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Abstract
We describe a strategy for enabling existing commodity op-
erating systems to recover from unexpected run-time errors
in nearly any part of the kernel, including core kernel com-
ponents. Our approach is dynamic and request-oriented; it
isolates the effects of a fault to the requests that caused the
fault rather than to static kernel components. This approach
is based on a notion of “recovery domains,” an organizing
principle to enable rollback of state affected by a request
in a multithreaded system with minimal impact on other re-
quests or threads. We have applied this approach on v2.4.22
and v2.6.27 of the Linux kernel and it required only 132 lines
of changed or new code: the other changes are all performed
by a simple instrumentation pass of a compiler. Our exper-
iments show that the approach is able to recover from oth-
erwise fatal faults with minimal collateral impact during a
recovery event.

Categories and Subject Descriptors D.4.5 [Operating Sys-
tems]: Reliability—Fault-tolerance

General Terms Design, Measurement, Reliability

Keywords Akeso, Recovery Domains, Automatic Fault
Recovery

1. Introduction
As software systems increase in complexity, they become
less reliable and more vulnerable to security exploits. Soft-
ware developers are increasingly turning to automated tools
to help find and stop security vulnerabilities and bugs. A
number of powerful, emerging tools use a combination
of compile-time and run-time checks to guarantee that an

∗ This work was supported in part by the National Science Foundation under
grants CNS 07-16768 and CNS 07-09122.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’09, March 7–11, 2009, Washington, DC, USA.
Copyright c© 2009 ACM 978-1-60558-215-3/09/03. . . $5.00

important class of safety properties (e.g., type or memory
safety) will never be violated [16, 5, 27, 11, 4]. However, in
most of these systems, an error detected at run-time causes
fail-stop behavior, exposing high-availability systems to pos-
sible denial-of-service attacks.

Commodity operating systems are examples of systems
that are crucial to achieving the high availability needed by
modern services. System crashes cause low-end embedded
systems to become unresponsive, result in lost data for mid-
range laptop and desktop systems, and induce expensive out-
ages for high-end server systems. System outages for high-
end server systems have been estimated to cost companies
millions of dollars per hour of downtime [7].

Unfortunately, no existing approaches recover automati-
cally from faults in core kernel components. Nooks [23, 22]
and SafeDrive [27] provide fault isolation and recovery for
device drivers by interposing on the communication between
drivers and the remainder of the kernel. Neither system,
however, can tolerate faults in the remainder of the kernel.
In fact, errors in the core of a commodity operating sys-
tems are especially difficult to recover from since such sys-
tems are inherently multi-threaded, handle resources shared
between many clients (viz., user processes), have extensive
asynchronous internal behavior, and have significant output
commit problems because they directly interface to hard-
ware.

In this work, we propose an organizing principle for oper-
ating system recovery called “recovery domains,” and a sys-
tem called Akeso based on this principle, that enables com-
plex multithreaded systems to recover from run-time faults
in nearly arbitrary components. Our system provides strong
recovery semantics, has minimal and localized effects if a
recovery event is triggered, is easy to interface with by pro-
grammers or automated tools, requires little change in the
source code, and is general enough to handle very demand-
ing multi-threaded, state intensive, request-oriented software
systems.

Unlike previous approaches [23, 22, 27, 3] that han-
dle faults in OS extensions and drivers, Akeso is request-
oriented in the sense that it handles recovery at the request
level, e.g., a system call or interrupt in an OS, rather than at



the sub-system or component level. This means that a fault
due to a request will ideally only affect that request, leaving
the rest of the system intact and running unaffected by the
fault. This view of faults as a property of a request is a stark
contrast to both language-based recovery and driver recov-
ery that view faults as a property of static code regions or
transient states. This difference allows Akeso to handle fault
for the entire kernel, and handle permanent faults gracefully
whereas other recovery systems would re-encounter the fault
during recovery[13].

To provide request-oriented recovery, Akeso binds each
new request to a new recovery domain dynamically. As this
request executes, Akeso tracks all state changes that result
from the request and any dependencies that form with other
recovery domains, such as through concurrent accesses of
shared variables, so that all potentially faulty state can be
rolled back after detecting a fault. When a fault occurs,
Akeso uses logging and rollback techniques [10, 19, 6] to re-
move all state changes resulting from the faulting request, in-
cluding state changes made by dependent recovery domains,
thus restoring the system back to a consistent state automat-
ically.

We apply Akeso to a commodity operating system, the
Linux kernel, which is a particularly challenging test case
for our techniques. Operating systems are massively multi-
threaded, event driven, and enormous software artifacts, all
of which complicate our task of retrofitting an existing com-
modity operating system with recovery capabilities. How-
ever, using an annotation language and compiler support,
we port the entire Linux kernel to Akeso without any sig-
nificant design changes and using only 132 lines of code.
Our resulting system recovers from 97% of errors outside
of interrupt handler code, and adds between 1.08x and 5.6x
run-time overhead for our benchmark applications.

One novel optimization we make is to use existing re-
covery paths in the kernel as part of our recovery protocol.
This optimization helps to minimize how much state must
be rolled back (in the same and other threads) on recovery,
to reduce the changes needed to kernel code, and to preserve
the error semantics seen by applications.

Our approach resembles Transactional Memory (TM)
systems in that we use logging and rollback for restoring
system state on a failure [10, 19, 6] (see [15] for a summary
of extensive recent work in this area). Unlike TM systems,
however, we only focus on recovery from failures and not
on isolation between parallel computations (because of this
distinction, we use the term “recovery domain” instead of
“transaction”). As with TM systems, many of the low-level
mechanisms we use are borrowed from the database liter-
ature, but our use of them is novel since we retrofit recov-
ery semantics into existing software systems automatically,
rather than introducing recovery semantics at the design in-
ception and expressing them manually.

2. Example Fault and Recovery
The MCAST MSFILTER integer overflow bug [21] serves
as an illustrative example for fine-grained and request ori-
ented recovery. This vulnerability allows an attacker to gain
root privileges or otherwise compromise the system. This
bug is detected by the SVA memory safety checker [4], but
results in a fault due to the fail-stop manner of SVA. Rather
than halting the kernel, we would like to recover from the
attack without affecting the state of any TCP or UDP socket
or any thread except the attacking (or buggy) thread.

