
Mapping Parallelism to Multi-cores: A Machine Learning Based
Approach

Zheng Wang Michael F.P. O’Boyle
Member of HiPEAC

School of Informatics, The University of Edinburgh, UK
jason.wangz@ed.ac.uk, mob@inf.ed.ac.uk

Abstract
The efficient mapping of program parallelism to multi-core proces-
sors is highly dependent on the underlying architecture. This pa-
per proposes a portable and automatic compiler-based approach to
mapping such parallelism using machine learning. It develops two
predictors: a data sensitive and a data insensitive predictor to select
the best mapping for parallel programs. They predict the number
of threads and the scheduling policy for any given program using
a model learnt off-line. By using low-cost profiling runs, they pre-
dict the mapping for a new unseen program across multiple input
data sets. We evaluate our approach by selecting parallelism map-
ping configurations for OpenMP programs on two representative
but different multi-core platforms (the Intel Xeon and the Cell pro-
cessors). Performance of our technique is stable across programs
and architectures. On average, it delivers above 96% performance
of the maximum available on both platforms. It achieve, on aver-
age, a 37% (up to 17.5 times) performance improvement over the
OpenMP runtime default scheme on the Cell platform. Compared
to two recent prediction models, our predictors achieve better per-
formance with a significant lower profiling cost.

Categories and Subject Descriptors D.3 [Software]: Program-
ming languages; D.3.4 [Programming languages]: Processors—
Compilers, Optimization

General Terms Experimentation, Languages, Performance

Keywords Compiler optimization, Performance modeling, Ma-
chine learning, Artificial neural networks, Support vector machine

1. Introduction
Multi-core based processors are widely seen as the most viable
means of delivering performance with increasing transistor densi-
ties (13). However, this potential can only be realized, in the long-
term, if the application programs are suitably parallel. Applications
can either be written from scratch in a parallel manner, or, given the
large legacy code base, converted from an existing sequential form.
Regardless of how applications are parallelized, once the program-
mer has expressed this program parallelism in a suitable language
such as OpenMP (9), the code must be mapped efficiently to the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’09, February 14–18, 2009, Raleigh, North Carolina, USA.
Copyright c© 2009 ACM 978-1-60558-397-6/09/02. . . $5.00

underlying hardware if the potential performance of multi-cores is
to be realized.

Although the available parallelism is largely program depen-
dent, finding the best mapping is highly platform or hardware de-
pendent. There are many decisions to be made when mapping a par-
allel program to a platform. These include determining how much
of the potential parallelism should be exploited, the number of pro-
cessors to use, how parallelism should be scheduled etc. The right
mapping choice depends on the relative costs of communication,
computation and other hardware costs and varies from one multi-
core to the next. This mapping can be performed manually by the
programmer or automatically by the compiler or run-time system.
Given that the number and type of cores is likely to change from
generation to the next, finding the right mapping for an application
may have to be repeated many times throughout an application’s
lifetime making automatic approaches attractive.

This paper aims at developing a compiler-based, automatic and
portable approach to mapping an already parallelized program to
a multi-core processor. In particular it focuses on determining the
best number of threads for a parallel program and how the paral-
lelism should be scheduled. Rather than developing a hand-crafted
approach that requires expert insight into the relative costs of a par-
ticular multi-core, we develop an automatic technique that is inde-
pendent of a particular platform. We achieve this by using a ma-
chine learning based predictor that automatically builds a model of
the machine’s behavior based on prior training data. This model
predicts the performance of particular mappings and is used to se-
lect the best one.

Task scheduling and processor allocation are certainly not new
areas. There is a large body of work in runtime dynamic task and
data scheduling(21; 26; 16). These approaches dynamically sched-
ule tasks among multiprocessors and focus on particular platforms.
Analytic models predict the performance of a parallel program
based on hand-crafted models (19; 5). Such approaches typically
rely on micro architecture level detail (11; 14) for accurate predic-
tion. They are, however, restricted in their applicability to a limited
set of programs and architectures. Furthermore, due to the nature
of the models involved, they simplify the interaction between the
program and hardware. Such models are unable to adapt to dif-
ferent architectures, and the compiler writer has to spend a non-
trivial amount of effort in redeveloping a model from architecture
to architecture. Online learning (15; 2) is an alternative approach
that attempts to overcome these limitations. It is accurate and does
not use prior knowledge of the hardware, compiler or program, in-
stead relying on a large amount of profiling of the target program.
Although useful for hardware design space modeling (15), it is im-
practical for compiler based mapping. Thus existing approaches are
either restricted in their portability or require excessive profiling.

75

Our scheme automatically learns from prior knowledge and
maps a given parallel program to hardware processors. We demon-
strate our technique by building machine learning (ML) based
predictors to select mapping configurations (thread numbers and
scheduling policies) for OpenMP programs. The predictors are
first trained off-line. Then, by using code, data, and runtime fea-
tures extracted from low-cost profiling runs, they predict optimal
parallelism configurations for a new, unseen program across input
data sets.

This paper is organized as follows: section 2 demonstrates that
it is a non-trivial task to map a given program to the underlying
architecture. Section 3 describes our ML-based predictors and sec-
tion 4 describes how our predictors are trained and used. Section 5
and 6 discuss our experimental methodology and results. Section 7
discusses related work and is followed by conclusions in section 8.

2. Motivation
This section illustrates that selecting the correct number of threads
and how they are scheduled to a multi-core has significant impact
on performance. In figure 1 a primary parallel loop in FT (from the

#pragma omp f o r
f o r (i = 0 ; i < dims [2] [0] ; i ++) {

i i = (i +1+ x s t a r t [2]−2+NX/2)%NX − NX/ 2 ;
i i 2 = i i ∗ i i ;
f o r (j = 0 ; j < dims [2] [1] ; j ++) {

j j = (j +1+ y s t a r t [2]−2+NY/2)%NY − NY/ 2 ;
i j 2 = j j ∗ j j + i i 2 ;
f o r (k = 0 ; k < dims [2] [2] ; k ++) {

kk = (k+1+ z s t a r t [2]−2+NZ/2)%NZ − NZ / 2 ;
indexmap [k] [j] [i] = kk∗kk+ i j 2 ;

}
}

}

Figure 1. Complex mapping decisions for a simple parallel loop.

NAS parallel benchmark suite) is shown. Despite the simplicity of
the code the parallelism mapping decisions are non-trivial.

Consider the graph in figure 2. The x-axis shows the number
of processors employed on a SMP platform with 2 Quad-core In-
tel Xeon processors for an OpenMP program, while the y-axis
shows the speedup obtained for this loop. Each of the two lines
shows the speedup obtained from the program presented in fig-
ure 1 but for two different thread scheduling policies. We see from
this figure that the CYCLIC scheduling policy performs better than
the BLOCK scheduling policy in some cases. When running this
program with 8 processors, the BLOCK scheduling policy – a
compiler and OpenMP runtime default scheme, results in perfor-
mance degradation with a factor of 1.2 times compared with the
CYCLIC scheduling policy. The reason is that, for this example, the
CYCLIC scheduling policy achieves better load balancing and data
locality with a large number of processors. Furthermore, although
the CYCLIC scheduling policy exhibits better scalability than the
BLOCK scheduling, the performance improvement is small when
using more than 6 processors.

