
Ensuring Correctness of Compiled Code

by

Ganna Zaks

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May, 2009

Amir Pnueli

To Alex

ii

Acknowledgments

This work would not be possible without the support and guidance of my advisor,

Amir Pnueli. His deep knowledge, wisdom, and kindness are an infinite source of

inspiration. Thank you for sharing them so generously with me along the way.

A part of this thesis is based on the research that I have done in collaboration

with the Laboratory for Reliable Software (LaRS) at JPL. While working at LaRS,

I had the opportunity to experience the research in the industry setting, received in-

valuable feedback on my work, and participated in many fun lunch time discussions.

My deepest gratitude goes to Gerard Holzmann, Klaus Havelund, Alex Groce, and

especially Rajeev Joshi who is my mentor and a great friend.

I would also like to thank my thesis committee members, Benjamin Goldberg,

Clark Barrett, Patrick Cousot, and Radhia Cousot as well as the other members

of the ACSys group for giving their feedback on early versions of my work and

sharing their expertise. Many thanks to Christopher Conway who has volunteered

to proofread my manuscripts and provide the valuable comments.

I thank Chris Lattner and the LLVM Compiler Infrastructure team for the cre-

ation a great open source product and their zealous commitment to support the

LLVM users.

iii

Last but not least, I am thankful to my family. To my parents, Tamila Surzhyk

and Eduard Savustyanenko, for their encouragement and passion for knowledge that

turned out to be contagious. To Alex, for his never-ending love, support, and the

wonderful sense of humor. To my son Henry for the joy and happiness he gives me

without even realizing it.

iv

Abstract

Traditionally, the verification effort is applied to the abstract algorithmic descrip-

tions of the underlining software. However, even well understood protocols such as

Petersons protocol for mutual exclusion, whose algorithmic description takes only

half a page, have published implementations that are erroneous. Furthermore, the

semantics of the implementations can be altered by optimizing compilers, which are

very large applications and, consequently, are bound to have bugs. Thus, it is highly

desirable to ensure the correctness of the compiled code especially in safety critical

and high-assurance software. This dissertation describes two alternative approaches

that bring us closer to solving the problem.

First, we present Compiler Validation via Analysis of the Cross-Product (Co-

VaC) - a deductive framework for proving program equivalence and its application

to automatic verification of transformations performed by optimizing compilers. To

leverage the existing program analysis techniques, we reduce the equivalence check-

ing problem to analysis of one system - a cross-product of the two input programs.

We show how the approach can be effectively used for checking equivalence of single-

threaded programs that are structurally similar. Unlike the existing frameworks,

our approach accommodates absence of compiler annotations and handles most of

v

the classical intraprocedural optimizations such as constant folding, reassociation,

common subexpression elimination, code motion, branch optimizations, and others.

In addition, we have developed rules for translation validation of interprocedural

optimizations, which can be applied when compiler annotations are available.

The second contribution is the pancam framework for model checking multi-

threaded C programs. pancam first compiles a multi-threaded C program into op-

timized bytecode format. The framework relies on Spin, an existing explicit state

model checker, to orchestrate the program’s state space search. However, the pro-

gram transitions and states are computed by the pancam bytecode interpreter. A

feature of our approach is that not only pancam checks the actual implementation,

but it can also check the code after compiler optimizations. Pancam addresses the

state space explosion problem by allowing users to define data abstraction functions

and to constrain the number of allowed context switches. We also describe a par-

tial order reduction method that reduces context switches using dynamic knowledge

computed on-the-fly, while being sound for both safety and liveness properties.

vi

Contents

Dedication ii

Acknowledgments iii

Abstract v

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

2 Compiler Verification 7

2.1 Background . 8

2.2 Preliminaries . 11

2.2.1 Transition Graphs . 11

2.2.2 Inductive Assertion Network 17

vii

2.2.3 The Notion of Correct Translation 19

2.2.4 Consonant Transition Graphs 22

2.2.5 Notation . 25

2.3 Interprocedural Translation Validation 25

2.3.1 Interprocedural Translation Validation Algorithm 27

2.3.2 Invariants for Interprocedural Constant Propagation 29

2.3.3 Translation Verification Conditions 33

2.3.4 ITV Example: Constant Propagation and TRE 41

2.4 Compiler Validation via Analysis of the Cross-Product (CoVaC) . . . 44

2.4.1 Introduction . 45

2.4.2 Comparison Graphs . 47

2.4.3 Comparison Graph Construction 53

2.4.4 Correlating the Unbounded Heaps 63

2.4.5 CoVaC Implementation . 69

2.4.6 Experimental Results . 75

2.5 Related Work . 76

2.6 Conclusions . 79

3 Verifying multithreaded C programs with pancam 81

3.1 Introduction . 81

3.2 Background . 83

3.2.1 Spin . 83

3.2.2 Model Driven Verification . 86

3.3 Model Checking C programs with pancam 87

viii

3.4 Addressing State Space Explosion . 93

3.4.1 Abstraction . 94

3.4.2 Context-Bounded Checking 96

3.5 On-the-fly Dynamic Partial Order Reduction 97

3.5.1 Preliminaries . 99

3.5.2 Superstep Partial Order Reduction 102

3.5.3 Application to Multithreaded Programs 106

3.5.4 Implementation of Superstep Reduction in pancam 108

3.6 Experimental Results . 114

3.7 Related Work . 118

4 Conclusion 121

A CoVaC Proofs 124

B Correctness of SPOR 129

Bibliography 137

ix

List of Figures

2.1 The procedures . 11

2.2 Transition graphs for the program that given A, outputs (3 ∗ A)! + 5 . 14

2.3 Call and return transitions . 16

2.4 Call verification conditions for inductive assertion network 18

2.5 Inductive network for interprocedural constant copy propagation . . . 32

2.6 Call verification conditions . 35

2.7 Inlining verification conditions . 37

2.8 Tail recursion elimination verification conditions 39

2.9 ITV example: the program before and after compilation 42

2.10 A comparison transition graph for f(&(Y, y)) 51

2.11 Algorithm compose that constructs f = fS ⊠ fT 55

2.12 Misaligned branches . 57

2.13 CoVaC example: the source, the target, and the comparison graphs 61

2.14 Heaps equivalence example . 63

2.15 The work flow of the CoVaC tool . 70

2.16 Dependency between the running time and the size of the procedure . 75

x

3.1 Interaction of Spin and pancam . 88

3.2 Excerpt of Peterson’s Algorithm from the Wikipedia 89

3.3 LLVM bytecode for function pa desc lock 90

3.4 Spin driver for executing pancam on Peterson’s Algorithm 92

3.5 How state is maintained by pancam 94

3.6 Code for implementing context bounding with pancam 96

3.7 Correctness of SPOR . 105

3.8 Application of SPOR to threads . 108

3.9 Pseudocode of pan step with superstep reduction. 110

3.10 Pseudocode of the independence condition tester 111

3.11 The example of the Superstep POR algorithm 113

3.12 Context bounding for peterson.c with bug 115

3.13 Context bounding for peterson.c without bug 116

3.14 The Robot example . 117

xi

List of Tables

2.1 The heap delta sets . 66

3.1 Other experiments with pancam . 117

xii

Chapter 1

Introduction

1.1 Motivation

Computer technology plays such an important role in our lives that we cannot

imagine living without it. We have learned to depend on it to store our private in-

formation, provide the means of communication, and assist with everyday activities

such as banking and shopping. Moreover, we entrust the software systems with our

finances, health care, and our lives (at least those of us who fly on airplanes or drive

cars). In many cases, the new technologies allow achievements that could never be

possible otherwise. However, there is an implicit assumption that the automated

systems are going to exhibit the desired behavior. The truth is that not only this

is not always the case but it is often even hard to precisely state what the desired

behavior is.

