in the auth_password function with a non-zero value (since both buffers 

are at non-zero addresses). When the strcmp returns, the value of $30 is restored to the 

frame pointer of sys_auth_passwd, which in turn returns to the auth_password function. 

The auth_password function checks if the result returned from sys_auth_password is 

non-zero and if the ok flag is non-zero. Both conditions are satisfied, so it returns the 

value 1 to its caller, and the user is successfully authenticated by the system. 

6.6.2 Category 2: Incorrect Password 

The second category corresponds to the case when the application is executed with a 

valid username but with the wrong password. We ran SymPLAID on the application and 

asked it to find attacks where the user is successfully authenticated. We consider a 

particularly interesting example attack found by SymPLAID. The attack is described in 

this section.  

                                                 

24
 In the MIPS architecture, function arguments are passed in registers 



222 

 

The attack occurs in the function sys_auth_password shown in Figure 52. As can be seen 

from the Figure, the function sys_auth_password returns 1 to its caller (auth_password) 

if either the encrypted version of the user password matches with the encrypted version of 

the system password, OR if both passwords are empty strings.  In a normal execution of 

the SSH application, the user password is checked by the auth_password function, and if 

empty, a special flag permit_empty_password is checked. This flag indicates if the user is 

allowed to have an empty password (at account creation time, for example). If the flag is 

not set, the application is aborted. Therefore, under normal circumstances, the user 

password cannot be empty. However in the case where it is empty, the auth_password 

function returns a value „1‟ provided the corresponding system password is also empty. 

A naïve attacker may try overwriting the value of permit_empty_passwd and entering an 

empty string for the password. However, this would require that the system password is 

also empty. Since we assume that only one corruption is allowed per execution, the 

attacker will not be able to corrupt both the system password and the user password 

simultaneously to make both of them point to empty strings, and the attack will not 

succeed. A better option for the attacker may be to overwrite the value of the system 

password (pw_password) after it is returned from the shadow_pw() function. This would 

not work either as the attacker would need to overwrite the user password (authctxt->pw) 

in order for the attack to succeed, which is not possible given the single value restriction.  

To craft a successful attack, observe that the system password is returned by the function 

shadow_pw (since the username is valid, authctxt->valid is set to 1). Therefore, the 

attacker can try to make shadow_pw return an empty string and in the process, also 
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overwrite the contents of the password variable. The difficulty with this approach is that 

shadow_pw is a system call and its value is determined based on the value of the system 

password. Nonetheless, it is possible to make shadow_pw return an empty string by 

passing it a NULL string as argument. This can be done by shifting the frame pointer of 

the sys_auth_passwd function to a memory location where the value stored in the address 

corresponding to the pw variable is 0, AND the value corresponding to the password 

variable points to an empty string. The attack is carried out after the check on authctxt-

>valid but before the call to shadow_pw at line 4 in Figure 52. 

6.6.3 Summary:  Attacks Found 

Table 29 summarizes the attacks discovered by SymPLAID for the two categories 

presented in sections 6.6.1and 6.6.2. The attacks shown in Table 29 are confined to the 

two functions shown in Figure 52. We do not consider attacks that originate in the stubs 

for the system calls or those that originate in the main function as these are artifacts of the 

authentication module, rather than the application. We have validated the attacks shown 

in Table 29 on the OpenSSH application compiled for the MIPS architecture. We used 

the SimpleScalar emulator for carrying out the insider attacks. 
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Table 29: Summary of attacks found by SymPLAID for the module 

F
U

N
C

 CAT Attack found by SymPLAID for the function and category shown in the first two columns 

au
th

_
p
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o
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1 
After initializing the value of local variable ok with authctxt->valid, overwrite it with a non-zero 

value. 

1 
After setting up the stack with the local variables and return address, but before calling 
sys_auth_passwd, overwrite the stack pointer with an address such that sys_auth_passwd 

overwrites the value of the variable ok when storing on the stack 

2 After the call to sys_auth_password, overwrite its return value (register $2) with a non-zero value  

2 
After the call to sys_auth_password, shift the frame pointer of the function such that before the 
function returns, it will read non-zero values in the relative addresses of the local variables result 

and  ok 

1, 2 
Overwrite the value of register $2 with a non-zero value when the function is about to return, so 

that it always returns true 

sy
s_

au
th

_
p
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1 
Before the call to strcmp, inject the stack pointer with an address in the previous stack frame so 

that the value of ok is overwritten with a non-zero value. This makes auth_password return 1. 

1 
Before the call to the strcmp function, overwrite the frame pointer with an address in the previous 
stack frame, so that when strcmp returns a non-zero value (since the strings are different), the 

return address is the address of the instruction that called auth_password (from main).  

2 

After the call to the xcrypt function, set the value returned by it in register $2 to the address of the 

buffer where the encrypted system password is stored. This sets the user password pointer to the 
encrypted value of the system password. 

2 

Before calling the strcmp function, change either its first argument (register $4) to the address of 

buffer with the encrypted system password, or change the second argument (register $5) to the 
address of the buffer containing the encrypted user password 

2 
After the call to the shadow_pw address, change its return value to the address of the buffer that 

contains the user password 

2 Change the return value of the function (register $2) to a non-zero value 

6.6.4 Spurious Attacks 

The approximations in the authentication module may introduce spurious attacks. These 

are attacks that work on the authentication module but do not work on the real OpenSSH 

application. This is because the stub functions in the module introduced approximations 

that did not mimic the real system‟s behavior in all cases. Since the model-checker 

explores all possible behaviors of the system, it flagged the non-conforming cases as 

attacks. A similar phenomenon was observed by Musuvati and Engler [139]. 

 Most of the spurious attacks discovered were easy to filter out as they were launched 

from stub functions that were system calls in the real program. However, there was one 
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subtle attack that at first seemed like a real attack, but turned out to be spurious. This is 

described here in this section. 

 

Figure 54: Schematic diagram of chunk allocator 

The OpenSSH program uses its own custom memory allocator (xmalloc) to store the 

buffers containing the user and system passwords (not shown in Figure 52). xmalloc 

allocates memory in chunks, and if it runs out of space in the chunk, it calls the system 

malloc to allocate a new chunk. Our authentication module simplifies this behavior by 

allocating a single static chunk of memory when the application is initialized, and then 

satisfying all application malloc requests from this chunk. The initial chunk is chosen to 

be large enough to accommodate both the password buffers and other dynamic memory 

used in the program. In order to ensure that we do not exceed the size of the initial chunk, 

every allocation request in the program is checked to ensure that it is within the bounds of 

the space remaining in the chunk.. Figure 54 shows a schematic of the allocator. 

The simplified memory allocator has a runtime check of the form:  

if (currentPos + sizeRequested > maxSize) return NULL; 

where currentPos is the location of the next free location in the initial chunk, and 

maxSize is the size of the initial chunk. 
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The SymPLAID tool finds an attack that effectively overwrites the location of the 

currentPos variable in memory with a value that is greater than the value of maxSize. 

This causes all subsequent malloc requests from the application to be declined and the 

value NULL to be returned. In order to prevent a NULL pointer violation, the calling 

function makes the pointers point to a special sentinel value in memory. If this attack is 

carried out at the beginning of the authentication module (in the getpwnamallow function, 

say), this will cause both the password strings to point to the same sentinel value, and 

hence they will match with each other. Therefore, the sys_auth_password function will 

return 1, and the malicious user will be authenticated, thereby leading to a successful 

attack. 

In reality, this attack cannot be achieved easily as the custom allocator in ssh will not 

merely return NULL if it exceeds the bounds of the current chunk, but will get a new 

chunk from the operating system (using brk in linux), and maintain a linked list of the 

allocated and free chunks. It is conceivable that a more sophisticated version of the attack 

can be mounted by overwriting the head of the free list with NULL to simulate the 

conditions leading to memory exhaustion. However, we have not tested the more 

sophisticated attack. 

The above situation could have been avoided had we modeled a more accurate version of 

the memory allocator used by OpenSSH. However, a similar situation could have arisen 

in any of the other stub functions. Therefore, any approximation of system behavior is 

likely to lead to spurious outcomes.  The only way to avoid this situation is to analyze the 

entire system (application, libraries and operating system) using the model-checker as 
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done in [139]. However, this can lead to state space explosion in the model-checker and 

is an area of ongoing work. 

6.6.5 Performance Results 

This section reports the performance overheads incurred by SymPLAID in finding the 

attacks on the OpenSSH application. We executed SymPLAID on a parallel cluster 

consisting of dual-processor AMD Opteron nodes, each of which has 2 GB RAM. This is 

because the search task is highly parallelizable and can be broken into independent sub-

tasks, with each sub-task considering attacks in a different code region of the application. 

The authentication module consists of about 500 assembly language instructions, and the 

task was broken up into 50 parallel sub-tasks, each of which considers a code region of 

10 instructions. The maximum time allowed for completion of a sub-task is 

approximately 2 days (after which the task is forcibly terminated) and its execution time 

recorded as 48 hours.  

Table 30: Time taken by SymPLAID for each function 

Function Name LOC 

(assembly) 

Number of States Total Time (sec) Attacks found 

? 

getpwnamAllow 37 6391 325861 No 

sys-auth-passwd 54 36896 366108 Yes 

fakepw 29 11 115 No 

xcrypt 37 26921 429683 Yes 

shadow-pw 26 10342 272236 Yes 

allowed-user 20 11 115 Yes 

auth-password 40 26921 429683 Yes 

getpwnam 37 27724 534601 Yes 

pwCopy 52 23547 471185 Yes 

main 114 3137 297526 Yes 

 

Table 30 shows the time and space requirements of the sub tasks categorized by the 

function which they were analyzing for attacks. The space requirements are reported in 
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terms of the number of unique “states” visited by the model-checker. The time taken is 

reported in seconds.  The results are aggregated across multiple sub-tasks for the function 

and the cumulative time and space requirements are reported. Note that this is not 

equivalent to running the sub-tasks for the function as a single aggregate task as the sub-

tasks may have significant state sharing across them. Hence the time and space taken by a 

single aggregate task is likely to be smaller than the aggregated results in Table 30. Based 

on the results in Table 30, the total time taken to execute all sub-tasks is at most 3127113 

seconds or 36.2 days. However, we are able to finish the task in 2 days due to the highly 

parallel nature of the search task. The total number of states explored by the sub-tasks is 

161091.  

While the running time seems high, it is not a concern as the goal is to discover all 

potential attacks (in a reasonable time frame) and to find protection mechanisms against 

them. The analysis can be easily parallelized and executed on multiple nodes as 

independent sub-tasks (as we did). Therefore, as we move towards multi-core and large-

scale parallel computers, the analysis time is bound to decrease. Finally, model-checking 

is a very active area of research and new techniques are being invented to make model-

checking faster. We can take advantage of such approaches to reduce the running time of 

SymPLAID.  

 The reasons for high running time are: (1) SymPLAID performs an exhaustive search of 

memory locations whenever it encounters a load/store through a register containing a 

symbolic expression., (2) When SymPLAID encounters an indirect jump instruction with 

a register containing a symbolic expression, it needs to scan the entire code-base as 
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potential targets for the jump, and (3) SymPLAID distinguishes between states with 

minor differences in their representation (not relevant to attack). 

We are currently investigating the following optimizations to reduce the running time. 

 Instead of performing an exhaustive search of memory locations, consider 

multiple locations in the form of abstract memory regions. Further, if memory 

safety-checking techniques are deployed, it is enough to consider memory 

accesses within the write-set of a pointer location. 

 Restrict the scope of indirect jumps to be within a function or module. Control-

flow checking techniques to reduce the scope of valid jump targets in a program 

can be deployed. 

6.7 RELATED WORK 

We classify related work into three broad categories as follows: (1) Identification and 

generation of insider attacks, (2) Symbolic execution techniques to find security 

vulnerabilities and, (3) Fault Injection techniques to perturb application state. 

6.7.1 Insider Attacks 

Insider attacks have been a significant source of security threats, and efforts have been 

made to model insider attacks at the network level. Philips and Swiler[134] introduced 

the attack graph model to represent the set of all possible attacks that can be launched in a 

network. The nodes of an attack graph represent the state of the network, and each path in 

the graph represents a possible attack.. Ritchey and Amman [133] introduce a model-
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checking based technique to automatically find attacks starting from a known goal state 

of the attacker.  Sheyner et. al. generalize this technique to generate all possible attack 

paths, thereby generating the entire attack graph [132] . Chinchani et al. present a variant 

of attack graphs called key-challenge graphs that are specifically tuned to represent 

insider attacks [140]. 

