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Abstract

Instruction set simulation based on dynamic compila-
tion is a popular approach that focuses on fast simula-
tion of user-visible features according to the instruction-
set-architecture abstraction of a given processor. Simula-
tion of interrupts, even though they are rare events, is very
expensive for these simulators, because interrupts may oc-
cur anytime at any phase of the programs execution. Many
optimizations in compiling simulators can not be applied or
become less beneficial in the presence of interrupts.

We propose a rollback mechanism in order to enable ef-
fective optimizations to be combined with cycle accurate
handling of interrupts. Our simulator speculatively exe-
cutes instructions of the emulated processor assuming that
no interrupts will occur. At restore-points this assumption
is verified and the processor state reverted to an earlier
restore-point if an interrupt did actually occur. All archi-
tecture dependent simulation functions are derived using an
architecture description language that is capable to auto-
matically generate optimized simulators using our new ap-
proach.

We are able to eliminate most of the overhead usually
induced by interrupts. The simulation speed is improved up
to a factor of 2.95 and compilation time is reduced by nearly
30% even for lower compilation thresholds.

1. Introduction

The development of future generation micro-processor
architectures heavily depends on fast and accurate simu-
lation tools that allow the runtime characteristics of these
processors to be measured under real workloads. This is es-
pecially true for embedded systems, where application spe-
cific instruction extensions are often used to improve the
performance for a specialized domain, e.g., video or speech
processing.

The highest level of accuracy is achieved using sim-
ulation of hardware components at the register transfer
∗ c© 2009 by EDAA.

level (RTL). Event-based simulation of logical elements and
wires is complex, and thus prohibitively slow for architec-
ture evaluation and design space exploration. Architecture
simulation frameworks, such as the Liberty Simulation En-
vironment [30] and Unisim [1], operate at a higher level
of abstraction, which results in improved simulation speed.
Nevertheless, event-based modeling is too slow for the sim-
ulation of complex benchmarks executing billions of cycles.

An alternative technique based on statistical sampling
avoids the complex simulation of architectural features and
relies on estimates derived from a limited set of character-
istics gathered during the execution of an instrumented ver-
sion of the benchmark program. This approach leads to very
fast execution at the expense of accuracy.

Instruction set simulation is a popular alternative that
balances the need for fast simulation and the need for accu-
rate data. The simulation is limited to user-visible architec-
tural features of the instruction-set-architecture abstraction
of the given processor. Other details are usually omitted
and only modeled to guarantee correctness. The simplest
form of instruction set simulation is based on interpreta-
tion, where each instruction of the simulated architecture
is assigned one or more simulation functions that model
the execution of the complete instruction or phases thereof.
These functions are invoked from within a simulation loop,
which controls the decoding of new instructions and the ex-
ecution of the program. Interpreters usually have a low im-
plementation complexity and can easily be adapted to new
architectures.

Compiling simulators translate instructions to native
code of the host machine to improve simulation speed.
Overhead, such as the repetitive decoding of the same in-
structions and the dispatch of the simulation functions, is
eliminated and compiled into the native code. In the case
of static-compiling simulators the translation is performed
offline before the simulation run, while for the dynamic-
compiling approach the translation is done at simulation
time. Both approaches are often combined with interpre-
tation to allow the execution of code not statically known in
the first and to reduce the compilation overhead in the latter
case.
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Interrupts cause considerable overhead for compiling
simulators and may drastically reduce optimization oppor-
tunities. The problem arises from the asynchronous na-
ture of interrupts that can redirect execution at any phase
of the simulation and may cause arbitrary instructions to be
aborted. This impedes aggressive optimizations across in-
struction boundaries, because all intermediate states need
to be retained. In addition, extra code is required for the
interrupt dispatch and pipeline control. As a result, cycle-
accurate simulation of interrupts is often avoided by post-
poning the actual dispatch to specific points, e.g., basic
block boundaries. However, this simplification may result
in false assumptions on the distribution of interrupts and
may lead to unexpected behavior of the same program run-
ning on a real processor.