The combination of the SVA memory checker and Akeso
will cause a fault to be raised on the out-of-object access,
modifications to state (such as the increment of the file
reference count) to be rolled back to the start of the system
call, and an error value returned to userspace. Akeso will
undo only the effects caused by the attacking thread and will
allow the system, including the IP stack, to continue running
in a consistent state.

If we treated recovery as an operation on sub-systems or
drivers, then this error would require the termination and
restart of the entire ipv4 stack. This would, on a normal
machine, have wide ranging effects, effectively causing all
network using applications (and applications simply using
sockets to localhost for IPC) to fail.

3. Recovery System Semantics and Overview
Akeso ’s goal is to recover from unexpected faults automati-
cally when a fault is detected in a request-oriented client sys-
tem. It does so by automatically rolling back only the com-
putation and state associated with the individual request that
caused the fault. This technique achieves key benefits of both
programmed exception handling recovery and checkpoint-
rollback recovery: it enables fine grained recovery (like ex-
ception handling), yet does so largely automatically (like
checkpoint and rollback). Akeso defines an error world view
that can interoperate with existing error handling regimens
and provides a set of capabilities with predictable semantics
to programmers and automated tools.

3.1 Recovery Events
Responsibility for triggering a rollback of a client system
(e.g., a kernel) is that of the client code. The recovery por-
tion of Akeso exists to supply clean semantics and the nec-
essary runtime to perform a rollback; it does not attempt to
decide when one is needed. A rollback is triggered by exe-
cuting a recovery instruction. This instruction may have been
inserted by automated transformation of the source to en-
force certain safety properties, e.g. SVA [4], or it may have
been inserted by a programmer directly using the recovery
instructions to simplify client system design.

3.2 Recovery Domains, the basic entities
To manage and optimize rollback recovery, Akeso organizes
execution into intervals called recovery domains. A recovery



domain is an interval of program execution identified by the
program text. Recovery domains are composable, i.e., they
may be nested. During normal execution, state changes dur-
ing a domain are recorded and data dependences between re-
covery domains are tracked. Recovery domains have seman-
tics partly like transactions in a shared memory system. Like
transactions, they may be rolled back so that they appear as if
not to have executed (during error recovery). Unlike transac-
tions, recovery domains provide neither atomicity nor isola-
tion. Memory dependencies formed between domains do not
cause domains to be rolled back, but are merely recorded in
case a fault occurs; in fact, there is no predefined behavior
during “normal” execution that causes a domain to be rolled
back. Any memory dependences between different threads
must be synchronized as needed by the client code.

To minimize the overheads (during normal execution)
of dependence tracking and of resolving dependences at
domain commits, Akeso defines multiple kinds of domains
with different logging and commit behaviors. Essentially,
some of these are optimizations of the “normal” domain
behavior. The kinds of domains are defined in Section 4.1.

Not all client code is recoverable. Code that involves ex-
plicit output commit, e.g., an actual disk write or a net-
work output operation cannot be rolled back. Some low-level
hardware interactions such as processor scheduling may also
be difficult to roll back, depending on the client design.
Akeso defines a special Unlogged domain that the client pro-
grammer can use to identify such segments of code.

3.3 Programmer Involvement
A client system, e.g., an OS kernel, may be ported to Akeso
by identifying recovery domains and providing some infor-
mation about them. Programmers may specify recovery do-
mains at two levels of granularity. The high level specifica-
tion is function based in which an annotated function’s entry
and exit designate the start and stop of a recovery domain.
These may be paired with undo functions or other attributes.
A low level interface is also exposed allowing a program-
mer to insert recovery domains at any point in the code, po-
tentially with arbitrary recovery code. For example, a first
pass at inserting recovery domains into a kernel may be to
make all interrupt handlers and system calls recovery do-
mains. This may be refined by adding various allocators and
their inverses. For better recovery ability for requests that
cross thread boundaries, work queues may be instrumented
at a low level so the operation executes independent of the
work queue dispatch routine and thus attaches to the request
which caused the entry in the work queue.

3.4 Normal and Recovery Execution
During normal execution, client code executes without be-
havioral change, except the overheads to maintain metadata
about memory operations. This metadata includes data struc-
tures to record state changes, manage domains, record re-
covery points, and record cross-domain dependencies. A do-

main is allowed to “commit” once all of the other domains
it “depends” on complete execution (a cycle of dependent
domains are detected and committed together).

If a recovery event is triggered within a domain, the
domain is usually rolled back so that it appears not to have
executed, and any domains dependent on it (either directly
or transitively) are rolled back as well. These dependent
domains may be on other threads, effectively rolling back
all the dependent threads. Rolling back a domain undoes
state modifications by that domain, restores the stack and
registers (including program counter) to the beginning of
that domain, and then performs whatever action is specified
for that domain, such as returning an error code, retrying the
operation, or any other arbitrary action. For example, if a
kmalloc is rolled back, the caller will see an error value
of 0 if that was what was specified as the error code for that
recovery domain.

3.5 Predictable Semantics
Akeso provides the following (predictable) error semantics
to client code. To explain this semantics, we say domain
B is directly dependent on domain A if domain B reads a
memory location written by domain A.

• control flow in the faulting thread is returned to the start
of the “faulting domain,” i.e., the recovery domain within
which the fault occurred;

• the memory and register state of the thread that executed
the faulting domain are restored to those that would have
occurred if the faulting domain had not executed at all
(i.e., there are no visible state changes beyond that point),
unless the domain was Unlogged, as explained in Sec-
tion 4;

• any other thread that executes a domain that is dependent
on the faulting domain (directly or transitively) has its
control flow and state rolled back to the start of the ear-
liest such dependent domain, and its execution continues
as if that domain itself encountered en error.

Ideally, the error recovery semantics of Akeso should
provide a foundation for rolling back individual threads of
execution (requests) independent of other threads and of
the state of the underlying hardware. Briefly, when a fault
occurs, it should appear to the rest of the system that nothing
happened, and appear to the faulting thread as though control
was transferred to a predefined point with no modification
to global state. In essence, it should appear to the faulting
thread not that a fault happened, but that it queried the
system which reported that if it had tried the operation it
would have failed.