Since we rely on computers to make critical decisions, the software bugs can have

extremely serious consequences. Here are several examples ranging from financial

1

and asset loss to threatening human lives.

• In the late eighties, several people had died after being overdosed by the

Therac-25 radiation therapy machines. It is believed that the problem was

caused by malfunctioning software [46].

• More recently in 2008, a team of computer science researchers found security

vulnerabilities in a heart defibrillator and a pacemaker, which allowed them

to reprogram the device to shut down or deliver jolts of electivity that would

potentially be fatal [30].

• The North America blackout, which effected an estimated 50 million people

and caused at least eleven fatalities, was triggered by a local outage that went

undetected due to a race condition in the General Electric Energy’s monitoring

software. The bug prevented alarms from showing on the control system [41].

Software verification and program analysis provide systematic approaches to

ensuring that a program satisfies its specification. However, a key challenge in

applying the formal methods tools to software is the difficulty of verifying properties

of implementation code, as opposed to checking abstract algorithmic descriptions.

Even well understood protocols such as Petersons protocol for mutual exclusion,

whose algorithmic description takes half a page, have published implementations

that are erroneous. This is especially a problem for programs written in the C

language, which has several features (such as function pointers, pointer arithmetic

and arbitrary type casting, to name a few) that are difficult to model faithfully. It

is an unfortunate fact of life that the programs most in need of verification are those

2

that use such constructs the most, viz., C programs for embedded systems.

However, checking the C implementation might not be enough. The ultimate

goal is to ensure correctness of the executable. This brings us to verification of

optimizing compilers. Compilers are quite large applications, which are bound to

have bugs. For example, the GCC Bug Database contains over 3 thousand reported

defects some of which may alter the behavior of a program being compiled. This is

highly undesirable, especially in safety critical and high-assurance software.

1.2 Contributions

This dissertation describes two orthogonal approaches that bring us closer to solving

the problem stated above. The first approach is verification of optimizing compilers.

The second one is model checking of the optimized bytecode.

Chapter 2 presents two novel deductive verification frameworks, which are fo-

cused on the optimization phase of the compiler. They are based on the idea of

translation validation [53]. Translation validation is an automatic approach of en-

suring compilation correctness in which each compiler run is followed by a validation

pass that proves that the target code produced by the compiler is a correct imple-

mentation (translation) of the source code. The approaches assume that the same

intermediate representation is used to specify both input systems. In addition, to

make the methodology effective, we restrict our attention to consonant (or struc-

turally similar) programs in which each loop of the source has a corresponding loop

in the target. The assumption is that one has to rely on the other tools to check

the correctness of the implementation as well as the validity of the other compiler

3

phases (such as code generation and parsing).

Interprocedural Translation Validation (ITV), presented in Section 2.3, is an ex-

tension of the existing translation validation framework TVOC [21, 67, 68, 39] to

procedural reactive programs. In addition to the structure preserving optimizations

handled by TVOC, it accommodates most classical interprocedural optimizations

such as global constant propagation, inlining, tail-recursion elimination, interproce-

dural dead code elimination, dead argument elimination, and cloning.

Section 2.4 presents Compiler Validation via Analysis of the Cross-Product (Co-

VaC). The main distinction that sets CoVaC apart is that the translation validation

problem is reduced to checking properties of a single program – a cross-product of

the two input programs. This allows us to effortlessly leverage the existing program

analysis techniques and tools. We show how the approach can be effectively used for

checking equivalence of consonant (i.e., structurally similar) programs and report on

the prototype tool that applies the developed methodology to verification of LLVM

compiler [7]. Unlike the other existing frameworks, CoVaC accommodates absence

of compiler annotations and handles most of the classical intraprocedural optimiza-

tions such as constant folding, reassociation, common subexpression elimination,

code motion, dead code elimination, branch optimizations, and others.

Invariant generation algorithms serve as a back bone of the compiler validation

tools. We have developed two novel algorithms. The first one is presented in Sec-

tion 2.3.2. It constructs a network of invariants necessary to prove the correctness

of compilation when the context-sensitive constant copy propagation optimizes the

source program. Second, Section 2.4.4 presents data flow analysis for determining

4

the relation between the heaps of the source and the target programs. The invari-

ants implied by the analysis are required for checking equivalence of the code with

dynamically allocated data structures.

Chapter 3 presents an approach orthogonal to compiler verification. It describes

pancam – a framework for model checking multi-threaded C programs. The frame-

work allows to direct the power of the Spin model checker [8] to verification of

optimized bytecode. In our framework, a multi-threaded C program is compiled

into a typed bytecode format. pancam uses the internal virtual machine that in-

terprets the bytecode and computes new program states under the direction of the

Spin model checker. pancam combats the state space explosion problem by allowing

users to define data abstraction functions and to constrain the number of allowed

context switches. We also describe a partial order reduction method that reduces

context switches using dynamic knowledge computed on-the-fly, while being sound

for both safety and liveness properties.

Thus, the contribution of this thesis can be summarized under the following

headings:

• An algorithm for interprocedural translation validation (ITV).

• The framework for compiler verification via program analysis of the cross-

product (CoVaC).

• A methodology for model checking multithreaded bytecode (pancam).

In the following two chapters, we elaborate on each of these results. It might seem

that some of these frameworks are redundant. For example, one might ask: Why

5

verify the compiler when we can model check the bytecode? Chapter 4 addresses

these concerns. It shows that each approach has its weaknesses and strengths, which

define the settings where one would be preferable to the other.

6

Chapter 2

Compiler Verification

Compilers, especially optimizing compilers, are quite large applications, which are

bound to have bugs. For example, the GCC Bug Database contains over 3 thousand

reported bugs some of which may alter the behavior of programs being compiled.

This is highly undesirable, especially in safety critical and high-assurance software,

where the effort of program correctness verification is extensive. First, the developers

manually examine code and test it. Then, numerous verification tools and techniques

are applied to verify that the source code satisfies the desired properties. After all the

rigorous checks are complete, the program is compiled by an optimizing compiler

and released. Clearly, the verification effort should not stop here – it is highly

advisable to ensure that the transformations performed by a compiler preserve the

semantics of a program.

