
A Case for Compiler-driven Superpage Allocation

Joshua Magee
Department of Computer Science

Texas State University
San Marcos, TX

jm1576@txstate.edu

Apan Qasem
Department of Computer Science

Texas State University
San Marcos, TX

apan@txstate.edu

ABSTRACT
Most modern microprocessor-based systems provide support
for superpages both at the hardware and software level. Ju-
dicious use of superpages can significantly cut down the
number of TLB misses and improve overall system perfor-
mance. However, indiscriminate superpage allocation re-
sults in page fragmentation and increased application foot-
print, which often outweigh the benefits of reduced TLB
misses. Previous research has explored policies for smart al-
location of superpages from an operating systems perspec-
tive. This paper presents a compiler-based strategy for au-
tomatic and profitable memory allocation via superpages.
A significant advantage of a compiler-based approach is the
availability of data-reuse information within an application.
Our strategy employs data-locality analysis to estimate the
TLB demands of a program and uses this metric to deter-
mine if the program will benefit from superpage allocation.
Apart from its obvious utility in improving TLB perfor-
mance, this strategy can be used to improve the effectiveness
of certain data-layout transformations and can be a useful
tool in benchmarking and empirical tuning. We demonstrate
the effectiveness of this strategy with experiments on an In-
tel Core 2 Duo with a two-level TLB.

Categories and Subject Descriptors
D.3.4 [Software]: Processor—compilers, memory manage-
ment

General Terms
Design, Performance, Experimentation

1. INTRODUCTION
As application data footprints grow larger, so too does

the importance of the memory hierarchy in improving pro-
gram performance. The translation lookaside buffer (TLB),
which lies in the critical path of a memory access plays an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACMSE ’09 March 19-21, 2009, Clemson, SC, USA.
Copyright 2009 ACM 1-58113-000-0/00/0004 ...$5.00.

important role in improving application performance. Stud-
ies have shown that for many data-intensive applications,
increased TLB misses can not only degrade performance but
in many cases becomes the principal bottleneck [7]. Because
of its importance to improving application performance, the
TLB has received considerable attention from industry and
academia alike. Many strategies have been proposed for
improving TLB performance both at the hardware and soft-
ware level.

Among the different strategies proposed, the use of su-
perpages has been the dominant one. Most micro-processor
based systems today support multiple page sizes, from smaller
pages of size 4K-16K to larger pages of size 2M-16M. The
use of large pages increases TLB coverage and reduces TLB
misses. However, indiscriminate use of large pages leads
to unwarranted increase in application data footprint and
causes internal page fragmentation. To ameliorate the ill-
effects of fragmentation, several strategies have been pro-
posed that use heuristics for intelligent allocation of super-
pages. Since the operating system is primarily responsible
for allocating physical pages, most techniques for managing
superpages have been OS-centric. However, because of the
role the compiler plays in program analysis and in setting up
the run-time environment, it can help the operating system
in efficient allocation of superpages. There are two key ad-
vantages to having a compiler-based scheme for superpage
allocation:

(i) Programmer productivity and code portability: On most
systems, to acquire superpages, the programmer needs to
insert code that sends an explicit request to the operating
system through the memory allocator. Although there are
APIs that can streamline the code to be inserted, the respon-
sibility to request pages still remains with the programmer.
Having automatic support for allocation into superpages at
the compiler-level relieves the programmer from this respon-
sibility. Moreover, since support for superpages vary across
systems, programs that contain explicit code for superpage
requests become less portable. Having the compiler insert
the platform-specific code increases portability and main-
tainability.

(ii) Enhanced information for allocation decisions: A key
advantage the compiler has over the operating system is that
it has knowledge of the memory access behavior of an appli-
cation. The OS, when allocating memory for a process only
considers the data footprint - that is the amount of mem-
ory required by the program. However, the data footprint
does not necessarily indicate how much pressure the appli-
cation is going to put on the TLB. The actual TLB usage

©2009 ACM 978-1-60558-421-8/09/03 ...$10.00

for a program depends on its data-reuse patterns. Gener-
ally, the number of distinct pages touched within the work-
ing set determines the TLB traffic for a particular applica-
tion. Thus, allocation decisions that are oblivious to the
data-reuse patterns within an application are likely to be
less effective. Since the working set information can only
be derived through data-dependence analysis, the compiler
can play an important role in making superpage allocation
heuristics more effective.