Insider attacks were also modeled at the operating system level by Probst et al.[135]. In 

this model, applications are represented as sets of processes that can access sets of 

resources in the system. An insider is modeled as a malicious process in the system that 

may access resources in violation of the system‟s security policy. Their technique builds 

a process interaction graph for the system and performs reachability analysis to discover 

insider attacks. 

Attack-graphs and process graphs are too coarse grained for representing application-

level attacks, and hence we directly analyze the application‟s code. Further, we do not 

require the developer to provide a formal description of the system being analyzed, which 

can require significant effort. Since we analyze the application‟s code directly, we can 

model attacks both in the design and implementation of the application. This is important 

as an insider typically has access to the application‟s code, and can launch low-level 

attacks on its implementation.  

6.7.2 Symbolic Execution 

Symbolic execution is a well-explored technique to find program errors [117]. Recently, 

it has also been used to find security vulnerabilities in applications [141-144]. 
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Kruegel et al. present a technique to automatically generate mimicry attacks against 

system-call based attack detection techniques [143]. By symbolically executing the 

program, their technique can find attack inputs that can execute a malicious system call, 

while replicating its context, thereby remaining undetected (by the monitor).   

EXE is a symbolic execution technique to generate security attacks against applications 

[144]. Their approach directly executes the application code on symbolic inputs, and 

progressively constrains them when conditional branches or assertions are encountered. 

Molnar and Wagner generate attacks to exploit integer conversion errors in programs 

[142]. Their technique starts with a valid (non-attack) input and attempts to mutate it into 

an input that exploits a given integer conversion vulnerability.  

Bouncer generates filters (program assertions) to block exploits of known memory 

corruption vulnerabilities [141]. The technique starts with an attack that exploits a given 

vulnerability, and symbolically executes the program to generate a set of constraints 

under which the vulnerability can be exploited. It then uses the generated constraints to 

block all inputs that may exploit the vulnerability. 

The above techniques are concerned with generating attack inputs for the applications to 

exploit known or unknown vulnerabilities. In contrast, our technique attempts to generate 

attacks for a given input, assuming that the attacker is already present in the system. 

Further, the attacks found using our technique do not require the application to have an 

exploitable vulnerability (e.g. buffer overflows), but can be launched by a malicious 

insider in the system. 
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6.7.3 Fault-Injection Techniques 

Fault-injection is an experimental technique to assess the vulnerability of computer 

systems to random events or faults [19]. An artificial perturbation signifying a random 

fault is introduced in the system and the behavior of the system is studied under the 

perturbation. Traditional fault-injection is statistical in nature, and is hence not 

guaranteed to expose all corner scenarios in the application. Consequently, it is not well-

suited for modeling security attacks, as attackers typically exploit corner-case or 

unexpected behaviors. In spite of these limitations, researchers have used fault-injection 

to find security violations in systems. We consider some examples of such techniques. 

Boneh, DeMillo and Lipton pioneered a study in which they found that transient 

hardware errors could adversely affect the security guarantees provided by public-key 

cryptosystems [145]. Subsequent studies have shown that many commonly used 

cryptographic systems can be broken by hardware errors in their implementation [146]. 

The main difference between these studies and ours is that our technique can be applied 

for any general security-critical system rather than only crypto-systems. Further, we 

allow the attacker to inject any value into the processor‟s registers or memory which are 

more illustrative of insider attacks. 

Xu et al. consider the effect of transient errors (Single-bit flips) in control-flow 

instructions on application security [147]. They use a technique known as “selective-

exhaustive” injection to inject all possible errors in code segments that are known to be 

critical to the integrity of the systems from a security point of view. Our technique may 
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be viewed as a form of selective-exhaustive injection, but into program data rather than 

instructions. The other difference is that we consider the effect of all possible data value 

corruptions rather than just single bit flips.  

Govindavajhala and Appel [148] explore the use of transient errors to attack a virtual 

machine when the attacker has physical access to the machine. They show that transient 

errors can break the protections of the virtual machine up to 70% of the time, depending 

on the platform and the attacker‟s ability to execute a specially crafted program. The 

main difference between this work and ours is that we do not require attackers to have 

physical access to the machine, nor launch specially crafted applications.  

6.8 CONCLUSION 

This chapter presented a novel approach to discover insider attacks in applications. An 

automated technique to find all possible insider attacks on application code is presented. 

The technique uses a combination of symbolic execution and model-checking to 

systematically enumerate insider attacks for a given goal of the attacker. We have 

implemented the technique in the SymPLAID tool, and demonstrate it using the code 

segments corresponding to the authentication part of the OpenSSH application. We find 

several instances of potential insider attacks which may be missed by simple, manual 

inspection of the code.  
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CHAPTER 7 INSIDER ATTACK DETECTION BY 

INFORMATION-FLOW SIGNATURE (IFS) 

ENFORCEMENT 

7.1 INTRODUCTION 

The growing complexity of applications has necessitated a shift towards outsourcing of 

application components to third-party vendors often spanning geographic boundaries. 

The ubiquity of the internet has allowed software libraries to be freely distributed in 

source/binary forms and reused among applications. In this environment, a malicious 

developer may plant a logical loophole or backdoor in a library or module used by a 

security-critical application. The developer could leak details about the loophole to an 

attacker, who could then exploit the application through the loophole or backdoor when it 

is deployed in the field. Such backdoors and loopholes are extremely hard to detect 

unless detailed code auditing is performed (if the source code of the module is available). 

However, due competitive pressures in bringing a product to market, organizations often 

do not perform these tasks for code that is not developed in-house. Even for modules 

developed in-house (i.e. within the organization), the original developer(s) may have long 

left the company and the expertise to understand the code may be lost.  

This problem is partially alleviated by open-source software, due to the “many eyeballs” 

scanning the source code for potential loopholes[149]. However, even in open-source 

software, it is possible for a malicious developer to plant a backdoor or loophole in an 

unused (or rarely used) part of the code. While backdoors have been ferreted out in 

popular open-source packages such as the Linux Kernel [150], they may not be as easy to 
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detect in open-source packages that are not as widely-deployed. For example, a study of 

open-source software packages distributed using the popular SourceForge repository 

found that about 50 % of the packages had fewer than 70 downloads during the month-

long duration of the study [151]. Further according to [152], a recent study of 100 open- 

and closed-source software packages found that about 23 of them had unwanted code, 

and about 79 packages had dead code of some form or another, although they were not 

necessarily malicious.  

It is also possible for a malicious system administrator or IT manager to replace a system 

library or in-house software package with a modified version, in order to subvert existing 

security checks or induce malicious behavior. A recent CERT report on insider attacks 

[153] shows that while such attacks are relatively rare (only 15 out of 200 cases studied 

in the report belonged to this category), the attacker can cause extensive damage through 

these means. For example, the report illustrates how an IT manager in a state agency was 

able to carry out an extensive fraud-scheme undetected for two years by commenting out 

a single-line of source code in an in-house software program, and compiling and 

releasing the modified version within the organization. 

Malware is defined as any program that attempts to perform malicious activities in the 

system [154]. Malware takes many forms, including viruses, worms and Trojans. Viruses 

and worms attach themselves to executable files and are activated when the program is 

executed. Trojans are stand-alone programs that masquerade as programs with legitimate 

functionality in order to trick users into executing the Trojan program.  
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Both static and dynamic approaches have been proposed for malware detection. Static 

malware detectors (including commercial virus scanners) look for known patterns of 

instructions representing a virus or Trojan in executables. However, such static checkers 

can be bypassed by malware that performs simple program obfuscations on itself [155]. 

Christodorescu et. al. [156] takes into account instruction semantics to determine if a 

given instruction sequence is a semantic variant of a known malware sequence. This 

approach requires the original sequence template of instructions in the malware to be 

specified, and variants are automatically detected by the technique. Dynamic approaches 

for malware detection check whether a program (i.e. potential malware) performs system-

level malicious activities such as overwriting operating system files or registry entries. 

The check can be performed by monitoring the program using software [157] or 

hardware [158]. These approaches attempt to emulate conditions in the field in order to 

trick the malware into revealing its malicious behavior.  

In contrast to malware, an untrusted module in an application does not attempt to 

infiltrate the system by performing system-level malicious activities. Rather the module 

may overwrite key elements of the application‟s control and data-space to achieve the 

attacker‟s goals. Hence, dynamic malware detection approaches will not be effective at 

detecting the attack. Further the instruction sequences corresponding to the malicious 

activities carried out by the module are specific to the application being attacked. Hence, 

the sequences may not be detected by a generic pattern-matching or semantics-based 

approach for static malware detection. 
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The attack model assumed in this chapter is that an untrusted module (whose source code 

may or may not be available) has been linked together with the application prior to the 

application’s deployment. The untrusted module has a malicious snippet of code hidden 

in it (possibly masquerading as legitimate code) which performs some malicious activity 

in the context of the application e.g. overwrite security-critical data or bypass security 

checks. We refer to the untrusted module as an “application-level insider
25

”. For 

example, an insider in a login program may overwrite the program‟s internal state to 

allow an attacker to log into the system even if he/she does not provide the correct 

password.  

Analyzing an application‟s source code for application-level insiders is a hard problem. 

This is because the malicious code can masquerade as code with some legitimate 

functionality and pass manual audits[152]. Automated code analysis techniques can 

detect the malicious code segment, but these techniques require a specification of the 

program to be provided. In order to detect insider attacks, every line of an application‟s 

source code must be checked against its specification (as it is a potential hiding place for 

malicious code). Formulating a specification for each line of code is cumbersome and 

few developers choose to write such detailed specifications. The problem is exacerbated 

at the binary level, as binary code is often stripped of source symbols and obfuscated 

precisely to inhibit its understanding by a tool or human.  Further, the malicious code 

                                                 

25 An insider attack is defined as one in which a privileged entity i.e. an insider, abuses its privileges to exploit system loopholes or 

perform malicious activities. In this case, the privilege afforded to the untrusted module is that it is allowed to execute in the same 
address space as the application.  
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may not even be revealed by testing techniques as it may be activated only under a 

specific combination of inputs or environment variables. While it is possible to 

exhaustively test the program under every legal combination of inputs and examine its 

behavior, such exhaustive testing is not done due to practicality reasons of time and 

resource overheads.  

The goal of this chapter is to develop a technique to detect application-level insider 

attacks. We focus on protecting a subset of the application‟s data that is critical to the 

security of the application from updates by untrusted modules (i.e. whose source code is 

neither available nor inspected). This critical data has to be identified based on the 

application‟s semantics either manually or automatically using specifications about the 

program.  

The technique presented in the chapter uses the idea of Information-Flow Signatures 

(IFS) to detect application-level insider attacks that illegitimately overwrite critical data 

in the application.  The programmer identifies the security-critical data through 

annotations in the source code. The IFS encodes the sequence of instructions that can 

legitimately write (directly or indirectly) to the critical data through the normal (attack-

free) control-flow of the program. The IFS is derived using static analysis of the 

program‟s code (by enhancing the compiler), and requires the source-code of only those 

modules that can legitimately write to the critical data, i.e. the trusted modules. The 

program is instrumented to ensure that the statically-derived IFS is followed at runtime – 

any deviation represents an attack and the program is halted. Note that only attacks that 

violate the integrity of critical data are detected by the IFS. We do not consider attacks on 
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the confidentiality of the critical data or Denial-of-Service (DoS) attacks on the 

application. 

In earlier work [159], we introduced the idea of Information-flow signatures (IFS). This 

chapter builds significantly on the initial idea and shows how to derive and enforce the 

IFS technique for real applications. The derivation of the IFS is implemented by 

enhancing the LLVM optimizing compiler [99], while the runtime enforcement is done 

via custom software libraries. The technique is demonstrated in the context of three 

commonly deployed server applications (OpenSSH, WuFTP and NullHTTP) to protect 

security-critical modules. We find that the performance overheads of the proposed 

technique range from 7.5 % to 100 % when measured with respect to the execution time 

of the module(s) protected, but are negligible (less than 1 %) when evaluated in the 

context of the entire application as the protected module constitutes only a small part of 

the application’s execution time.  

