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Abstract—As semiconductor technology scales into the deep
submicron regime the occurrence of transient or soft errors will
increase. This will require new approaches to error detection.
Software checking approaches are attractive because they require
little hardware modification and can be easily adjusted to fit dif-
ferent reliability and performance requirements. Unfortunately,
software checking adds a significant performance overhead.

In this paper we present ESoftCheck, a set of compiler
optimization techniques to determine which are the vital checks,
that is, the minimum number of checks that are necessary to
detect an error and roll back to a correct program state. ES-
oftCheck identifies the vital checks on platforms where registers
are hardware-protected with parity or ECC, when there are
redundant checks and when checks appear in loops. ESoftCheck
also provides knobs to trade reliability for performance based
on the support for recovery and the degree of trustiness of the
operations. Our experimental results on a Pentium 4 show that
ESoftCheck can obtain 27.1% performance improvement without
losing fault coverage.

I. INTRODUCTION

Transient errors, also known as soft errors, are due to
impacts from high-energy particles or other random exter-
nal events that change the logic values of latches or logic
structures. These errors are temporary, but they caused costly
failures in high-end systems in recent years, such as crashes
at some of Sun’s customer sites, including American Online
and eBay [2] and Los Alamos Labs supercomputers [16]. The
continued evolution of hardware toward smaller feature size,
lower voltage, and higher frequency suggests that fault rates
will increase in the future. Thus, error detection mechanisms
are necessary to ensure that a soft error does not go undetected
and results in an erroneous computation. Once errors are
detected, it is often possible to use software schemes for error
correction — the performance of error correction schemes is
not critical, as long as errors are not too frequent; however,
error detection adds an overhead to all computations and has
to perform efficiently. For this reason, we focus in this paper
on error detection.

Hardware-based error detection is used on modern micro-
processors to detect errors in storage and buses: for example,
ECC memory and parity bits for caches and various buses,
which generally add a low overhead to performance and
chip size. On the other hand, it is much harder to detect
errors in the pipeline: current solutions include watchdog co-
processors [12], redundant hardware threads [7], [19], [25],
[32] or the replication of significant fractions of the CPU logic,
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as in the high-end IBM mainframes [30], HP NonStop [13] or
mission-critical computers [36]. However, it is unclear whether
such hardware cost is acceptable for commodity systems.
For such systems, software-based error detection may be a
preferable solution. Software checking approaches are less
costly in terms of hardware and are more flexible: different
trade-offs between performance and reliability can be achieved
on the same hardware, using different software approaches,
while hardware-only solutions cannot offer the same flexibility.
Such flexibility can be used, for example, to achieve different
levels of reliability for different software components: one
may not care about undetected errors that will affect the PC
display during a game, but may want to avoid errors that will
corrupt the file system metadata. Recently, researchers have
also proposed hybrid software-hardware approaches [27].
Our approach is to provide full error detection coverage for
the whole program or for a whole section of the program.
Thus, our baseline software-based approach is to replicate
computing instructions keeping two copies of the data and add
checks before stores and other synchronization instructions to
compare the copies and ensure that data stored in memory are
correct [26], [27], [33]. In this paper we propose EsoftCheck, a
set of compiler optimization techniques that reduce the amount
of checks by identifying those that are vital — rather than
adding checks before all stores and synchronization instruc-
tions. Vital checks are the minimum set of checks that are
necessary to detect an error and roll back to a correct program
state. Thus, ESoftCheck improves performance and at the same
time guarantee that an optimized code has the same level of
reliability than that of a non-optimized code that contains all
the checks . Identifying vital checks is not trivial because all
checks in the baseline approach are important: each check is
guarding a load, a store, or other synchronization instructions.
Removing a check may result in a load returning a wrong
value, memory corruption, a system crash, or other problems.
Existing compiler optimizations can not help in this situation
since these checks are not regular instructions and optimizing
them requires a thorough understanding of the purpose of
each check and its relationship with the underlying recovery
layer. In this paper, we present three classes of optimizations
that ESoftCheck can apply: The first optimization identifies

INotice that although we target full coverage some errors cannot be detected
when using software approaches. Details are given in Section VII.



the vital checks when the register file is hardware-protected
with parity or ECC. Machines with hardware-protected register
files include Intel Itanium [14], Sun UltraSPARC [9] and IBM
Power4-6 [3]. In these platforms, checks are necessary to ver-
ify if the result of a computation is correct. However, contents
of registers not involved in logic or arithmetic operations are
verified by the hardware and not need to be software checked.
This optimization is key for performance improvement in plat-
forms with a limited number of registers (such as x86 where
only 8 registers are available) because apart from removing
redundant checks registers devoted to keep the replica can
be deallocated earlier, reducing register pressure. The other
two optimization provided by ESoftCheck can be applied even
when the register file is not hardware protected. The first one
identifies the vital checks when there are redundant checks. A
check of a variable, say v, is redundant if it is postdominated
by another nearby check of v or of a variable whose value is a
function of v through a data dependence relation; the second
optimization hoists out of loop checks of loop-invariant or
induction variables.

As a flexible software-based approach, ESoftCheck provides
knobs so that the user can trade reliability for performance.
With ESoftCheck the user can i) define what are the com-
mit points, and ii) specify the degree of trustiness of each
operation. The distance between commit points is important,
because the larger the number of instructions between commit
points, the more redundant checks can be detected and re-
moved. The degree of trustiness affects the removal of checks
on variables that are data dependent through trusted operations.

ESoftCheck compiler techniques are beneficial for both
software-only and hybrid (software/hardware) fault tolerant
solutions. Software-only solutions applied to single-threaded
code [26], [5] benefit from a lower register pressure and a
reduction in the number of comparison and branch instruc-
tions executed. For multithreaded code [33], ESoftCheck also
reduces the number of communication and synchronization
instructions executed. In the case of hybrid solutions [27], [23],
ESoftCheck reduces the number of hardware checks.