Consider now the graph in figure 3. Once again the x-axis shows
the number of processors this time for the Cell platform for the
same OpenMP program. The y-axis shows the speedup obtained.
It illustrates that selecting the right number of threads number is
important, if we are to obtain any speedup. In stark contrast to fig-
ure 2 there is no performance improvement available when using
any number of Synergistic Processing Elements (SPEs) along with
one Power Processing Element (PPE). This is because the commu-
nication cost is too high to offload the computation to the SPE, a
disjoint memory processing unit that has a high communication
cost for moving data from the global shared memory to its local

1 2 3 4 5 6 7 8
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
 BLOCK scheduling CYCLIC scheduling

S
pe

ed
up

Processor Number

Figure 2. Speedup of the parallel loop in FT on the Xeon platform
for 2 scheduling policies. This figure shows that it is important to
choose the right scheduling policy.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.0

0.5

1.0

1.5

S
pe

ed
up

Processor Number

 CYCLIC scheduling

Figure 3. Speedup of the parallel loop in FT on the Cell processor
for the CYCLIC scheduling policy over the sequential execution.
This figure shows that it is important to choose the right number of
threads.

memory in a Cell processor. The best parallelism configuration is to
spawn an additional worker thread on the PPE (the 1-processor con-
figuration) which supports two SMT threads. Figure 3 also shows
that mapping parallelism across platforms is important. Applying
the Xeon-optimal mapping scheme (using the maximum number of
processors with the CYCLIC scheduling policy) on the Cell plat-
form results in a reduction in performance equals to 75% of the
sequential version.

This simple example illustrates that selecting the correct map-
ping scheme has a significant performance impact, and the optimal
mapping scheme may vary from architecture to architecture. Prior
research have already revealed that selecting an optimal mapping
scheme for a parallel program has large performance gains(28).
Therefore, it is crucial for the compiler to find a good mapping
scheme for a parallel program, and we need an automatic and
portable solution for parallelism mapping.

3. Predictive Modeling
To provide a portable, but automated parallelism mapping solution,
we use machine learning to construct a predictor that, once trained
by training data (programs) can predict the behavior of an unseen
program. This section describes how mappings can be expressed as
a predictive modeling problem.

76

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S
pe
ed
up

Processor Number

 Actual performance Predictive performance
The predictive best thread number

The actual best thread number

Figure 4. Our ANN model predicts program scalability accurately
and then selects the best thread number.

Hyperplane -1Hyperplane-2

CYCLIC scheduling DYNAMIC schedulingBLOCK scheduling

Hyperplane-3

GUIDED scheduling

Figure 5. The SVM model constructs hyper-planes for classifying
scheduling policies.

3.1 Characterization
The key point of our approach is to build a predictor that can predict
scalability and scheduling policies with low profiling cost.

We propose two predictors: a data sensitive (DS) predictor and
a data insensitive (DI) predictor for tackling programs whose be-
havior is sensitive to input data sets, and for those who are not. The
only difference between these two predictors is in the number of
profiling runs needed for extracting the data features (as discussed
in section 4.3).

A formal representation of the parallelism mapping problem
is described as follows. Let x be a program’s feature, s be the
performance curve (scalability) and p be the best scheduling policy.
We wish to build a model, f , which predicts the scalability, ŝ,
and the scheduling policy, p̂, i.e., f(x) = (ŝ, p̂). The closer the
performance of the predicted result–(ŝ, p̂) to the performance of
the best configuration–(s, p) is, the better the model will be.

This problem can be further broken down into two sub-problems.
The first is to determine the scalability of a program, and then de-
cide the number of threads allocated to it. The second is to group
program features that have similar characteristics into scheduling
policy groups. We use two standard machine learning techniques
to build two predictors to solve these two problems.

3.2 Model Construction
We use a feed-forward Artificial Neural Network (ANN)(4) to solve
the scalability fitting problem, and use a multi-class Support Vector
Machine (SVM) model(3) to solve the scheduling policy classifica-
tion problem.

The ANN model predicts the scalability of a program and selects
the optimal thread number for it (as illustrated in figure 4). It is
a multi-layer perception which has 2 hidden layers with 3 hidden
neurons (nodes) for each layer. The training algorithm for this ANN
model is Bayesian regularization backpropagation(4). We use the
artificial neural network because of its proven success in modeling
both linear and non-linear regression problems, and it is robust to
noise(4).

T
ra

in
in

g
 D

a
ta

 (P
ro

g
ra

m
s
)

(x
k
, x

k
, , x

k
; s

k
)

(x
2
, x

2
, , x

2
; s

2
)

(x1, x1, , x1 ; s1)1 2

n

1 2 n

n

21

(features; speedup)

Artifical

Neural

Network

Support

Vector

Machine

(x
1
, x

1
, , x

1
; p

1
)1 2 n

(x2, x2, , x2 ; p2)n21

(x
k
, x

k
, , x

k
; p

k
)1 2 n

(features; the scheduling policy)

Figure 6. Training data is processed into features (x) with the
speedup (s) and the scheduling policy (p), and fed as training input
into ANN and SVM models.

A
 N

e
w

 P
ro

g
ra

m

D
a

ta
 S

e
ts

Feature

Extractor

Profiling the program

(x1, x2, , xn)

(x1, x2, , xn)

Artifical

Neural

Network

Support

Vector

Machine

Profiling data is

processed as

features

s
1 ,s

2 ,
,s

n
p

1 ,p
2 ,

,p
n

P
a

ra
lle

lis
m

C
o

n
fig

u
ra

tio
n

s

Figure 7. The new program is profiled to extract features (x)
which are fed into the ANN and SVM models respectively. The ANN
model predicts the speedup (s) and the SVM model predicts the best
scheduling policies (p) with different thread numbers.

The SVM model attempts to construct hyper-planes in the multi-
dimensional feature space, to separate between those occasions
when a scheduling policy p is best used and those occasions
when it is not. Figure 5 illustrates how this separation could look
like in a hypothetical program space. We use a multi-class SVM
model with the Radial Basis Function as the kernel because of its
proven success in handling both linear and non-linear classification
problems(4).

There are alternative approaches to build a performance predic-
tion model, such as analytical(5) and regression-based(2) schemes.
We compare our predictors with these two techniques in section 6.

3.3 Training
We use an off-line supervised learning scheme whereby we present
the models with pairs of program features and desired mapping de-
cisions, and the models learn how to map parallelism from empiri-
cal evidence. Figure 6 illustrates the model training procedure. The
collected data is processed into features (as discussed in section 4)
as x for the ANN model and the SVM model. Each model finds a class
of functions that closely fits the training examples. More precisely,
the ANN model finds a function f to take the program features (x) as
input and predicts the program scalability (s), i.e., x → s. The SVM
model constructs hyper-planes to separate the classification prob-
lem x → p. Since the training data gathering and the model train-
ing procedures are performed off-line, the training process can be
done ”at the factory” before the compiler is shipped to users.

3.4 Deployment
Once the predictor is trained, it can be used to predict an ”unseen”
program. Figure 7 illustrates how we use the model for prediction.
For a new, previously unseen application, the following steps need
to be carried out.