The security guarantees provided by the IFS technique depend on the choice of critical 

data in an application. We demonstrate in [160] an automatic technique to choose critical 

data by systematically enumerating all possible attacks that may be launched by an 

insider. In order to deploy the technique in [160], the user has to provide generic 

specifications about the attacker‟s goal (for example, to log in with the wrong password) 

and the system will automatically identify the critical variables in the application to be 

protected in order to foil the attacker‟s goals). However, for the applications considered 

in this chapter, the critical data was chosen manually based on our understanding of the 



240 

 

application‟s source code
26

. We show experimentally that the technique can detect both 

insider attacks and external attacks that impact the critical data in each application. 

The chapter makes the following contributions: 

 Proposes a novel technique to protect critical data in applications from insider 

attacks through the concept of Information-Flow Signatures (IFS) 

 Leverages and enhances existing static analysis techniques to extract the 

backward slices of critical variables and instrument the instructions in the slice to 

derive the IFS of the application (Section 4). 

 Analyzes the efficacy of the proposed technique against both generic and targeted 

attacks (Section 5). Also, discusses the effect of approximations (made in the 

prototype) on the technique‟s effectiveness. 

 Evaluates the performance overheads of the IFS technique for the benchmark 

applications and the resilience of the applications protected with the IFS 

technique to attacks (Section 7). 

 Proves the efficacy of the IFS technique in detecting insider attacks, and shows 

that the IFS technique detects all external attacks impacting critical data that are 

also detected by existing techniques (see Section 7.10). 

                                                 

26 This is because the formal technique could not be scaled to the applications presented in this chapter. This has to do with the 
limitations of the model-checker used in the earlier work, and is orthogonal to the technique for identifying critical data.  
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7.2 RELATED WORK 

Insider attacks are attacks in which a privileged entitiy (“insider”) abuses its privilege to 

attack the system. Insider attacks can be mounted at the hardware, virtual machine, 

operating-system, and network levels. Table 31 provides a brief overview of techniques 

deployed at each level to foil insider attacks. Each technique ensures that the insider 

cannot infiltrate the system at the level in which the technique is deployed. However, 

none of these techniques address the problem of application-level insiders. This is 

because an application-level insider does not need to change the hardware, operating 

system, virtual machine or network in order to launch its attack
27

. 

Table 31: Insider attacks at different layers of the system stack 

Layer Techniques Comments 

Hardware King et al. [161] 

Alkabani et. al. 
[162] 

These techniques consider malicious backdoors in hardware either at the design 

stage or at the synthesis stage. At the design stage [161], the problem is similar to 
the application-level insider attack problem (and there is no known solution). At 

the synthesis stage [162], the problem is similar to tampering with the 

application‟s executable file and can be alleviated by embedding hidden keys in 
the synthesized netlist for comparison with the original netlist.   

Virtual Machine King et al [163], 

Rutkowska 
[164] 

The insider controls the boot-process prior to the loading of the Operating System 

(OS) and Virtual Machine (VM) and loads their own malicious VM in order to 
host the OS/VM [163]. From the malicious VM, the insider can wreak 

considerable damage totally transparent to the operating system or application. 

Later work has shown that it is possible to launch the attack even after the OS has 
finished loading (through hardware virtualization hooks) [164]. The malicious 

VM can be detected through timing measurements made from the guest VM/OS 

[165] 

Network Upadhyaya et al.  

[166], Sheyner 

et al., Philip and 
Swiler [132, 

134] 

The attacker is assumed to control one or more nodes in the network through 

which it is assumed that the attacker tries to launch attacks on other nodes. A 

structure called the attack graph is used to represent the possible malicious 
actions of the attacker [132, 134]. These attacks can be detected by enhancing 

Intrusion Detection Systems (IDS) to look for anomalous patterns of traffic 

within the network [166] that are representative of a network-level insider.  

Operating System Rootkit 
detection 

[167, 168] 

Rootkit detection looks for anomalous data-structures or memory access patterns 
of the OS to determine if a malicious module has hooked into the OS (through an 

existing vulnerability). These techniques are based on knowledge of the operating 

systems‟ state (or some approximation of it) prior to the infection by the root-kit. 

Micro-kernel 

based OS [169, 

170] 

Structured the operating system into multiple, non-overlapping services. Each 

service runs in its own privileged compartment, and communicates with other 

services through a thin layer called the micro-kernel. So even if one service is 
compromised, the other services are not.  

                                                 

27 This is analogous to how reliability techniques at lower-layers of the system stack does not obviate the need for application-level 
protection. This is because errors that occur in the application are not detected by lower-level techniques such as ECC in memory.  
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The rest of this section discusses security techniques deployed at the application level, 

which protect the application from malicious attackers.  We classify techniques for 

protecting applications from security attacks into three broad categories: (1) techniques to 

protect against external attackers (e.g. memory safety-checking, taintedness detection, 

address-space/instruction-set randomization and system-call based checking), and (2) 

techniques to protect against internal attackers including application-level insiders (e.g. 

privilege separation, remote audit, code attestation and oblivious hashing), and (3) 

techniques to protect critical data in applications from corruption due to errors and 

security attacks such as Samurai and redundant data diversity.  

External security techniques such as memory safety checking [23, 171] are designed to 

protect applications from memory-corruption attacks (e.g. buffer-overflow, format 

string). This class of techniques is not effective for thwarting insider attacks as insiders 

do not need to exploit memory-corruption vulnerabilities in the application. Taintedness 

detection techniques [25-27] prevent application input from influencing high-integrity 

data in applications such as pointers. However, insiders do not need to use inputs to 

influence security-critical data as they are within the application. Further, it is almost 

impossible to prevent an internal module of the application from writing to generic 

program objects such as pointers, without incurring a very high-false positive rate. 

Security techniques such as randomization [28, 172] attempt to obscure a program‟s 

layout or instruction set from attackers. However, randomization can be bypassed by an 

insider who is itself subject to the same randomization as the application. For example, a 

malicious module in an application that is subject to address-space randomization (ASR) 
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can calculate the absolute address of a stack variable in a different function by examining 

the addresses of its local variables, and adding a fixed offset to them. Unlike in the case 

of an external attacker who requires multiple attempts to bypass the randomization [31, 

173], an insider can bypass it in a single attempt. 

System-call based checking is a technique that monitors the sequence of system calls 

made by an application and checks if the sequence corresponds to an allowable sequence 

as determined by static analysis techniques [174, 175].  These techniques assume that the 

attacker seizes control of the application by executing unwanted or malicious system calls 

such as exec, or by skipping existing system calls, e.g. seteuid. This is because system-

calls provide a conduit to attack other applications executing on the same system as well 

as the Operating System (OS) itself. However, an application-level insider‟s goal is to 

subvert the execution of the attacked application, and not necessarily attack other 

applications or the OS. Hence, system-call based detection techniques will not protect 

against insiders who overwrite the attacked application‟s data or control without 

launching system calls.  

Techniques such as oblivious hashing [176, 177] and code attestation [178] detect 

malicious modifications of the application‟s executable code after it has been generated 

(by the linker).  However, these techniques do not protect from insider attacks in which 

the application developer links the application with an untrusted third-party library prior 

its distribution (as considered in this chapter). A technique that offers limited protection 

from insider attacks is remote audit [179], which ensures that the application‟s code is not 
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skipped at runtime. However, remote audit does not protect against malicious 

modifications of the application‟s data by an application-level insider.  

The only known technique that can effectively thwart application-level insider attacks is 

privilege separation [180]. In this technique, the application is divided into separate 

processes and each module executes in its own process. A module can share data with 

another module only through the OS‟s Inter-Process Communication (IPC) mechanisms. 

This prevents an untrusted module from overwriting data in a trusted module‟s address 

space, unless the trusted module explicitly shared the data with the untrusted module 

(through an IPC call). However, privilege separation incurs overheads of up to 50 % 

when deployed in real applications [181] (measured as a fraction of the entire 

application‟s execution time, not just the protected module‟s execution time). Further, a 

trusted module may load an untrusted library function in its address space, thereby 

annulling the technique‟s security guarantees. 

Finally, Samurai [182] and redundant data diversity [183] also protect critical data in an 

application from accidental and malicious corruption respectively. However, they both 

require the programmer to manually identify read/write operations on the critical data, 

which can be cumbersome. Further, Samurai only protects against corruption of critical 

data on the heap, and not for critical data on the stack or registers. Redundant data 

diversity requires replicating the entire process and executing it in lock-step, even though 

the critical data may constitute only a small portion of the application‟s data. This leads 

to unnecessary overheads and wasted resources. 
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Thus, there exists no technique that can detect insider attacks on program data without 

requiring considerable intervention on the part of the programmer or incurring high 

performance overheads. The question we ask in the chapter is “Can we protect the 

integrity of critical data from insider attacks with low performance overheads and 

minimal intervention from the programmer?” 

7.3 ATTACK MODEL 

While the focus of this chapter is on insider attacks, the attack model also considers 

external attacks on the critical data of the application. This is because in addition to 

overwriting the critical data by itself, an insider can also plant a memory corruption 

vulnerability in the application which will be exploited by an external attacker to 

overwrite the security critical data. Hence, it is important to consider both external 

attacks and insider attacks on the critical data, as insider attacks are a super-set of 

external memory-corruption attacks on the application. 

In the case of external attacks, we assume that the attacker exploits a memory corruption 

vulnerability (e.g., buffer overflow, format string) to overwrite critical data either directly 

or indirectly. A direct over-write means that the compromised instruction overwrites the 

security critical data through a pointer. An indirect over-write means that the 

compromised instruction overwrites a data element that influences the critical data 

through a data- or control- dependence. In both cases, the net effect is to influence the 

value of the critical data in such a way so as to benefit the attacker. The attacker may also 
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launch system calls on the program‟s behalf to impact the critical data
28

. However, the 

attacker is prevented from launching new processes through the system call interface, as 

such attacks would be detected by OS-level checking mechanisms.  

In the case of insider attacks, we assume that an attacker can corrupt any program data or 

change the program‟s control-flow during calls to untrusted code that is controlled by the 

attacker. From within the untrusted code, the attacker can modify the value of any 

location in the stack, heap or processor registers in order to influence the critical variable. 

The attacker can also modify the return address or a function frame pointer on the 

application stack to force the program to return to a different address than the intended 

one. Note that an insider attack may be possible even if the application does not have any 

memory corruption vulnerabilities.  

We do not assume that the source code of un-trusted third-party functions is available for 

analysis – however, it is assumed that the source code of all trusted modules is available. 

We also assume that the attacker cannot modify the application‟s code once it is loaded 

into memory. This is reasonable as in many systems the code segment is marked read-

only after the program is loaded (unless the program is self-modifying).  

7.4 APPROACH AND ALGORITHM 

This chapter focuses on protecting the integrity of critical data from application-level 

insider attacks. Critical data is defined as any variable or memory object which, if 

                                                 

28 We assume that the attacker cannot infiltrate the Operating System (OS) by executing the system call and exploiting an OS 
vulnerability.  
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corrupted by an attacker can lead to security compromise of the application. In the 

proposed approach, the portion of the program that manipulates the critical data (i.e. the 

trusted module) is statically analyzed and instrumented with code to ensure that runtime 

modifications of the critical data follow the language-level semantics of the application. 

This corresponds to statically extracting the backward slice of the critical data, and 

ensuring that only the instructions within the slice can modify the critical data, and only 

in accordance with their execution order as specified by the program code. A third-party 

module or a memory corruption attack that overwrites the critical data violates the 

established dependencies in the slice and hence, can be detected. The approach ensures 

that information-flow to the critical data is in accordance with the program‟s source code, 

hence the name Information-Flow Signatures (IFS).  

Invariants: The instrumentation added by the IFS technique ensures that the following 

invariants are maintained.  

1. Only the instructions that are allowed to write to data operands in the backward 

slice of the critical data (according to the static data dependencies), in fact do so at 

runtime. 

2. The instructions in the backward slices of the critical data are executed in the 

order of their occurrence along a specific set of acyclic paths in the program. 

3. Either all the instructions in the backward slice along a specific path are executed 

at runtime, or no instruction along the path is executed.  
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Overall Algorithm: The algorithm for deriving and checking the IFS is split into four 

phases as follows: 

Phase 0: Identification of Critical Data (Carried out by the programmer) 

The critical data in a program can refer to both program variables (i.e. local and global 

variables) as well as dynamically allocated memory objects on the heap. The programmer 

identifies critical data in the program through annotations in the source code. In the case 

of program variables (local or global), the annotations are placed on the definitions of the 

variables
29

. In the case of memory objects, the annotations are placed on the allocation 

sites in the program (i.e. calls to malloc).  