Compared with this ideal goal, Akeso has two limitations
in practice. First, the faulting thread (and the overall system)
may “see” changes to low-level hardware state that cannot
be rolled back. Second, “innocent” threads, e.g., belonging
to a different application, may have domains dependent on



the faulting one because of client-level data flow and Akeso
currently continues as if that domain itself encountered an
error. This causes potentially innocent threads to experience
side effects of an error. Retry mechanisms to restart ”inno-
cent” threads, thus further reducing the impact of a fault, are
planned but not yet implemented.

4. Recovery System Design
We now describe in more detail how we achieve the recov-
ery semantics described above. Section 4.1 discusses recov-
ery domains in more detail. Section 4.2 describes our tech-
niques for tracking dependencies between different recovery
domains. Section 4.3 discusses our techniques for commit-
ting fault-free recovery domains and Section 4.4 describes
our techniques for rolling back recovery domains after de-
tecting a fault.

4.1 Recovery Domains
The basic unit of recovery is a recovery domain. A recovery
domain is an interval of execution demarcated by calls to
the domain start and end operations. Recovery domains log
modifications to kernel state and also track dependencies
with other domains, for use during successful commit and
during rollback error recovery.

All kernel code runs in some recovery domain. Each re-
covery domain executes within a single kernel thread. Cross-
domain (and hence cross-thread) dependencies are logged.
Recovery domains are not checkpoints: a rollback of one do-
main does not imply a rollback of all domains or all threads.
As explained below, recovery domains may be nested to take
advantage of existing error recovery paths in the kernel and
kernel code that has semantic inverses.

Several types of recovery domains exist to encompass a
range of behaviors in the kernel as well as allow progressive
porting of the kernel to use recovery domains. There are
four domain types: the basic domain, the reversible domain,
the transparent domain, and the unlogged domain, as briefly
summarized in Table 1.

We call a domain recoverable if the kernel can recover
from an error during the execution of the domain. Ba-
sic, reversible, and transparent domains are all recoverable,
whereas unlogged domains are not. All domains perform
their writes to kernel state “in place,” i.e., to the original
memory locations and not copies. All writes by the former
three kinds of domains are considered speculative until the
domain commits. These writes may be rolled back on an er-
ror. Writes by unlogged domains are non-speculative since
they will never be rolled back.

4.1.1 Basic Recovery Domains
Basic domains are the most common unit of recovery. These
domains log all writes, recording values that must be re-
stored on a rollback, and monitor reads to discover runtime
data dependencies on other domains.

The parent domain of any domain D is the domain that is
executing when the entry point of domain D is reached and
D begins execution. By definition, the parent domain will
be in the same thread. Certain basic domains do not have a
parent, including the entry point for an interrupt handler, for
a system call from user space, or a task in an asynchronous
work queue (the latter technically could have a parent but
just does not record one). We refer to such a domain as a
“Root” domain. All other basic domains have a parent.

Basic domains that have a parent do not commit on nor-
mal completion: instead, their metadata is merged with that
of their parent, thus passing on the responsibility for com-
mitting kernel state to their parent. This commit behavior is
similar to that of “closed nested” transactions in the TM lit-
erature [24] but, like all recovery domains, a key difference
from transactions is that they are never rolled back during
normal execution. Basic domains that do not have a parent
wait for their dependencies to complete and then commit
normally, as explained in Section 4.3.

Basic domains are intended for regions of execution that
have existing error handling code at their exit. In the event
of a fault, basic domains are rolled back independent of their
parent, and the domain entry function appears to return with
the specified error condition. Control is thus returned to the
parent at the domain entry point, which can then handle the
error as desired.

To see why some “internal” domains may not record a
parent, consider a request that spans multiple threads, e.g.,
a disk read, waiting on a network socket or waiting on key-
board input. In these cases parts of the logical request (the
read) might span several threads as the device interrupts will
be handled in the current active thread (e.g., on Linux). Op-
erations that involve placing operations on work queues are
also a source of cross thread domains. Logically, any op-
eration performed on behalf of a domain in another thread
should ignore dependencies with its “calling context” and
form dependencies with the thread requesting the operation.
We can accomplish this simply by not marking a parent for
the entry domain of such an operation: such a domain will
be dependent on the source thread’s requesting domain and
complete or fault with that domain. In this manner a well
ported kernel will have domains for asynchronous opera-
tions essentially floating and attach to the thread that caused
them when they exit.

4.1.2 Reversible Domains
Reversible domains exist for operations for which a semantic
inverse can be defined, independent of the context in which
it was called. This independence means, most importantly,
that two such operations (on the same or different threads)
can be performed or rolled back independent of the other (in
the absence of an internal fault within one of the domains).
We refer to this as the context-independence property.

For example, two calls to kmalloc (in Linux) may both
update common internal allocator state, producing an appar-



Domain
Type

Recover-
able?

Logged? Root? Error
Semantics

Success Semantics Example Uses

Basic Y Y Y/N rollback and
return error

if parent, merge with parent else com-
mit when dependencies commit

any operation for which the kernel al-
ready handles failure, e.g., open

Reversible Y Y Y rollback and
return error

commit and log success with parent operations with semantic inverses that
can be deferred, e.g., allocators, refer-
ence counts; not locks

Transparent Y Y Y rollback and
skip domain

commit operations that do not affect kernel se-
mantics, e.g., LRU numbering of pages;
disk cache read-ahead policies

Unlogged N N N abort no-op device manipulation code; optionally
other low-level code, e.g., context-switch

Table 1: Primary Types of Domains

ent dependence, but at the level of the logical allocations,
there is no dependence: either one can be performed or rolled
back independent of the other. Furthermore, this rollback
can be performed by any thread: it simply needs to have the
address of the allocated memory. Many counters, including
reference counting operations on heap objects, are also im-
portant cases of reversible domains. Like allocations, these
operations are extremely frequent, and create spurious de-
pendencies between domains.

When a reversible operation is complete, we can commit
it ignoring any dependencies on its parent. This optimization
greatly reduces the number of interdependent domains that
must be committed together, or rolled back together on an
error. For example, many concurrent allocations would be-
come interdependent and cause their invoking threads to be
dependent on each other, when in fact, at a semantic level,
the context-independence property ensures that the opera-
tions can be committed independently of their parents.