In this work we present an effective simulation tech-
nique that is able to combine fast dynamic-compiled sim-
ulation with cycle-accurate handling of interrupts using a
rollback mechanism. The code generation phase of the sim-
ulator assumes that interrupts do not occur within the trans-
lated code sequence and generates aggressively optimized
code. Before storing the architectural state this assumption
is verified. In almost all cases this assumption is correct
and simulation proceeds normally. However, if an interrupt
is found to be pending, the simulation needs to revert to
a previous state and restart the simulation using an inter-
preter that faithfully models interrupt handling. We have
implemented the rollback mechanism using a simulation
framework based on the open source compiler infrastruc-
ture LLVM 2.3 [21] and an architecture description lan-
guage (ADL) [6] that generates all architecture dependent
components. Programs of the simulated architecture are ex-
ecuted using a mixed approach based on interpretation and
dynamic compilation with two optimization levels.

The main contributions of this work are as follows:

• An efficient simulation technique for interrupt
handling in an aggressively optimizing dynamic-
compiling simulator.

• An ADL-based simulation framework that automati-
cally optimizes the generated simulator using our new
approach.

• A detailed evaluation of our new approach with respect
to compilation time and simulation time.

The following section gives an overview of related work.
Section 3 introduces the fundamentals of our ADL and
presents how interrupts can be modeled. A basic overview
of the simulation framework is given in Section 4. In the fol-
lowing section, we show how interrupts can be handled in
a compiling simulator and present our new rollback mech-
anism. Section 6 presents detailed data of our experimental
evaluation. Finally, we conclude in Section 7.

2. Related Work

Architecture simulation is of utmost importance for de-
signing future processor generations, it is thus heavily re-
searched – a broad overview is presented in [34].

Simulation techniques aiming at fast calculation of esti-
mates often use sampling and statistical models [31, 33, 13].
Based on a calibration run, either offline prior to the simu-
lation or during the simulation, a statistical model is derived
that is able to predict cycle numbers and power consump-
tion within an error margin of a few percent. Gao et.al. [16]
integrate the native execution of C programs on the host
machine with simulation. The system is able to switch be-
tween the native program and simulation at function bound-
aries and thus allows to skip large parts of the initialization
phase of the program. The detailed simulation is limited to
relevant parts only.

There are several simulation frameworks available us-
ing interpretation and event-based simulation: Simics [22],
SimpleScalar [2], Liberty [30], Unisim [1], and many oth-
ers. Unisim is tightly coupled with SystemC1 and can inter-
face with other SystemC components, e.g., external devices,
buses, and other simulators.

SimOS [28] is a full-system simulator that offers vari-
ous simulators including Embra [32] a fast dynamic trans-
lator. Embra focuses on efficient simulation of the mem-
ory hierarchy, including memory address translation, mem-
ory protection and caches. Shade [8] is another dynamic-
compiling simulator that aims at fast execution tracing. It
offers a rich interface to trace and process events during
simulation. Jones et.al. use large translation units (LTUs)
to speed up the simulation of the ARC architecture. Several
basic blocks are translated at once within an LTU, leading
to reduced compilation overhead and improved simulation
speed. This technique is similar to regions that are used
within our simulation environment. Cycle-accurate simu-
lation of interrupts is usually not a major objective of the
mentioned simulation frameworks and is thus not optimized
further. Usually interrupts are processed at the boundaries
of translated code, i.e., basic blocks.

Ebcioğlu et.al. present DAISY [12, 11] a VLIW ar-
chitecture designed specifically for fast binary translation.
Gschwind and Altman [18] use the hardware rollback
mechanism of DAISY for aggressive optimization of the
translated code. The technique is similar to our approach,
however, DAISY does not perform cycle-accurate simula-
tion. External interrupts are processed in hardware, but
require support from the compiler to determine program
points that are safe to actually deliver the interrupt, e.g.,
to prevent interrupts to be serviced while an instruction is
simulated. Similar approaches are found in BOA [29] and
Transmeta’s Crusoe [10].