In this chapter, we use the term critical variable to refer to both critical variables and 

memory objects.  

Phase 1: Static Analysis: (Carried out by our enhancements to the compiler) 

1. Extract intra-procedural backward slice of the critical data by identifying all 

instructions within a function in the program that can influence the critical data. It 

is assumed that the function that manipulates the critical data is trusted, and its 

source code is available for the analysis. 

2. For each instruction in the backward slice, insert an encoding operation after the 

instruction and pass the value computed by the instruction as an argument to the 

encoding operation.  

                                                 

29 We consider programs translated to Static Single Assignment (SSA) form, so each variable has a unique definition in the program. 
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3. Replace all uses of the instruction with the value returned by the encode operation 

within the function. 

4. Before every use of an operand that has been encoded in the backward slice, 

insert a call to the decoding operation and pass it the value returned by the 

encoding operation.  

5. Generate the sequences of instructions for each function for each acyclic control-

flow path in the function. 

6. Add instrumentation functions at the beginning and end of function calls in order 

to push and pop the current state of the state machine on to a stack (see below). 

Phase 2: Code Generation: (Carried out by custom programs) 

1. Generate finite-state machines to encode the sequences of calls to the encoding 

operations within a function for all control paths identified in step 5. Mark the 

final state of each state machine as an accepting state. 

2. Generate the encoding and decoding operations to check the data-values of the 

program as it executes (see below). Also, check the validity of the program‟s 

control-flow using the state machines derived above in step 1.  

Phase 3: Runtime: (Carried out by the generated code) 

1. Track the runtime path based on the state machines generated in step 1. If the path 

does not correspond to a valid path, raise an alarm and stop the program (see 

explanation below). 
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2. Encode data-values depending on where the encoding operation is called in the 

original program. Check the value for consistency by decoding it before its use, 

i.e. check if the decoded value matches the encoded operand. If the value is 

inconsistent, raise an alarm and stop the program. 

Slicing Algorithm: The backward slices of the critical data are computed on a path-

specific basis, i.e., each execution path in the function is considered separately for slice 

extraction. This is based on our earlier work on extracting backward slices for detecting 

transient errors in programs
30

 [184]. 

Encoding/Decoding Operations: The encoding/decoding operations protect the data in 

the backward slice after it is produced (enforce invariant 1). The encoding operation used 

in this chapter is duplication, where the operand is stored in a special, protected memory 

location. During decoding, the original value is compared with the stored value of the 

operand. A mismatch indicates that the operand has been tampered with, i.e., an attack. 

We assume that the attacker cannot modify the values stored by the encoding operations 

(as they are stored in protected memory).  

It is possible to incorporate more advanced encoding functions such as checksums or 

even encryption to provide stronger protection, constrained by the incurred performance 

overheads. The above algorithm is orthogonal to the mechanism for protecting encoded 

operands. 

                                                 

30 The backward slice was used to recompute the value of selected program variables to check if they have been corrupted by an error.  
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State Machines: The state machines track the sequence of calls to the encoding functions 

and check if the program follows valid control-flow. The state is tracked on a per-

function basis, since we consider only intra-procedural slices. A separate stack is 

maintained at runtime to push and pop the current state of the state machine (for the 

function) at the beginning and end of function calls. At the entry point to a function, the 

corresponding state machine is reset to the start state. Similarly, the state-machine‟s state 

is checked just before the function returns to ensure that the state machine is in an 

accepting state i.e., the state machine has accepted the observed sequence of encoding 

calls (invariant 3). Finally, we check that every encoding call executed by the program 

corresponds to a valid state transition from the current state of the state machine 

(invariant 2).  

7.5 EXAMPLE CODE AND ATTACKS 

This section illustrates the IFS technique using a code fragment drawn from the 

OpenSSH application. The section also considers example attacks on the application‟s 

code and discusses how IFS detects the attacks. 

Consider the sys_auth_password function shown in Figure 55(a). The function accepts an 

authctxt data-structure and a password variable, and checks if the user password matches 

the password stored in the authctxt structure.  If the passwords match, the function returns 

the value 1 and the user is authenticated by the system (not shown). The function also 

encrypts the user password prior to comparing it with the system password. 
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Critical Data: In order to determine the critical data, we assume that the goal of the 

attacker is to subvert the authentication mechanism by making the function return 1 in 

spite of the invalid user-name or password being given. Therefore, we designate the value 

returned by the function as the critical variable (i.e., the authenticated variable defined in 

line 6). The value returned in line 3 is not considered critical as it is a compile-time 

constant. 

0: int sys_auth_passwd(Authctxt* authctxt, const char* 

password) { 
    1: struct password* pw = authctxt->pw; 

    2: char* pw_password = (authctxt->valid) ?                 

                shadow_pw(pw) : pw->pw_passwd; 
    3: if (! strcmp(password, “”) && ! strcmp(pw_password,””) )  

                 return 1; 

    4: char* encrypted_password = xcrypt(password,  
                                                                    pw_password); 

    5: log_user_action(authctxt->user); 
    6: int authenticated = (strcmp(encrypted_password,  

                                                      pw_password) == 0); 

    7: return authenticated; 
} 

Function Name Purpose Trusted ? 

shadow_pw Retrieves the shadow 

password from the system 
password file 

Yes 

xcrypt Computes an encypted 

value of the password 
using a salt value 

Yes 

strcmp Compares two strings and 

returns 0 if the strings 
match 

Yes 

log_user_action Records the argument to 

the system log file (e.g., 

syslog) 

No 

 

Figure 55: (a) Example code fragment from SSH program and (b) Functions called from within the 

code fragment and their roles 

Library Functions: The sys_auth_passwd function in Figure 55(a) calls four other 

functions, namely shadow_pw, xcrypt, strcmp and log_user_action. The functionality 

provided by each of these functions is outlined in Figure 55(b). Of the four functions, the 

first three are trusted (secure), because they manipulate the critical data and hence, are 

part of the backward slice. We assume that the source code of the trusted functions is 

available for analysis.  

Attacks: To illustrate the IFS technique, we consider two attack scenarios on the 

untrusted log_user_action function as follows. 

(1) External attack: We assume that the log_user_action function contains a format-

string vulnerability, i.e., it invokes printf() using the user-name directly as the first 



253 

 

argument without specifying a format-string argument. An external attacker exploits this 

vulnerability to overwrite any memory location in the program.  

(2) Internal attack: We assume that the log_user_action function is supplied by a 

malicious attacker as part of an external library whose source code is not available for the 

analysis. The attacker can overwrite any location in memory or registers and change the 

program‟s control-flow from within the function. This is so even if the application 

contains no memory-corruption vulnerabilities in and of itself.  

7.6 IFS IMPLEMENTATION EXAMPLE 

This section illustrates the operation of the IFS algorithm given in Section 7.4. Figure 56 

shows the code in Figure 55(a) instrumented with the encoding and decoding functions. 

Recall that the critical variable chosen is authenticated. The backward slice of the 

authenticated variable corresponds to the instructions in the program that can potentially 

influence the variable‟s value. Since we consider only intra-procedural slices, we are 

limited to the instructions in the sys_auth_passwd function. These are shown in green (or 

light gray) in Figure 56.  

The encoding and decoding operations are represented as functions. In Figure 56, the 

encoding functions (encode) are inserted immediately after the statement that produces a 

value within the backward slice, while the decoding functions (decode) are inserted 

immediately before the statement within the slice that uses the original value of the 

variable. Each encoding or decoding function is passed as arguments: (1) the number of 

the program statement in the slice and (2) the value produced by the program statement. 
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The functions are marked as volatile to prevent the compiler from reordering them during 

its optimization passes. 

The state machines derived for the function in Figure 56 are shown in Figure 57. The 

accepting states of the state machine are states 2 and 6 (shown in green or as light colored 

ovals). In the figure, the states in the state machines correspond one-to-one to the 

encoding calls in the program and are labeled with the encode call arguments.  

From Figure 56 and Figure 57, it should be apparent that under normal (attack-free) 

operation of the program, every value that is encoded has a corresponding decode 

function before its use in the function (and vice-versa). Further, the state machine reaches 

an accepting state before the function exits. Therefore, in normal operation, the 

instrumentation functions do not raise an alarm or perform a false-detection. 

We now consider the operation of the program in Figure 56 under attacks. Recall that the 

goal of the attacker is to overwrite the value of the authenticated variable in the program. 

We first consider generic attacks, where the attacker is unaware that the IFS scheme is 

deployed, and then targeted attacks where the attacker is aware of the deployment of the 

IFS technique and actively tries to evade detection by the inserted checks.  



255 

 

 

Figure 56: OpenSSH example with instrumentation added by 

IFS technique 

 

Figure 57: State machines 

derived by IFS 

7.6.1 Generic Attacks 

Generic attacks are those in which the attacker is unaware that the IFS scheme is being 

deployed. Section 7.10 provides a generic proof of the efficacy of the IFS technique for 

each class of attacks considered in this section. 

External attacks: An external attacker attempts to exploit the format string vulnerability 

in the log_user_action function by crafting an appropriate input to the program. We 

consider three kinds of external attacks as follows: 

(E1) Attacker executes system call to overwrite critical data: Assume that the attacker 

launches a system call by overwriting the return address on the stack with the address of a 

system call instruction. The attacker also sets up the frame-pointer on the stack such that 

the system call is executed with the parameters specified by the attacker. The IFS 

technique by itself does not prevent the attacker from launching the system call, nor does 
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it prevent the attacker from overwriting the return address (which does not belong to the 

backward slice of the critical variable). However, once the system call is executed, any 

attempt by the attacker to overwrite the critical data from within the system call will be 

detected. For example, if the attacker tries to execute a file read call with the address of 

the critical variable (authenticated) as an argument, the IFS technique detects this as an 

attack and halts the program. 

(E2) Attacker overwrites function-pointers/return address to impact the program’s 

critical data:  Let us assume that the attacker overwrites the return address on the stack 

from within the log_user_action function. The goal of the attacker here is to make the 

function return directly to line 7, in effect bypassing the initialization of the authenticated 

variable in line 6. Let us further assume that the authenticated variable is assigned to a 

non-zero, value
31

 prior to line 6. This allows the attacker to falsely authenticate 

herself/himself to the system. The IFS technique detects the attack as follows: the 

skipping of line 6 results in a control-flow pattern that does not correspond to any valid 

path within the backward slice of the critical variable authenticated. Hence, the state 

machine in Figure 57 is not in an accepting state when the end of the function is reached 

(as the corresponding encode operation is also skipped
32

). Consequently, any attempt to 

use the returned value in the called function results in a failure of the decode operation 

and the attack is detected.  

                                                 

31 This is fairly common for local variables in C, which are assigned to arbitrary values prior to their initialization. 
32 Section 7.9.2 presents an in-depth analysis of this particular attack, and explains how the attack is detected by the IFS technique. 
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(E3) Attacker overwrites the critical variable authenticated or any variable in the 

backward slice- Assume that the attacker chooses a format string such that the value of 

the pointer variable encrypted_password is assigned to the address of pw_password (or 

vice-versa). This would cause the strcmp function in line 8 to return the value 0 and 

hence the authenticated  variable will assume the value 1, which is the attacker‟s goal. 

The IFS technique detects this attack because all variables within the backward slice are 

in an encoded form prior to the call to the log_user_action function. Overwriting the 

variable results in an error during the decode operation prior to its use. 

Insider Attacks: In the case of insider attacks, we assume that the function 

log_user_action is under the control of the attacker. In this case, the function is 

considered to be a black box in the sense that it can overwrite any set of variables in the 

program and jump anywhere in the program (recall that its source code may not be 

available).  We consider three cases, depending on the arguments to the log_user_action 

function.   

(I1) The log_user_action() function modifies the contents of encrypted_password: This 

is not allowed according to the semantics of the sys_auth_passwd  since the 

log_user_action  is passed the authctxt->user pointer which can never point to any 

variable in the backward slice of authenticated (as determined by the compiler‟s pointer 
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analysis
33

). The attack is detected by the encoding and decoding operations inserted by 

the IFS technique. 

The next two attacks are not possible for the example in Figure 55(a). Nonetheless, we 

consider them to illustrate possible insider attacks that may be launched on code that is 

slightly different from the one in Figure 55(a). 