We have implemented ESoftCheck using the LLVM Com-
piler Infrastructure [10] and run experiments on a Pentium 4
using Spec benchmarks. Our performance results show that
ESoftCheck compiler optimizations improve performance by
27.1% compared to a state of the art software-only single
thread approach such as SWIFT [26]. As expected, our fault
injection experiments using PIN [11] show that ESoftCheck
does not produce more Silent Data Corruption than the fully
replicated code.

The paper is organized as follows: Section Il presents the
background, Section 111 presents an overview of ESoftCheck,
Section IV discusses in detail the compiler algorithms that
ESoftCheck uses, Section V presents our environmental setup
and experimental results, Section VI presents related work,
Section VIl present some issues that appear in software
checking approaches, and finally Section VIII concludes the

paper.

Il. BACKGROUND

Our baseline approach is similar to other software tech-
niques for fault tolerance such as SWIFT [26] that assume that
data can be corrupted in arbitrary ways within the CPU but
that memory and caches are error-free; i.e., that the protection
offered by techniques such as ECC and memory scrubbing
reduce the frequency of undetected errors to an acceptable
level. The software techniques are only reponsible of detecting
CPU errors and preventing a faulty value from being written
to memory. The base approach for doing so is to keep two
copies of each register value, and to execute each operation
twice, on different copies of the data; errors are detected by
comparing the two copies. Stores, branches, function calls,
returns, and loads are considered to be “synchronization”
instructions where we need to ensure that certain values
are correct; checking instructions are inserted before each
synchronization instructions:

e Before a store, checking instructions verify the value and
memory address. This ensures that the correct data is stored
to the correct memory location.

e After a branch, checking instructions verify that the branch
takes the appropriate path.

o Before a function call, checking instructions verify the input
parameters.

e Before a function return, checking instructions verify the
return value.

e Before a load, checking instructions verify the address of
the load. Then, the loaded value is immediately copied to
another register [5], [26]. An naive approach to obtain two
independent copies and avoid the checking instructions is to
replicate the load. However, this approach is not used because
two consecutive loads to the same address may not return the
same value if the addressed variable is volatile, or is a shared
variable in a multithreaded program.

Strictly speaking, software techniques do not prevent faulty
values from propagating to memory but they reduce the
window of vulnerability where a soft error can cause a faulty
value to be written to memory. A detailed description of errors
that software techniques cannot handle is done in Section VII.

An example of the original and its corresponding augmented
code executing in the same thread is shown in Figure 1-(a)
and (b), respectively. The augmented code contains additional
instructions that are shown in bold and uses additional registers
that are marked with a ' . Instruction 1 and 5 replicate the
additions, instructions 2 and 3 check that the | oad is loading
from the correct address, instruction 4 copies the value just
loaded in r 3 and instruction 6-9 check that the store writes
the correct data to the correct memory address.

I1l. ESOFTCHECK

In this Section we present an overview of ESoftCheck.
Section Il1-A discusses the type of checks that ESoftCheck
can optimize, Section I11-B describes the knobs provided by
ESoftCheck, and Section 111-C discusses some of the issues
that appear.



add r6 =17, 4 addr6=r7,4
addr6'=r7',4 (1)
cmpr6, ré’ (2)
jnefaultDet  (3)
Id r3=[r6] Id r3=[r6]
mov r3'=r3 (4)
étljld r4=r3,1 é&d r4=r3,1

addr4'=r3',1 (5)
cmp r4, r4 (6)
jnefaultDet  (7)
cmp r6, ré’ (8)
jnefaultDet  (9)
store [r6]=r4

(b) Baseline
replicated code

store [r6]=r4

(a) Original code

addr6 =r7,4

addr6'=r7,4 (1)
cmpre6,re (2
jnefaultDet (3)

Id r3=[r6]

add r4=r3,1

addr4'=r3,1 (5
cmprd, rd  (6)
jnefaultDet (7)

store [r6]=r4

(c) ESoftCheck
safe registers

addr6 =17, 4
addr6'=r7,4 (1)

Id r3=[r6]
mov r3=r3 (4)

add rd=r3,1

addr4'=r3,1 (5)
cmprd, r4d (6)
jnefaultDet (7)
cmpr6,r6°  (8)
jnefaultDet (9)
store [r6]=r4

(d) ESoftCheck
non-safe registers

Fig. 1. ESoftCheck optimizations, when register file is safe-(c) and when register file is not safe-(d).

A. Optimized Checks

The added instructions in the augmented code of Figure 1-

(b) can be classified as either shadow copies of the original
instructions (instructions 1, 4 and 5) or error checking instruc-
tions (instructions 2, 3 and 6-9). In this baseline approach,
checking instructions are inserted before synchronization in-
structions. The key idea of ESoftCheck is to identify, of all
these checks, those that are vital — meaning, the ones that
need to be kept so that any error can be detected and the
program can roll back to a correct program state. To do that
ESoftCheck uses compiler techniques to optimize four types
of checks. Next, we describe them (a more formal description
is presented in Section 1V):
Type 1. Checks when the register file is hardware-
protected. The register file of current platforms such as Intel
Itanium [14], Sun UltraSPARC [9] and IBM Power4-6 [3]
are already hardware-protected by parity or ECC or can be
protected with cost-effective hardware mechanism [8], [17].
In these platforms, that we call register safe platforms, the
hardware will detect faulty data in the registers; however, the
hardware cannot determine that a register contains a faulty data
as a result of a faulty computation storing the wrong result.
Thus, it is still responsibility of the software to check that all
the computations return the correct data.

In the register safe platforms, vital checks are only those that
check the result of the computation. Registers not involved in
arithmetic of logic operations do not need to be checked. Next
we show the two cases that ESoftCheck optimizes:

Case a: Checks of registers defined by loads that have not
been modified by arithmetic or logic operations are non-vital,
and can be removed. In addition, the registers defined by loads
do not need to be replicated, saving a copy instruction and
reducing register pressure. An example is shown in Figure 2.
Figure 2-(a) shows the original code, a pointer chasing code,
where the data loaded from memory is used as the address of
the next load. ESoftCheck removes instructions 3, 4, 5, and
6 because errors in register r 1 and r 3 are detected by the

hardware.

cmpr2,r2 (0] cmpr2,r2. (1)
jnefaultDet  (2) jnefaultDet  (2)

Id r1=[r2] Idr1=[r2] Id r1=[r2]
movrl=rl (3
cmprl, rl (4)
jnefaultDet  (5)

Idr3=[r1] Id r3=[r1] Idr3=[r1]

movr3=r3 (6)

(a) Original code (b) Replicated code (c) ESoftCheck

Fig. 2. Check removal when register file is safe.