1http://www.systemc.org

72



12th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2009

Bala et.al. use Dynamo [3] to gather profile information
during the execution of a program and apply optimizations
accordingly. Dynamo is not intended for architecture simu-
lation and is limited to native programs of the host machine.
Nevertheless, the applied techniques are the same and are
adapted by many architecture simulators.

Deriving simulators and other software development
tools from a concise architecture specification can be done
using several ADLs. Deriving a static-compiling simula-
tor and accompanying compilers is possible using DSPX-
plore [14, 15], Expression [27, 20] and LISA [7, 26]. The
ADL used in this work allows to derive a compiler [6, 4]
and a dynamic-compiling simulator [5]. Nohl et.al. present
a dynamic-compiling simulator based on the LISA lan-
guage [24]. For most languages it is not clear how interrupts
are described and finally simulated. The interrupt dispatch
is usually embedded into the behavioral description of every
instruction, which impedes automatic optimization.

LLVM is a open source compiler infrastructure that of-
fers both static and dynamic code generation facilities. The
dynamic compiler has successfully been used to implement
a Java Virtual Machine [17] that is competitive compared
to other open source and commercial Java implementations.
Criswell et.al extend LLVM to define a safe virtual architec-
ture SVA [9]. The Linux operating system has been ported
to SVA and can be executed in a controlled and secure en-
vironment.

3. Architecture Description

The ADL used in this work targets in-order-pipelined ar-
chitectures and VLIW processors. The language itself is
based on XML and models the architecture using a struc-
tural approach, i.e., the modeling focuses on the hardware
structure instead of the instruction set. An architecture
specification consists of three major parts: A configuration
section, declarations, and instantiations. The configuration
section is used to define architecture parameters, e.g., the
data width, the issue width or the number of registers. It
also covers conventions of the application binary interface
(ABI), such as register-usage and calling conventions.

The declaration section defines reusable templates for
register files, memories, caches and functional units. In ad-
dition, templates for meta-information like binary encod-
ing and assembler syntax are specified. All these templates
are reusable across different architectures, processor vari-
ants and generations.

Finally, the previously defined templates are instanti-
ated to define the architecture using a network of compo-
nents. The interconnections between the components can
be annotated with information for hazard detection, haz-
ard resolution, and pipelining. The use of abstractions and
templates simplifies the development of architecture mod-

Configuration Templates
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Inter-
ruptABI

cache-size
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Inter-
rupt

Regs
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count

Figure 1. Overview of an example architecture
model.

els, and leads to very compact and intuitive specifications.
In contrast to other languages, e.g., Expression and LISA,
which require several interdependent models for the instruc-
tion set, the hardware structure, and the instruction seman-
tics, our approach relies on a single model. The instruc-
tion set is not defined explicitly but is automatically derived
using software tools available with the language. These
tools provide a consistent view of the instruction set, the
pipelines, the hardware resources, the timing behavior, and
instruction semantics. So far several generator backends
have been developed for the ADL. For example, a com-
piler generator [6] that automatically customizes a C com-
piler, including the instruction selector, register allocator
and scheduler. The completeness of the instruction selec-
tor can be proved automatically [4]. In addition, a dynamic-
compiling simulator can be derived, details on the simulator
are given in Section 4.

Figure 1 depicts an example model for a simple architec-
ture. Several templates are available, describing functional
units for fetch, decode, arithmetic computations, and regis-
ter writeback. Each functional unit contains a set of opera-
tions specifying its behavior. In addition, storage elements,
such as caches, memories, and registers, are declared. The
instances derived from the templates are connected to build
the data path. Templates can be reused, for example the
Cache template is instantiated twice – the first instance
models the instruction cache, the second a data cache.