(I2) The log_user_action function modifies the contents of encrypted_password, but it 

is only allowed to modify the contents of the password variable: In addition to passing 

the user-name to the log_user_action function, assume that the sys_auth_passwd function 

also passes a pointer to the user password (not the system password). Since the password 

variable has already been used in the backward slice before the call to the 

log_user_action function, the programmer may think that the call is harmless. However, 

it is possible for the log_user_action function to maliciously overwrite the contents of the 

encrypted_passwd or pw_passwd strings to make the strings match. This will also be 

detected by the IFS technique, as only the arguments to the log_user_action function, 

namely, the authctxt->user and password variables, are decoded prior to the function 

call.  Overwrites of any other variable in the backward slice is detected by the IFS 

technique. 

(I3) The log_user_action function is allowed to modify encrypted_passwd by virtue of 

being passed a pointer to the encrypted_password variable:  The attack is not detected 

                                                 

33 It is assumed that the function cannot access global variables unless they are marked as extern, in which case they are treated as 
function arguments. 
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by the IFS technique, as the malicious function belongs to the backward slice of the 

critical variable. Hence, a malicious update is indistinguishable from a legitimate update 

through the pointer argument of the function. However, a warning can be raised at 

compile time whenever a pointer to a variable in the backward slice of the critical 

variable is passed to an untrusted function (i.e., any function whose source-code is not 

available). This is outside the scope of the current IFS technique.  

7.6.2 Targeted Attacks 

Targeted attacks are those in which the attacker is aware of the IFS scheme and actively 

tries to defeat the protection. We assume that the attacker tries to avoid detection as much 

as possible.  

Attack 1: Attacker corrupts a data value produced in the backward slice and calls 

the corresponding encoding function with the corrupted value. 

The attack is  detected if the corruption occurs after the value has been encoded. This is 

because attempting to call an encoding function that has just been called does not 

correspond to a valid state transition, unless the function repeats in the state machine. 

Even in the case that the function repeats, the attacker would need to skip the subsequent 

calls of the encoding functions in the code. In the example in Figure 56, assume that the 

attacker corrupts the value of pw_password after the call to the encoding function 

encode_2 and calls the encode_2 function one more time to re-encode the corrupted 

value. The attack is detected because the state machine in Figure 57 does not have a 

transition from state 2 for the encode_2 call. In order to evade detection, the attacker has 
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to call all the encode functions in the state machine following state 2 in Figure 57 or reset 

the state machine and make it transition through all subsequent states  until state 2 is 

reached. At that point, the call to encode_2 becomes valid again and the attacker escapes 

detection. However, this increases the chances of the attack being detected by other 

means e.g., timing-based techniques.  

Attack 2: Attacker corrupts a data value and manages to bypass the call to the 

decoding function prior to using the decoded operand within the backward slice of a 

critical variable 

The attack is detected at the next use of the operand in the program by the call to the 

decoding function. To get away without being detected, the attacker needs to bypass all 

calls to the decoding functions before the variable is used in the backward slice. He/she 

also needs to ensure that in bypassing the calls to the decoding functions, the encoding 

functions are not bypassed, as this is detected by the state machine transitioning to an 

invalid state or not being in an accepting state prior to the function‟s return. 

In the example in Figure 56, assume that the attacker corrupts the value of authenticated 

just before line 7 and bypasses all program statements that subsequently use this operand, 

including calls to the decode function. The attacker would be able to get away undetected 

because no checks are performed on the corrupted value. However, in carrying out the 

attack, the attacker cannot execute any of the code that subsequently uses the value of the 

authenticated variable. This may result in large-scale deviations from the control-flow of 
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the original program and can be detected by alternate techniques, e.g. control-flow 

checking [185].  

Consider an attack where the attacker changed the value of pw_password after it was 

encoded and managed to bypass the call to decode_2  in line 3. The attack is detected in 

line 5 when the call to decode_2 is encountered again. Bypassing this second call affects 

the control-flow of the program and results in the call encode_6 being skipped in line 6. 

This attack is detected because the corresponding state machine is not in an accepting 

state when the function exits i.e., the path is an invalid program path. 

Attack 3: The attacker does a replay attack i.e. he/she executes the program, 

observes a sequence of valid transitions and replaces a run of the state machine with 

the observed sequence of calls to encode. 

This attack is detected by a duplication-based encoding scheme (assumed in this chapter), 

but may bypass other static encoding schemes.  In order to detect the attack, the encoding 

function must be based on a random seed that is chosen at application load time, i.e., each 

invocation of the program produces a different encoding based on the chosen seed. The 

randomization ensures that the attacker is not be able to replace a sequence of encoding 

calls with one from a different instance of the program‟s execution (unless the seed is the 

same).  

7.7 DISCUSSION 

Any static analysis technique, including the IFS, must necessarily approximate the 

behavior of the program in order to be practically realizable. Typically, the analysis 
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technique over-approximates the behavior of the program, which in turn leads to false-

negatives i.e., missed attacks. This section analyzes the effects of approximations made 

by the IFS technique on its security guarantees. Unlike the previous section, we do not 

consider specific attacks mounted by the attacker, but frame the discussion in a more 

general context.  

7.7.1.1 Effect of Intra-procedural Slicing 

The IFS technique considers only intra-procedural slices, i.e. it truncates the slice at the 

beginning of functions. Hence, any corruption of the slice prior to the function call will 

not be detected by the technique. However, there are two ways of mitigating the impact 

of intra-procedural slicing as follows: 

 Function  inlining: This involves inlining the body of the called function into the 

caller, so that the caller and the callee are treated as one function. This has 

practical limitations in terms of handling large functions and recursive calls in the 

code, but does not require programmer intervention beyond specifying the critical 

variables in the program. 

 Choosing critical variables in each function: The user can choose variables in 

each function such that the entire backward slice is covered. This requires 

understanding of the dependencies across functions and specifying the critical 

variables in each function.  

The above problems can be solved by considering inter-procedural slices, i.e. context-

sensitive dependence analysis. The issue of context-sensitivity is an important one that 
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needs to be addressed by static analysis. However, the issue of context-sensitivity is 

orthogonal to the IFS technique and is not considered in this chapter.  

7.7.1.2 Effect of Acyclic Paths 

The IFS technique extracts acyclic control paths in the application and converts the 

sequences of calls to the encoding functions on the paths into a state machine. Loops in 

the backward slice of critical variables are represented as cycles in the state machine. 

However, the state-machines do not include information about the number of iterations 

executed by a loop. This may be exploited by an attacker who may make the loop execute 

for fewer or greater number of iterations than allowed by the source program (the 

attacker‟s intent may be to bypass security checks performed in loop iterations, or to 

introduce a semantic violation). Detecting such attacks requires timing/semantic 

information about program loops or including the loop-counter in the backward slice. 

7.7.1.3 Pointer Approximations 

When an instruction accesses memory through a pointer variable, the compiler needs to 

compute the set of locations read/written by the instruction. This set is typically an over-

approximation of the set of locations read/written to by the instruction at runtime, and is 

known as the points-to set of the instruction [101]. The proposed technique relies on the 

compiler‟s inferred points-to set for extracting the backward slices. An attacker can 

replace the memory address used in an instruction (belonging to the backward slice) with 

another address in the instruction‟s points-to-set. The attack will be detected only if either  

the replacement is carried out from an instruction that is not in the backward slice or the 
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instruction performing the replacement causes the state machine to follow invalid paths 

or perform illegal transitions.  

7.7.1.4 Window of Vulnerability between Encoding Function Calls and Instructions 

Any software-based checking scheme will have a window of vulnerability which is the 

time between carrying out the security check and actually carrying out the privileged 

operation. If an attack is mounted during this window, it may escape undetected (also 

known as TOCTTOU vulnerabilities). In the implementation of the IFS scheme, the 

encoding functions are introduced immediately after the instructions producing the 

operand, and the decoding functions are introduced immediately before the instructions 

using the operand. This ensures that the window of vulnerability of the operand is as 

narrow as possible. In reality, the introduction of encode and decode functions is done at 

the compiler‟s intermediate code level, and the code generator may introduce multiple 

instructions between the encoding/decoding calls and the operands they protect. 

Furthermore, the compiler may reorder the instructions around the calls to the 

encoding/decoding functions, leading to dilation of the vulnerability window. Marking 

the functions as volatile as done by the technique prevents their reordering, but does not 

alleviate the code-generation problem. 

7.7.1.5 Legal but Invalid Control-flow Paths in the Program 

Finally, the technique only checks if a sequence of calls to the encoding function is a 

legal one in the program‟s control-flow graph. It is possible for an attacker to replace a 

sequence of encoding calls with a legal but invalid sequence in the program. However, to 
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avoid detection the sequence must be replaced in its entirety, which may be much harder 

to achieve for the attacker.  

Summary: The approximations made by the compiler can have a non-negligible impact 

on the security guarantees provide by the IFS technique. This is so for any security 

technique that relies on static analysis, for example the WIT technique [171]. However, 

the IFS technique differs from these other techniques in two significant ways. First, only 

the approximations made by the compiler that pertain to the backward slice(s) of the 

critical variable(s)  affect the security guarantees provide by the technique. Secondly, the 

technique does not need to analyze the code of modules that are not allowed to modify 

the critical data in the program. This simplifies the code base that must be analyzed 

statically and hence, the resulting code can be analyzed with higher accuracy. 

7.8 EXPERIMENTAL SETUP 

Implementation: The IFS technique has been implemented as a new pass in the LLVM 

compiler [99] called the IFS pass. The IFS pass is executed after the lexing, parsing and 

intermediate representation phases of the compiler, but prior to the register-allocation and 

code-generation phases. The pass extracts the backward slices of critical data and assigns 

a unique identifier to each slice instruction. The identifiers of the instructions along 

different paths in the function are written to a text file. The text file is parsed by Python 

scripts that generate custom C code to implement the state-machines
34

. The generated C 

                                                 

34 LLVM‟s intermediate representation is strongly-typed, hence the program types of the instructions are taken into account when 
generating custom code. 
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code is linked with runtime libraries for the encode and decode operations. The IFS pass 

consists of about 1500 lines of C++ code and the scripts constitute about 500 lines of 

Python code. The runtime libraries constitute less than 100 lines of uncommented C code. 

Benchmarks: We demonstrate the IFS technique on server applications. This is because 

server applications are (1) typically executed with super-user privileges, which makes 

them extremely attractive targets for attackers, (2) often organized as separate software 

modules, each of which performs a specific function in the program (for example, the 

authentication module is responsible for ensuring that only legitimate users are able to 

gain access to the system) and,  (3) consist of different modules executing in a single 

address space, which allows a malicious module to infiltrate security-critical modules in 

the application. The server applications considered are as follows: 

(1) OpenSSH: Implementation of the Secure Shell (SSH) protocol. Consists of over 

50000 lines of C code [137] 

(2) WuFTP:  Implementation of the File Transfer Protocol (FTP), consisting of over 

25000 lines of C code [186]. 

(3) NullHTTP: a small and efficient multithreaded HTTP server . Consists of about 2500 

lines of C code [187]. 

Modules: In the case of the OpenSSH and WuFTP applications, we focus on the 

security-critical modules of the application, whereas for NullHTTP, we protect the entire 

application. For OpenSSH, we protect the authentication module while for WuFTP, we 

protect the user login module (includes authentication and permission checking). In order 

to facilitate the analysis by the IFS technique, we extract these modules as standalone 

programs called stubs. Each stub can be executed independently of the main application, 
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and completely encapsulates the security-critical functionality of the module. The stub for 

OpenSSH consists of about 250 lines of code, while for WuFTP, the stub consists of 

about 500 lines of code. The overheads for these two applications are reported in terms of 

the execution time of the stubs. Note that the stubs have a much smaller execution time 

compared to the entire application, and hence better represent the performance overhead 

of  the IFS technique. (The overheads of the IFS technique were too low to measure in the 

context of the entire OpenSSH and WuFTP programs). For NullHTTP, we report 

overheads relative to the application considered as a whole (due to its relatively small 

size). 

Critical Variables: In each of the target applications, we choose critical variables based 

on possible insider attacks that may be launched against the application. The insider 

attacks considered are as follows: 

 OpenSSH:  The insider allows a colluding user to be authenticated in spite of 

providing the wrong password. 

 WuFTP: The insider allows spoofing of a user‟s identity in order to access the 

user‟s files/directories and perform malicious activities so that the user is blamed. 