Case b: Checks of registers holding the result of an arith-
metic or logic computations are vital and need to be kept.
In this case, there are two situations. In the first situation
a check appears right after the computation because of a
synchronization operation right after the computation. An
example is shown in Figure 1-(c). In this example, r 6 is the
result of an add instruction and used right after by a | oad.
The check before the load (instructions 2 and 3) verifies that
the result of the addition is correct; thus, it is vital and needs
to be kept. The second check (instruction 8 ad 9) can be
removed as r 6 is not modified between the | oad and the
st or e. Notice that after the first check register r 6’ can be
deallocated, reducing register pressure.

The second situation appears when the synchronization
instruction is far from the computation on a register. In this
case, rather than keeping the check at the place of the synchro-
nization instruction, ESoftCheck moves the check to appear
right after the computation. This does not reduce the number of
checks, but reduces register pressure as the replicated register
is deallocated after the check. An example where this situation
appears is shown in Figure 3, which is extracted from gzi p.
The code is in SSA form (every variable is assigned only once)
and has a ¢(Phi)-function [35] to specify that register r 3 will
take the value in r 2 if the control flow comes from block
L1 or the value in r 5 if the control flow comes from block



L7. In the baseline replicated version (Figure 3-(b)), the check
of r 3 (instructions 3 and 4) before the | oad checks register
r 2 or r 5, depending on where the control flow comes from.
However, since the check is not in the same basic block where
r2 and r 5 are defined, the replicated register r 2’ and r 5’

need to be kept until register r 3 is checked in the basic block
L3. ESoftCheck can optimize this code as shown in Figure 3-
(c), wherer 2 and r 5 are checked right after being defined and
before the ¢(Phi)-function. This optimization results in more
static instructions and one extra dynamic check, but reduces
register pressure because r 2’ and r 5’ are deallocated after
the check.

Notice that for the optimized code to have the same level of

reliability than that of the non-optimized code we are assuming
that when the register file is hardware-protected, the path
to and from the register file, forward paths, and renaming
tables are also hardware-protected. If this is not the case, an
error in a datapath that would have been detected in the non-
optimized code may not be detected in the optimized one. As
an example consider the instruction add r4 = r3 , 1 and
its replica (instruction 5) in the optimized code in Figure 1-
(c). If the value of register r 3 is corrupted in a datapath, and
both instructions receive the same corrupted value, the error
cannot be detected. However, if each instruction receives the
value from two different datapaths, for instance, one receives
it from the forwarding path and the other reads it from the
register file, and one value is corrupted and the other not,
the error can still be detected. In the non-optimized code
in Figuree 1-(b) an error in the datapath will be detected if
it occurs after register r 3 has been replicated by the nov
r 3’ =r 3 instruction because in the non-optimized code the
original instruction and its replica use different registers (r 3
and r 3’ ), so an error in one datapath should only affect one
of the instructions.
Type 2. Checks covered by a later check to the same
register. A check of a register is redundant if it is always
followed (covered) by another check of the same value in
the register at the time of the check, and the register has not
been modified in between the two checks. In such a case, the
last check is the vital one when the register is not hardware-
protected. The first check (the redundant one) can be removed
since an error will be discovered by the subsequent check (the
vital one). The example in Figure 1-(d) shows the optimized
code of Figure 1-(b). Instructions 8 and 9 check the same
register as instructions 2 and 3, and the value of r 6 does not
change between the two checks. Therefore, instructions 2 and
3 can be removed.

Notice that by removing the instructions 2 and 3 in Figure 1-
(c), it is possible to load from a wrong address (which will
result in a wrong value in both r3 and r3’) or cause a
segmentation fault. The error in the load address will be de-
tected when checking r 6 in instructions 8 and 9. Section 111-C
explains how to handle segmentation faults resulting from
transient errors.

Type 3. Checks covered by a later check of a different
register. A check of a register is redundant when it is followed

(covered) by a check of a different register whose value is a
function of the first register. In this case the second check is the
vital, and the firt one (the redundant check) can be removed.
An example is shown in Figure 4. Figure 4-(a) shows the
original code, and Figure 4-(b) shows the replicated code. In
this example, it is possible to remove instructions 1 and 2
that check register r 1, because r 4 is computed by adding
a constant to r 1. An error in r 1 propagates to r 4, and is
detected when r 4 is checked.

cmprl,rl’ (1)
jnefaultDet  (2)
Id r2=[r1]

Id r2=[r1] Id r2=[r1]

add r4=r1,4 add r4=r1,4
addr4'=r1',4 (3)
cmprd, rd  (4)
jnefaultDet (5)
cmpr5,r5  (6)
jnefaultDet  (7)
store [r4]=r5

(b) Replicated code

add r4=r1,4
addr4'=r1',4 (3)
cmprd, rd (4)
jnefaultDet (5
cmpr5,r5  (6)
jnefaultDet  (7)
store [r4]=r5

(c) ESoftCheck

store [r4]=r5
() Original code

Fig. 4. ESoftCheck uses data dependence to remove redundant checks of
different registers.

Type 4. Checks of loop induction variables and loop
invariants. Checks inside loops can be made redundant and
removed by adding covering checks at the loop exits, thus
reducing the dynamic check count. Figure 5-(a) shows a
loop where register r 1 contains an induction variable. The
corresponding replicated code is shown in Figure 5-(b) where
checks at the taken and fall through paths of the conditional
branch (instructions 4, 5, 6, and 7) verify that the loop executes
the correct number of iterations.