77

Table 1. Extracted program features.
Code feature Static Instruction, Load/Store, Branch Count

Data and dynamic feature Loop iteration count, L1 data cache miss rate,
Branch miss rate

Binary

and

bitwise

operations

C
o
d
e
 fe

a
tu

re
s

Computation per

instruction

Memory

access

Load and store

instructions

Control

Flows

The number of

branches

Operations

Cycle per

instructions

D
a
ta

 fe
a
tu

re
s

Loop counts

of the

profiled data

set

L1 Dcache

and branch

miss rate

Parallel

execution

time

T
h
e
 R

u
n
tim

e
 fe

a
tu

re

Figure 8. Feature data is processed into feature groups.

1. Feature extraction. This involves collecting features presented
in section 4 with some low cost profiling runs.

2. Prediction. The trained predictors take the program features
as input, and produce the prediction results (scalability s and
the optimal scheduling policy p) that will be post-processed as
parallelism configurations.

4. Extracting Program Features
The primary distinctive characteristic of our approach is that it uses
code, data and runtime features as means to build an accurate pre-
dictor. This section describes how essential program characteristics
(or features) are extracted from profiling runs.

4.1 The Feature extractor
Table 1 describes program features used in our predictors. Our code
and data feature extractor is built on LLVM(17). The source to
source instrumentation used in our feature extractor has lower over-
head (less than 25%) than dynamic binary profiling approaches,
which may result in 10 to 100 times slowdown(25). In this paper,
we run the binary of the instrumented serial code to capture the
code and data features. These features could also be extracted us-
ing a number of other approaches, such as the dynamic instrumen-
tation approach(23), without affecting the prediction accuracy of
our approach.

4.2 Code Features
Code features are derived directly from the source code. Rather
than using this high level information directly, we post-process and
group these features into four separate groups to characterize a
program, as shown in figure 8.

4.3 Data Features
Some dynamic features are dependent on input data sets, such as
the L1 data cache and the branch miss rates. Counters are inserted
into to the serial code to record the loop iteration count of the pro-
filed input data set. Through this profiling run, we also record the
L1 data cache and the Branch miss rates from hardware perfor-
mance counters that are widely supported in modern processors.

For the DI predictor, the feature extractor predicts the potential
dynamic features based on features extracted from the smallest
input data set. It predicts program behaviors for a larger loop
iteration count by using features extracted from the smallest input
data set and prior knowledge that learned from training data. The
DI predictor assumes that the program behavior does not have too
much variability across data sets at a fine-grain parallel level. Of

Predictor
Profiling runs with the sequential
program

Profiling runs with the parallel
program

The regression-based model N M × N

MMGP N M × N

Data sensitive predictor N 1
Data insensitive predictor 1 1

Figure 9. Number of profiling runs needed by each model with N
input data sets and M scheduling policies. Our ML-based predictors
need the least number of profiling runs.

course, there may be cases where the behavior of a program is
dependent on the input data set. Hence, we also propose the DS
predictor that can handle the problem in this situation.

The DS predictor uses one profiling run on the sequential pro-
gram for each data set in order to extract data set information. This
translates into profiling with 7% and 1% of the total number of pos-
sible parallelism configurations on the Intel platform and the Cell
platform respectively. It is obvious that the DS predictor has better
performance than the DI predictor because it extracts the data set
features more accurately (as presented in section 6).

4.4 Runtime Features
As any ”block-box” system, our predictors need to understand how
the compiler parallelizes a program. They get this information by
investigating the execution time of a parallelized program. We ob-
tain the execution time by using one profiling run with the parallel
version of the program. This profiling run can be done with arbi-
trary number of processors that allows the user to find a tradeoff
between hardware resources and the profiling overhead. In this pa-
per, the feature extractor parallelizes the program with the CYCLIC
scheduling policy. On the Intel platform, this parallelized program
is profiled with the maximum number of processors that has the
least profiling overhead for most cases. On the Cell platform, the
parallelized program is profiled with a SPE, because the SPE is a
critical resource in the Cell processor.

4.5 Summary
In summary, our ML-based predictors use profiling information to
characterize code, data and runtime features of a given program.
The feature extractor needs several profiling runs for a program to
extract these features. For a previously unseen program, we firstly
instrument the serial code for counting operations, and then we
perform a profiling run for this sequential instrumented version
to obtain the code and data features. Secondly, the program is
parallelized and profiled with the smallest input data set in order
to extract the runtime features.

A surprising result is that the DI predictor produces accurate
results by only profiling with the smallest input data set. This is
because, as found in our experiments, at a fine-grain level, the
parallel program behaviors does not exhibit significant variability
across data sets. Some programs are sensitive to input data sets, and
they can be handled by the DS predictor at the cost of an additional
profiling run with each input data set. Figure 9 shows the number
of profiling runs needed by each predictor.

5. Experimental Methodology
This section introduces platforms, compilers, and benchmarks used
in our experiments as well as the evaluation methodology.

5.1 The Experimental Platform
In order to show that our approach works across different types of
multi-cores, we targeted both a shared memory and a distributed
memory platforms. The first target is a shared memory homoge-
neous machine with two quad-core Intel Xeon processors, support-
ing up to 8 threads. The second, in contrast, is a QS20 Cell blade,

78

Table 2. Hardware and software configurations.
Intel Xeon Server

Hardware Quad-core 3.0 GHz Intel Xeon, 16GB RAM
O.S 64-bit Scientific Linux with kernel 2.6.9-55 x86 64
Compiler Intel icc 10.1 -O3 -xT -axT -ipo

Cell Blade Server
Hardware 2 3.2GHz Cell processors, 1 GB RAM
O.S Fedora Core 7 with Linux kernel 2.6.22 SMP
Compiler IBM Xlc single source compiler for Cell v0.9

-O5 -qstrict -qarch=cell -qipa=partition=minute -qipa=overlay

Table 3. Programs used in our experiments.
Benchmark.program Benchmark.program
Mibench.stringsearch Mibench.susan c
Mibench.susan e NPB.BT
NPB.CG NPB.EP
NPB.FT NPB.IS
NPB.LU NPB.MG
UTDSP.Csqueeze UTDSP. compress
UTDSP.edge detect UTDSP.fir
UTDSP.histogram UTDSP.iir
UTDSP.latnrm UTDSP.lmsfir
UTDSP.lpc UTDSP.mult

a disjoint memory heterogeneous system with two Cell processors,
supporting up to 17 worker threads, in which one worker thread
runs on the Power Processing Element (PPE), the remaining 16
on each of the Synergistic Processing Elements (SPEs). A brief
overview of each platform’s characteristics including the OS and
compiler flags is given in table 2.

5.2 Benchmarks
We evaluated our predictors on 20 programs from three bench-
mark suites: UTDSP(18), the NAS parallel benchmark (NPB)(1),
and Mibench(12), as shown in table 3. These parallel workloads
represent widely used computation kernels from embedded, high
performance, and commercial applications. We omitted those pro-
grams from UTDSP and Mibench which have loop carried depen-
dence on their primary time-consuming loops. Most programs in
Mibench have function-pointers and pointer indirection that could
not be handled by the IBM Xlc compiler properly. This is due to
the multiple address spaces of the Cell processor, which prevents us
from carrying out experiments on the whole Mibench benchmark
suite. As for programs from different benchmark suites which have
similar semantics, we only keep one of them in our experiments
(for instance, we skipped fft from Mibench because FT from NPB is
also a Fast Fourier Transform application) to make sure our model
is always making prediction for an unseen program.