 NullHTTP: Attacks that either modify the client request or the response in order 

to send malicious or unintended content to the user. 

Table 32 shows the critical variables in each application that are chosen (manually) in 

each application. 
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Table 32: Critical variables in the applications and the rationale for choosing the variables as 

critical 

Application Critical Variable (Function) Rationale/Comment 

OpenSSH Return value (auth_password) Return value is used to decide if user should be authenticated 

WuFTP Return value (check_Auth) Return value is used to decide if user should be authenticated  

Resolved_path (wu_real_path)  Stores the home directory of the user to which he/she has access 

user_name (check_Auth) User name of the user who is attempting to log into the system 

NullHTTP pPostData (doResponse) Buffer containing client request for processing by the server 

filename (sendFile) Name of file containing the webpage requested by the client 

 

For the OpenSSH and WuFTP stubs, the LLVM compiler [99] is able to aggressively 

inline the functions into a single function. Hence, the backward slice of the critical 

variable encompasses all instructions in the stub. In the NullHTTP application, the 

LLVM compiler inlines all the functions related to processing a client‟s request into a 

single function (htloop). The entire backward slices of the critical data are contained 

entirely within this function. Table 33shows the static characteristics of the inlined 

function containing the critical variables in each application.  

Table 33: Static characteristics of the instrumentation in each application 

Application Total number of assembly 

instructions in the function  

Number of encode 

calls in the function 

Number of 

decode calls in 

the function 

Number of acyclic 

control paths  

OpenSSH 2430 252 296 103 

WuFTP 800 7 6 2 

NullHTTP 5594 404 543 198 

 

Performance Measurements: In order to measure the performance overhead of the IFS 

technique, we executed both the original, non-instrumented program and the 

instrumented version of the program. The measurements are conducted using the 

gettimeofday() system call on a 2.0 Ghz Pentium 4 Linux system (2 GB RAM). 
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Resilience Measurements: In order to evaluate the resilience of the technique to attacks, 

we mounted both insider attacks and external attacks on the applications protected with 

the IFS technique. The insider attacks consisted of replacing a specific function (which 

does not belong to the backward slice of the critical data) with a malicious surrogate 

function. The external attacks consisted of planting memory corruption vulnerabilities in 

the program and exploiting them through specially constructed inputs to impact the 

critical data in the application.  

7.9 EXPERIMENTAL RESULTS 

This section presents the results of the experiments evaluating the performance and 

resilience of the IFS technique. It also examines the reasons for the overheads.  

7.9.1 Performance Overheads 

OpenSSH Authentication Module: In order to evaluate the performance overheads 

introduced by the IFS technique, the authentication stub is executed with three inputs, 

consisting of (1) wrong user-name, (2) correct user-name, correct password and, (3) 

correct user-name, wrong password. In each case, the execution time of the instrumented 

program is compared to the execution time of the original, non-instrumented version for a 

given input. The results are shown in Table 34. As observed in the table, the performance 

overhead ranges from about 47% to 95%, across the inputs, with a mean value of 79 %. 

Table 34: Execution times of SSH authentication stub 

Input Original (uS) Instrumented (uS) Overheads(%) 

1 155 228 47 

2 159 306 95 

3 159 310 95 

Mean   79 
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WuFTP Login Module: We consider three inputs for measuring the performance 

overhead of the instrumented stub, (1) attempt to log in with the wrong username 

(username must be ftp) (2) log in with correct username and wrong password, and (3) log 

in with correct username and correct password. Table 35 shows the execution time 

overheads for each of the inputs. As seen from the table, the performance overhead of the 

instrumented application ranges from about 4 % to 11 %, with a mean value of 7.5 %. 

Table 35: Execution times of FTP login stub 

Input Original (uS) Instrumented (uS) Overhead(%) 

1 45 50 7 

2 90 90 4 

3 48 53 11 

Mean   7.5 

 

NullHTTP Application: In order to evaluate the performance overhead introduced by 

the NullHtp server application, we developed a multi-threaded client program (in C) to 

request web-pages from the server using the HTTP POST command. The NullHTTP 

server is inherently multi-threaded and hence throughput is a more meaningful measure 

of performance overhead than latency. The client program spawns multiple threads, each 

of which sends an HTTP request to the server requesting a given webpage. The 

NullHTTP server in turn spawns a new thread to handle each incoming connection from 

the client. We measure the total time at the client to successfully complete execution of 

all spawned threads. The client executes on the same machine as the server in order to 

eliminate the effect of network latency in the measurements (as far as possible).  

Table 36 summarizes the results for the NullHTTP program. For a single-threaded client, 

the total time taken for satisfying the request is approximately twice as much for the 
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instrumented version compared to the original, non-instrumented version. As the number 

of threads in the client increase, so do the times taken for processing the requests at the 

server due to the increased workload. However, the overheads steadily decrease from 86 

% to 0 % as the number of threads increase from 1 to 25. In the single-threaded case, the 

performance overhead is dominated by latency, while in the multi-threaded case, the 

overhead is dominated by the throughput. Thus, the IFS technique has a substantial 

impact on the latency of the NullHTTP server, but small impact on the throughput.  

Table 36: Execution times of NullHTTP program 

Threads Original (uS) Instrumented (uS) Overhead (%) 

1 3052 5674 86 

5 20436 21067 16 

10 39057 42324 10 

25 100177 101916 0 

 

Discussion: From the results above, it can be concluded that the performance overheads 

are highly dependent on the nature of the application and the choice of critical data. For 

example, in the SSH stub application, the IFS technique introduces an overhead of nearly 

100%, while for FTP, the overhead is less than 10%. The reason for this difference is that 

in SSH, the backward slice of the critical variable comprises of about 10% of the 

instructions in the program, while in FTP it comprises less than 1 % of the instructions 

(see Table 33). Consequently, SSH has a higher number of encode and decode calls in the 

program compared to FTP. Further, the number of control-paths that must be tracked by 

the state machines is much higher in SSH than FTP (100 versus 2). As a result, the state 

machine for the SSH application has many more states compared to that of the FTP 

application, and hence incurs higher overhead for tracking state transitions.  
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The NullHTTP application‟s characteristics mirror those of the SSH application in terms 

of the number of instructions in its backward slice (also 10%). Consequently, the 

performance overheads incurred by the IFS technique for the NullHTTP application (in 

the single-threaded case) is close to 90 %. However, the overhead can be masked in 

concurrent requests due to the stateless nature of the HTTP protocol. This in turn allows 

the threads to be executed in parallel with each other with little or no data sharing among 

them. 

A cursory glance at the results may lead the unsuspecting reader to think that the entire 

application‟s execution time is slowed down by a factor of two for the SSH application. 

However, this is not the case as the above overheads are reported as a fraction of the 

execution time of the authentication module, which encompasses only a very small 

fraction of the execution overhead of the application (about 1% or less in a typical user 

session). Therefore, when evaluated in the context of the entire application, the IFS 

technique incurs negligible performance overhead for the SSH application. The same 

reasoning applies for the FTP application. In the case of the NullHTTP application, while 

a single request may be slowed down by a factor of two, the overall throughput of the 

server is minimally impacted. Further, the request processing time at the server is only a 

small fraction of the overall latency experienced by a typical HTTP request which is 

often routed through multiple network hops.  

Analysis of the sources of performance overhead of the instrumentation: In order to 

understand how to reduce the performance overheads of the IFS technique, it is important 

to understand the contribution of each instrumentation component added by the IFS 
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technique. The contribution of a component is measured by commenting out the 

component from the code generated by the IFS technique, and measuring the execution 

time with and without the component. The difference in the execution times yields the 

performance overhead due to the component.  The following components are considered 

in the study: 

 Encode: Execution of the encoding functions to encode variables within the 

backward slice 

 Decode: Execution of the decoding functions to decode encoded variables prior to 

their use  

 Transitions: Performing transitions in the state machines depending on the 

encoding function executed. 

 Checks: Checking if the state machine is in an accepting state before returns of 

instrumented functions 

 Memory: Encoding and decoding of memory objects (immediately after stores 

and immediately before loads) 

 Other: Additional instrumentation added by the compiler for support (e.g., stack 

handling, error reporting) 

We consider the OpenSSH application as it incurred the highest performance overheads 

among the target applications. The performance overhead of each component of the 

instrumentation is as follows.  
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The calls to the decoding functions have the maximum contribution to the overhead 

(28%), as these are called 802 times in the program (not to be confused with the static 

counts in Table 33). This is followed by encoding and decoding of memory operands 

(21%), as these may necessitate an extra load or store instruction. The state transitions 

constitute about 19% of the overhead, while the calls to the encode function brings 

another 15 % (this does not include the overhead of state-machine transitions). This is 

because the program calls the encoding function 620 times, and each call causes one or 

more state-machine transitions. The operation to check if a state machine is in an 

accepting state constitutes only 1% of the overhead, as it is called only at function exits 

(and there is only one function in the OpenSSH stub after inlining). The category, other, 

constitutes 12 % of the overhead due to the runtime support code added by the IFS pass. 

An additional 4 % overhead is unaccounted for due to measurement errors. 

Techniques to reduce the performance overhead: Based on the above results, we see 

that the encoding and decoding operations constitute the highest overhead among the 

instrumentation components. The overhead can be alleviated by implementing the 

encoding and decoding operations in hardware. This will require provision of a high-

speed hardware cache to store and retrieve the encoded values on demand. This 

functionality can also be retrofitted onto existing TPM modules in processors [188]. If 

implemented as a cache, it will incur nearly zero overheads, and the performance 

overhead of the technique can be reduced by nearly 65%. Further reduction in the 

performance overheads (by about 20%) can be achieved by using hardware to implement 

the state machines for tracking encoding calls in the program. However, this requires the 
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hardware to be reconfigurable, as each application will have a unique set of state 

machines that must be configured into the hardware at application load time. The 

hardware module can be implemented as a part of the Reliability and Security Engine 

(RSE) [1], which is a hardware framework for executing application-level checks.  This 

is a direction for future investigation. 

7.9.2 Resilience Measurements 

This section discusses the results of experimentally testing the resilience of the SSH stub 

application (the other applications are not discussed due to lack of space). We first 

consider the external attacks and then the insider attacks from Section 7.6.1. Recall that 

in both cases, the attacker‟s goal is to get the sys_auth_passwd function to return 1 even 

if the supplied username and password are not valid. 

External Attack: As mentioned in Section 7.6.1, we assume that the external attacker 

exploits the format string vulnerability in the log_user_action function. The attacker has 

to supply a well crafted username containing malicious format strings along with an 

arbitrary password in order to overwrite either the pointer to the encrypted_password 

(E3) or the return address of log_user_action (E2). The methodology used to craft the 

format string is similar in both attacks. Due to the lack of space, only the control-flow 

attack (E2) is discussed below.  

Figure 58(a) shows the stack configuration after printf is called within the vulnerable 

log_user_action function. The format string corresponding to the attack is shown in 

Figure 58(b). A typical malicious format string can be divided into three components. 
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The beginning of the string contains the addresses the attacker wants to overwrite. The 

second section of the string is generally composed with „%x‟ parameters in order to 

increment the internal stack pointer of the format function until it points to the beginning 

of our format string. The final part of the string contains the paddings and the „%n‟ 

parameters that allow us to write desired value
35

 into chosen addresses. In order to mount 

the attack, the attacker needs to determine the following by running the program offline
36

. 

1. The offset from the bottom of printf‟ functions stack frame and the stored format 

string on the stack. 

2. The address on the stack of the log_user_action function‟s return address.  

3. The address of the instruction the attacker wants to jump to, i.e. the return 

statement of sys_auth_passwd. 

 

 

\x6c\xe5\xff\xbf JUNK \x6d\xe5\xff\xbf JUNK \x6e\xe5\xff\xbf JUNK 

\x6f\xe5\xff\xbf%x%x%x%x%x%x%x%x%x%x%272x%n%130x%n%47x%n%258x%n 

 

Figure 58: (a) Stack layout after the call to printf during the attack and (b) Attacker-supplied format 

string 

                                                 

35 We are able control the last significant byte of the targeted memory addresses. Therefore, in order to control the value of all four 
bytes of the targeted memory address the attacker needs to overwrite 4 consecutive addresses shifted by one byte each time.  
36 In order to ensure repeatability of the inputs, we assume that address-space randomization is disabled while carrying out the attacks. 