Figure 5-(c) shows the ESoftCheck code, where instructions
1 and 2 that check register r 1 have been moved outside the
loop because the compiler has determined that r 1 contains
an induction variable, and any error in the loop will also
propagate outside, where it will be detected.

LoopEntry: LoopEntry: L oopEntry:
cmprlrl gl
jnefaultDet (2

Id r2=[r1] Id r2=[r1] Id r2=[r1]
add r1=r1,4 add r1=rl1,4

addrl=r1,4 addrl'=r1',4 (3) addrl'=r1',4 (3)

cmpr7, 18 cmpr7, 18 cmpr7, 18.

ig IPoopExit jo LoopExit jo LoopExit
cmpr/7,r8 (4 cmpr/7,r8 (4
jgfaultDet 5) jgfaultDet 5)
jump LoopEntry jump LoopEntry

jump LoopEntry  LoopExit: Lor%pExit,: )

L oopEXxit: cmpr7,r8  (6) cmpr7,r8  (6)

jlefaultDet  (7)

(a) Original code (b) Replicated code

Fig. 5.

jlefaultDet  (7)
cmprl, rl (1)
jnefaultDet  (2)

(c) ESoftCheck

Check removal for an induction variable.

Notice that optimizations of checks of types 2, 3, and 4 can



L1 .. L1 .. L1: -
= add r2=r1, 4 add r2=r1, 4
addra=rt, 4 addr2'=r1’, 4 ) addr2'=r2', 4 @
cnpr2,r2 2
. jnefaultDet 3
LoopEntry: r3=Phi(r2 from L1, LoopEntry: r3=Phi(r2 fromL1, LoopEntry: r3=Phi(r2 fromL1,
r5from L7) r5from L7) r5from L7)
r3=Phi(r2' fromL1,
r5'fromL7) @
L3: L3 cmpr3,r3 3 L3:
jnefaultDet 4
Id r4=[r3] Id r4=[r3] Id r4=[r3]
z.ﬁd 5=r6,r0 add r5=r6,r0 add r5=r6,r0
add r5'=ré',r0 (5 add r5'=ré',ro 4
cnpr5, rs 5
jnefaultDet (6)
L7 - L7: - L7: ...
jne LoopEntry jne LoopEntry jne LoopEntry

(b) Origina code

Fig. 3.

be applied when the register file is not safe. If the register
file is safe, checks of type 1 are optimized first and the
other types of checks are optimized afterwards. More details
are given in Section IV. Finally, notice that to simplify the
discussion our examples only contain two checks and simple
data dependences, but ESoftCheck can detect more than one
redundant check linked by a chain of data dependences.

B. Knobs

ESoftCheck provides two types of knobs so that the user
can trade reliability for performance. The user can trade the
number of redundant checks that can be removed based on the
frequency of checkpoints and the trustiness of operations.

1) Checkpoints: A fault tolerant system requires a check-
point mechanism that saves snapshots of the application state
where to roll back if an error is detected. The commit points
are the instructions in the application where a new checkpoint
is taken so that the space used by the previous checkpoint can
be released. To be able to properly recover, a checkpoint must
not contain corrupted data. Thus, at commit point we need
to make sure that any possible error has been detected. As a
result, in order to determine which are the vital checks, the
optimization techniques for checks of types 2, 3, and 4 need
to know the location of the commit points. For example, given
two checks to the same register the first check is a vital check
(cannot be removed) if there is a commit point between the
two checks. An example illustrating this situation is shown
in Figure 6-(a) and (b), where the check operator consists of
two instructions: a “comparison” instruction to compare the
contents of the register in the original code with the contents
of its replica and a “conditional branch” to an error handler
if a mismatch is detected. Similarly, when a commit point is
inside a loop, checks of loop induction variables and of loop
invariants cannot be moved outside the loop. The optimization
of checks of type 1 is not affected by the location of the
commit points, as after a check verifies that the computation
is correct it is the hardware responsibility to detect errors in

(b) Replicated code

(c) EsoftCheck

Register safe optimizations when the check is far from the computation.

the registers.

cheekTl  checkrl
commit()
check rl check rl
(a) (b)

non-safe registers

Fig. 6. ESoftcheck in the presence of checkpoints.

ESoftCheck provides knobs so that the user can specify the
location of the commit points. Notice that in general the more
instructions between commit points, the more likely it will be
for ESoftCheck to find redundant checks that can be removed,
resulting in a larger reduction of the overheads. For this paper
we evaluate two different checkpoint frequencies, described in
Section I1V-D.

2) Degree of trustiness: As explained when optimizing
checks of type 3, a check is non-vital (can be removed)
when it operates on a register whose value is a function of
an earlier checked register. However, this approach can mask
some errors. For instance, if we have mul r4=r1,r3 and
r 3 is zero, by only checking r 4 we will not detect if there is
an error inr 1. Thus, we define Trusted operators as those that
have a low chance of masking errors. ESoftCheck can provide
knobs so that the user can specify which operators are to be
considered trusted so that variable a can be checked through
variable b, when variable b depends on a through a chain of
dependences that only involves trusted operators. In general,
arithmetic and shift operators are considered trusted. For logic
operators the probability of error propagation will depend on
the number of 0’s and 1’s.

An interesting situation appears with the conditional move
operator: cnov r4, r3, cond copies register r 3 to r 4 if
cond is true; otherwise it does not do anything. We consider
that it is not safe to check register r 3 by checking the contents
of r 4, because when crov does not perform the copy, an



error in r 3 will not be detected by checking r 4. On the other
side, since cond is computed as the result of a comparison
instruction that executes before the cnov, it would be possible
to check the operand registers of the comparison through a
check of r 4. However, since the comparison only has two
possible outcomes, an error in the comparison operand register
has a high probability of being masked. Thus, we consider the
crov operator not trusted.