Reversible domains perform all the logging and depen-
dency work of a basic domain so internal faults within the
domain can be detected and recovered from. On a fault, just
the reversible domain and any dependent domain (such as
multiple overlapping calls to an allocator) are rolled back.
The recovery action, such as returning an error code, is exe-
cuted.

However, on the successful completion of a reversible
domain, the state changes by that domain are committed
and the inverse operation is logged with the parent. If the
parent must rollback, this inverse operation will be called to
logically undo the operation of the reversible domain. So for
example, a kmalloc will be logged and if the domain calling
kmalloc aborts, kfree will be called on the allocated object.
In principle, internal logging is optional and could be turned
off by the kernel programmer, although our system leaves it
on.

Since many reversible domains often involve the owner-
ship or allocation of resources, we must ensure that a release
operation (the inverse of an acquire) does not occur until the
parent domain commits. Free, for example, must be delayed
until its parent commits, else any malloc would become de-

pendent on that domain. Thus inverse operations when they
appear in code are delayed until the commit of the domain in
which they appear. This is also the reason why lock acquires
are not treated as reversible though they have an obvious
inverse: deferring the inverse (the unlock) could cause dead-
lock if it is delayed until after the acquire of a different lock.
Instead, we handle synchronization differently, as described
in Section 5.2.

4.1.3 Transparent Domains
Transparent domains are a straightforward optimization that
can be exposed by programmers. There are certain opera-
tions that are strictly used for performance optimization and
have no impact on the semantics of the kernel. Tracking the
LRU numbering of memory pages is one example: resetting
all the numbers (except for any used for pinning memory)
to arbitrary legal values will not affect kernel correctness.
Another example is read-ahead operations for disk caches.
For such domains, the state changes and their dependences
do need to be logged to ensure recovery from errors during
execution of such a domain. Upon successful completion of
such a domain, however, any dependencies formed by the
execution of the domain can be ignored, i.e., the domain can
be committed immediately, since transparent domains leave
the semantics of the kernel intact.

4.1.4 Unlogged Domains
The final type of domain is the unlogged domain. This do-
main is for extremely trusted and performance sensitive code
as well as for code which must not abort. In our current im-
plementation, there are three kinds of unlogged domains: (a)
code sequences that write directly to external devices or net-
works; (b) the low-level context switching code, which re-
places one executing thread with another; and (c) interrupt
handlers, which are short and asynchronous. For example,
code sequences writing to devices must not be rolled back
because a sudden interruption and roll back of kernel state
can leave the kernel and device in rather different opinions
of the current state of the world.

An unlogged domain effectively commits each write as
it is issued. This also overwrites any previous (speculative)



write to each such location, preventing later readers from
forming dependencies on those memory locations with the
previous speculative writer. Note that the use of an unlogged
domain does not preclude the specification of a semantic
undo function that may be used by a parent domain which
aborts to logically undo the effects of the unlogged domain.
For example, when porting Linux 2.6 to Akeso , we desig-
nated the low-level allocator, alloc pages internal
, an unlogged domain and declared free pages its se-
mantic undo operation.

4.2 Tracking Dependencies Between Recovery
Domains

Every recovery domain tracks what domains it depends on
and what domains depend on it, creating a dependence graph
between domains. This dependence information is impor-
tant because, when a domain experiences an error, it allows
rolling back of only those domains that have been “tainted”
by the error. This mechanism correctly handles dependen-
cies that cross threads, which is important due to the inher-
ently threaded nature of the kernel.

On a read, metadata maintained by the run-time is con-
sulted to check if the location contains a committed value.
If so, no dependency information is updated. If it contains a
speculative value, a (directed) dependency edge is formed to
the domain responsible for the last write of that location.

On a write, the metadata for the location is updated to
reflect the new writer. If the writer is an unlogged domain,
then the write is committed, else the write is marked specu-
lative and the recorded writer helps subsequent readers form
dependence edges.

Tracking dependencies between recovery domains is
mainly useful between separate threads; nested domains
identify dependencies between domains within the same
thread. Domains are nested at run-time, and the nesting
structure forms one or more trees that determine when and
how domains can commit. To track nesting, the run-time
maintains a stack of active domains. All kernel code runs in
some domain, even if that domain is the default unlogged
domain. This ensures that all kernel code participates in the
maintenance of metadata.

When a recovery domain starts, it inspects the current
stack to find the currently active recovery domain. It records
the domain as its parent so that, on exit, it may restore that
domain to an active state. A basic domain will become a
child of that domain and become dependent on it for commit.
That is, when the basic domain exits, it will not commit but
simply notifies its parent domain, which when it commits
will commit the child. A reversible or transparent domain,
however, does not record its parent: instead it starts a new
tree. It remembers the previous active domain only for the
purposes of restoring it on exit.

4.3 Committing Recovery Domains
A domain goes through up to three states in order: Specula-
tive, Completed, and Committed. All but unlogged domains
begin in Speculative state. When a domain exits it transi-
tions to Completed state. When a domain in the Completed
state has no more dependencies on uncommitted domains it
transitions to the Committed state. Each transition is accom-
panied by a set of actions which will be described below.
Since circular dependencies can form, completed domains
must look at the transitive closure of the dependence graph
and check that they have no dependences on a Speculative
domain to transition to the committed state. This is expen-
sive in practice, so cycles in the sub-graph of the dependence
graph containing only completed domains are collapse main-
taining the graph as a directed acyclic graph.

When a basic domain not having a parent or having an
unlogged parent transitions from Speculative to Completed
state, it attempts to enter the Committed state immediately;
this step is explained below. When a basic domain having
a logged parent transitions from Speculative to Completed
state it merges with its parent such that in subsequent execu-
tion the two domains are synonymous.

When a reversible or transparent domain transitions from
Speculative to Completed state, it removes all dependencies
on its parents if any exist (allowed by the context indepen-
dence property, explained in section 4.1.2). If a reversible
domain has a logged parent, the domain adds a dependence
edge from the parent to itself. This is so that if the reversible
domain must abort due to another thread, its parent will abort
too, rather than using invalid results. The domain then at-
tempts to enter the Committed state.