In practice, an attacker may achieve similar results by repeatedly attacking the application with different addresses or through 
information-leaks in the program.  
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Detection: As explained in Section 7.6.1, the attacker bypasses the strcmp function in 

line 6 (and its corresponding encode operation) and jumps directly to the return statement 

in line 7 (Figure 56). This will cause the state machine to be in a non accepting state 

when sys_auth_passwd returns, and the attack will be detected. 

Examining the code in Figure 56, it may be thought that the attacker can achieve her goal 

undetected if she jumps to the encode(6,authenticated) statement instead of jumping 

directly to the return statement. However, this is not the case because the instrumentation 

is done at the assembly level and an encoding function is inserted after each instruction in 

the backward slice.  The earlier explanation in Section 7.6.1 had coalesced multiple 

encoding calls at the instruction-level into a single call for simplicity of explanation. 

Figure 59 shows the relevant assembly code of the instrumented sys_auth_passwd 

function to illustrate the above attack. The assembly code corresponds to statement 5 in 

Figure 56. The instrumentation is such that it is impossible to bypass the strcmp function 

without bypassing the encodings of its arguments encode(61,pw_password) and encode 

(62,pw_password). 

 

Figure 59 : Assembly code of the 

instrumented sys_auth_passwd function 

 

Figure 60: Source code of the malicious 

log_user_action function 
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Insider Attacks:  Section 7.6.1  considers three kinds of insider attacks on the 

application. Due to the lack of space, we will only discuss attack I1 in detail. For 

illustration purposes, Figure 60 shows the source code of the malicious log_user_action 

function (remember that this code is not available to the IFS technique as 

log_user_action is an untrusted function). Since the pointers encrypted_password and 

pw_password are stored on the stack, it is possible for the malicious library function to 

corrupt their values by using a fixed offset from log_user_action‟s argument: username. 

Supplying “malicious” as username and an arbitrary (but fixed length) password enables 

the insider to be authenticated as a legitimate user, thereby achieving the attacker‟s goal. 

In practice, this attack is likely to be more subtle as the attacker would try to hide their 

tracks more cleverly. 

Detection: The attack is detected by the decode(4,encrypted_password) instruction 

(Figure 59) in the sys_auth_passwd function. The value of encrypted_password is 

checked prior to its use in the strcmp function in line 4 (the check is done by the decode 

operation). Any modifications of this value by the log_user_action will result in a 

deviation from the variable‟s value when it was encoded prior to calling the 

log_user_action function and the attack will be detected. An analogous argument can be 

made for corruptions of the pw_password variable.  

7.10 PROOF OF EFFICACY OF THE IFS TECHNIQUE 

This section provides a semi-formal proof of the efficacy of the IFS technique against 

both insider attacks as well as external memory corruption attacks. We show that the IFS 
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technique can detect any attempt by an untrusted third-party module to overwrite critical 

data (independent of whether the module‟s source code is available) in violation of its 

expected behavior in the application. We also show that the IFS technique detects 

memory corruption attacks that result in execution of unwanted system-calls, violations 

of the application‟s control flow, or overwriting of security critical data in the program. 

For each external attack category, we show that the IFS technique detects all attacks that 

would be detected by state of the art security techniques.  

We first discuss insider attacks and then discuss memory corruption attacks launched by 

an external attacker. 

1. Attacks launched by an insider: In this case, we assume that an untrusted third-party 

module is loaded into the same address space as the application. The module may modify 

the application‟s data, change its control-flow or execute system calls on behalf of the 

application. We assume that (1) the module may not modify the application‟s code, (2) it 

cannot hook into any system calls made by the application, and (3) the IFS checks 

themselves cannot be bypassed en-masse (though the individual encode/decode 

operations may be bypassed). 

A function call is legitimately allowed to modify a variable if and only if (1) The variable 

is declared as a global variable in the program, or (2) The function is passed a pointer that 

may potentially alias the variable, or (3) The variable is dynamically allocated on the 

heap and can be reached through a pointer passed to the function. An assignment of the 
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variable to a function‟s return value is treated as a definition of the variable in the calling 

function rather than as a modification in the called function. 

We consider three cases when an untrusted third-party function is invoked by the 

application. The cases correspond to whether the source code of the third-party function 

is available for analysis and whether the function is legitimately allowed to influence the 

critical data‟s value according to the C language semantics.  

Case 1: The source code of the third-party function is NOT available AND the 

function is NOT allowed to legitimately modify any variable in the backward slice of 

the critical variable. 

Proof: Since the function is not legitimately allowed to modify variables in the backward 

slice of critical data, the IFS technique will not insert calls to the encode operation after 

the function call to re-encode the modified data in the slice. If the function does attempt 

to modify any of the encoded data, it will violate the encoding, which will be detected 

when the modified data is decoded prior to its use (within the function). It is also possible 

for the function to modify the control-flow of its calling function by overwriting its return 

address. These will be detected by the state-machine transitions of the IFS if the modified 

control-flow impacts the critical data in any way. 

Case 2: The source code of the third party function is NOT available AND the 

function IS allowed to legitimately modify one or more variables in the backward 

slice of the critical variable. 
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Proof: The function is legitimately allowed to modify one or more variables in the 

backward slice (as determined by the static analysis) and hence the variables will be 

decoded prior to the function call. After the function returns, the variables are re-encoded 

by the IFS technique. Any modification made by the function to the variables is reflected 

in the values used in the slice. Note that this is a potential security hazard as the function 

could perform unknown operations on the variables in the backward slice, thereby 

influencing the critical variable. However, only modifications to the variables that the 

function is legitimately allowed to modify are reflected in the program – all other 

modifications are detected by the IFS technique prior to their use in the program. Further, 

a compile-time warning is emitted if the backward slice includes a function for which the 

source code is not available, and the programmer must explicitly override the warning 

(after presumably vetting that the function is indeed doing the right thing for the values it 

is allowed to modify in the slice). Also, any modifications of the program‟s control-flow 

by the untrusted function are treated similar to violations of control-flow by external 

attackers and are hence detected by the IFS (provided the modifications impact the 

critical data either directly or indirectly). 

In the above case, since the source code of the function is not available, the function as a 

whole is assumed to modify the backward slice variables that it is legitimately allowed to 

modify. In other words, the individual instructions that actually modify the variables are 

not bracketed with encode and decode operations. Hence, an attacker may be able to 

modify the data through a different instruction than the one that was not allowed to do so 
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(within the function). However, the modification needs to be in the set of variables that 

the function is legitimately allowed to modify. 

Case 3: The source code of the third-party function IS available, in which case it is 

straightforward to check if the function can legitimately modify one or more 

variables in the backward slice. 

Proof: It is assumed that the function is trusted, since its source code is available, and 

hence it can be analyzed (statically) to determine the set of instructions in the function 

that are legitimately allowed to modify the data in the backward slice of the critical 

variable. In this case, there is no ambiguity about the data that the function is allowed to 

modify (subject to the usual sources of imprecision inherent in static analysis). However, 

the precision in the determination of the instructions that perform the modifications 

depends on whether the slicing is intra-procedural or inter-procedural. In the case of 

intra-procedural slicing, the entire function is assumed to modify the variables in the 

backward slice (that it is legitimately allowed to modify) and this is similar to case 2. In 

case the slicing is inter-procedural or if the function can be inlined into the calling 

function, then it is possible to identify the individual instructions in the function that 

write to the variables in the backward slice of the critical variable. The instructions can be 

bracketed by calls to the encode and decode operations to ensure that the window of 

vulnerability of the data in the slice is minimized. Thus, performing intra-procedural 

analysis weakens the security guarantees with respect to the instructions within the 

function, but does NOT weaken the security guarantees with respect to the effect of the 

function on the rest of the application. 
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2. Memory corruption attacks: These include attacks that do one or more of the 

following: (a) launch a system call on behalf of the application to execute another 

process, (b) change the control-flow of the program by executing the attacker‟s code as a 

result of overwriting function pointers/return addresses, or (c) overwrite security-critical 

data in the application either directly or indirectly. The IFS technique will detect all three 

cases provided they modify the critical data. We consider each case as follows. 

(a) Attacks that launch system-calls on behalf of the application to overwrite the 

critical data: 

The goal is to show that the IFS scheme will detect an anomalous sequence of system 

calls that ultimately influence the critical data (i.e. by writing to the data directly or 

indirectly) provided the attack is also detected by existing system-call based detection 

techniques[174] . In order to keep this discussion at a generic level, we consider an 

idealized system-call detection technique, which accepts a system-call sequence if and 

only if the sequence of system-calls corresponds to a valid path in the program (as 

determined through static analysis).  

Proof Sketch: Let the anomalous sequence of system calls be (S1 S2 …. Sk). We know 

that this system call sequence is not admitted by the language of valid system call 

sequences in the system, say S. i.e. there exists NO valid program path which 

corresponds to the system call sequence S = (S1 S2 …. Sk). 
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We also know that the sequence of system calls impacts the critical variable
37

 either 

directly or indirectly. Consider a system call Si in the sequence that impacts the critical 

variable (there must be at least one such Si in the sequence). There are two possible ways 

in which Si can impact the critical variable (illegitimately). 

(1)  Si can write to the memory address containing a variable in the backward slice of the 

critical variable.  

If the write by the system call Si is illegitimate, it will be detected by the IFS as the 

values in the backward slice are in an encoded form prior to the system call. Any 

overwriting of the values will violate the encoding and will hence be detected when they 

are used within the program (during the decode operation). 

 (2) Si can modify the control-flow of the program illegitimately to influence the 

computation of the critical variable. Let us assume that the runtime sequence of encode 

operations resulting from these actions is „I‟. We know that the system-call sequence S is 

not a valid one in the program. We need to show that the sequence I does not correspond 

to a valid IFS in the program.  

The proof proceeds by contradiction – we start by assuming that the signature I is a valid 

one in the program i.e. there exists a program path along which I belongs to the IFS. This 

implies there exists a valid program path along which the sequence of instructions 

transcribed by I also belong to the backward slice of the critical variable (CV). Now, 

                                                 

37 We assume that the application has only one critical variable. The extension to multiple critical variables is straightforward. 
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consider only the system calls in the backward slice of the CV. By definition, this system 

call sequence must correspond to a valid program path. Further, the calls themselves are a 

proper sub-sequence of the system-call based signature of the application.  Since they 

correspond to a valid path, the reason that the system-call sequence S is rejected must be 

because of a sub-sequence S‟ that does not involve any legitimate writes to the critical 

variable (either direct/indirect). Hence, the sequence S‟ can be removed from the 

signature S to form a new system-call based signature S‟‟ that impacts the critical 

variable. However, this corresponds to a valid system-call sequence, and is hence not 

rejected by the system-call based technique. This is a contradiction of our initial 

assumption that the system-call based detection technique rejects all anomalous system-

call sequences that impact the critical variable (recall that we considered idealized 

system-call sequences).  

(b) Attacks that violate the control-flow integrity of the application to influence 

critical data: 

The goal is to show that the IFS scheme will detect attacks that violate the application‟s 

control-flow and influence the critical data, provided the attacks are also detected by 

control-flow checking schemes. Control-flow checking [185]detects attacks that violate 

the application‟s control flow in violation of the program semantics. The violation can 

occur through the injection of new code by the attacker, or by the attacker overwriting 

either function-pointers or return addresses on the stack. 
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Proof Sketch:  Let the valid set of basic-blocks in the program (function) belong to the 

set B = { B1 ,B2 , … Bn}.  The Control-Flow Signature (CFS) is a regular expression 

consisting of some combination of Bis. A control-flow checking technique essentially 

compares the runtime control-flow to the CFS and checks for validity. A valid CFS is 

defined as a CFS that corresponds to a valid path in the program (function). 

Let the set of basic blocks in which the critical variable
38

 (CV) is defined be denoted by 

the set V. Let BS(V) denote the set of basic-blocks which comprise instructions in the 

backward slice of the CV. Note that this is different from the IFS as the IFS consists of 

all instructions in the backward slice of the CV, whereas BS(V) only considers the basic 

blocks containing the instructions. Let‟s call this the BIFS. 

Our goal is to show that no control-flow sequence that is rejected by the CFS but 

accepted by the BIFS contains instructions that modify the critical variable either directly 

or indirectly.  