C. Issues

ESoftCheck can increase the number of segmentation faults
with respect to the Baseline Fully Replicated codes. The
reason is that by removing redundant checks it is possible
that some errors will manifest as segmentation faults before
the error is detected, that is, before the check that has not
been removed is executed (an example was shown in Figure 1-
(d), where by removing instructions 2 and 3, a segmentation
fault could occur during the load if the contents of r 6 were
corrupted). In these circumstances we will not know if the
segmentation fault is the result of a programming error or
of a soft error. However, since the operating system knows
where the segmentation fault occurred and a fault tolerant
system must have a mechanism to roll-back to a safe state,
we can roll-back and re-execute. If the same error appears the
operating system will notify of an error to the user; however, if
the error does not appear again, we can consider it was due to
a soft error or a heisen software bug. Notice that the number of
segmentation faults will not increase when optimizing checks
of type 1 on a register safe platform.

This increase of segmentation faults can hardly affect
performance. Our experimental results in Section V show
that only a very small fraction of the injected errors caused
segmentation faults. Thus, the overhead of roll-back and re-
execution on those rare situations where a soft error manifests
as a segmentation fault pays off for all the executions without
the extra checks.

IV. FRAMEWORK

Our optimizations are implemented as passes on the LLVM
intermediate level [10], which is a SSA representation [6].
We present the optimization algorithms for hardware-protected
checks (checks of type 1) in Section IV-A, for checks covered
by the same or different register in Section IV-B, and for
checks before loop induction variables and loop invariants
(checks of type 4) in Section IV-C. When the register file is
hardware-protected, the algorithm in Section IV-A is applied
first.

A. Hardware-Protected Checks

As explained in Section IlI-A, on register safe platforms
there are two cases when checks can be optimized. We unify
the two cases by defining that register r is safe at point P if
r is defined by a load or there is a check on r at point Q,
such that Q dominates P and r does not change on any path
between point Q and point P. If we know register r is safe at
point P, a check on r (at P) can be removed, and the use of

r’ (at P) can be replaced by r . The problem of determining
which registers are safe at a given point is a forward data-flow
problem.

However, there is a situation shown in Figure 3 where the
check is far from the block where the register is defined.
ESoftCheck implements a second compiler pass that moves
the check of a register close to its definition when the distance
between the register definition and the check is larger than a
certain threshold. Notice that the identification of vital checks
in this case does not depend on the location of the commit
points (See Section 111-B1).

B. Covered Checks

A check c1 of register r 1 is covered by another check c2
of register r 2 when
1. ¢c2 postdominates c1.

2. Eitherr 2=r 1 or r 2 depends on r 1 through a chain of data
dependences that only involve trusted operators.

3. There is no update to register r 1 on any path between the
two checks.

If r2=r 1 we say c1 is directly covered by c2; otherwise
we say it is indirectly covered. A covered check c1 can be
eliminated if there is no commit point on any path between
c1 and c2. Examples are shown in Figure 7. On Figure 7-(a)
and (b) c1 is covered by ¢2, but on (b) c1 cannot be removed
because of the commit instruction. On Figure 7-(c), c1 is
not covered because c2 does not postdominate. On Figure 7-
(d), c1 is covered because the combination of c2 and c3
postdominates c1.

(cl)checkr  (cl)checkr  (cl)checkr (c1)check r
Ve
t=rop8 commit (c2)check r

(cZ)cteckt (c2)checkr  nocheckr (c2)check r
@ (b) (9 (d)

(c3)check r

Fig. 7. Examples of covered and non-covered checks. In (a) and (b) check
cl is covered by c2, but check cl in (b) cannot be removed because of the
commit instruction. In (c), check c1 is not covered by c2. In (d), check cl is
covered by c2 and c3.

Next, we present the algorithm to detect covered checks
that can be removed (Section 1V-B1) and then discuss how
to apply it based on the support for checkpoint and rollback
(Section 1V-D).

1) Algorithm To Remove Covered Checks: The algorithm
to detect and remove Covered checks is similar but different
from classic Common Sub-Expression Elimination(CSE) [18],
in that: i) We can optimize the data-dependence case where
two checks are checking different registers, while CSE can
not optimize if two expressions have different operands. ii)
We need to preserve the latest check for catching an error,
while CSE preserves the earliest evaluation of an expression.
iii) A commit point will kill all available checks in our case,
while CSE does not have such a powerful killer.

We define that check(r) is availableat point P if on every
path from the program end to P, there isa check(t) at point



P’ (t depends on r through a chain of trusted operators, or
t is r), and there is no update to r and no commit point
in between. To determine if a check(r) can be removed
ESoftCheck will determine if check(r) is available right
after it appears in program order using the algorithm described
next.

Flow analysis of available checks. The flow analysis will be
discussed in two parts. First, we present the intra-basic block
(local) analysis, and then the global flow analysis.

Local flow analysis. Let AC 4 (I) and ACgr(I) be the set of
Available Checks right after and right before instruction I (in
program order), respectively. Let Chk_Ins() be the instruc-
tion transfer function which computes AC'gr in terms of I and
ACAF: ACBF(I) = Ohk_InS(I,ACAF(I)) Chk_[ns() is
defined as follows:

e If I'ischeck(r), ACpr(I) = ACar(I) U {check(r)}

e If Iisr=0P(t) and OP is a trusted operator, we will make
check(t) available if check(r) is already available right
after 1. The reason is that an error in t will be determined
by check(r). In addition, since r is updated we kill the
availability of check(r) . With this we propagate available
checks through chains of data dependence.

(AC4r(I) U check(t)) — {check(r)},
ifcheck(r) € ACap(I)

ACap(I) — check(r), otherwise

o If I isr=0P(t) and OP is not a trusted operator, we kill the
availability of check(r). ACpr(I) = ACsr(I) — {check(r)}
e If I is commit point, all the available checks are
killed, as they cannot propagate across commit points. Thus,
ACpr(I) =10

e Otherwise, ACgr(I) = ACAr(I)

Global flow analysis.

Let AC;n(B) and ACour(B) be the set of available
checks on entry to and exit of basic block B, respectively. Let
Chk_Blk() be the basic block transfer function: ACyn(B) =
Chk_Blk(B, ACoyr(B)).