Attempting to enter the Committed state consists of
checking that no dependencies exist on speculative domains
in the transitive closure of the dependence graph. If no such
dependencies exist, the domain transitions into the commit-
ted state. To do so, it performs a series of actions to remove
itself from the system. First, it executes all logged delayed
operations (resource releases). It then walks its write log and
marks as non-speculative all memory locations for which
it is the most recent writer. It then removes all dependence
edges to and from itself in the dependence graph. At this
point no more references to the committed domain exist in
the system and the domain’s metadata may be deleted. Note
that for an unlogged domain, all these operations are no-ops
as it will never have logged memory writes so no domain
will have dependencies to an unlogged domain. After a do-
main commits, each domain in the Completed state attempts
to enter the Committed state (since the dependence graph
has just had edges removed, more domains may be able to
commit).

Note that the commit protocol is thread agnostic. Even
though dependences may cross multiple threads, the proto-
col does not care about whether an incoming or outgoing
dependence edge is from or to a different thread, or whether



some of delayed operations may involve updating shared
state.

4.4 Exception Events and Rolling Back Recovery
Domains

A rollback is triggered when some run-time mechanism, a
part of the kernel or inserted by an external tool, detects a po-
tentially fatal error. Akeso then aims to roll back the faulty
domain (or an enclosing parent domain) and any other do-
mains that are dependent on it. To roll back a domain, Akeso
restores any memory perturbations and undoes resources al-
located for all dependent domains.

During rollback, all processors are halted at a known
state, and one process walks the dependence graph of the
faulting domain, rolling back any dependent domain. Be-
cause versioning is kept for writes as part of the metadata
domains can be rolled back in any order, the rollback code
ensures that the original value prior to all the rolled back
speculative writes is restored. Reversible operations encoun-
tered in the log are reversed with their inverse function; by
definition of such operations, the order in which these in-
verses are applied is irrelevant. Register state is restored to
the point of domain entry for each active rolled back do-
main, with the only change appearing as though the domain
entry instruction returned an error (this is essentially setjmp
and longjmp, but potentially operating on threads besides the
current one).

One key design goal is to use existing error return paths
to preserve failure semantics, expedite recovery, and sim-
plify our implementation. Complex server systems like an
OS have extensive error checking, with corresponding error
return paths, for anticipated errors. In particular, many in-
ternal functions in such a system are programmed to handle
error conditions when they occur, either by retrying an op-
eration, or returning appropriate error information to their
callers, which then continue the process. This process cre-
ates the error return path, which often propagates all the way
back to the external client. The system specifies a semantics
for error handling that clients (e.g., system calls) must use to
deal with errors cleanly. By leveraging these existing error
return paths, we can incorporate comprehensive error recov-
ery from nearly all of the operating system while requiring
relatively few changes to the kernel and few or no changes
to applications.

Each domain specifies an integer error return code, which
is returned to its parent domain when an internal error is
detected. The parent domain can then handle this error code
as desired by the kernel programmer. If most domains start
at existing error checking points, then little further effort
should be needed to perform recovery and error return from
unexpected errors.

Asynchronous requests within the kernel are similar to a
system call. A domain places a request on some structure.
At some point another thread services that request. These
execution paths have defined ways for the worker to return

void∗ kmal loc ( s i z e t s i z e , i n t t y p e ) {
/ / b e g i n a logged , r e v e r s i b l e domain
char∗ buf = r e c d o m a i n b e g i n ( l o g = 1 , r e v e r s i b l e = 1 ) ;
/ / r e c o r d c u r r e n t r e g i s t e r s t a t e
i n t i s e r r o r = r e c s e t j m p ( buf ) ;
i f ( ! i s e r r o r ) {

/ / k m a l l o c o r i g i s t h e o r i g i n a l kmal loc , renamed
r e s u l t = k m a l l o c o r i g ( s i z e , t y p e ) ;
r e c d o m a i n e n d ( ) ; / / end t h e k m a l l o c domain
r e c l o g u n d o ( k f r e e , r e s u l t ) ; / / l o g i n v e r s e f u n c t i o n

} e l s e {
/ / Error l a n d i n g pad :
/ / The u s e r s p e c i f i e d n u l l as t h e e r r o r r e t u r n v a l u e
/ / f o r t h e k m a l l o c domain . At t h i s p o i n t , no
/ / k e r n e l s t a t e has been r e s t o r e d by t h e r u n t i m e
/ / as though doma in kma l loc had n e v e r been c a l l e d .
r e s u l t = NULL;

}
r e t u r n r e s u l t ;

}

Figure 1: Example of the protection domain transformation on
kmalloc. The new functions implemented in the runtime are un-
derlined. kmalloc orig contains the original code for kmalloc.

errors to the requester. Thus this idiom is implemented as a
independent domain for the worker which if fails, returns an
error code though the same channel it would normally return
an error code to the requester.

When an error propagates up to the application, appearing
as a failed system call, the kernel can choose to return a
suitable error code for that system call. For applications
that don’t care about the error code, including those that
don’t wish to recover, this choice is unimportant. For other
applications, if this is a pre-existing error code, no changes
are needed to applications that use that system call. If it is a
newly defined error code, applications that wish to recover
would need to handle this code appropriately. If the error is
persistent, i.e., retrying the same system call causes the error
to repeat, then the application may have to compensate in
some application-specific way or may simply be forced to
die. In any of these cases, the kernel and other applications
should not be affected.

5. Implementation
Akeso is an OS-agnostic compiler and runtime system that
together provide the recovery semantics described earlier.
Below we describe the implementation of Akeso and then
describe how we ported Linux to use Akeso for recovery.

5.1 System and Runtime Implementation
Akeso consists of two main components. The first is a set of
compiler transforms to instrument the kernel and transform
programmer annotations into recovery domains. The second
is a runtime which maintains all logs, tracks dependencies
between domains, manages committing domains, and per-
forms roll back at a recovery event.

An important component in a deployed system is the de-
tection mechanism that signals faults. The recovery system
implementation is independent of any detection mechanisms
the kernel programmer chooses to apply. A motivating ex-



ample, as mentioned in the introduction, is SVA which im-
plements a detector for fine grained memory safety. How-
ever, other error detection mechanisms could be used with
this recovery system.

5.1.1 Compiler Passes
The compiler components are implemented as a series of
passes in the LLVM compiler framework [12]. The first
pass replaces all memory operations with calls to runtime
routines that will perform the operation, log the operation,
and track dependencies caused by it.