We applied the DI and the DS predictors to predict fine-grain
mapping configurations for both the primary time-consuming and
some trival parallel loops from these programs. Some loops from
the same program have the same code structure and we only select
one of them for experimenting.

5.3 Comparisons
On the Cell platform, we evaluated the performance of two ML-
based predictors by comparing them with two recent prediction
models: an analytical model–Model of Multi-Grain Parallelism
(MMGP)(5) and a regression-based model(2). Since MMGP targets
only the Cell processor, it correspondingly restricts our evaluation
on the Xeon platform.

5.3.1 The Analytical Model
Filip et al (5) propose an analytical model namely MMGP for pre-
dicting the execution time for a Cell application. This model can be

represented as equation 1.

T = a · THPU +
TAPU

p
+ CAPU + p · (OL + TS + OC + p · g) (1)

Parameters in equation 1 are described as below. a is a param-
eter accounts for the thread and resource contention in the PPE.
THPU is the execution time on the PPE for task offloading and
computation. TAPU is the task execution time by using one SPE,
and CAPU is the execution time of non-parallelized parts of a SPE
task. p stands for the number of SPEs used. OOl, TCSW , and OCOL

are the overhead of send-receive communication, thread context
switching, and global synchronization respectively. Finally, g is the
latency of the workload distribution.

In MMGP, some parameters are program-independent and we
use values suggested by the authors. For some program-dependent
parameters, we use profiling runs to obtain them.

5.3.2 The Regression-based Model
Bradley et al proposed a regression-based approach to predict the
execution time of a parallel program(2). This model predicts the ex-
ecution time T of a given program on p processors by using several
profiling runs of this program on p0 processors – a small subset of
processors, in which p0 can be p/2, p/4 or p/8. This model aims
to find coefficients (β0, ..., βn) of n observations (x1, ..., xn), with
n input data sets on q processors, by using a linear regression fit for
log2(T) as equation 2.

log2(T) = β0 + β1log2(x1) + . . . + βnlog2(xn) + g(q) + error (2)

where g(q) can be either a linear function or a quadratic function
for q processors. Once the coefficients (β0, ..., βn) are determined,
equation 2 can be used to predict the execution time of the program
with p processors.

As mentioned in (2), a high number of processors configuration
does not always produce a good result. For example, a p/2 profiling
configuration may perform worse than a p/4 profiling configuration
by predicting the execution on p processors. In our experiments, we
use p0 = p/4 which is the mean profiling configuration in (2). For
each program, we predict the performance by using two forms of
the g(p0) function given by the authors, and report the best result.

5.3.3 Selecting Scheduling Policies
The regression-based model and MMGP can be extended to select
the scheduling policy for programs. However, as shown in figure 9,
they need more profiling runs than our predictors.

As for selecting the scheduling policy, these two models need
to predict the execution time of a parallel program with different
scheduling policies. This means they need to profile different par-
allel versions of a program that compiled with each scheduling pol-
icy respectively. By ranking the predictive execution time, these
models are able to predict the optimal mapping scheme for a given
program.

5.4 The Evaluation Method
We use a standard evaluation method named ”leave one out cross
validation” to evaluate our predictors. This means that for a given
set of K programs, we leave one program out, train a predictor
on the remaining K − 1 programs, and predict the Kth program
with the previously trained model. We repeat this procedure for
each program in turn. Therefore, our predictors are always making
predictions on an unseen program.

For our evaluation, we randomly generated 60 data sets for most
programs and 5-10 data sets for some programs because of their
inherent constraints (for instance, FT in NPB requires that the in-
put sizes be powers of two) which do not allow us to generate a

79

Table 4. Maximum speedups with the largest data set.
Loop Intel Cell Loop Intel Cell

Mibench.stringsearch 5.31 1.00 Mibench.susan d.L1 6.38 3.99
Mibench.susan d.L2 6.02 1.57 Mibench.susan e.L1 2.90 1.66
Mibench.susan e.L2 6.02 1.00 Mibench.susan e.L3 7.39 1.11
NPB.BT.L1 2.10 1.19 NPB.BT.L2 1.94 2.41
NPB.BT.L3 4.56 5.85 NPB.CG.L1 1.00 1.96
NPB.CG.L2 7.33 1.00 NPB.CG.L3 1.00 1.00
NPB.EP 7.99 6.50 NPB.FT.L1 1.00 1.96
NPB.FT.L2 2.92 1.00 NPB.FT.L3 6.30 7.26
NPB.IS 1.20 1.63 NPB.LU.L1 2.82 7.34
NPB.LU.L2 6.11 1.00 NPB.MG.L1 1.84 1.00
NPB.MG.L2 2.38 1.00 NPB.MG.L3 1.00 1.18
NPB.SP.L1 2.26 1.20 NPB.SP.L2 1.00 5.16
NPB.SP.L3 3.84 7.79 UTDSP.compress 1.00 1.00
UTDSP.edge detect 7.49 3.00 UTDSP.fir 5.99 4.83
UTDSP.histogram 1.91 1.94 UTDSP.iir 1.00 1.00
UTDSP.latnrm 2.20 1.00 UTDSP.lmsfir 1.42 1.00
UTDSP.lpc 7.03 1.00 UTDSP.mult 7.80 1.50
UTDSP.Csqueeze 7.39 1.86

large number of input data sets. We present the prediction accu-
racy of each program as the prediction performance relative to the
upper bound. For each program, we report the result by averag-
ing performance for all input data sets. We exhaustively executed
each program with all possible mapping schemes to empirically
find the actual optimum. Therefore, the gap between the predicted
optimum and the actual optimum is calculated based on the actual
performance of programs.

6. Experimental Results
This section first evaluates the maximum performance achievable
from selecting the best number of threads and scheduling policy
and, as such, provides an upper-bound on performance with which
to evaluate our approach. We then evaluate our ML-based predic-
tors against the OpenMP runtime default scheme across data sets
showing that it consistently outperforms it. Next, we compare our
approach against two recently proposed prediction models on two
platforms. Finally, we evaluate the profile overhead required by
each of these approaches and show that our predictors deliver the
best performance and reduce profiling costs by factors of at least 4
times.

6.1 Upper Bound Performance
Table 4 shows the upper bound speedup with the largest data set
for each program relative to the sequential version on both the
Intel and the Cell platforms. It some instances it is not profitable
to parallelize so their upper bound speedups are 1. In other cases
speedups up to 7.99 and 7.79 are available on the Intel and the Cell
platforms respectively.

Selecting the right mapping scheme has a significant per-
formance impact on a parallel program. On average, the worst
scheduling policy results in 2.7 (up to 42) and 2.1 (up to 29) times
performance degradation on the Intel and the Cell platforms re-
spectively. Moreover, there is no single scheduling policy that con-
sistently outperforms others for all programs across architectures.
Considering the number of threads with scheduling policies to-
gether, on average, the worst mapping configuration results in 6.6
(up to 95) and 18.7 (up to 103) times performance degradation
on the Intel and Cell platforms respectively. So, there is signifi-
cant performance improvement available, but it is important not to
select a bad mapping configuration.