ACEp(I) =

Assuming that the basic block B  contains
the instruction sequence I, Io, I, we define
Chk_Blk as AC[N(B) = AOBF(Il) =

Chk_Ins(Iy,Chk_Ins(Iz,...Chk_Ins(I,, ACour(B))...)).

Figure 8 shows an example. For instance, at instruc-
tion 3 (r3=r 1+16), check (r3) is killed. In addition,
check(r 1) is made available because r 3 depends on r 1
through a trusted operator and check( r 3) is available right
after instruction 3. Thus, when instruction 1 is processed, we
find that check(r 1) is available right after it. As a result
check(r 1) atinstruction 1 can be removed.

To guarantee the postdomination property a check is avail-
able at the exit of a basic block only if the check is available
on the entries of all the successor basic blocks. Then, the data
flow equations are:

(@) ACour(B) = ACN(S), over all successors S of B
in the data flow graph.

and

(b) ACn(S) = Chk_BIk(S, ACour(S)).

Compute: AC,\(B)={ chk(r1)}

time AvailChk_BF(li) comment

1) | checkrl; 5 (chk(r1)} Can be removed

2)| r2=load [r1]; | 4 (chk(rl)} Kills chk(r2)

3)| r3=rl1+16; |3 (chk(rl), chk(r2)}o | Error will propagate fromrltor3
4| cmp..; 2 (chk(r3), chk(r2)} =

5[ jl..; 1 (chk(r3), chk(r2)}§

/ \\ Given: ACq7(B)={ chk(r3),chk(r2)}

Fig. 8. Available checks for a basic block

Notice that the check removal can be applied while the
available check analysis is being applied.

C. Loop Checks

Our algorithm detects loop induction variables and loop
invariants and move the checks of these variables outside
the loop. Induction variables are variables whose succes-
sive values form an arithmetic progression in a loop. In
the SSA form, loop induction variables are defined by
cycles involving ¢(Phi)-functions [35]. We scan ¢(Phi)-
functions in the loop header node. Given r = ¢((pre —
header,r0), (backedge, r2)), if r2 is defined as r plus(or
minus) a loop constant, we consider r as a loop induction
variable. This optimization is only applied to loops that do
not contain commit points in our implementation.

D. Knobs

Checkpoints: ESoftCheck determines the covered checks that
can be eliminated based on the location of the commit points.
As explained in Section I11-B1 checks cannot be delayed
across commit points. In this paper, we evaluate two check-
point frequencies:

1) MemuUnPolluted. To compare with previous proposals,
we follow their approach: a program is considered cor-
rect if its output is correct (assuming memory-mapped
1/0), that is, if all the stores have executed correctly [23],
[26], [27], [28]. Under this approach stores, function
calls and function returns are commit points and checks
cannot be delayed across commit points. As a result,
checks can only be removed before loads.
MemCheckpoint. Under this system commit points are
function calls and function returns. With MemCheck-
Point stores are not commit points and memory can
be corrupted with wrong values. Thus, a mechanism
for memory checkpointing either in software [4] or in
hardware, such as ReVive [24] or SafetyNet [31] is
necessary.

Degree of Trustiness: With ESoftCheck the user can spec-
ify which are the trusted operators. For the experiments in
Section V arithmetic, shift and logic operators are trusted
operators, while the conditional move operators are not. Due
to space limitations, we do not evaluate the impact on perfor-
mance or reliability of the degree of trustiness.

2)
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Fig. 9. Characterization of static checks for each type of instruction(MemUnPolluted).

V. EVALUATION

In this Section we evaluate our proposed techniques. We first
discuss our environmental setup (Section V-A), characterize
the number of static checks that can be removed (Section V-B),
evaluate performance (Section V-C), and measure reliability
(Section V-D).

A. Environmental Setup

We use LLVM [10] as our compiler infrastructure to gen-
erate single-threaded codes extended with redundant compu-
tations and the check operations. This extension is carried out
at the intermediate level, right after all the static optimizations
have been done. We replicate all the integer and floating point
instructions. To prevent backend optimizations to eliminate the
added code we tag the replicated instructions. The backend
optimizations are applied separately to the tagged and the
untagged instructions. For the evaluation reported here we
use SPEC CINT2000 and the C codes from SPEC CFP2000,
running with the ref inputs. Experiments are done on a 3.6GHz
INTEL Pentium 4 with 2GB of RAM running RedHat9 Linux.

B. Characterization of Satic Checks

In this Section, we characterize the static checks that can be
removed. A breakdown is shown in Figure 9. There are four
bars for each application. The first three bars characterize the
checks based on the type of instruction they guard: load Id,
store st, and function call and return other. The last bar to
corresponds to the sum of all the checks in the three previous
bars. The bars are normalized to the total number of checks
for each type of instruction. A check is categorized according
to the reason why it can be removed: (i) because it is covered
by another check to the same or different register (Covered),
(if) because it is before a loop induction variable or loop
invariant (Loop), (iii) because the register file is safe (SafeReg).
The checks that cannot be removed appear as (NotRem). For
the characterization we assume the MemUnPolluted model
described in Section 1\VV-D

Notice that a given check may belong to Covered and
RegSafe at the same time. However, in our characterization
this check will appears as Covered. The first observation we
make is: (1) with the MemUnPolluted model only the covered
checks before loads can be removed. The removed checks in

this case account for 42.8% of the checks before loads and
19.1% of the total number of checks; (2) the fraction of checks
that guard loop induction variables and loop invariants is very
small; (3) when the register file is safe, an average of 32.1%
of the checks can be removed.

C. Performance

Figure 10 shows the performance of different systems where
fault tolerance has been implemented in software. Fully Repli-
cated (FullRep) corresponds to the baseline system described
in Section Il and that is similar to SWIFT [26]. Notice that
in our implementation of FullRep checking instructions are
inserted before branches to verify that the branches follow the
appropriate path, but checks to verify that the program follows
a legal control path and that the PC has not been corrupted
have not been inserted, as discussed in Section VI1I. The rest of
the bars in Figure 10 correspond to the different optimizations
described in Section 1V: removal of checks because the register
file is safe (SafeReg), removal of checks that are covered by
another check to the same or different register (Covered), and
removal of checks before loop induction variables and invari-
ants (Loop). The first four bars of each application correspond
to the MemUnPolluted model where stores, function calls and
function returns are considered commit points. In addition,
we also show performance numbers for the MemCheckPoint
(MemChkpt) model, where commit points are function calls
and function returns.