The instruction set is extracted from paths through
the network of components using a breath first search.
Ignoring the interrupt dispatch below the dotted line,
three paths can be found for the example architec-
ture: Fetch-Cache-Decode-ALU-Commit, Fetch-
-Cache-Decode-ALU-Cache-Commit, and Fetch-
-Cache-Decode-ALU-Cache. Branches and regular
arithmetic instructions are defined along the first path by
combining the operations attached to the functional units.
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Figure 2. Basic blocks in gray are executed
frequently and are thus compiled into a sin-
gle region. The region contains complex con-
trol flow and loops, but can only be entered
through BB1.

Load and store instructions are extracted from the second
and third path respectively. The red dotted lines represent
connections for data forwarding and data hazard resolution.

3.1. Modeling Interrupts

The ADL allows to specify several parallel pipelines
within an architecture model. Not all of these pipelines need
to be filled with instructions fetched from a cache, memory
or ROM. Instructions that are not fetched from memory are
considered to be executed every cycle in parallel with the
ordinary instructions of the other pipelines.

The interrupt dispatch is simply modeled using such a
parallel instruction. A dedicated functional unit, that is
connected to the program counter (PC) and some status reg-
isters, repeatedly checks for pending interrupts and condi-
tionally triggers a jump to the interrupt routine. Using this
approach, interrupts are modeled apart from the other in-
structions and are explicitly visible to the ADL-tools. It is
thus possible to apply specialized optimizations to the inter-
rupt dispatch mechanism, for example within the simulation
framework.

In the case of the example architecture from Figure 1, the
parallel instructions are used to implement a cycle counter
and the interrupt dispatch.

4. Simulator Generation

The architecture specifications provide enough informa-
tion to automatically customize and generate software de-
velopment tools, such as a C compiler [6] and a simulator.

BB1
add r1 = r2 + r3

BB2
j BB3

BB3
mul r2 = r3*r5

BB1-3
finish add
mul r2 = r3*r5

Figure 3. Compiled basic blocks are special-
ized for hot predecessors.

The simulation framework is based on the open source com-
piler infrastructure LLVM 2.3 [21] that provides a portable
and highly optimizing just-in-time code generator. To avoid
the compilation overhead for code that is not executed repet-
itively an interpreter is used until a specified threshold has
been reached.

Frequently executed code is compiled using two opti-
mization levels. First, sequential code, i.e., basic blocks,
is compiled using a fast, moderately optimizing code gener-
ator configuration. Only some simple scalar optimizations
are applied that cause low compilation overhead, but usu-
ally lead to a considerable runtime improvement. The tran-
sition from the interpreter or compiled predecessor blocks
into the compiled code of a given basic block is critical, be-
cause the initial pipeline state depends on the instructions
that were issued before entering the block. In order to min-
imize the transition overhead a specialized version of the
basic block is compiled for every predecessor, but only if
this particular transition reaches the compilation threshold,
i.e., is executed frequently. This specialization may cause
additional compilation overhead when multiple versions of
a basic block are compiled. Fortunately, most basic blocks
only have few predecessors and even fewer of them actually
trigger the compilation, consequently, excessive duplication
of compiled code does not occur.

Figure 3 illustrates the specialization of BB3. The white
blocks represent the original control flow. When BB3 is ex-
ecuted the state of the pipeline depends on the predecessors,
and may thus require to either simulate a jump or an addi-
tion. However, only the transition between BB1 and BB3 is
frequently executed and a specialized block BB1-3 is com-
piled solely for this particular transition.