As in the previous case, the proof proceeds by contradiction. Let us assume that there 

exists a control-flow sequence C that is rejected by CFS but accepted by BIFS and 

containing at least one instruction I that modifies the value of the critical variable 

(otherwise, the proof is done). There are two cases for the instruction I as follows: 

1. The instruction I was part of the original program: In this case, „I‟ will be a part of the 

backward slice of the program, and hence its parent basic block B will be a part of the 

                                                 

38 As before, we assume a single critical variable in the program without loss of generality. 
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BIFS. Further, the paths considered by the IFS technique in constructing state machines 

(at compile-time) are derived from the program‟s control-flow graph (CFG), and are 

hence a subset of the paths present in the CFS. Therefore any sequence involving the 

block B that registers as a deviation from the CFS will also be registered as a deviation 

by the BIFS. This implies that the sequence will also be rejected by the BIFS – which is a 

contradiction of our initial assumption.  

2. The instruction I is introduced by the attacker through a code-injection attack: In this 

case, „I‟ will not be able to modify the value of the critical variable, or any other variable 

in the backward slice of the critical variable. This is because all the variables will have 

been encoded when the instruction I is executed. Moreover, any attempt by instruction I 

to create a value and call an encoding function will result in a violation of the BIFS 

(because the basic block containing I will not belong to B, the domain set of BIFS). 

Finally, if I tries to perform a jump to the middle of an existing control-flow sequence in 

the BIFS, or to truncate the BIFS, it will be treated analogous to case 1 (i.e. any such 

jump that is detected by the CFS is also detected by the BIFS). Therefore, either I cannot 

modify the CV or it will result in a sequence that violates the BIFS, which is a 

contradiction of our assumption.  

Hence, the BIFS detects all control-flow attacks that influence the critical variable and 

are detected by a control-flow checking technique. 

(c) Attacks that overwrite the critical variable either directly or indirectly – The goal 

is to show that the IFS technique is at least as effective as any other memory-safety 
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checking technique (e.g. the WIT technique [171]) in detecting memory corruption 

attacks that attempt to overwrite the critical data. Let us assume that the instruction that 

performs the overwriting is I and that I belongs to the original program (otherwise, it is 

equivalent to the attacker mounting a code injection attack and this was covered in case 

b). Assume that the set of variables in the target set of instruction I is given by T. The 

WIT technique will detect any attempt by I to write to a variable outside the set T
39

. Since 

we assume that the WIT technique detects this attack, it must follow that the critical 

variable V is outside the set T. We consider three cases for the instruction I as follows: 

i. I does not belong to the backward slice of the critical variable: The attack will be 

detected as all the variables in the backward slice of I will be encoded and any 

overwriting of them will result in an incorrect value when decoded. In case „I‟ attempts to 

call an encoding function, it will necessarily violate the sequence of state transitions 

derived by the IFS technique, and the attack is detected. 

ii. I belongs to the backward slice of the critical variable, but is not valid for the current 

execution path: Since the backward slice is conservative by definition, it has to include 

all instructions that could potentially write to the critical variable, even if they are not 

valid for the current execution (input). This would be detected by the IFS if (and only if) 

the execution of the instruction results in an invalid state transition in the state machines 

i.e. there is at least one other instruction in the path that makes the path invalid. This need 

                                                 

39 In reality, WIT offers a much weaker guarantee, namely that „I‟ does not write to objects of a different color than itself. Since 

merging of colors can occur, I can write to an object outside its target set of the same color. Nonethess, we consider a stronger version 
of the WIT technique‟s guarantees. 
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not always be true – for example, if I is the only instruction along the then branch of an if 

statement, when the valid execution consists of the else statement. However, such cases 

would not be detected by the WIT technique, as WIT has to conservatively assume that  

all paths are valid in the program and hence assign the same color to all instructions that 

can potentially write to the same set of objects (even if they are on different paths). In this 

case, the guarantees provided by the IFS technique are stronger than that of WIT – 

provided the attack substitutes instructions corresponding to paths consisting of at least 

two backward-slice instructions.  

iii. I belongs to the backward slice of the critical variable, and is valid for the current 

execution path – This attack cannot be detected by the WIT technique as it does not take 

into account the order of instructions in the program in determining the validity of a 

write. However, the IFS technique can provide limited protection against this class of 

attacks, provided the overwriting instruction is executed in an order that is inconsistent 

with the backward slice i.e. there exists no program path in which the execution of the 

instruction would result in an order consistent with the control-flow graph of the 

program. This is because the execution of the instruction has to either trigger an invalid 

state transition in the state machine or the values written to by the instruction are 

dynamically dead at the time of the overwriting (and hence the overwriting is benign). 

However, if this constraint is not satisfied, the IFS technique cannot detect the attack (and 

neither can the WIT technique). 
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Thus we see that in the case of memory corruption attacks on the critical data, the IFS 

technique can detect all attacks that would also be detected by a memory-safety checking 

technique such as WIT. 

Summary: Thus we show semi-formally that the IFS technique detects all cases of 

insider attacks that attempt to modify critical data independent of whether the untrusted 

module‟s source code is available for analysis. In the case of external memory-corruption 

attacks, the IFS technique detects any attempt to impact the security-critical data 

provided the attack is also detected by existing, state-of-art, security techniques. 

7.11 CONCLUSION 

This chapter introduced an approach to protect security critical data from insider attacks. 

The approach leverages existing static analysis techniques to extract the backward slices 

of critical variables and to convert the slice into a Information-flow Signature (IFS). The 

IFS is tracked and checked at runtime using automatically generated code. A deviation of 

the runtime signature from the derived IFS indicates a security attack. We have deployed 

the technique on three widely-used open-source applications to protect security-critical 

data and have shown that the technique detects both insider attacks and external memory 

corruption attacks with low performance overheads. 

Future work will involve (1) implementing the encoding and decoding functions in 

hardware to reduce the performance overheads of the IFS technique and (2) incorporating 

context-sensitivity in the slicing algorithm to increase the coverage of the technique. 
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CHAPTER 8 CONCLUSIONS AND FUTURE WORK 

8.1 CONCLUSIONS 

This dissertation has demonstrated a unified approach for providing reliability and 

security to applications in an automated fashion. The approach presented in this 

dissertation enhances the compiler and the runtime system to derive application-aware 

error and attack detectors that continuously monitor the application for errors and attacks. 

The key characteristic of the approach is that it protects critical data in the application 

from a wide-range of errors and attacks. Critical data is defined as any data in the 

application, which if corrupted can cause failures with long downtimes or hard-to-detect 

security compromises. 

The errors considered by the approach include hardware transient errors in memory and 

computation as well as software defects that cause transient data corruptions. Examples 

of the latter are soft-errors, errors in the processor‟s control-logic and variation-induced 

errors. Examples of the latter are memory corruption errors and race conditions. The 

attacks considered by the approach include external attacks that exploit memory 

corruption vulnerabilities in the application as well as internal attacks launched by a 

trusted insider in the same address space as the application.  

The dissertation also presents a unified approach to formally model the effects of low-

level errors and security attacks on the application. The formal approach exhaustively 

enumerates the effects of errors (attacks) according to a given fault (threat) model and 

helps in validating the efficacy of the derived detectors.  



292 

 

Finally, the detectors derived using the approach proposed in this dissertation have been 

implemented using reconfigurable hardware in the context of the Reliability and Security 

Engine (RSE) [33], which is a hardware framework for executing application-aware 

checks.  The detectors have been prototyped as part of the Trusted Illiac project at UIUC.  

In summary, application-aware dependability is a viable approach for building highly 

reliable and secure applications with lower performance overheads compared to 

traditional dependability techniques such as duplication or type-safety.  

8.2 FUTURE WORK 

This section provides a roadmap of future work in the directions explored by this 

dissertation.  

Compilers and program analysis techniques: Compilers typically focus on optimizing 

program performance by removing redundancies in the program‟s source code. This is 

because redundancies in the program code can result in wasteful computation and 

consequently loss of performance. However, redundancies also offer advantages in terms 

of increasing program resilience to hardware and software errors, provided the 

redundancies can be turned into appropriate runtime checks. 

Currently, even if redundancies are present in an application‟s source code, they offer 

little benefit to the application as they are not represented as runtime checks. In the 

future, compilers could convert redundancies in the program into runtime checks for error 

detection. Compilers can also introduce redundancies in a controlled manner into the 

original code or avoid removing certain redundancies that were originally present. 
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However, a judicious trade-off must be achieved between introducing too much 

redundancy, which would hurt performance, and not introducing any redundancy, which 

may impact the application‟s reliability and security.  

The technique proposed in Chapter 4 is one way of introducing redundancies in the 

computation of critical variables in the form of runtime checks. Further, the check is not 

just a straightforward duplication of the critical variable‟s computation, but a selectively 

optimized version and is hence different from the original version. However, the 

technique did not attempt to explicitly diversify the representation of the check with 

respect to the original computation. Diversification can lead to detection of permanent 

hardware errors and software bugs that would not be detected by duplication. This is an 

area of future investigation. 

Program verification: Program verification techniques such as theorem proving and 

model-checking analyze the program‟s code in order to prove properties about the 

program with respect to a formal specification. The formal specifications are provided by 

the programmer and the verification tool attempts to statically establish whether the 

program satisfies the specification along each program path. As discussed in Section 

4.2.1, these techniques are vulnerable to the feasible path problem, which lead to 

exploration of program paths that will never occur during a concrete execution of the 

program. Recent work has considered the use of dynamic analysis to drive the 

verification along concrete program execution paths [189, 190]. The main idea in these 

systems is to piggyback the symbolic exploration of paths by the verification tool onto 
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the concrete execution of the program and use the information from the concrete 

execution to prune infeasible paths.  

The SymPLFIED technique described in Chapter 5 is a symbolic technique for formally 

validating fault-tolerance properties of an application. SymPLFIED also faces the 

feasible path problem as it statically explores the program‟s error outcomes. This leads to 

state-space exploration when model-checking large programs. One way of enhancing the 

analysis is to use runtime information gathered during the dynamic execution of the 

program to explore only those paths that are likely to be executed during a concrete 

execution. However, this is different from the techniques proposed in [189, 190], as these 

techniques do not need to consider the effects of random errors in the state-space 

exploration. The main challenge introduced by random errors is that the program may 

follow paths that do not occur in any dynamic error-free execution. Hence, new methods 

of integrating dynamic execution profiles with symbolic execution are needed.  

Runtime systems for program monitoring: Runtime monitoring systems provide a 

flexible method to observe programs and perform adaptations on the fly depending on 

changes in the requirement or the environment. The techniques proposed in this 

dissertation also fall under the broad umbrella of runtime monitoring techniques. 

However, existing runtime monitoring are geared towards detecting specific kinds of 

errors [90] and security attacks [191]. The technique proposed in this dissertation on the 

other hand, can detect a broad class of errors and attacks that impact critical variables in 

the application. The technique can be integrated into a program monitoring framework 

such as Monitoring Oriented Programming (MOP) [192] to detect generic runtime errors 



295 

 

and security attacks. This offers the advantage that the checks can be expressed in a 

formal fashion in order to facilitate reasoning about their detection capabilities. Further, 

the checks can be adaptively enabled or disabled at runtime depending on the prevalence 

of errors or attacks in the program‟s environment as well as the maximum performance 

overhead that the end-user is willing to incur when executing the application.  

Micro-architecture design: The technique developed in this dissertation uses a 

combination of software and reconfigurable FPGA (Field-Programmable Gate Array) 

hardware to execute the derived detectors. In the future, it is possible that the processor 

itself directly executes the detectors using specialized functional units with no 

intervention from the software. Each processor could have dedicated functional units to 

execute specific detectors. The functional units would be configured by the processor 

manufacturer to include checks used by a standard set of workloads (benchmarks). This is 

similar to the approach in [193] for accelerating program operations using hardware.  

An interesting challenge in this approach is to specify a set of common detector patterns 

across a range of applications to be configured into hardware. The processor‟s front-end 

can automatically identify the specified patterns in the application‟s binary and 

transparently schedule the checks onto dedicated functional units with no involvement 

from the compiler. This approach will completely move the complexity of runtime 

adaptation to errors and attacks from the software to the hardware. It will also obviate the 

distribution of multiple versions of an application with different checks for different 

environments, and instead allow the hardware to transparently control both the degree 

and nature of the runtime checks that are executed for an application. 
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Zbigniew Kalbarczyk, Karthik Pattabiraman, William Healey, Peter Klemperer, 

Reza Farivar and Wen-Mei Hwu,  IEEE Security and Privacy Magazine, January 
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 Discovering Application-level Insider Attacks using Symbolic Execution, 
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