In this paper, we present the design and implementation
of a compiler-based approach for allocation of superpages
that yields the advantages discussed above. Our strategy is
fully automatic and uses data-reuse information within an
application to make allocation decisions. We provide pre-
liminary experimental results that show that our technique
can be effective in reducing the number of TLB misses, while
preserving code portability and maintainability.

2. RELATED WORK
There has been significant work in developing strategies

for improving TLB performance both at the hardware and
software level. Hardware approaches have mainly focused on
either modifying TLB organization or extending the existing
TLB architecture. Talluri and Hill propose a TLB organi-
zation based on partial subblocks that can extend TLB cov-
erage with minimal support from the operating system [10].
Fang et al. propose a two-level address translation mecha-
nism that allows placement of multiple smaller pages into a
larger page [3].

Software strategies for improving TLB performance have
focused on extending TLB coverage and providing trans-
parent support for large pages. Navarro et al. provide a
superpage management strategy for operating systems and
demonstrate that it is effective in lowering TLB misses, in-
creasing application performance and reducing fragmenta-
tion [8]. Shimizu et al. extend this work and provide a
Linux implementation for superpages that yields significant
performance improvement on the tested workloads [9].

Lu et al. propose modifications to the Linux kernel for
mapping application text regions to superpages for enter-
prise workloads [5]. As discussed earlier our proposed strat-
egy for compiler-based superpage allocation is complemen-
tary to any of the OS-based approaches.

3. IMPLEMENTATION
We implemented automatic support for superpages in the

Low Level Virtual Machine (LLVM) Compiler Infrastruc-
ture [4]. LLVM provides a framework for language indepen-
dent analysis and optimization, front-end development, and
compile, run, and link-time optimizations and thus, served
as an ideal platform for implementing our strategy. Provid-
ing superpage support required restructuring and enhanc-
ing several component modules within LLVM, including the
runtime memory management system and the source-level
transformation pass. In addition, we implemented a new
API for memory allocation into superpages. In this section,
we briefly describe different parts of our framework. Details
of the implementation can be found in [6].

Our API for superpage-aware memory allocation is called
smalloc and is based on algorithms used in the malloc im-
plementation in glibc. smalloc supports the core inter-
face of the C standard, including scalloc, srealloc and

sfree. With smalloc, memory can be backed by either
base pages, superpages, or to a limited extent both. smal-

loc requests memory by calling one of two versions of the
morecore function (adopted from glibc). Base pages are ob-
tained by mmapping /dev/zero and superpages are obtained
by mmapping a file backed by the hugeTLBfs, provided by
Linux. Each version aligns the base of the heap at the end
of the data segment.

Since smalloc allows dynamic allocation of both super-
pages and base pages, the memory management system in
LLVM was modified to accommodate both types of pages.
Our implementation of the runtime system, allocates space
for both base pages and superpages in the program heap
and allows for transparent switching between the two. In
addition, the system also provides heap migration and base
heap freezing to reduce fragmentation within the heap [6].

Finally, we implemented a pass in LLVM to traverse the
source code and replace calls to malloc with the correspond-
ing calls to smalloc and insert the appropriate header files.
We also provide command-line options in LLVM to disable
superpage usage and choose any of the implemented heap
management strategies. Thus, our implementation com-
pletely hides the details of superpage allocation at the ap-
plication level, thereby increasing code portability.

4. A HEURISTIC FOR SELECTIVE SUPER-
PAGE ALLOCATION

A compiler-based strategy for superpage allocation with
no heuristic for making allocation decisions is unlikely to
be effective in practice. Applications vary widely in terms
of their memory footprint. Even for applications with sim-
ilar footprints there can be wide variations in TLB access
patterns. Allocating superpages to programs with low TLB
demands causes unwarranted increases in the memory foot-
print and leads to page fragmentation, compromising the
overall performance of the system.

To successfully exploit superpages the compiler must be
able to estimate the TLB demands of an application and
determine if these demands will benefit from the advent of
superpages. A high-level sketch of our algorithm is given in
Fig. 4. The key idea behind our heuristic is to allocate super-
pages only when the demand for memory pages for the work-
ing set exceeds the capacity of the target TLB. Therefore,
making a smart allocation decision essentially boils down
to estimating two parameters: threshold and spread. The
threshold represents a conservative estimate of the effective
capacity of the TLB, whereas spread is an estimate of the
number of distinct pages touched within the working set of
an application. The threshold must take into account the
page size and the capacity and associativity of the TLB.
To estimate the threshold, we employ the following simple
formula, based on earlier models for set-associative caches:

threshold = (
no of entries

associativity
+ 1) × base page size

We adopt a dependence-based approach for estimating the
spread of an application [1]. The algorithm examines each
loop nest and each array reference within the loop body. Ar-
ray references are categorized in terms of the type of data
dependence they exhibit. The number of distinct base pages
touched by each reference is estimated based on the partic-
ular type of dependence associated with the reference. For

for all loop-nests s in procedure do

for all memory references r in s do

I ← number of current loop iteration
if r depends on loop induction variable then

spreadr ← 1
else if r strides over non-contiguous dimensions then

spreadr ← I

else if r strides over contiguous dimensions then

s← step size

spreadr ←
(I·s)

base page size

end if

if r varies with the loop index then

spreadr ← spreadr · I

else

spreadr ← spreadr · 1
end if

end for

end for

spreadall ← 0
for all memory references r do

spreadall ← spreadall + spreadr

end for

if spreadall ≥ threshold then

Use superpages
else

Use standard pages
end if

Figure 1: Heuristic for Superpage Allocation

example, for a loop independent dependence, a value of 1
is assigned, whereas for a outer-loop carried dependence a
value of I is assigned, where I is the current loop iteration.
Once a spread value has been attributed to each memory
reference, they are summed up to estimate the total spread
for the working set.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Setup
We evaluated our strategy on a 2.33 GHz Intel Core 2

Duo. The architecture provides a 4-way TLB with 256
entries for 4KB pages and a 4-way TLB with 32 entries
for 4MB superpages. The benchmarks used in this work
include 164-gzip, 188-ammp, 176-gcc, 256-bzip2 and 183-
equake from SPEC 2006, transpose, a matrix transposition
code and stride, a synthetic kernel that strides through a
large array with increasing step sizes. The Performance Ap-
plication Programming Interface (PAPI) is used to collect
performance metrics. PAPI provides detailed performance
measurements for a variety of metrics by sampling hardware
performance counters via the perfctr module in the Linux
kernel [2].

Each benchmark trial consists of two executions of the
application with a given data set1. One execution is con-
figured to run with standard pages and the other utilizes
superpages. The input data for the SPEC benchmarks are
obtained from the SPEC reference data sets. The input data
for transpose is randomly generated for increasing step sizes
of 3600 bytes. The results of several metrics from each test

1Each trial is repeated several times to account for measure-
ment aberrations

 20

 40

 60

 80

 100

 120

 140

 50 100 150 200 250 300

T
LB

 M
is

se
s

Input Size

transpose TLB MISSES

No-Super
Super

Figure 2: transpose TLB performance

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 50 100 150 200 250 300

W
al

l C
lo

ck
 T

im
e

Input Size

transpose Wall Clock Time

No-Super
Super

Figure 3: transpose Wall Clock Time

are sampled using PAPI. The metrics sampled includes TLB
misses, L2 cache misses, wall clock time, and total clock
cycles, with the number of TLB misses being of foremost
importance. The results of the execution is recorded and
pushed to a database and the same benchmark is profiled
with the next data set.

5.2 Discussion
In the interest of space, we provide detailed results on two

benchmarks and provide summary results for the rest. Fig. 2
shows number of TLB misses for transpose with and without
superpages. The domain is the range of input matrix sizes
from 50·50 to 300·300. The variation of TLB misses between
the two page sizes is relatively small until input dimension
130 · 130, at which point the standard-sized page execution
incurs a marked number of TLB misses. This marked di-
vergence occurs at an input size of approximately 66 KB.
Fig. 3 shows wall clock time for transpose. Over the entire
domain of inputs there is an improvement to the execution
time when using superpages.

Fig. 4 shows number of TLB misses for 164-gzip for dif-
ferent input sizes. This benchmark is an ideal example of an
application that reaps little or no benefit from the advent
of superpages. 164-gzip is characterized by linear data ac-
cess patterns, using a floating window as it passes over the
data. The cost of fragmentation in this benchmark is not
offset by any gains in performance, and therefore superpage
allocation should not be recommended.