6.2 Comparison with Default Scheme
In this section we compare our ML-based predictors with the
OpenMP runtime default scheme on two different platforms.

6.2.1 Performance Comparison
Figure 10 shows that ML-based predictors not only have better
mean performance but also have better stability across programs
than the OpenMP runtime scheme across platforms. On average,

OpenMPdefault DI DS

0

10

20

30

40

50

60

70

80

90

100

P
er

fo
rm

an
ce

 g
ap

 to
 th

e
up

pe
r b

ou
nd

 (%
)

(a) Performance variation on the Intel platform.

OpenMPdefault DI DS

0

50

100

150

200

250

300

350

400

450

500

P
er

fo
rm

an
ce

 g
ap

 to
 th

e
up

pe
r b

ou
nd

 (%
)

(b) Performance variation on the Cell platform.

Figure 11. Stability comparison across programs and data sets on
two platforms.

the ML-based approach has better performance than the OpenMP
runtime scheme, above 96% on both platforms compared to 95%
and 70% for the OpenMP’s default scheme on the Intel and the Cell
platforms respectively. This figure illustrates the advantage of our
approach against a fixed mapping strategy – the ML-based approach
adapts to programs, data sets and platforms.

Xeon Platform. On the Intel platform (as shown in figure
10(a)), the ML-based approach has slightly better performance than
the OpenMP runtime scheme. This is mainly because the Intel icc
compiler has been well optimized for OpenMP programs that used
in our experiments on the Intel platform(27). Even though, the icc
OpenMP runtime default scheme still results in great performance
degradation in some programs (such as NPB.FT.L2, NPB.FT.L3,
and NPB.MG.L1), in which it only delivers 57% to 75% perfor-
mance relative to the upper bound. In contrast to the OpenMP
runtime default scheme, the ML-based approach delivers stable per-
formance across data sets. It achieves at least 95% performance to
the upper bound for any program used in our experiments, which
demonstrates the stability of our approach across programs.

Cell Platform. Figure 10(b) compares the performance of the
OpenMP runtime scheme against our ML-based approach. Unlike
the Intel platform, the OpenMP default scheme does not deliver
high performance on the Cell platform. Performance of our ML-
based approach on the Cell platform is as good as its on the Intel
platform, which shows the stability of our approach across plat-
forms. On average, the ML-based approach has better performance
than the OpenMP runtime scheme, 96% and 97% for the two ML
approaches compared to 70% for OpenMP’s default scheme. In
one case (NPB.CG.L3) the performance improvement is 17.5 times
greater over than the IBM Xlc OpenMP runtime default scheme.
Although the DI predictor has slightly worse performance than the
runtime default scheme in some programs, the performance gap
relative to the OpenMP runtime default scheme is small (0.01%

80

M
ib
en
ch
.s
tri
ng
se
ar
ch

M
ib
en
ch
.s
us
an
_d
.L
1

M
ib
en
ch
.s
us
an
_d
.L
2

M
ib
en
ch
.s
us
an
_e
.L
1

M
ib
en
ch
.s
us
an
_e
.L
2

M
ib
en
ch
.s
us
an
_e
.L
3

N
PB

.B
T.
L1

N
PB

.B
T.
L2

N
PB

.B
T.
L3

N
PB

.C
G
.L
1

N
PB

.C
G
.L
2

N
PB

.C
G
.L
3

N
PB

.E
P

N
PB

.F
T.
L1

N
PB

.F
T.
L2

N
PB

.F
T.
L3

N
PB

.is

N
PB

.L
U
.L
1

N
PB

.L
U
.L
2

N
PB

.M
G
.L
1

N
PB

.M
G
.L
2

N
PB

.M
G
.L
3

N
PB

.S
P.
L1

N
PB

.S
P.
L2

N
PB

.S
P.
L3

U
TD

SP
.c
om

pr
es
s

U
TD

SP
.C
sq
ue
ez
e

U
TD

SP
.e
dg
e_
de
te
ct

U
TD

SP
.fi
r

U
TD

SP
.h
is
to
gr
am

U
TD

SP
.ii
r

U
TD

SP
.la
tn
rm

U
TD

SP
.lm

sf
ir

U
TD

SP
.lp
c

U
TD

SP
.m

ul
t

AV
ER

AG
E

0
20
40
60
80
100

P
er

fo
rm

an
ce

 re
la

tiv
e

to

th
e

up
pe

r b
ou

nd
 (%

)

 OpenMP default DI DS

(a) Performance to the upper bound on the Intel platform.

M
ib
en
ch
.s
tri
ng
se
ar
ch

M
ib
en
ch
.s
us
an
_c
.L
1

M
ib
en
ch
.s
us
an
_c
.L
2

M
ib
en
ch
.s
us
an
_e
.L
1

M
ib
en
ch
.s
us
an
_e
.L
2

M
ib
en
ch
.s
us
an
_e
.L
3

N
PB

.B
T.
L1

N
PB

.B
T.
L2

N
PB

.B
T.
L3

N
PB

.C
G
.L
1

N
PB

.C
G
.L
2

N
PB

.C
G
.L
3

N
PB

.E
P

N
PB

.F
T.
L1

N
PB

.F
T.
L2

N
PB

.F
T.
L3

N
PB

.IS

N
PB

.L
U
.L
1

N
PB

.L
U
.L
2

N
PB

.M
G
.L
1

N
PB

.M
G
.L
2

N
PB

.M
G
.L
3

N
PB

.S
P.
L1

N
PB

.S
P.
L2

N
PB

.S
P.
L3

U
TD

SP
.c
om

pr
es
s

U
TD

SP
.C
sq
ue
ez
e

U
TD

SP
.e
dg
e_
de
te
ct

U
TD

SP
.fi
r

U
TD

SP
.h
is
to
gr
am

U
TD

SP
.ii
r

U
TD

SP
.la
tn
rm

U
TD

SP
.lm

sf
ir

U
TD

SP
.lp
c

U
TD

SP
.m

ul
t

AV
ER

AG
E

0

20

40

60

80

100

P
er

fo
rm

an
ce

 re
la

tiv
e

to

th
e

up
pe

r b
ou

nd
 (%

)

 OpenMP default DI DS

(b) Performance to the upper bound on the Cell platform.

Figure 10. Performance of our ML-based predictors is stabler and better than the OpenMP runtime default scheme across programs and
platforms.

to 12%, and is 2.6% on average). Again, the performance of the
ML-based predictors is stable across programs on the Cell platform.
They deliver above 80% performance of the upper bound for most
programs. The OpenMP runtime default scheme, however, has per-
formance below 80% on 16 out of 35 programs (in which it deliv-
ers 4.2% to 79% performance of the upper bound). The OpenMP
runtime default scheme uses the maximum available hardware pro-
cessing units while resulting in bad performance in 46% of pro-
grams investigated in this paper. In the other words, it is not ef-
ficient and its performance is not stable across programs. This is
because of the heterogeneity and disjointed memory characteristics
in the Cell processor makes the mapping decisions become com-
plex, and a fixed heuristics model could not adapt to programs and
data sets.