The second pass interprets programmer-supplied annota-
tions and maps these annotations to sequences of low level
annotations, namely domain begin and domain end, to be
dealt with by the third pass. This pass allows the programmer
to succinctly annotate the kernel (in this implementation, as
a file specifying the functions to be treated as domains, their
inverses if any, and their type). The programmer can directly
use the low level annotations if necessary or convenient.

The third pass transforms low level annotations into oper-
ations to setup and tear down protection domains, and uses
setjmp to create a landing pad for control flow after a do-
main aborts. Figure 5 shows the result of the third pass on
the kmalloc function. kmalloc becomes a wrapper that hides
the domain management from the callers. It sets up a do-
main with a call to rec domain begin which returns a buffer
used for setjmp. Normally, the original code for kmalloc
is executed. The domain is then committed since kmalloc is
reversible; the inverse is logged in case the parent aborts;
and the result value is returned to the caller. If, however,
the kmalloc domain aborts, the error return code specified
by the annotations, namely NULL, is returned to the caller.
The runtime manages rolling back state and terminating the
faulting domain before passing control to the landing pad.

5.1.2 Runtime Implementation
The runtime consists of 4 major components: protection
domain management, logging, memory dataflow detection,
and rollback infrastructure. The runtime is SMP-safe and
totals 1867 lines of C++ code (including all assertions and
debugging code) and 30 lines of assembly.

Protection domain management implements several data
structures including the domain stack, the logs of writes
and inverse actions, and the domain dependence graph. The
domain dependency graph is stored as an outedge set in
each domain. The completed but uncommited domains are
kept in a list. The dependency graph is divided into two
regions, the active domains and the completed domains. Two
properties are exploited to reduce the size of the outedge
sets while still maintaining the necessary transitive closure
of the graph. First, only edges in the active set will form
new dependence edges. Thus all new edges will point from
the active set to the completed set. Second, only edges from
the committed set to the active set matter for computing
if a domain in the completed set can commit. Because of

this, the outedge sets for completed domains only include
edges to active domains. When an active domain is moved
to the completed set, all nodes with edges to it are updated
to include its edges to active domains (thus maintaining the
necessary transitive closure) and its outedges are pruned
to only contain edges to active domains. This optimization
greatly reduces the number of edges that must be kept.

Dependencies due to memory reads and writes are tracked
by memory versioning. The rollback mechanism simply
walks the log in reverse order undoing operations and re-
moving the current domain from the stack of domains. The
commit mechanism walks the log updating memory regions
to reflect the sequence number of the logged writes. Further,
if any deferred actions are logged for the domain (and its
children), they are executed (e.g. memory frees, reference
count decrements).

5.2 Linux Port
We ported two very different Linux kernels to the recovery
system. The first, which will be described here, is the SVA
ported Linux 2.4.22 kernel as used in our SVA work [4].
Akeso itself is completely independent of SVA – we only
use that as an error detection mechanism. To demonstrate
that and to gather experience porting another kernel, we also
ported Linux 2.6.27, which has some fairly major structural
differences. In the first porting exercise, several interesting
common cases were discovered that influenced the design
of the recovery system. These include spin-locks, request
queues, reference counting, and performance counters. As
discussed below, extra porting effort went into these objects
as it greatly reduced the number of dependencies between
domains.

The starting point for a port to the recovery system is
to identify entry points and allocators. For Linux, system
call and interrupt entry points were annotated as protec-
tion domains. We then annotated the list of basic allocators
(kmalloc, kmem cache alloc, alloc pages) as reversible
domains, and specified their inverses.

With this basic port, it became clear that spin-locks were
a major cause of thread interference. Because atomic oper-
ations were modeled as reads and writes (with the writes
logged only if the atomic operation succeeded), any two
threads that accessed the same spin-lock (even if they did not
contend for it) would form a read-after-write dependency. A
basic spin-lock is binary, and is used for synchronization.
With this observation, we model successful spin-lock ac-
quires and releases as write-only memory accesses with old
values of ’0’ and ’1’ respectively. This preserves the property
that a lock is released on a rollback while breaking unneces-
sary dependencies. Reader-Writer spin-locks were treated in
a similar fashion.

Many counters used for performance statistics, e.g., the
number of blocks written to a disk, are not used in any
decision made by the kernel; they simply exist to be re-
ported to user-space. These are not critical to the consis-



Change LOC
recovery hooks 9
counter conversions 28
moving functions out of headers 40
spin lock conversion 34
exit fixes 6
bootup fixes 3
fork 1
misc 11
Total 132

Table 2: Changes to Linux 2.4.22 by type and lines of code

tency of the kernel after (presumably rare) error recovery.
Therefore counter increment and decrement functions were
defined as unlogged, reversible, root domains. On a rollback,
the counter increment or decrement is undone, but other do-
mains are not rolled back.

The kernel code implementing the exit system call has
an internal function that does not return because the thread
is terminated. Making this function (do exit) an unlogged
domain, however, is not attractive because it performs con-
siderable work, including closing files, tearing down address
spaces, and notifying other threads. Any of these operations
could fail, in which case we would like to restore kernel state
and return an error. To fix this mismatch, the kernel function
do exit was changed to return an int and made a root do-
main. Code which called do exit (not expecting it to return)
was modified to go into an infinite loop calling do exit. On
a permanent fault, this could cause the thread essentially to
leak and try to exit whenever it is scheduled, but this seems
a better engineering tradeoff than letting exit perform large
and complex state changes to global kernel data structures in
an unrecoverable domain.

Many objects in the kernel are reference counted. Han-
dling these well reduces the number of unneeded depen-
dencies. A reference counted object is acquired by calling a
function on an existing object. This function acts very much
like an allocator, in that it has an inverse, but serves to up-
date the reference count of the object. A similar function
exists for when an object is no longer needed. This function
often takes care of finalizing and freeing the associated ob-
ject when the reference count reaches zero. All the major
structures in the VFS layer used this idiom. Thus we de-
clared the reference acquiring and releasing functions as in-
verses of each other and unlogged domains. Because of this,
dependencies between threads that existed only because of
a change to the reference count of an object were broken,
without disturbing the garbage collection properties of the
code. Time permitted only the filesystem to be thoroughly
ported this way.