FullRep is on the average 2.16 times as slow as the
original code. This large overhead is due to several reasons:
i) register pressure, the replicated code needs twice as many
registers as the original application, and the x86 ISA only
has 8 registers available to the compiler, and ii) the additional
instructions. Previous works have published smaller overheads
for FullRep [5], [26], [27] but in that work the target machines
were Itanium or PowerPC platforms that have a larger number
of registers.

SafeReg is the optimization that obtains the highest per-
formance benefit. The reason is that apart from the redundant
checks removed, it reduces register pressure, which is very im-
portant in x86 processors, where only 8 registers are available
to the compiler. On the average, SafeReg runs 24.6% faster
than FullRep. Notice that SafeReg does not include the second
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compiler pass described in Section 1\V-A where a register is
moved close to its definition. Thus, our results do not show
the benefit of that optimization, although we do not expect it
to have a large impact. Some preliminary experiments that we
did show that the number of places where it can be applied is
small.

The removal of redundant checks (Covered) runs 6.9%
faster than FullRep, but only checks before loads can be
removed under the MemUnPolluted model. We have also
removed all the checks before loads (not shown in the Figure),
and found out that the average normalized execution time is
1.82 (versus 2.02 of Covered). Thus, Covered reduces 41.2%
of the overhead introduced by checking the load address. The
optimization before induction variables and loop invariants
(Loop) results in little performance gain (that is why we do
not show results for only Loop). The reason is that as shown in
Figure 9, the fraction of checks that can be removed is small.

When we combine the three optimizations together Cov-
ered+Loop+RegSafe we apply the SafeReg optimization first
and obtain an average 27.1% speedup compared to FullRep,
resulting in a code that runs 1.70 times as slow as the
original code. Under the MemCheckPoint model (last bar in
Figure 10) where checks before store can also be removed, the
combination of all optimizations achieves on average 31.7%
speedup compared to Full Rep.

Notice that FullRep corresponds to state of the art ap-
proaches such as SWIFT [26] that use only software check-
ing and no special hardware for error detection. Under the
MemUnPolluted model, when applying all our optimizations
Covered+ Loop+ SafeReg the overhead is reduced from 116%
to 70%.

D. Reliability

To evaluate the reliability of our optimizations we use
Pin [11] and inject faults to the binary file (excluding system
libraries) assuming a Single Event Upset (SEU) fault model,
that is, a single bit is flipped during the whole execution of the
program. Although our detection mechanism will very likely
detect multiple bit faults, the probability of multiple faults is
much lower than SEU.

Notice that to accurately model soft errors, one should
use a HDL simulator and inject faults to buses, latches,

Performance of the different optimizations normalized against the original non-replicated code.

combinational logic, and SRAM cells, among others. If this is
done, many injected faults would be masked and a few would
manifest as errors in the architectural status [29]. Here we
report the result of injecting faults into the register and status
flags. In effect, we are modeling only those errors that appear
in the architectural status. We cannot inject faults that corrupt
the program counter, so we cannot model that type of errors.
However, notice we did not implement a mechanism to protect
the control flow (as explained in Section 1) because the target
of our optimization techniques is not the program counter. Fi-
nally, notice that a similar fault injection mechanism has been
previously used by other software checking approaches [5],
[26], [33].

In our experiments a total of 2000 faults were injected
into each program. When we assume that the register file
is not protected in hardware, we mimic the fault distribution
by randomly selecting a point in the execution sequence and
flipping a random bit in a random register. When we assume
that the register file is protected in hardware, we mimic the
fault distribution by randomly selecting a dynamic instruction
and randomly flipping a bit of its “output”. The output can be
in a register or in memory if it has been spilled. Memory load
instructions are avoided. We call the first scheme “random fault
injection” and the second one “safe register fault injection”.
Notice that in practice fault distribution is not uniform, but it
is a first order approximation used by previous fault injection
approaches [26], [27], [34].

After injecting an error into the binary, the program is run
to completion (unless it aborts) and its output is compared to
a correct output. Depending on the result the program will be
categorized as: UnACE: the bit is unnecessary for Architectural
Correct Execution [20]; Detected: the error is detected by
our checking code; Self-Detected: the error is detected by the
program assertions; Seg Fault: the error manifest as an ex-
ception or a segmentation fault; SDC: Silent Data Corruption,
when the program finishes normally but the produced output
is incorrect. SDC is the first type of errors we want to prevent.
Then, we also want to avoid Self-Detected errors and minimize
Seg Fault, but these faults can be recovered, so they are less
harmful.

Figure 11-(a) and (b) show the experimental results for
random fault injection and safe register fault injection, respec-



tively. On the random fault injection scheme (Figure 11-(a)),
on the original program (O) on average 72% of the faults
appear as UnACE, 3% as Self-Detected, 19% result in Seg Fault
and 6% are SDC. Under the safe register scheme (Figure 11-
(b)) more faults result in SDC (9% over 6%). The reason is
that the random scheme is more likely to select a dead register.
It is also interesting to notice that gzip and bzip2 have a large
fraction of Self-Detected errors (10% and 24%, respectively
under the random injection scheme) because the program
checks the data consistency after the data is compressed or
decompressed.