Hot basic blocks, i.e., blocks that are still executed fre-
quently, are then combined to regions and recompiled us-
ing more aggressive optimizations. LLVM is intended for
compilation of programming languages and imposes some
restrictions on the form of the compiled code. For example,
only functions can be translated that have a single entry. The
generated code also follows the calling convention of the
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Cycle Simulation-Action
N (a) increment time

(b) simulate instructions
(c) if (interrupt) jump exit

N+1 (a) increment time
(b) simulate instructions
(c) if (interrupt) jump exit

...
exit: store state

Figure 4. A simple approach: Conditional ex-
its (c) increase the memory consumption and
reduce to benefits of compiler optimizations.

host machine and thus imposes some overhead to save and
restore state on function entry and exit. Regions are limited
to have a single entry but are not constrained otherwise. In
particular, regions are allowed to contain loops, non-linear
control flow and several exits.

Building a region is similar to trace formation found in
other simulators. Starting from a seed block, frequently ex-
ecuted successor blocks are added iteratively to the region.
The processing stops, when only infrequently executed suc-
cessors are left or a predefined threshold is reached. The
code generation for regions is heavily simplified by relying
on the LLVM function inliner. For each block of the region
a simple call is added to the LLVM function representing
the region that invokes the corresponding LLVM function
of the basic block. During the code generation and opti-
mization phase the LLVM inliner decides whether the call
is inlined, i.e., replaced with a copy of the called simulation
function of the basic block.

Consider the control flow depicted in Figure 2. The re-
gion starts with the seed block BB1 and is enlarged itera-
tively by adding other frequently executed blocks marked
gray in the picture. The region contains complex control
flow and even a loop, but can only be entered through the
seed block. For example, the region can not be entered us-
ing the transition between BB8 and BB9, or BB3 and BB5.

5. Interrupts and Rollback

In its simplest form all interrupt instructions are executed
every cycle along with the ordinary instructions that are
fetched from memory. This leads to a tremendous perfor-
mance overhead, because:

• For each instruction an additional interrupt instruction
needs to be simulated. Due to the low number of inter-
rupts most of the interrupt instructions never actually
trigger an interrupt dispatch.

Cycle Simulation-Action
N simulate instructions

N+1 simulate instructions
...

N+n simulate instructions
increment time by n
if (int-missed) jump rollback
exit: store state
rollback: revert state

Figure 5. Assuming that interrupts do not oc-
cur allows to eliminate useless code and in-
creases optimization opportunities.

• In the rare event of an interrupt the compiled code
needs to be exited using a conditional jump. This re-
quires extra code to save and possibly restore the ar-
chitecture state after each cycle.

• Increased compile time and code size for the translated
instructions in basic blocks and regions. A large por-
tion of the generated code is actually useless as it is
never executed.

• Compiler optimizations, such as constant propagation,
dead code elimination and strength reduction, are less
beneficial, because intermediate results need to be re-
tained for the case of an interrupt.

As a consequence, compilation takes longer, the result-
ing code requires more memory and executes much slower.
Most of the issues disappear, when interrupts are not di-
rectly handled within compiled code. We propose a roll-
back mechanism that assumes that interrupts do not occur
during the execution of a compiled code sequence. This as-
sumption is verified at so called restore-points. When an
interrupt is actually found to be pending the processor state
is reverted to an earlier restore-point. The execution is then
restarted using the slower interpreter that faithfully models
interrupts.

Figure 4 illustrates the overhead caused by interrupts in
compiling simulators. Besides the simulation of regular in-
structions, interrupts need to be handled every cycle (c).
Optimization opportunities for the compiler are limited be-
cause intermediate results need to be retained. For exam-
ple, the time counter needs to be incremented every cycle
(b) and can not be eliminated. These limitations are elimi-
nated in the case of rollbacks shown in Figure 5. The faster
compilation, the reduced code size, and the improved run-
time will out-weight the overhead induced by the rollback
and the slower interpretation of the interrupt dispatch.
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5.1. Restore Points

The existing simulator already buffers all computations
in local variables and registers. Only the most recent ver-
sion of each variable is committed to the global architec-
ture state at the end of the compiled code. This improves
performance even when interrupts are not to be simulated.
Extending the existing infrastructure to support the rollback
mechanism is simplified because of this buffering. In the
case of a rollback the buffered values are simply discarded
and not committed to the global architecture state. How-
ever, not all updates of the architecture state can be buffered.
For example, memories and caches are not considered for
buffering because of the memory overhead that would be
associated with it.