7

2.1 Background

The goal of a compiler verification framework is to check that the source and the

target programs are observationally equivalent assuming that the source program

has well-defined semantics. This assumption comes from the fact that the compilers

are free to interpret the code that is not well-defined. For example, a C compiler

could evaluate the expression (x ∗ y ∗ z) by first evaluating z, then x, then y, and

then multiplying. Note that if the operands are not side effect free, the evaluation

order may influence the observable behavior of the program. In these situations,

the verifier may or may not raise the error. This comes from the fact that, like

compiler, the verifier is free to interpret the under-specified constructs. Even though

it is desirable to catch errors that exploit the weaknesses of the language semantics,

it is not always possible. The best approach, which we follow in this work, is to

interpret the under-specified constructs similarly to the majority of the compilers (or

if dealing with one particular compiler, in the same way as the compiler in question).

The methodology of compiler verification can be categorized by its intended cus-

tomers (i.e., by the ultimate consumer). Compiler writers may assume full knowl-

edge of the inner workings of a particular compiler and are interested in methods

that lead to creation of a self-certified compiler. Given a source program, a certified

compiler either produces a target program observationally equivalent to the source

or raises an error. An impressive effort in this direction is presented in [45, 14],

which describes a formal certification of a a complete compilation chain using the

Coq proof assistant. Another approach is taken in [44, 43], which present languages

for specification of compiler optimizations that can be automatically proved sound,

8

meaning that their transformations are always semantics-preserving. However, the

latter approach assumes the correctness of the execution engine and focuses only on

the optimization phase of the compiler.

Another group interested in compiler verification are compiler users who may

need to work with a black box and require tools that accommodate minimal com-

piler cooperation. Good examples of such tools are presented in [51], [59], and [67].

The three tools are based on the technique of translation validation even though

the implementations are quite different – [51] and [59] are based on symbolic eval-

uation, whereas [67] generates verification conditions and checks their validity with

an automatic theorem prover.

First introduced in [53], translation validation ensures that optimizing transfor-

mations preserve program semantics. In essence, instead of attempting the verifi-

cation of a given compiler, each compiler run is followed by a validation pass that

automatically checks that the target code produced by the compiler is semantically

equivalent to the source code. A good question is: “Can this goal be achieved?” The

problem of program equivalence is undecidable. However, since the focus is only on

compiler optimizations, the number of false alarms can be drastically minimized or

even eliminated, intuitively, due to the fact that we are aware of the analyses used

by the optimizing compilers, and since those analyses are mechanical in nature.

In a setting of a certified compiler, translation validation can be applied to

verify correctness of particular optimization passes. For example, [63] and [62]

present translation validation algorithms for lazy code motion and instruction

9

scheduling optimizations along with mechanical proofs of the algorithms’ correct-

ness. Whereas [40] applies translation validation to verification of register alloca-

tion. These methods choose relative completeness (with respect to the property

being checked) and efficiency over generality.

Most of the general compiler verification frameworks [51, 59, 67, 58] are based on

translation validation. Even though the definition only mentions two programs (the

source and the target) as the input, in practice, the algorithms rely on heuristics and

compiler debug information to suggest the correspondence between the variables and

locations of the source and target programs. Credible compilation [58] carries this

dependency to the extreme: the compiler is responsible for annotating the source

code with a full proof so that translation validation reduces to proof checking. In

Section 2.4, we present CoVaC framework. Even though CoVaC can be used for

construction of certifying compilers, we also show how it can be used in case of a

black-box compiler, where no annotations are available. As far as we know, this is

the first work in this direction.

The existing translation validation approaches are not capable of, and were not

designed to deal with, interprocedural optimizations. For example, in [51] two ex-

ecutions are considered the same if both lead to the same sequence of function

calls and returns. In Section 2.3, we present a framework for translation validation

of compiler optimization run that targets reactive procedural programs. The algo-

rithm extends [67] to accommodate most classical interprocedural optimizations such

as global constant propagation, inlining, tail-recursion elimination, interprocedural

dead code elimination, dead argument elimination, and cloning.

10

2.2 Preliminaries

This section starts with a description of the transition graphs, which are used to

model the procedural reactive programs with intermediate input and output in-

structions. Next, we describe the inductive assertion network - a set of program

assertions satisfying the set of the corresponding verification conditions. Such as-

sertions are program invariants. In addition, the set of the verification conditions

constitutes an inductive proof of this fact. Our model and the definition of the

assertion network are similar to those presented in [55]. Section 2.2.3 presents the

notion of correct translation used in this work to show that two input programs are

equivalent. Finally, we define the term “consonant programs” in Section 2.2.4.

2.2.1 Transition Graphs

f1(in : ~x1; ~z1)f0() fm(in : ~xm; ~zm)

Figure 2.1: The procedures

A program (application) S consists of m + 1 procedures: main, f1, . . . , fm,

where main represents the main procedure, and f1, . . . , fm are procedures which

may be called from main or from other procedures. Each procedure f is represented

by a transition graph f := (~y, N , E) with variables ~y, a set of nodes (locations)

11

N and a set of labeled edges E . A program S is modeled by a forest that includes

all the transition graphs of its m + 1 procedures. We use the subscript notation to

differentiate between the nodes, variables, and edges of different procedures when

the association is not clear from the context.

We use ~y to denote the typed variables of a procedure; ~y = (~x; ~z; ~w), i.e. the

variables in ~y are partitioned into ~x, ~z, and ~w, where ~x and ~z are the input param-

eters and ~w denotes the local variables. We use f(~x; &~z) to denote the signature of

a procedure. Here, call-by-value parameter passing method is used for ~x, and call-

by-reference is used for ~z. A procedure may return a result by means of ~z variables.

To simplify the presentation, we assume that the main procedure does not have

any arguments. The variables range over one of the following domains: int, real,

or map. A variable of type map is a partial heterogeneous mapping from addresses

of type int to values of int or real type. For a variable H of type map, expression

H [addr] denotes the value stored at address addr.

Each transition graph must have a distinct root node r as its only entry point,

a distinct tail node t as its only exit point, and every other node must be on a

path from r to t. Nodes of the graph are connected by directed edges labeled by

instructions. There are four types of instructions: guarded assignments, procedure

calls, reads, and writes. Consider a procedure f(~x; &~z) with ~y = (~x, ~z, ~w). Let ~u

include variables from ~y; and E(~y) be a list of expressions over ~y.

• A guarded assignment is an instruction of the form c → [~u := E(~y)], where

guard c is a boolean expression. When the assignment part is empty, we

abbreviate the label to a pure condition c?.

12

• Procedure call instruction g(E(~y), ~u) denotes a call to procedure g(~xg; &~zg),

passing input parameters E(~y) by value and ~u by reference.