As expected after the program is replicated (Fr), most Seg
Fault, Self-Detected and SDC go to the Detected category.
Also, many unACE errors in the original (O) program appear
as Detected because they are now detected by the checks
added. Fr has 4.7% and 1.1% of Seg Fault under the ran-
dom register injection scheme and the safe register injection
scheme, respectively. SDC errors appear under the random
register injection scheme because some faults are injected
before the value is used but after is checked. SDC errors
do not appear under safe register injection scheme. After
our optimization, ESoftCheck does not produce more SDC
or Saf-Detected errors than Fr. As for Seg Fault, under the
random fault injection scheme, ESoftCheck generates slightly
more than Fr (5.5% of ESoftCheck versus 4.7% of Fr). Under
the safe register fault injection scheme, the Seg Fault for
ESoftCheck is 3.0% versus 1.1% of Fr. Remember that Seg
Fault is recoverable by rolling back and re-executing, so these
numbers are acceptable.

V1. RELATED WORK

Redundant execution followed by checks is widely used to
detect soft errors, either in hardware [25], [19], [32], [7] or in
software [26], [27], [23], [33]. Since checks consume time and
even communication bandwidth (if the replicated instructions
execute in separate threads), previous approaches have also
tried to reduce the number of checks. Hardware multi-thread
approaches that only detect errors, such as SRT [25] and
CRT [19] check stores and uncached loads, assuming that an
error will eventually propagate to stores or uncached loads or
it will not affect the program result at all. However, when
these techniques also consider error recovery [32], [7] the
number of checks increases significantly because the trailing
thread is used to recover. Thus, every instruction in the
trailing thread needs to be checked before it commits. To
reduce the number of checks, CRTR [7] proposes the use
of “Dependence-based Checking Elimination”, that exploits
register dependence chains, so that only the value of the last
instruction in a chain is checked. Our optimization to remove
the covered checks by a later check to a different register
(second type of checks in Section 111-A) exploits a similar idea.
The difference is that the checks ESoftCheck tries to remove
are before loads, stores or other synchronization instructions,
so more considerations need to be taken into account when
optimizing these checks.

Compared with software-based approaches where a thread
checks itself such as [26], [27], [23], [33] ESoftCheck re-
moves additional checks while maintaining the same level of
reliability. While doing this, ESoftCheck takes into account
the commit points so that recovery is hot compromised by the
removed checks. Also, even though ESoftCheck optimizations
are evaluated using a single thread, they can also be applied to
software-based approaches where a separate thread checks the
original thread, such as [33]. In this case, since the number
of checks is reduced, the synchronization and bandwidth
requirements are also reduced.

Compiler techniques have been used in other approaches
for fault tolerance. Meixner et al. [15] compute dataflow
graphs at compiler time and use special hardware to verify
the dataflow when the program is executing. Nakka et al. [21]
select “critical” variables through data dependence analysis,
and use a hardware redundant thread to check the slices that
contribute to these variables. These two approaches do not
provide full fault coverage.

Finally, in [37] we presented a naive algorithm where a
check could be removed if the register being checked was
defined by a load and the register file was hardware-protected.
In that naive approach register pressure was not reduced. In
this paper we identify three more types of checks that can be
removed (Section I11-A).

VIl

Software-based approaches like ours that replicate instruc-
tions can detect errors in the arithmetic and logic units, register
file, and varied buses when the errors finally propagate to
the resulting value of an instruction. Although they reduce
the window of vulnerability to levels that we believe are
acceptable for commodity processors that need to balance cost,
performance and power consumption, they do not provide
100% fault coverage. Next we discuss the transient errors
that our software-based approach cannot detect and outline
possible solutions with special hardware support or more
expensive software protection mechanisms:

e Errors occurring after the check and before the load/store
executes cannot be detected. Similarly, although memory is
error-free, it is possible for an error to occur in the path
that brings the data from/to memory during a load or store
execution. A simple hardware solution to this problem was
proposed in [27].

e With the approach described in Section Il branches are
checked to verify that they follow the appropriate path, but
the program can follow an illegal control path if the program
counter is corrupted. Thus, additional testing for legal control
flow, done either in software or in hardware, is necessary to
ensure that the program counter is not corrupted [1], [12], [22].
e For function calls, our baseline replication checks the
function arguments before the call. However, the argument
could be corrupted in the middle of the transfer. A solution
proposed in SWIFT [26] consists of passing two copies of
each argument to the callee and checking the arguments right
after entering the callee function.

ISSUES WITH SOFTWARE CHECKING APPROACHES
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e The software-based instruction level replication can detect
most transient errors of instruction opcode but, if an error
changes a nonstore opcode to a store opcode or a store opcode
to a null opcode, the error may not be detected. A hardware
Store Value Queue proposed in [27] can solve this problem.

e If an error causes an exception that should not occur in
correct runs, there are two cases: i) if the exception handler
finally returns, the error may be detected by the software
inserted checkings; ii) if the exception handler does not return,
the error will not be detected unless we also add checking
instructions to the exception handler.

e When the software-based checking mechanism is imple-
mented at source or intermediate level, libraries can only be
protected if the source code is available. If not, two solutions
are possible: if the library call does not make external changes,
we can treat this library call as a huge instruction and replicate
this instruction. Alternatively, the library can be protected
using binary level instrumentation [28].

e An error in the micro-architecture may manifest in multi-bit
error or multiple errors in the architectural variables. Though
our fault model aims at single error upset (SEU), it is still
likely that multiple errors will generate unmatched pairs of
variables and thus be detected by the software checkings.

VIIl. CONCLUSIONS

In this paper we have presented ESoftCheck, a set of
compiler techniques that identify vital checks and reduce the
overheads of software approaches for fault tolerance. To the
best of our knowledge ESoftCheck is the first work that
identifies the checks before loads, stores and synchronization
instructions that can be removed without sacrificing fault cov-
erage. ESoftCheck also takes into account the location of the
commit points where checkpoints are taken, so that recovery
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Fault-detection rates break down (MemUnPolluted)

is not compromised. Our results show that when the register
file is hardware-protected ESoftCheck can not only remove
many checks but also deallocate replicated registers, reducing
register pressure significantly. As a result, in a system that
we call MemUnPolluted (where stores execute correctly and
memory is not corrupted with wrong results) our techniques
reduce execution time by 27.1% over previous state of the art
approaches (overheads are reduced from 116% to 70%). Our
techniques are useful for software-only systems and hybrid
solutions, both single and multithreaded approaches.
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