Essentially there are three options to handle instructions
that update memory. For the first option, writes directly up-
date the memory. The address and the previous value are
stored in a dedicated buffer that is consulted on a rollback
to revert the memory to the original state. Option two is in-
verse to option one, the current values are stored in a buffer
and loads consult that buffer to read the current value. This
simplifies the rollback, but on the other hand introduces ad-
ditional overhead for the simulation of load and store in-
structions. Finally, one can establish restore-points around
stores such that execution reverts right before a store if an
interrupt is pending. In addition, the current architecture
state is committed directly following the memory update.

Currently, we decided for the last option, as it reduces
the number of cycles that need to be reverted on a rollback
and only requires moderate extensions to the existing sim-
ulator. As a side effect large blocks, that usually contain
memory operations, are split into smaller chunks, such that
a dedicated splitting of these blocks can be omitted.

5.2. Rollback in Regions

As mentioned in the previous sections, regions may con-
tain complex control flow and most importantly loops that
need to be considered for rollbacks. For example, if a busy-
waiting loop, which is only exited after a particular inter-
rupt has occurred, is compiled into a region, care has to be
taken to prevent infinite iteration. Restore-points and in-
terrupt checks need to be provided in order to detect the
interrupt within the region.

Restore-points need to be inserted for every block of the
region that potentially causes the execution to leave the re-
gion. This is required for correctness in order to prevent a
false architecture state to be committed, e.g., before return-
ing to the interpreter. However, this does not yet guarantee
correct handling of loops, for example, if the region does
not have any exits at all. The simplest solution is to attach
restore-points at the end of all basic blocks within a region.

benchmark avg min max std. dev.
adpcm 5 1 11 2.74

bitcount – – – –
blowfish 396 1 422 100.41

crc32 8 1 12 3.7
dijkstra 7 1 16 4.17

gsm 275 1 477 228.64
jpeg 17 1 160 27.3

prime 4 2 5 1.33
rijndael 185 1 538 235.47

sha 19 1 32 7.21
stringsearch 4 1 9 1.84

Table 1. Average, minimal, and maximal num-
ber of simulated cycles reverted per rollback.

We have decided for this approach because of two reasons,
even though some overhead during the simulation is intro-
duced. Most importantly, this approach fits well with the
existing infrastructure for regions, i.e., regions are compiled
simply by inlining the LLVM functions of each basic block.
All required restore-points are already compiled into these
functions, eliminating them would require a complete du-
plication of these functions except for a small check. Con-
sequently, the overall compilation overhead is reduced, in
particular for large regions. Second, this approach reduces
the number of cycles discarded by rollbacks and is thus ex-
pected to reduce the simulation overhead. Additionally, the
bookkeeping for rollbacks itself is simplified, because the
restore operation is kept local to a single basic block.

Consider the example presented in Figure 2 showing the
red marked restore-points for a complex region with a loop.
Several basic blocks (BB1, BB2, BB9) already require a
restore-point for correctness. The other restore-points are
inserted to minimize the overhead of restores.

6. Evaluation

We have evaluated our approach using a MIPS
R2000 [25] model describing the integer instruction set
and additionally, the basic configuration registers and in-
structions required for timer interrupts as specified in the
MIPS32 architecture reference manual [23]. Including
comments the model consists of 1,128 lines of ADL-code.
148 of which specify interrupt related components, such as
the cycle counter, the interrupt dispatch unit, and status reg-
isters.