• Read and write instructions are denoted by read(~u) and write(~u). They are

used to express the interaction of the procedure with the outside world; e.g.

I/O instructions, reads and writes of C volatile variables, API calls.

The implicit guards of read, write, and procedure call instructions always evaluate

to true. A transition graph is deterministic when, for every node n, the guards of all

edges departing from n are mutually exclusive. A transition graph is non-blocking

when, for every node, the disjunction of the guards evaluates to true. In this work,

we only consider deterministic non-blocking systems.

Transition graphs can be used to model programs written in procedural lan-

guages. In order to construct a formal model of a program, we first choose a set of

program locations Υ such that:

• At least one location in each loop belongs to Υ.

• For every procedure, both procedure entry and exit belong to Υ.

• The locations immediately before and after reads, writes, and procedure calls

belong to Υ.

Each procedure whose implementation is given is represented by a transition graph.

We choose the set Υ of a procedure f to be the set of nodes for the corresponding

transition graph. For every pair of locations n, m in Υ, if there exists a path π from

n to m, which does not pass through any other location from Υ, we add edge (n, m)

13

to the graph and label it by the instruction that summarizes the effect of executing

the path π. In general, the choice of Υ can be generalized not to require at least one

location per each loop as long as we can ensure that the transitions between every

pair of locations are computable [39]. Each call to a procedure whose implementation

is hidden can be modeled by read/write instructions. If a hidden procedure is

stateless and does not perform I/O operations (for example, pow function in C), the

call is modeled by uninterpreted functions. Note that global variables and functions

also can be modeled in this framework.

Example 1. The procedure MAIN depicted on Fig. 2.2 reads in a natural number

A and writes out the expression (3 ∗A)! + 5. It calls a recursive procedure FACT to

compute the factorial. In FACT, the argument N is passed by value and R is passed

by reference. FACT computes N ! ∗R and returns it to the caller by reference.

6 87

1 2 4 53MAIN()

(N ≤ 1)?

FACT (N − 1, R)(N > 1)→ R := R ∗N
FACT (N ; &R)

write (B + C)read (A) (B, C) := (1, 5) FACT (A ∗ 3, B)

Figure 2.2: Transition graphs for the program that given A, outputs (3 ∗ A)! + 5

States and Computations

We denote by ~d = (~ξ; ~ζ; ~η) a tuple of values, which represents an interpretation

(i.e., an assignment of values) of the procedure variables ~y = (~x; ~z; ~w).

We denote by ~d = (~dx; ~dz; ~dw) a tuple of values, which represents an interpreta-

tion (i.e., an assignment of values) of the procedure variables ~y = (~x; ~z; ~w). A state

14

of a procedure f is a pair 〈n; ~d〉 consisting of a node n and a data interpretation

~d. A (~ξ, ~ζ)-computation of procedure f is a maximal sequence of states and labeled

transitions:

σ : 〈r; (~ξ, ~ζ, ~⊤)〉
λ1−→ 〈n1; ~d1〉

λ2−→ 〈n2; ~d2〉 . . .

The tuple ~⊤ denotes uninitialized values. At the first state of the computation, the

location is r, the entry location of f ; the values of input variables ~x and ~z are set

to ~ξ and ~ζ, respectively, and the local variables ~w are not initialized. Labels of the

transitions are either labels of edges in the program or the special return label. Each

transition in a computation must be justified by one of the following cases:

• Intra-procedural transition 〈l; ~d〉
op
−→ 〈l′; ~d′〉 :

− Guarded Assignment : There exists an edge e from node l to node l′

in the program S (not necessarily in f) with label op that equals to

c → [~u := E(~y)] such that ~d |= c and ~d′ = (~d with ~u = E(~d)), i.e. ~d′ is

obtained from ~d by replacing the values corresponding to the variables ~u

by E(~d).

− Read : There exists an edge e in the program S from node l to node l′

with label op that equals to read(~u) such that ~d′
v = ~dv, where ~v are the

variables of ~y which are not in ~u; and ~dv is obtained from ~d by restricting

it only to the values that correspond to the variables ~v. The values of all

variables but the ones in ~u are preserved by the read transition.

− Write: There exists an edge e in the program S from node l to node l′

with label op that equals to write(~u). Since write instruction does not

change the values of the variables, ~d′ = ~d.

15

• Procedure call : Consider the case when procedure f calls procedure g as de-

picted in Fig. 2.3. To justify transition 〈l; ~d〉
g(E(~y),~u)
−→ 〈rg; (E(~d), ~du, ~⊤)〉 ,

there must exist a call edge e = (l, l′) in the program S labeled by g(E(~y), ~u).

The location of the new state rg is the first location in the called procedure g.

E(~d) and ~du are the values of the input variables ~xg and ~zg on entry to g. We

assume that the working variables are uninitialized.

f(in : ~x; ~z)

tgrg

g(in : ~xg; ~zg)

l′l
e

g(E(~y), ~u)

Figure 2.3: Call and return transitions

• Procedure return: Finally we consider transition

〈tg; (ξ′g, ζ
′
g, ηg)〉

retg
−→ 〈l′; ~d′〉. To justify such a transition, there must exist

a procedure g (the procedure from which we return), such that tg is the ter-

minal location of g, and we should be able to identify a suffix of the current

computation of the form

〈l; ~d〉
g(E(~y),~u)
−→ 〈rg; (ξg, ζg, ~⊤)〉

e1−→ . . .
em−→ 〈tg; (ξ

′
g, ζ

′
g, ηg)〉

︸ ︷︷ ︸

σ̂

retg
−→ 〈l′; ~d′〉

such that the segment σ̂ is balanced (has an equal number of calls and returns).

We also require that there is a procedure call edge from node l to node l′ labeled

by g(E(~y), ~u) and ~d′ = (~d with ~u = ζ ′
g).

We use Cmp(f) to denote the computations of a transition graph f . We define a

16

set of computations of a procedural program S, denoted Cmp(S), to be the set of

computations Cmp(main).

2.2.2 Inductive Assertion Network

We introduce virtual variables ~X and ~Z to represent the values of the input variables

~x and ~z at the procedure entry and denote the extended vector of variables by

~Y = (~X, ~Z, ~x, ~z, ~w). An assertion network associates an assertion ϕl with

each program location l.

• For each procedure f with the entry location r, we denote ϕr by pf . The

input predicate pf = pf(~X, ~Z; ~x, ~z) imposes constraints only on the input

variables of the procedure. Since we assume that the main procedure main

does not have input parameters, p0 = true.

• Similarly, we denote ϕt, the assertion associated with the exit location t of f ,

by qf . The output predicate qf = qf (~X, ~Z; ~z) is the procedure summary:

it specifies the relation between the input and output values.

• The assertions at all other locations ϕl(~Y) may depend on any of the variables.