While we considered and ported many interesting cases
(and several more primitives, such as queues, would benefit
from special care), no design changes were needed in port-
ing the Linux kernel to Akeso. Furthermore, we only modi-
fied or added 132 lines of code for our port (Table 5.2).

Bench-
mark

#Mem
Ops

Logged
Reads

Logged
Writes

Un-
logged
Reads

Un-
logged
Writes

Cover-
age

post-
mark

70B 96% 1% 2% 1% 97%

find 37M 46& 18% 27% 9% 64%
gcc 130M 23% 8% 52% 17% 31%
bzip2 63M 24% 10% 49% 17% 34%

Table 3: Percent of Dynamic Memory Operations By Domain
Type

The port of Linux 2.6.27 proceeded similarly, starting
with the allocators, system calls, and interrupt handlers. The
softirq handlers and the scheduler were also annotated. The
hooks for runtime memory allocation were added. No major
design changes were needed, even though several major
kernel features, such as kernel preemption, were added in
this kernel.

6. Evaluation
We considered three metrics in our evaluation:

• The theoretical coverage of the recovery technique in
terms of fraction of execution covered by the technique;

• The ability to recover from injected faults in the theoret-
ically covered portions of code; and

• The overhead incurred during normal (i.e., fault-free)
execution of the kernel.

Although we do not report recovery times, we have observed
that recovery times are extremely short, far shorter than
typical times for a partial or complete reboot of the system.

Unless stated otherwise, all experiments were performed
using the ported 2.4 Linux kernel described earlier. Other
methodological issues are described separately for each ex-
periment below.

6.1 Coverage
An important metric in evaluating the recovery mechanism
is how often the kernel is executing in code regions that are
recoverable. Since our implementation “trusts” the sched-
uler, the interrupt handlers and the page allocator (and all
code called by them), this will be less than the entire exe-
cution of the kernel. As noted earlier, we can expand this
fraction substantially with a little more effort to isolate the
actual hardware interactions for the former two.

As a proxy for execution time, we measured the num-
ber of memory operations (loads and stores) performed in
each type of domain. We use several benchmarks: postmark
(which simulates a mail server), find, gcc, bzip, and a Linux
kernel compile. The last two were not run on the SVA 2.4
kernel due to instability inherited from SVA. All benchmarks
were run 4 times consecutively and coverage measured over
that interval. Postmark was run for 500K file transactions,
find searching a tree of 2537 directories and 37822 files to-



taling 960MB for a specific filename, bzip2 compressing a
17MB file, and gcc compiling liblame (a multimedia library)
at -O3. Compiling liblame involved compiling 20 C files (to-
taling about 28 KLOC) and linking them into a shared li-
brary with ld.

Table 3 shows that for filesystem intensive applications
like postmark and to some extent find, coverage ranges from
64% to 97%. However for read and write intensive work-
loads, coverage is considerably lower. Filesystem intensive
applications spend more time exercising the data structures
in the filesystem and VFS-layer code, rather than just do-
ing device IO, thus more of the execution time is spent in
system call code, which has excellent coverage. We are in-
vestigating locations in the interrupt handlers that could be
marked as logged domains to improve coverage in IO inten-
sive workloads.

6.2 Random Fault Injection
To test how often a fault was unrecoverable (within the cov-
ered fraction of code measured above), we inserted poten-
tial fault-injecting code in every basic block. During ker-
nel execution , this code triggered a fault (that would nor-
mally be fatal) in a randomly chosen basic block every
300, 000+rand(0...300, 000) basic blocks (where rand was
recalculated after a fault). These faults were only injected
during logged intervals to focus on the theoretically covered
fraction of code. Faults were repeatedly injected until the
kernel crashed, deadlocked, or otherwise visibly failed. The
above injection rate corresponded to roughly about 4 faults
every second of kernel execution. At this rate, many non-
trivial kernel operations would take a fatal fault without our
techniques.

We repeated this experiment 5 times, each running a
workload that included booting up the kernel, logging in as
root, and beginning to run the postmark application. Over
these 5 runs, the kernel survived an average 35.4 faults
(range: 17 to 72) before crashing. This means that on aver-
age, the kernel survived over 97.2% of faults in the covered
portion of the execution. In the future, we aim to investigate
why the recovery mechanisms failed in a small number of
cases.

An interesting observation in this experiment was that
when faulting, it was never observed that a kernel thread
caused the roll back of the state of another thread. This
argues favorably for the notion that recovery can be applied
surgically to only small portions of the kernel related to a
single task, rather than entire subsystems or drivers.

6.3 Performance
Ideally, during error-free execution, the recovery mechanism
would impose as little overhead as possible. To isolate this
overhead, we measured benchmark run-times under three
different kernels: the original 2.4.22 kernel compiled with
gcc, the SVA ported 2.4.22 kernel compiled with LLVM, and
the SVA ported 2.4.22 kernel with our recovery support, also

Native
Kernel

SVA Recovery Recovery
vs. SVA

postmark 124 178 1004 5.6x
bzip2 13 12 13 1.08x
gcc(liblame) 23 23 29 1.26x

Table 4: Run-times (seconds) of benchmarks on Linux 2.4.22

compiled with LLVM. Comparing the former two shows
the overhead due to SVA alone. However, the overhead of
the recovery techniques in this paper (and their design) are
relatively orthogonal to any overheads caused by SVA itself,
and comparing the latter two kernels isolates the overhead of
the recovery techniques. All these measurements were taken
using KVM (Linux’s support for virtualization hardware
on modern processors) on an Intel Core2 6420 running at
2.13GHz. We used the same benchmarks as in coverage
experiment with the same configuration. All performance
measurements used the average of three runs; the variability
was very low.

Table 4 shows that the system-call intensive Postmark
program is slowed down by about a factor of 5.6x. The other
two benchmarks show low overhead due to our recovery
techniques: 8% and 26% respectively. Overall, although the
overhead for postmark is high, we believe this benchmark
represents an extreme case for Akeso . Furthermore, we are
optimistic that these overheads can be greatly reduced by
eliminating significant bottlenecks in our prototype imple-
mentation.