6.2.2 Stability Comparison
Box-plots in figure 11 summarize the performance gap to the upper
bound for the OpenMP default scheme and ML-based predictors
across programs and data sets. The longer the ”whisker” a model
has, the less stable performance it has. The graph clearly shows that
performance of the ML-based predictors is not only stable across
programs and data sets, but also stable across architectures. It also
shows that the DS predictor is stabler than the DI. This is because
the DS predictor use extract profiling runs to obtain the data and
dynamic features for a program with different input data sets that
results in better adaptation across data sets.

Although our ML-based predictors were not aware of the homo-
geneous or heterogeneous characteristics of the underlying hard-
ware when they were constructed, they learned the program and
architecture behaviors from the training data automatically. This
demonstrates the strength of an automatic model–it frees compiler

developers from tremendous effort in tuning the heuristic from ar-
chitecture to architecture (and from program to program) by learn-
ing based on empirical evidence.

6.3 Comparison with Other Models
This section compares our approach against the regression-based
model and MMGP approach. In this experiment, we assumed that
MMGP and the regression-based model always pick the best schedul-
ing policy. This allows a fair comparison.

Xeon Platform. We only compare our approach with the
regression-based model on the Intel platform, because MMGP does
not target this platform.

According to figure 12, the ML-based predictors have consis-
tently better performance and gerater stability across programs
compared to the regression-based model. On average, the ML-based
predictors outperform the regression-based model which only de-
livers 80% performance to the upper bound. Despite assuming it al-
ways picks the best scheduling policy, the regression-based model
slows down performance of some programs significantly. For ex-
ample, it delivers only 3.3% performance to the upper bound for
NPB.CG.L3. This is because the regression-based model can not
choose the correct number of threads for these programs.

Cell Platform. On the Cell platform, we compare our approach
with MMGP, a performance model particularly targets the Cell pro-
cessor, and the regression-based model. Consider the graph in fig-
ure 13, where the DI predictor (the DS predictor has better perfor-
mance than the DI predictor but is not shown to aid clarity) has a
better average performance as well as greater stability across the
programs compared to both MMGP and the regression-based model.

In this experiment we assumed that both models can choose
the best scheduling policy, which means that they should produce

81

M
ib
en
ch
.s
tri
ng
se
ar
ch

M
ib
en
ch
.s
us
an
_d
.L
1

M
ib
en
ch
.s
us
an
_d
.L
2

M
ib
en
ch
.s
us
an
_e
.L
1

M
ib
en
ch
.s
us
an
_e
.L
2

M
ib
en
ch
.s
us
an
_e
.L
3

N
PB

.B
T.
L1

N
PB

.B
T.
L2

N
PB

.B
T.
L3

N
PB

.C
G
.L
1

N
PB

.C
G
.L
2

N
PB

.C
G
.L
3

N
PB

.E
P

N
PB

.F
T.
L1

N
PB

.F
T.
L2

N
PB

.F
T.
L3

N
PB

.is

N
PB

.L
U
.L
1

N
PB

.L
U
.L
2

N
PB

.M
G
.L
1

N
PB

.M
G
.L
2

N
PB

.M
G
.L
3

N
PB

.S
P.
L1

N
PB

.S
P.
L2

N
PB

.S
P.
L3

U
TD

SP
.c
om

pr
es
s

U
TD

SP
.C
sq
ue
ez
e

U
TD

SP
.e
dg
e_
de
te
ct

U
TD

SP
.fi
r

U
TD

SP
.h
is
to
gr
am

U
TD

SP
.ii
r

U
TD

SP
.la
tn
rm

U
TD

SP
.lm

sf
ir

U
TD

SP
.lp
c

U
TD

SP
.m

ul
t

AV
ER

AG
E0

20
40
60
80
100

P
er

fo
rm

an
ce

 re
la

tiv
e

to
 th

e
up

pe
r b

ou
nd

 (%
)

 regression-based DI DS

Figure 12. Performance relative to the upper bound on the Intel platform. Our machine learning based predictors have the closest
performance to the upper bound (96% and 97% compared with 80%).

M
ib
en
ch
.s
tri
ng
se
ar
ch

M
ib
en
ch
.s
us
an
_c
.L
1

M
ib
en
ch
.s
us
an
_c
.L
2

M
ib
en
ch
.s
us
an
_e
.L
1

M
ib
en
ch
.s
us
an
_e
.L
2

M
ib
en
ch
.s
us
an
_e
.L
3

N
PB

.B
T.
L1

N
PB

.B
T.
L2

N
PB

.B
T.
L3

N
PB

.C
G
.L
1

N
PB

.C
G
.L
2

N
PB

.C
G
.L
3

N
PB

.E
P

N
PB

.F
T.
L1

N
PB

.F
T.
L2

N
PB

.F
T.
L3

N
PB

.IS

N
PB

.L
U
.L
1

N
PB

.L
U
.L
2

N
PB

.M
G
.L
1

N
PB

.M
G
.L
2

N
PB

.M
G
.L
3

N
PB

.S
P.
L1

N
PB

.S
P.
L2

N
PB

.S
P.
L3

U
TD

SP
.c
om

pr
es
s

U
TD

SP
.C
sq
ue
ez
e

U
TD

SP
.e
dg
e_
de
te
ct

U
TD

SP
.fi
r

U
TD

SP
.h
is
to
gr
am

U
TD

SP
.ii
r

U
TD

SP
.la
tn
rm

U
TD

SP
.lm

sf
ir

U
TD

SP
.lp
c

U
TD

SP
.m

ul
t

AV
ER

AG
E0

20

40

60

80

100

P
er

fo
rm

an
ce

 re
la

tiv
e

to
 th

e
up

pe
r b

ou
nd

 (%
) regression-based MMGP DI

Figure 13. Performance relative to the upper bound on the Intel platform on the Cell platform. The DI predictor has the closest performance
to the upper bound (96% compared with 65% and 78%).

better performance results than our predictors. However, on average
ML-based predictors outperform these two models by delivering
96% (for the DI predictor) and 97% (for the DS predictor) of
performance of the upper bound, while MMGP and the regression-
based model have 76% and 69% of performance of the upper bound
respectively. Moreover, our predictors enjoy stable performance for
most programs except for one loop in FT and one loop in LU. The
relatively low performance of these two loops is because of their
unique characteristics compared to the training data sets, and this
can be improved by continuous learning or using more training data
sets. In contrast to our predictors, the regression-based model has
its poorest prediction achieving just 4% of the upper bound, and
MMGP’s poorest prediction achieving 18% of the upper bound.

6.4 Summary of Prediction Results
Section 6.2 and 6.3 demonstrate two advantages of our approach
compared with hand-crafted heuristics (MMGP and the OpenMP
runtime default scheme) and online learning (the regression-based
model) approaches. Firstly, our approach has the best performance
on average. Secondly, its performance is stable across programs,
data sets and architectures.

6.5 Profiling Cost
Profiling cost is a critical metric in evaluating the effectiveness of
any prediction model. This section discusses the profiling cost of
the regression-based model, MMGP, and the ML-based predictors.

Table 5 shows that our ML-based predictors have the smallest
profiling costs on both platforms.