For each edge of the transition graph e connecting a node i to a node j, we form

verification conditions, which represent different edge types:

• Guarded Assignment : If e is an assignment edge labeled by c→ [~u := E(~y)],

VCe : ϕi(~Y) ∧ c(~y)→ ϕj(~Y)[~u 7→ E(~y)],

where ϕj(~Y)[~u 7→ E(~y)] is obtained from ϕj(~Y) by replacing variables in ~u by

the corresponding expressions in E(~y).

17

• Read : If e is a read edge labeled by read(~u),

VCe : ϕi(~Y)→ ϕj(~Y)[~u 7→ ~u′],

where ~u′ is a vector of fresh variables. Intuitively, the assertion ϕj must hold

for all possible inputs.

• Write: If e is a write edge labeled by write(~u),

VCe : ϕi(~Y)→ ϕj(~Y).

• Procedure call : Last, consider the case when procedure f calls procedure g as

depicted in Fig. 2.4.

ϕi(~Y)

j

f(in : ~x; ~z)

e

g(E(~y), ~u)
i

g(in : ~xg; ~zg)

pg(~Xg, ~Zg; ~xg, ~zg) qg(~Xg, ~Zg; ~zg)

r t

ϕj(~Y)

Figure 2.4: Call verification conditions for inductive assertion network

We associate the following two conditions with a procedure call g(E(~y), ~u),

which calls the procedure with signature g(~xg; &~zg):

VCcall : ϕi(~Y)→ pg(E(~y), ~u; E(~y), ~u)

VCreturn : ϕi(~Y) ∧ qg(E(~y), ~u; ~zg)→ ϕj(~Y)[~u 7→ ~zg]

Note that pg and qg are the input and output predicates of g. Thus, VCcall

checks that the assertion associated with the location before the call, ϕi, im-

plies the input predicate of the callee. VCreturn checks that the assertion at

18

the location reached immediately after the procedure return is implied by the

output predicate and ϕi. The conditions generally use variables of the caller

procedure with the only exception of the variables passed by reference ~zg. This

exception allows us to disregard the old information about the variables passed

by reference, stored by ϕi(~Y), and instead rely on the new information stored

in qg.

An assertion network Φ = {ϕ0, . . . , ϕn} for a program S is said to be inductive if

all the verification conditions for all edges in S are valid. Network Φ is said to be

invariant if for every execution state 〈l; ~d〉 occurring in a computation, the visiting

data state d satisfies the corresponding assertion ϕl associated with l.

Claim 1. Every inductive network is invariant.

2.2.3 The Notion of Correct Translation

We define the correctness of translation via equivalence of program behaviors that

can be observed by the user. Intuitively, given the same input, both the source

program S and the target program T must produce the same output and should

either both terminate or generate infinite computations.

Given a computation, we define Vs, the set of observable variables at a state

s = 〈n; d〉, to be the minimal set satisfying the following conditions:

• If s is a state immediately after transition read(~u), Vs ⊇ ~u.

• If s is a state immediately before transition write(~u), Vs ⊇ ~u.

19

Above, we use Vs ⊇ ~u to denote Vs ⊇ {v : v in ~u}.

We associate observation function O with each program, mapping the states

and transition labels of the source and target programs into a common domain.

The observation function needs to ensure that the observable states and transitions

of the source and target computations match. Formally, given a state s = 〈n; d〉, an

observation function O(s) is defined as following. Let Vs be the set of observable

variables at s. If Vs = ∅ then O(s) = ⊥, else O(s) = ~dVs
. We obtain ~dVs

by

restricting ~d only to the values that correspond to the variables in Vs. Given a

transition label λ, an observation function O(λ) is defined as follows. If λ is a label

of a transition that is a read, O(λ) = read. If λ is a label of a transition that is a

write, O(λ) = write. Otherwise, O(λ) = ⊥.

An observation of a computation σ, denoted o(σ), is obtained by applying the

observation function O to each state and each transition label in σ. That is, for

σ : s1
λ1−→ s2

λ2−→ s3 . . . ,

we get

o(σ) : O(s1)
O(λ1)
−→ O(s2)

O(λ2)
−→ O(s3)

Definition 1. Computations σ and σ′ are stuttering equivalent, denoted σ ∼st

σ′, if their observations o(σ), o(σ′) only differ from each other by finite sequences of

pairs ⊥
⊥
−→ or

⊥
−→ ⊥.

Stuttering equivalence is used to ensure that even though the programs may have to

execute a different number of instructions to get to an observable state, the difference

is always finite. Our assumption is that the user is not time-sensitive so this finite

delta cannot be observed. For example, β ∼st β ′:

20

o(β) : ⊥
read
−→ (5, 22)

⊥
−→ ⊥

⊥
−→ ⊥

⊥
−→ (110)

write
−→ ⊥

o(β ′): ⊥
read
−→ (5, 22)

⊥
−→ ⊥

⊥
−→ (110)

write
−→ ⊥

⊥
−→ ⊥

In both computations, first two numbers: 5 and 22, are read; and then, after a finite

number of steps, their product: 110, is written out.

Definition 2. We say that procedure fT is a correct translation of procedure fS

if, for every (~ξ, ~ζ)-computation σT in Cmp(fT), there exists a (~ξ, ~ζ)-computation σS

in Cmp(fS) such that σT ∼st σS , and vice versa. Program T is a correct translation

of program S if mainT is a correct translation of mainS .

Notice, that this definition of correct translation defines an equivalence relation.

This is why, later in this work, we may say that two programs (or procedures) are

equivalent whenever one program (or procedure) is a correct translation of another.

The definition above is the most general definition of an observation, which

ensures that all the program behavior visible to the outside world is being accounted

for. However, in some cases we have to strengthen this definition. In particular,

when we do not perform whole program analysis but rely solely on intraprocedural

reasoning, we have to observe the input and output parameters at the time of a

procedure call as well as at the time of a procedure return. The stronger definition

allows us to apply an assume-guarantee reasoning when proving the correctness of

translation, where procedures fS and fT are proved to be equivalent, assuming that

all the corresponding callees are equivalent themselves. That is the case in the

CoVaC framework, which is presented in Section 2.4.

In order to enforce the additional tracking, we extend the definitions of the

observable variables and the observation function as follows. We define Vs, the set

21

of the variables observable at a state s, to be the minimal set satisfying the following

four conditions (two of which are the same as in the previous definition):

• If s is a state immediately after transition read(~u), Vs ⊇ ~u.

• If s is a state immediately before transition write(~u), Vs ⊇ ~u.

• If n = r is the entry node of procedure f(~x, &~z), (Vs ⊇ ~x) ∧ (Vs ⊇ ~z).

• If n = t is the exit node of procedure f(~x, &~z), Vs ⊇ ~z.