7. Limitations
The design of our recovery system has two main limitations.
First, it does not extend reliability down to the level of device
interaction. Second, it does not always preserve the consis-
tency of application state (even in the non-error case): it only
provides for the consistency of kernel state. We believe both
limitations can be overcome by using some of the techniques
in the literature that specifically target those areas.

To ensure consistent kernel state and agreement between
the kernel and hardware devices on each others state, we
could incorporate existing driver-oriented recovery mecha-
nisms [22]. Recovery of the driver would be delegated to
the driver recovery mechanism, while responsibility for the
kernel state would be a matter for the proposed system. In
such a system, calls into the driver would be logged as re-
versible domains which would employ the driver recovery
mechanisms to perform a rollback.

The second limitation is we provide no guarantees about
the consistency of user space state. We try to preserve the se-
mantics of the operating system and not introduce behaviors
that could never occur in the absence of the recovery mech-
anism, but this is not always possible. A prime example oc-
curs with a system call such as wait(). Such a system call
causes a semantic dependence between two threads at the
kernel level, which is invisible to our dependence tracking.



In the event that the thread being waited for forms a depen-
dency to the waiter, a dependence loop is formed and dead-
lock would occur. To prevent this, we allow system calls to
return to user space uncommitted (that is, the kernel changes
are still speculative). This breaks the dependence cycle but
also may expose the application to speculative state. Al-
though our system aggressively commits any transaction it
can, it is still possible that we have to roll back a system
call that has already returned to user space. In such cases
we kill the process. This behavior only affects a few system
calls and we believe this can be remedied with careful inser-
tion of basic, root protection domains around the wait queue
code to insulate threads from each other.

8. Related Work
In addition to the projects we already discussed in this paper,
our work is related to several categories of previous research:
transactional systems, techniques for recovering from faults
in operating systems, and programming language support for
recovering from faults. We compare these to our work briefly
below.

Many projects focus on fault isolation within the OS
through new OS architectures, changes to commodity OS
kernels, or language-based techniques. These projects are
complementary to our work: they find and isolate faults,
whereas our goal is to recover from the faults after they have
been detected.

8.1 Transactional Systems
As noted in the Introduction, many of the low-level mecha-
nisms we use are borrowed from database systems, including
undo logging, dependence tracking, unlogged domains, and
reversible domains [8, 1], Nevertheless, our work is novel in
several ways, most of these were described in the Introduc-
tion. In addition, previous TM systems and database systems
integrate support for correct recovery (“failure atomicity”)
with optimistic synchronization for “execution atomicity”:
the two goals share mechanisms for logging, conflict detec-
tion, and rollback. In contrast, we introduce recovery mech-
anisms semi-automatically into an existing multi-threaded
software system where the synchronization mechanisms are
pessimistic (e.g., locks, semaphores, or monitors), i.e., they
do not support rollback of program state. Therefore, we have
to introduce logging and rollback into such existing sys-
tems, and we have to optimize these by taking advantage
of transparent and reversible operations wherever possible.
Furthermore, we do all this semi-automatically to minimize
the manual effort expended by the programmer.

TxLinux [17] exploits transactional memory within an
OS kernel to simplify programming of mutual exclusion.
They do not aim to improve the recoverability of the OS ker-
nel in the presence of unanticipated faults, either within or
outside critical sections. Like their work, however, we could
leverage hardware support for transactional memory tech-

niques to greatly reduce the run-time overheads of logging
and rollback.

8.2 OS Techniques for Recovering From Faults
Our system introduces new techniques and principles for
recovering from operating system faults. The general tech-
nique of checkpoint and recovery has been well-studied in
the past [6] and has been applied to operating systems. Bres-
soud and Schneider use deterministic hypervisor-level re-
play to replicate the state of a system remotely, thus facil-
itating efficient fail-over recovery for operating systems [2].
The Rio Vista project [14] makes in-memory file-system
caches persistent by using battery-backed RAM, and can use
this persistence to recover data after reboots. I/O Shepherd-
ing [9] adds a new layer below the file system to unify file-
system reliability to cope with storage faults. Nooks [22],
SafeDrive [27], and Vino [18], log resource allocations and
interactions with the kernel to free allocated resources af-
ter a driver or extension crash, thus recovering from driver
and extension faults without rebooting the OS. Nooks takes
this general approach one step further and rebuilds driver in-
ternal state by replaying driver-level calls. Microreboot [3]
maintains separate and consistent state for Java objects and
can restart individual object without restarting the entire ap-
plication.

Our techniques allow operating systems to recover from
OS-level faults without requiring a reboot, and we handle
faults in the entire operating system rather than just exten-
sions or drivers.

8.3 Programming Language based Techniques
Some programming language extensions or programming
models exist to try to improve error handling and the cor-
rectness of error return paths. Weimer and Necula [25] ex-
tend Java exception handlers to have a stack of “compen-
sation” code to release resources acquired before an excep-
tion is raised. Shinnar et. al. [20] extend the exception model
of C# to support exceptions with memory undo. Their lan-
guage extensions also support user defined hooks to undo
arbitrary operations. Neither work handles memory depen-
dence tracking and rollbacks across multiple threads.

Xu et al. [26] describe a programming model that enables
error recovery for concurrent object-oriented programs.
They define mechanisms for cooperative exception handling
and (like database systems) take advantage of transactions
in the underlying language for recovery as well. Since we
are recovering OSes written in assembly and C, we have
neither the luxury of simply extending a language excep-
tion mechanism, nor can we rely on certain programming
styles. Recovery domains allow a wider variety of actions to
be taken in recovery code, e.g. invalidating the entire disk
cache, rather than being limited to resource release opera-
tions.



9. Conclusions
In this paper we presented Akeso, the first system for re-
covering automatically from faults for entire commodity op-
erating system kernels. We introduced the concept of a re-
covery domain that divided the kernel into separate logical
components for recovery, and we showed how we could use
these recovery domains to recover from faults within oper-
ating system kernels. Based on fault injection experiments,
our kernel withstood 35.4 randomly injected faults before
crashing, and this high-level of reliability required only 132
lines of code to be changed in the operating system. Despite
the heavy compiler-inserted instrumentation needed for re-
covery, our mechanisms had surprisingly low overhead for
some benchmarks, but moderately high overhead for others.
We are currently working to bring down these overheads.
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