Memory loads require a delay cycle before the data is
guaranteed to be available. Branches are executed in the
third stage of the five-stage pipeline, resulting in a branch
penalty of one cycle due to the delay slot. The eret in-
struction, which resumes the normal execution after the in-
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Figure 6. Total execution time for all benchmarks using different thresholds for basic block compila-
tion and region compilation. The rollback mechanism enables the use of lower thresholds.

terrupt handler has completed, does not define a branch de-
lay slot, leading to a penalty of two cycles. On an interrupt
dispatch the first three pipeline stages are flushed. Usually
the instruction at stage three is later restarted upon a return
from interrupt. If that instruction is executing in a branch
delay slot the branch itself is restarted. In our setup the in-
terrupt handler consists of a single eret instruction, the
penalty of an interrupt thus varies between 6 and 7 cycles.

Two simulators were generated using the extended MIPS
model to compare the simple approach and our new rollback
mechanism described in Section 5. A MIPS model without
interrupt facilities serves as an additional reference. The
three generated simulators were tested using a large sub-
set of the MiBench benchmark suite [19] on a 3 GHz Intel
Xeon server machine with 24 GB RAM and Linux 2.6.18.
LLVM and the simulators were compiled using the GCC
compiler version 3.4 with standard optimizations enabled.
The benchmarks where compiled using GCC 4.2 with stan-
dard optimizations for the mips-elf target. For the perfor-
mance comparison each benchmark was run 10 times in or-
der to get reasonable results.

The first timer interrupt is triggered in cycle 10, all fol-
lowing interrupts are signaled periodically every 20,000 cy-
cles. For a processor running at 200 MHz this results in
a timer resolution of 100 µ-seconds, which is a reasonable
value for the domain of embedded systems. On average
over all benchmarks, 0.85 rollbacks are performed per inter-
rupt. In total 2,627,699 cycles are reverted by only 92,335
rollbacks during the simulation of more than 1.5 billion cy-
cles. Table 5.2 presents the average, the minimal, and the
maximal number of cycles reverted per rollback, the last

column shows the standard deviation. The relative num-
ber of cycles reverted for the benchmarks is usually far bel-
low one percent. The largest fraction can be observed for
blowfish and gsm where 1.67% and 1.22% of the simulated
cycles are reverted. As can be seen in Figure 9, these com-
paratively large values do not have an impact on simula-
tion speed – gsm is among the benchmarks with the largest
speedup. From this data we can conclude that the overhead
induced by rollbacks is very low. It is thus likely that the
initial design decisions to minimize the number of cycles
per rollback was over-conservative. Many restore-points
around stores and within regions can probably be eliminated
without negative effects on the simulation performance.

6.1. Compilation Overhead

We found that the simple interrupt handling scheme
leads to considerable compilation overhead. Our first ex-
periment, shown in Figure 6, compares the total simula-
tion time over all benchmarks for different execution thresh-
olds for basic block and region compilation in the range of
1,000 to 100,000. The rollback mechanism allows for lower
thresholds for basic blocks. The threshold for regions usu-
ally has a lower impact for both techniques.

The simple approach is very unpredictable, good solu-
tions are spread all over the search space and no continuous
development can be observed. The best result is achieved
using a threshold of 33,000 and 73,000 for basic blocks
and regions respectively. The rollback mechanism is much
more predictable and achieves the best results with a basic
block threshold of 5,000 and a region threshold of 72,000.
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Figure 7. Compile time for all three simulators
relative to the simple approach.

Increasing the basic block threshold consistently results in
longer simulation time. Note, that the axis showing the ba-
sic block threshold for the simple approach is inverted to
improve the 3D-view.

The best compilation thresholds obtained in the previ-
ous experiment were used to compare the compilation over-
head for each benchmark individually. Figure 7 compares
the time spent on compiling both regions and basic blocks.
For almost all benchmarks the total compile time is reduced
using the rollback mechanism even with lower thresholds,
which generally lead to more compiling. Overall the compi-
lation time is reduced by nearly 30%, which is close to the
simulation without interrupts, which reduces the compila-
tion time by about 50% compared to the simple implemen-
tation. Two benchmarks, rijndael and stringsearch, show
a drastically increased compilation time, which is in part
caused by the lower thresholds. It appears that some of the
optimization passes of LLVM can not cope well with these
two benchmarks. We where not yet able to determine the
cause of these slowdowns. The simulation time for the bit-
count benchmark is so short that compilation is never per-
formed in any of the three simulators. Similarly, compila-
tion time for the blowfish benchmark is below the resolution
of the systems timer. Both benchmarks are thus not consid-
ered for this comparison.