The observation function applied to a state O(s) is defined as before. However, in

addition to observing a transition label that is a read or a write, we should also

observe a procedure call and return labels. Let g be a name of some procedure. If λ

is a label of a transition that is a call to the procedure g, or a return from g, O(λ)

is equal to callg or retg, respectively.

2.2.4 Consonant Transition Graphs

In this section, we give a definition of consonant or structurally similar programs.

This is an attempt to formalize the informal notion of structure preserving trans-

formations used in the literature [67].

We are going to use the source program S with the set of nodes N S and the

set of edges ES to define several notions, which apply to both the source program

S and the target program T . Each node of S belongs to one of the following

categories: read, write, call, branch, unconditional assignment, or exit; denoted

rd, wt, cl, br, ua, and tl respectively. Intuitively, the type of a node n depends

22

on the type of the edges outgoing from n. Specifically, we say that a node n ∈ N S

is a read node, written τ(nS) = rd, if ∃ (nS, mS) ∈ ES and (nS, mS) is labeled by

a read instruction. Similarly, we define write and call nodes; the type of the exit

node is tl. The remaining nodes are categorized as either unconditional assignment

(ua) or branch (br) nodes depending on whether there is more than one guarded

assignment edge outgoing from n. The node types are well defined due to the

fact that the graphs are deterministic and read, write, and call edges are implicitly

conditioned on true.

Definition 3. Given a program S, we define a set of cut points, denoted PS, to be

a subset of program nodes such that PS = { nS : nS ∈ N S ∧ τ(nS) 6= ua }.

Essentially, all the nodes except for the unconditional assignments are added to the

cut point set. Ideally, we would like to be able to control the granularity of the cut

point set. For example, we may choose to either place one cut point per each loop or

one cut point per each branch instruction. This can be achieved through the choice

of the transition graph nodes. If we choose N S to be the minimal set of procedure

locations satisfying the requirements presented at the end of Section 2.2.1, each

branch node will cut one loop. Alternatively, one may choose N S so that there is a

cut at each program conditional. Finer granularity improves efficiency; but it is not

always applicable: the input programs have to be consonant modulo the chosen cut

point set. In addition, the optimizations that do not preserve the procedural struc-

ture of the programs such as inlining or tail recursion elimination (see Section 2.3)

require an amendment to the definition of the cut point set. Specifically, the set of

target cut points would have to be extended. For example, in case of inlining, it has

23

to include the nodes right before and right after the inlined call sites.

Every computation σS defines a corresponding sequence of cut points, which can

be obtained from σS by first selecting the nodes of each subsequent state (recall that

a state is a pair consisting of a node and the data interpretation) and then removing

nodes that are not in PS from that sequence.

Definition 4. We say that transition graphs fS and fT , which belong to programs

S and T respectively, are consonant if the following two requirements are met.

• First, there exists a partial map κ : PT 7→ PS such that

∀ σS, σT : σS ∈ Cmp(fS), σT ∈ Cmp(fT) the following holds: if σS and σT are

defined by the same input sequence, and nS
0 , nS

1 , ... and nT
0 , nT

1 , ... are the cut

point sequences defined by σS and σT , then (κ(nT
i) = nS

i) ∧ (τ(nS
i) = τ(nT

i)),

i.e. the ith target cut point is mapped to the ith source cut point and both

have the same type. Such map is called a control abstraction.

• Let data abstraction be a set of assertions that relate the essential variables of

the source and target systems at the corresponding control states:

{ αij(~y
S, ~yT) : i ∈ PS ∧ j ∈ PT ∧ i = κ(j) }

The definition of inductive data abstraction is similar to the one of inductive

assertion network, presented in Section 2.2.2 with the only difference that

it is defined on computations of the two systems. As the second condition

of consonance, we require the automatic construction of an inductive data

abstraction to be feasible.

Definition 5. Two programs are consonant if their main procedures are consonant.

24

Note that this definition talks about the computations of the program rather then

its control flow graph (or its structure).

Surprisingly many compiler optimizations preserve consonance of programs. For

example, code motion, constant folding, reassociation, common subexpression elim-

ination, dead code elimination, instruction scheduling, branch optimizations all fall

into this category. On the other hand, loop reordering transformations such as tiling

and interchange are not covered by the method presented below.

2.2.5 Notation

We use S and T to denote the source and the target programs, respectively. We use

lowercase Latin letters to denote the names of the target procedures and variables.

We use the uppercase letters to denote the corresponding names in the source pro-

gram. We may also use the superscript notation to differentiate between the source

and target variables, nodes, or transition graphs. The subscript notation is used

to associate variables, nodes, or edges with a particular procedure. To simplify the

presentation, we are going to use the notation ET
g to denote ET (~yT

g) - a vector of

target program expressions over all the variables of the target procedure g.

2.3 Interprocedural Translation Validation

The Interprocedural Translation Validation framework (ITV) is an extension of

TVOC – the deductive method for automatic translation validation presented in

[21, 67, 68, 39]. The backbone of TVOC is the Validate rule, which is a refine-

ment rule based on the computational induction approach [24]. Given two input

25

programs: the source program S and the target program T , we first have to con-

struct a data abstraction and a control abstraction that show the correspondence

between the variables and the nodes of S and T . Further, a set of verification condi-

tions is generated. These conditions use induction to show that the data abstraction

is valid and that the data abstraction implies the equivalence of S and T .

The main restriction of the rule is that it assumes that the two input programs

are consonant (see Section 2.2.4). Most of the classical compiler optimizations such

as constant folding, induction variable optimizations, branch optimizations, common

subexpression elimination, and others, preserve consonance of the programs. Rules

for loop reordering transformations [39, 68] can be additionally applied to verify

transformations such as loop interchange, fusion, distribution and tiling.

When dealing with a consonant pair of programs, ITV has all the capabilities of

TVOC. Additionally, it addresses the following two limitations. First, TVOC only

deals with deterministic systems, where the initial condition uniquely determines

the rest of the computation. Second, it does not support interprocedural optimiza-

tions. In contrast to TVOC, which used transition systems as the formal model,

ITV relies on the transition graphs (see Section 2.2.1) that capture not only con-

ditions and assignments but also procedure calls and read/write operations. Note

that the set of represented programs is not limited to the deterministic programs,

as before, but includes reactive systems driven by intermediate inputs. In addition,

the notion of correct translation, defined in Section 2.2.3, allows us to observe the

system in the intermediate states. We show how to generate the auxiliary invariants

26

used for verification of context sensitive copy propagation and present the interpro-

cedural translation validation algorithm that proves correct translation of S to T in

presence of interprocedural optimizations like global constant propagation, inlining,

tail-recursion elimination, interprocedural dead code elimination, dead argument

elimination, and cloning. Our algorithm is strong enough to handle most, if not all,

of the interprocedural optimizations described in literature [47, 10] and performed

by compilers such as GCC[6], ORC[2], and LLVM[7].