As shown in table 5, our approach has the lowest profiling cost
among these models. The DI predictor profiles only 0.03% and
0.06% of all possible parallelism configuration on the Intel and the

Table 5. Absolute profiling overhead for each model.
Model Intel Cell
DI predictor 4.79secs 4.80mins
DS predictor 13.10mins 1.75hours
Regression-based model 59mins 16.45hours
MMGP N.A. 41hours

Cell platform respectively. The DS predictor needs additional pro-
filing runs than the DI predictor and has a profiling overhead of
7.18% on the Intel platform and 1.16% on the Cell platform. How-
ever, when compared to the regression-based model, it still reduces
the profiling overhead by factors of 4 and 12 times on the Intel
and the Cell platforms respectively. Comparing to MMGP on the Cell
platform, the DI predictor and the DS predictor significantly reduce
the profiling overhead by factors of 29 and 512 times respectively.

Figure 14 shows the profiling cost per program for each model
(the profiling cost of the DI predictor is very low and is not shown
in figure 14(a) to aid clarity). The profiling cost of the DS predictor
ranges from 0.2% to 13% on the Intel platform and ranges from
0.08% to 4.7% on the Cell platform. Overall, our predictors have
lower profiling cost than the regression-based model and MMGP,
which have to go through a large portion of all possible mapping
configurations to make a prediction.

6.5.1 Summary of Profiling Cost
The ML-based approach has a fixed number of profiling runs regard-
less of the number of processors and scheduling policies it consid-
ers. This is an important advantage that guarantees the scalability of
our approach in a large design space – introduced by future multi-

82

M
ib
en
ch
.s
tri
ng
se
ar
ch

M
ib
en
ch
.s
us
an
_d
.L
1

M
ib
en
ch
.s
us
an
_d
.L
2

M
ib
en
ch
.s
us
an
_e
.L
1

M
ib
en
ch
.s
us
an
_e
.L
2

M
ib
en
ch
.s
us
an
_e
.L
3

N
PB

.B
T.
L1

N
PB

.B
T.
L2

N
PB

.B
T.
L3

N
PB

.C
G
.L
1

N
PB

.C
G
.L
2

N
PB

.C
G
.L
3

N
PB

.E
P

N
PB

.F
T.
L1

N
PB

.F
T.
L2

N
PB

.F
T.
L3

N
PB

.is

N
PB

.L
U
.L
1

N
PB

.L
U
.L
2

N
PB

.M
G
.L
1

N
PB

.M
G
.L
2

N
PB

.M
G
.L
3

N
PB

.S
P.
L1

N
PB

.S
P.
L2

N
PB

.S
P.
L3

U
TD

SP
.c
om

pr
es
s

U
TD

SP
.C
sq
ue
ez
e

U
TD

SP
.e
dg
e_
de
te
ct

U
TD

SP
.fi
r

U
TD

SP
.h
is
to
gr
am

U
TD

SP
.ii
r

U
TD

SP
.la
tn
rm

U
TD

SP
.lm

sf
ir

U
TD

SP
.lp
c

U
TD

SP
.m

ul
t

AV
ER

AG
E

0
10
20
30
40
50

P
ro

fil
in

g
ov

er
he

ad
 re

la
tiv

e
to

al

l p
os

si
bl

e
co

nf
ig

ur
at

io
ns

 (%
) DS regression-based

(a) Profiling overhead on the Intel platform.

M
ib
en
ch
.s
tri
ng
se
ar
ch

M
ib
en
ch
.s
us
an
_c
.L
1

M
ib
en
ch
.s
us
an
_c
.L
2

M
ib
en
ch
.s
us
an
_e
.L
1

M
ib
en
ch
.s
us
an
_e
.L
2

M
ib
en
ch
.s
us
an
_e
.L
3

N
PB

.B
T.
L1

N
PB

.B
T.
L2

N
PB

.B
T.
L3

N
PB

.C
G
.L
1

N
PB

.C
G
.L
2

N
PB

.C
G
.L
3

N
PB

.E
P

N
PB

.F
T.
L1

N
PB

.F
T.
L2

N
PB

.F
T.
L3

N
PB

.is

N
PB

.L
2.
L2

N
PB

.L
U
.L
1

N
PB

.M
G
.L
1

N
PB

.M
G
.L
2

N
PB

.M
G
.L
3

N
PB

.S
P.
L1

N
PB

.S
P.
L2

N
PB

.S
P.
L3

U
TD

SP
.C
sq
ue
ez
e

U
TD

SP
.c
om

pr
es
s

U
TD

SP
.e
dg
e_
de
te
ct

U
TD

SP
.fi
r

U
TD

SP
.h
is
to
gr
am

U
TD

SP
.ii
r

U
TD

SP
.la
tn
rm

U
TD

SP
.lm

sf
ir

U
TD

SP
.lp
c

U
TD

SP
.m

ul
t

AV
ER

AG
E0

10
20
30
40
50
60
70

P
ro

fin
g

ov
er

he
ad

 re
la

tiv
e

to

al
l p

os
si

bl
e

co
nf

ig
ur

at
io

ns
 (%

) DS regression-based MMGP

(b) Profiling overhead on the Cell platform.

Figure 14. Profiling cost per program for each model on two platforms. The ML-based predictors have the lowest profiling overhead.

core systems with a large number of processors as well as runtime
systems which support more scheduling schemes.

The regression-based model has a fairly expensive profiling
overhead because it does not take advantage of prior knowledge.
Thus, every time it encounters a new program, it starts with no
prior knowledge and has to obtain and learn behaviors of the new
program through expensive profiling runs. MMGP has a similar prob-
lem because it has to use expensive profiling runs to characterize
the behavior of a particular program. The reason MMGP has better
prediction performance than the regression-based model is because
it obtains architecture characteristics by using micro-architecture
benchmarks. In contrast to these models, our predictor learns from
prior knowledge through a one-off training cost at the factory.
Therefore, it needs the least profiling when predicting a new pro-
gram while achieving the best performance.

6.6 Model Training Cost
Our two ML-based predictors are learnt with off-line training. In
this paper, we used some program runs (627 runs on the Intel
platform, and 1311 runs on the Cell platform) to collect training
data and build our model. The total program runs and training
process caused two days by using four machines. This is a one-off
cost amortized over all future users of the system and represents
less time than is usually needed to develop a hand-tuned heuristic.

7. Related Work
Task scheduling and performance modeling have an extensive
literature. Prior research mainly focused on heuristics and ana-
lytical models(19; 10), runtime adaption(8), and online training
models(15; 2) of mapping or migrating task(26) on a specific plat-
form. Rather than proposing a new task mapping or performance
modeling technique for a particular platform, this paper aims to

develop a compiler-based, automatic, and portable approach that
learns how to best use of existing compilers and runtime systems.

Task Mapping in Multiprocessors. Ramanujam and Sadayap-
pan (26) used heuristics to solve the task mapping problems in dis-
tributed memory systems. Runtime list-based heuristics give high
priorities to critical tasks in a task dependence graph(24). These ap-
proaches target on runtime scheduling of different tasks rather than
processor allocation for a parallel task.

Analytical Performance Modeling. Gabriel et al(11) and
Sharapov et al(14) present two systematic methods to predict appli-
cation performance. Their approaches rely on low level hardware
detail, which are only feasible to analyze on a limited set of appli-
cations and architectures.

Several analytical models for modeling parallel performance
have been proposed, such as (19),(10), and (5). These models use
low-level program and architecture information to model compu-
tational phases of a parallel program. However they require user-
provided program and architecture characteristics, preventing their
portability across platforms.