Figure 8 shows the relative time spent on compiling re-
gions and basic blocks for all three simulator setups. For
each benchmark three bars are shown, the first bar repre-
sents the simple interrupt simulation approach, while the
other bars show the results for the rollback mechanism and
the simulation without interrupts. Although more optimiza-
tions are performed on regions the relative compilation time
is comparatively small. Only about 20% of the compilation
time is spent on regions, in the case of the optimized ap-
proach even less than 15%. Nevertheless, regions are more
important to the overall simulation performance as will be
shown in the next section.
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Figure 8. Relative compile time spent on
translating regions and basic blocks, results
for unoptimized interrupt handling are shown
first, then interrupts with rollback and finally
with interrupts disabled.

6.2. Performance

We have already shown that the rollback mechanism is
able to reduce the compilation time for our simulator. Fig-
ure 9 shows that simulation performance is similarly im-
proved. Almost all benchmarks show significant improve-
ments, on average the simulation using rollbacks is 68%
faster compared to simulation using the simple approach.
The best results are achieved for the sha, gsm and prime
benchmarks which show improvements by a factor of up to
2.95. The rijndael and stringsearch benchmarks that already
showed an inferior compile time also achieve the least sim-
ulation performance. As mentioned before, this appears to
be in part a compiler problem.

Regions are an important optimization within our simu-
lator framework. Regions not only allow for more aggres-
sive optimizations but also increase the scope of these opti-
mizations. In order for these optimizations to be beneficial
it is important that a large portion of the cycles is simu-
lated within regions. Figure 10 shows the relative number
of cycles simulated using the interpreter and using compiled
code of basic blocks or regions. The first bar again shows
the results for the simple approach, while the other two rep-
resent the simulators with the rollback mechanism and with
interrupts disabled. On average about 80% of the cycles are
simulated using compiled code and more than 50% using
regions. The impact of interrupts on this values is rather
limited, because the overall number of interrupts is too low.

7. Conclusions and Future Work

The simulation of interrupts has great impact on the over-
all performance of a dynamically compiling simulator. We
have shown that the slower compilation, increased code
size, and reduced performance can effectively be eliminated
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Figure 9. Relative simulation performance for
each benchmark compared to the simple im-
plementation.

using a rollback mechanism. The frequency of interrupts is
relatively low, which enables our new approach to improve
overall performance even though the interrupt dispatch it-
self is executed using the slower interpreter. The execution
performance is improved up to a factor of 2.95 compared
to the simple approach, on average an improvement of 68%
is achieved. The reduced compilation complexity enables
the use of lower thresholds and at the same time reduce the
overall compilation time by nearly 30%.

In the future we will implement and compare different
strategies for restore-points in the presence of memory up-
dates. In the current implementation scheme we tried to
minimize the number of cycles reverted by rollbacks. The
experiments indicate that the frequency of rollbacks and the
associated overhead is not a problem and other strategies
might prove profitable. In addition, restore-points within re-
gions are not optimized at all, e.g., redundant restore-points
could be eliminated.

We will also investigate how rollbacks might be used
to improve other rare events during simulation. Possible
candidates for research in that direction are branch buffers,
branch predictors, and other predictors employed by mod-
ern micro-processors to improve performance. Usually
these predictors achieve very good results, e.g., branch pre-
dictors correctly predict the direction in over 90% of the
cases. It seems feasible to optimize the simulation of these
predictors by predicting the result during compilation.
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