We start by presenting the outline of the translation validation algorithm. In

Section 2.3.2, we show how to generate the auxiliary program invariants required

for proving the context sensitive constant copy propagation. Section 2.3.3 lists the

translation verification conditions. It also describes how to handle inlining and tail

recursion elimination. Finally, Section 2.3.4 is dedicated to an elaborate example.

2.3.1 Interprocedural Translation Validation Algorithm

The Interprocedural Translation Validation algorithm is an extension of the rule

Validate [68] to reactive procedural programs. Given two procedural programs S

and T , the algorithm generates a proof that the target program T is a correct

translation of the source program S.

Let PT and PS denote the sets of cut-points of T and S respectively. Assume

for now that these cut point sets are have been extended to accommodate the

interprocedural optimizations such as inlining and tail recursion elimination. As will

be described later, the cut point sets are built with assistance from the compiler. We

follow the five steps below to either generate a proof that T is a correct translation

27

of S or report a miscompilation.

Step 1: Establish control abstraction κ : PT 7→ PS, mapping the target nodes

to the source nodes, such that r is the initial location (root of the main procedure)

of T if and only if κ(r) is the initial location of S. The mapping κ is total but may

be neither surjective nor injective. For example, we allow a non-surjective mapping

to handle a situation when a loop is eliminated as part of dead code elimination.

Optimizations such as inlining result in a non-injective control abstraction. Note

that the control abstraction not only specifies the mapping between the program

locations but also imposes a correspondence between target and source procedures.

For example, consider a target procedure g with the root node r and the tail node

t; g corresponds to source procedure G with the root node κ(r) and the tail node

κ(t).

Step 2: Construct sets of target and source auxiliary assertions that form in-

ductive networks ΦT = {ϕT
0 , . . . , ϕT

|NT |} and ΦS = {ϕS
0 , . . . , ϕS

|NS |} for programs

T and S, respectively. Form verification conditions showing that the networks are

invariant, following rules from Section 2.2.2. Add the generated conditions to the

set of verification conditions VC.

Step 3: Let V S and V T denote the sets of variables that belong to programs

S and T , respectively. Form data abstraction {α0, . . . , α|PT |}. Each αl(V
S ; V T) is

defined as a conjunction of equalities of the form E(V S) = E(V T) associated with

the target node l ∈ PT . The data abstraction must be valid at the initial location

of T , i.e. αr = true. Intuitively, the data abstraction maps the values of target

variables at location l to the values of source variables at location κ(l).

28

Step 4: Form Translation Verification Conditions, presented in Section 2.3.3,

for every edge of the target program and add them to the set of verification condi-

tions VC. If there exists an edge of the target program that does not contribute a

verification condition, generate Error.

Step 5: Establish validity of the conditions in VC; generate Error otherwise.

The Error signifies that either an error in translation is detected or we ran into a

transformation that is not currently supported.

We rely on the compiler to provide the information necessary to build the data

and control abstraction. Methods for abstraction generation are presented in [67].

They rely on the compiler annotations that are usually required for debugging

compiled code and are provided by many mature compilers. Construction of the

data abstraction is based on refining the mapping between source and target pro-

gram variables. To construct the control abstraction κ, we first generate the set

of source cut-points PS such that they satisfy the minimal requirements stated in

Section 2.2.1. Then, we rely on the compiler annotations to assist in computation of

the control abstraction κ and PT by providing the mapping from the source program

locations to the target program locations. Finally, we check the PT for completeness

with respect to the requirements of Section 2.2.1.

2.3.2 Invariants for Interprocedural Constant Propagation

Recall that Step 2 of the algorithm above calls for construction of the auxiliary

assertion set, which is used to strengthen the translation verification conditions

from Step 4 . This set should contain all the assertions that are used by the TVOC

29

framework. The TVOC’s method for invariant generation, presented in [22], is based

on the set of reachable definitions (variable definitions that must hold at a particular

location) and is applied in the intraprocedural setting. However, the source network

has to be extended so that it incorporates the information essential for proving

interprocedural optimizations. In this section, we present a method for generating an

inductive assertion network that is strong enough to prove interprocedural context

sensitive constant copy propagation. Linear constant propagation can be handled in

a similar fashion. We are going to use [57] as our interprocedural dataflow analysis

algorithm. The algorithm is precise and has an efficient representation for the

internal data that we can use to our advantage.

As a first try, it appears that any precise solution to the interprocedural constant-

propagation problem should suffice. For example, ϕS
l should be extended with con-

junct x = 17 if x always evaluates to constant 17 at at location l. However, the

resulting network ΦS may not be inductive. Fortunately, the fixpoint based dataflow

analysis algorithm not only provides a solution, but also finds a fixpoint for the cor-

responding set of dataflow equations. We are going to use the information about

the fixpoint itself to strengthen our network so it would be inductive.

Let V be the finite set of program variables. Let L = Z⊤
⊥ be the integer constant

propagation lattice. We denote the meet operator by ⊓. The set Env(V, L) of

environments is the set of functions from V to L. A mapping T : Env(V, L) 7→

Env(V, L) is called an environment transformer . A transformer T is distributive

iff for every variable v ∈ V , (T (⊓ienvi))(v) = ⊓i(T (envi))(v). The algorithm in

[57] essentially computes a transformer T(rf ,l) between the root of each procedure f

30

and every location of the procedure. Note that the transformer T(rf ,tf) between the

root and the tail of f is essentially a procedure summary that is represented in our

framework by the invariant qf .

Since T needs to operate on functions with infinite domains, the following suc-

cinct representation for distributive transformers is used in [57]. Every distributive

transformer T can be represented using a set of functions ΩT = {ρv,v′ | v, v′ ∈

V ∪ {Λ}}, each of type L 7→ L. Function ρv,v′ captures the effect that the value of

variable v in the argument environment has on the value of v′ in the result environ-

ment; if v′ does not depend on v, then ρv,v′ = λl.⊤. Function ρΛ,v′ is used to represent

the effect on the variable v that is independent of the argument environment. For any

symbol v′, the value T (env)(v′) can be determined by taking the meet of the values

of |V |+1 individual function applications: T (env)(v′) = ρΛ,v′⊓(⊓v∈V ρv,v′((env)(v))).

Since we are only concerned with constant copy propagation, all the functions in ΩT

will be either identities or constants.

Consider the example in Fig. 2.5. Below is the list of environment transformers

computed by [57] for procedure foo. We omit all the functions that evaluate to top

ρ(v,v′) = λl.⊤.

Ω(2,2) = { ρx,x = λl.l, ρc,c = λl.l, ρy,y = λl.l, ρz,z = λl.l }

Ω(2,3) = { ρc,c = λl.l, ρy,y = λl.l, ρy,z = λl.l }

Ω(2,4) = { ρc,c = λl.l, ρc,z = λl.l, ρy,z = λl.l }

Given all the dataflow facts (constants) and the transformer represented by Ω(i,j),

we follow the following rules to compute an invariant ϕl at location l of f :

• We ignore all functions of the form ρ(v,v′) = λl.⊤.