Fig. 5 shows the average reduction of TLB misses for each
benchmark. We observe that all benchmarks except for 164-
gzip and stride, realize significant benefits from the use of

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40 45 50

T
LB

 M
is

se
s

Input Size

164-gzip TLB MISSES

No-Super
Super

Figure 4: 164-gzip TLB Misses

 0%

 50%

 100%

 150%

 200%

 250%

 300%

164-gzip 176-gcc 183-equake 188-ammp 256-bzip2 stride transpose

A
ve

ra
ge

 R
ed

uc
tio

n
of

 T
LB

 M
is

se
s

w
ith

 s
up

er
pa

ge
s

Benchmarks

TLB Miss Reductions
1574% 117,276% 225,680%

Figure 5: TLB Miss Reductions for all Benchmarks

superpages. The reduction in TLB misses for 188-ammp
and 176-gcc is particularly remarkable. These numbers sug-
gest severe TLB thrashing for both 188-ammp and 176-gcc
when using base pages. The heuristic from Section 3, when
applied to the benchmarks, was able to correctly predict
that 164-gzip would not benefit from superpage allocation.
The heuristic did recommend that superpages be allocated
for stride, although we do not observe a significant benefit
for this benchmark. Since stride performs a strided access
through memory, we speculate that hardware prefetching
played a role in curbing some of the TLB misses. Of course,
this is a limitation of our strategy which we plan to address
in future (see Section 7).

6. CONCLUSION
This paper presents a technique for smart superpage allo-

cation guided by compiler heuristics. We provide an imple-
mentation of our strategy in the LLVM compiler infrastruc-
ture and demonstrate its effectiveness through some prelim-
inary experiments on the Intel Core 2 Duo platform. The
experimental results suggest that our heuristic is able to cor-
rectly evaluate an application’s need for superpage memory
and advise the operating system accordingly.

7. FUTURE WORK
The work presented in this paper demonstrates that com-

piler guided superpage allocation can indeed be beneficial in
some cases. To make a stronger case for a compiler-based
approach, however, more extensive experiments will need
to be performed. Our future plans include evaluating our

model on a larger set of benchmarks and on platforms with
different TLB configurations. We also plan to augment our
heuristic to handle imperfectly nested loops and account for
hardware and software prefetching.

Another future direction for this work will be to inves-
tigate how superpages can be exploited to enhance com-
piler optimizations. Many memory hierarchy transforma-
tions, particularly ones that aim to reduce conflict misses,
are most effective when the compiler has complete knowl-
edge of how data within a program are mapped to different
cache lines. In the absence of such information, the compiler
either assumes that allocation of memory is contiguous or
takes a guess at the most likely mapping. Use of superpages
guarantees contiguous memory allocation (at least for large
chunks of data) and eliminates much of the guess work for
the compiler, which can lead to more effective heuristics for
optimizations. In the future, we plan to leverage this work
to design superpage-aware heuristics for data-layout trans-
formations such as array padding and data copy.

8. REFERENCES
[1] R. Allen and K. Kennedy. Optimizing Compilers for

Modern Architectures. Morgan Kaufmann, 2002.

[2] S. Browne, J. Dongarra, N. Garner, G. HO, and
P. Mucci. A portable programming interface for
performance evaluation on modern processors.
International Journal of High Performance Computing
Applications, 14(3), 2000.

[3] Z. Fang, L. Zhang, J. B. Carter, W. C. Hsieh, and
S. A. Mckee. Reevaluating online superpage promotion
with hardware support. In In Proceedings of the
Seventh International Symposium on High
Performance Computer Architecture, 2001.

[4] C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In Proceedings of the 2004
International Symposium on Code Generation and
Optimization (CGO’04), Mar 2004.

[5] H. J. Lu, K. Doshi, R. Seth, and J. Tran. Using
hugetlbfs for mapping application text regions. In
Proceeding of the Ottawa Linux Symposium, 2006.

[6] J. Magee. Automated compiler driven superpage
allocation and its applications. Master’s thesis, Texas
State University, Dec. 2008.

[7] G. Marin and J. Mellor-Crummey. Pinpointing and
exploiting opportunities for enhancing data reuse. In
Proceedings of the 2008 IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS’08), 2008.

[8] J. Navarro, S. Iyer, P. Druschel, and A. Cox.
Practical, transparent operating system support for
superpages. Fifth Symposium on Operating Systems
Design and Implementation, 2002.

[9] N. Shimizu and K. Takatori. A transparent linux
super page kernel for alpha, sparc64 and ia32:
reducing tlb misses of applications. SIGARCH
Comput. Archit. News, 31(1):75–84, 2003.

[10] M. Talluri and M. D. Hill. Surpassing the tlb
performance of superpages with less operating system
support. In ASPLOS-VI: Proceedings of the Sixth
International Conference on Architectural Support for
Programming Languages and Operating Systems, 1994.