The OpenUH compiler(20) uses a static cost model for evalu-
ating the cost for parallelizing OpenMP programs. This model is
built on static analysis which does not adapt to input data sets, and
targets a particular platform.

Runtime Adaption. Corbalan et al (8) measure performance
and perform processor allocation for loops at runtime. The adap-
tive loop scheduler(28) selects both the number of threads and the
scheduling policy for a parallel region in SMPs through runtime de-
cisions. In contrast to these runtime approaches, this paper presents
a static processor allocation scheme which is performed at compi-
lation time.

Statistical Performance Prediction. İpek et al(15) use an ar-
tificial neural network to predict a high performance application–

83

SMG 2000 with an error of less than 10%. However, their model
needs a fairly large number of sample points for a single program,
which introduces a high profiling cost. Recently, Bernhard et al(2)
demonstrate the regression-based model can be used to predict the
scalability of an OpenMP program. Their model trained on a small
subset of processors, predicts execution time for a large number of
processors. In contrast to our technique, these models do not learn
from prior knowledge which requires more expensive online train-
ing and profiling costs for a new program.

Adaptive Compilation. Cooper et al (7) develop a technique to
find a ”good” compiler optimization sequence that reduces the code
size. The shortcoming of this model is that it has to be repeated
for each program to decide the best optimization sequence for that
program. Cavazos et al(6) use performance counters to generate
compiler heuristics for predicting code transformation strategies
for a sequential program. Recently, Long et al (22) used machine
learning to determine the thread number allocated for a parallel
java loop on the runtime. This approach does not tackle with the
portability issue and does not adapt to different input data sets.
Furthermore, they do not perform any limit study.

In contrast to prior research, we built a model that learns how
to effectively map parallelism to multi-core platforms with existing
compilers and runtime systems. The model is automatically con-
structed and trained off-line, and parallelism decisions are made at
compilation time.

8. Conclusions and Future Work
This paper has presented two portable machine learning (ML) based
predictors for the compiler to map parallel programs to multi-
cores. We demonstrated our predictors by predicting fine-grain
parallelism mappings of OpenMP programs. By using code, data
and runtime features, our predictors predict the optimal number
of threads and the optimal scheduling policy for mapping a new,
unseen program to the underlying hardware. In contrast to classical
performance prediction approaches, our approach focuses on find-
ing optimal parallelism mappings for programs across data sets.
Our model is built and trained off-line, and is fully automatic.
We evaluate our ML-based predictors by comparing them with
two state-of-the-art performance prediction models: an analytical
model and a regression-based model as well as the OpenMP run-
time default scheme. Experimental results on two different multi-
core platforms (Intel Xeon and the Cell processors) show that our
predictors not only produce the best performance on average but
also have the greatest stability across programs, data sets and archi-
tectures. Compared to two recent performance prediction models,
our ML-based predictors reduce the profiling cost for a new program
significantly by factors ranging from 4 to 512 times.

Future work will combine our predictors with code transforma-
tion and compiler options to optimize parallel programs. Further-
more, we will apply our predictors to other types of parallelism,
such as software pipelining.

Acknowledgments
This research is partially supported by the European MILEPOST
and SARC projects under the 7th Framework Programme. We
would like to thank to Barcelona Supercomputing Center for the
use of their Cell/B.E. machines.

References
[1] D. H. Bailey, E. Barszcz, et al. The NAS parallel benchmarks. The In-

ternational Journal of Supercomputer Applications, 5(3):63–73, 1991.

[2] B. Barnes, B. Rountree, et al. A regression-based approach to scala-
bility prediction. In ICS’08, 2008.

[3] E. B. Bernhard, M. G. Isabelle, et al. A training algorithm for optimal
margin classifiers. In Proceedings of the fifth annual workshop on
Computational learning theory, 1992.

[4] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, Oxford, U. K., 1996.

[5] F. Blagojevic, X. Feng, et al. Modeling multi-grain parallelism on
heterogeneous multicore processors: A case study of the Cell BE. In
HiPEAC’08, 2008.

[6] J. Cavazos, G. Fursin, et al. Rapidly selecting good compiler opti-
mizations using performance counters. In CGO’07, 2007.

[7] K. D. Cooper, P. J. Schielke, et al. Optimizing for reduced code space
using genetic algorithms. In LCTES’99, 1999.

[8] J. Corbalan, X. Martorell, et al. Performance-driven processor alloca-
tion. IEEE Transaction Parallel Distribution System, 16(7):599–611,
2005.

[9] L. Dagum and R. Menon. OpenMP: An Industry-Standard API for
Shared-Memory Programming. IEEE Comput. Sci. Eng., 5(1):46–55,
1998.

[10] E. C. David, M. K. Richard, et al. LogP: a practical model of parallel
computation. Communications of the ACM, 39(11):78–85, 1996.

[11] M. Gabriel and M. John. Cross-architecture performance predictions
for scientific applications using parameterized models. In SIGMET-
RICS’04, 2004.

[12] M. R. Guthaus, J. S. Ringenberg, et al. Mibench: A free, commercially
representative embedded benchmark suite, 2001.

[13] H. Hofstee. Future microprocessors and off-chip SOP interconnect.
Advanced Packaging, IEEE Transactions on, 27(2):301–303, May
2004.

[14] S. Ilya, K. Robert, et al. A case study in top-down performance
estimation for a large-scale parallel application. In PPoPP’06, 2006.

[15] E. Ipek, B. R. de Supinski, et al. An approach to performance predic-
tion for parallel applications. In Euro-Par’05, 2005.

[16] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allo-
cating directed task graphs to multiprocessors. ACM Comput. Surv.,
31(4):406–471, 1999.

[17] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In CGO’04, 2004.

[18] C. Lee. UTDSP benchmark suite,
http://www.eecg.toronto.edu/˜corinna/DSP/infrastructure/UTDSP.html.

[19] G. V. Leslie. A bridging model for parallel computation. Communi-
cations of the ACM, 33(8):103–111, 1990.

[20] C. Liao and B. Chapman. A compile-time cost model for OpenMP. In
IPDPS’07, 2007.

[21] C. L. Liu and W. L. James. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[22] S. Long, G. Fursin, et al. A cost-aware parallel workload allocation
approach based on machine learning. In NPC ’07, 2007.

[23] C. K. Luk, Robert Cohn, et al. Pin: building customized program
analysis tools with dynamic instrumentation. In PLDI’05, 2005.

[24] B. S. Macey and A. Y. Zomaya. A performance evaluation of CP
list scheduling heuristics for communication intensive task graphs. In
IPPS/SPDP’98, 1998.

[25] Z. Qin, C. Ioana, et al. Pipa: pipelined profiling and analysis on multi-
core systems. In CGO’08, 2008.

[26] J. Ramanujam and P. Sadayappan. A methodology for parallelizing
programs for multicomputers and complex memory multiprocessors.
In SuperComputing’89, 1989.

[27] T. Xinmin, G. Milind, et al. Compiler and Runtime Support for
Running OpenMP Programs on Pentium- and Itanium-Architectures.
In IPDPS’03, 2003.

[28] Z. Yun and V. Michael. Runtime empirical selection of loop schedulers
on hyperthreaded SMPs. In IPDPS’05, 2005.

84