31

• For each variable v′ that is not set to ⊥ by ρ(Λ,v′) ∈ Ω(rf ,l) we add the following

conjunct to ϕl:

∨

ρv,v′∈Ω(rf ,l)

v′ = ρv,v′ (V), where V is the value of v at the procedure entry.

We use disjunction to model the effect of the meet operator. In our example,

we use fictitious variables X, C, Y , Z to store the the initial values of x, c, y,

z.

• We also add the conjunct x = const if x was determined to evaluate to constant

const at location l. We need this addition since T(rf ,l) does not propagate the

information from the callers.

(x ≥ 0) → [(x, z) := (x − 2 , y)]
1

5

main()

{ym = 5}

foo(xm, 5, ym, zm)

ym := 5

write(zm)

foo((xm + 6), 5, ym, zm)

{zm = 5}

{zm = 5}

0

6

7

3

4

2
{x = X ∧ c = C ∧ y = Y ∧ z = Z}

{c = 5}

foo(x, c; y, z)

foo(x, c, y, z)(x = 0) → [y := x]

(x < 0) → [z := c]

{c = 5}

{c = 5}

{c = C ∧ z = Y ∧ y = Y }

{c = C ∧ (z = C ∨ z = Y)}

Figure 2.5: Inductive network for interprocedural constant copy propagation

32

The resulting invariants, denoted in Fig. 2.5 by curly brackets, form an inductive

network. For example, let’s show that the return verification condition for call edge

(1, 5) of our example holds.

VCret: ϕ1 ∧ ϕ4[(C, Y) 7→ (5, ym)] → ϕ5[zm 7→ z] ⇔

ym = 5 ∧ c = 5 ∧ (z = 5 ∨ z = ym) ∧ c = 5 → z = 5

2.3.3 Translation Verification Conditions

Similarly to the verification conditions used to prove the assertion network inductive

(see Section 2.2.2), Translation Verification Conditions prove that the data abstrac-

tion is inductive on the computations of the target program. They also ensure that

source and target observations match given the consistent input.

We first give a recipe for generating translation verification conditions when the

structure of the transformed program is preserved: for every edge of the target

program eT connecting nodes i and j, there exist the corresponding source edge eS

between nodes κ(i) and κ(j):

• Guarded Assignment : If the target edge eT is a guarded assignment edge of

T ; and κ(i), κ(j) are also connected by one or more assignment edges in S, we

generate the following conditions.

αi ∧ ϕS
i ∧ ϕT

i ∧ ρeT → (
∨

eS∈Edges(κ(i),κ(j))

ceS)

αi ∧ ϕS
i ∧ ϕT

i ∧ ρeT ∧ (
∨

eS∈Edges(κ(i),κ(j))

ρeS)→ α′j

33

In the formulas above, for an edge e ∈ {eS , eT } labeled by c→ [~u := E(~y)], ce

stands for the condition c and ρe for the expression c ∧ (~u′ = E(~y)) ∧ ~v′ = ~v,

where ~v are all variables of αj with the exception of those in ~u. The first

implication checks that whenever the target transition is enabled, at least one

of the corresponding source transitions is also enabled. The second verification

condition checks that the data abstraction is preserved by the matching target

and source transitions. Invariants ϕS
i and ϕT

i are used to strengthen the left-

hand-side of the implication.

• Read : If eT and eS are both labeled by read instructions read(~uT) and

read(~uS), the following condition is generated.

αi ∧ ϕT
i ∧ ϕS

κ(i) ∧ (~uT = ~uS)→ αj

• Write: If eT and eS are both write edges, labeled by write(ET (~yT)) and

write(ES(~yS)), we add the following implication to the set of verification con-

ditions.

αi ∧ ϕT
i ∧ ϕS

κ(i) → αj ∧ (ET (~yT) = ES(~yS))

Read and write verification conditions ensure that the data mapping implies

matching source and target output given the consistent input.

• Procedure Call : If both eT and eS are call edges labeled by f(ET
g ; ~uT

g)

and F (ES
G; ~uS

G), respectively, where the target procedure f is mapped to

34

αj(~y
S
G; ~yT

g)

κ(r) κ(t) r t

κ(i) κ(j) i j

f(in : ~xT
f ; ~zT

f)F (in : ~xS
F ; ~zS

F)

g(in : ~xT
g ; ~zT

g)G(in : ~xS
G; ~zS

G)

F (ES
G; ~uS

G)

eS eT

f(ET
g ; ~uT

g)

αt(~z
S
F ; ~zT

f)αr((~x
S
F , ~zS

F); (~xT
f , ~zT

f))

αi(~y
S
G; ~yT

g)

VCcall :
αi(~y

S
G; ~yT

g) ∧ ϕS
κ(i)(~y

S
G) ∧ ϕT

i (~yT
g) → αr((E

S
G, ~uS

G); (ET
g , ~uT

g))

VCret :[

αi(~y
S
G; ~yT

g) ∧ ϕS
κ(i)(~y

S
G) ∧ ϕT

i (~yT
g) ∧

αt(~z
S
F ; ~zT

f) ∧ qS
F (ES

G, ~uS
G; ~zS

F) ∧ qT
f (ET

g , ~uT
g ; ~zT

f)

]

→ αj(~y
S
G[~uS

G 7→ ~zS
F]; ~yT

g [~uT
g 7→ ~z

T

f
])

In the above formulas, αj(~y
S
G[~uS

G 7→ ~zS
F]; ~yT

g [~uT
g 7→ ~zT

f]) is obtained from αj(~y
S
G; ~yT

g) after
replacing the variables in ~uS

G by the corresponding variables in ~zS
F and variables in ~uT

g by
the corresponding variables in ~zT

f .

Figure 2.6: Call verification conditions

the source procedure F , we generate Call Verification Conditions presented in

Fig. 2.6. In this case, procedure G calls procedure F in the source program

and procedure g calls procedure f in the target program. Note that the data

abstraction associated with the procedure entry αr((~x
S
F , ~zS

F); (~xT
f , ~zT

f)) depends

only on the input variables of the source procedure F and the target procedure

f . Similarly, the data abstraction associated with the procedure tail αt(~z
S
F ; ~zT

f)

only depends on the return variables of the two corresponding procedures.

35

The Call Verification Conditions check that the data abstraction is preserved

after stepping through the procedure calls. Similarly to the call conditions

of Section 2.2.2, the VCcall condition checks that the data mapping holds at

the entry to the procedure; and the VCret condition guarantees that it holds

after the procedure return. Consider the VCret condition. Here, we use the

information about the data relation before the procedure call (stored in αi)

and the relation that holds when the programs are about to exit from the calls

(stored in αt) to imply αj – the data abstractions after the call. We have

to make sure that we use the most recent data about the variables passed

by reference. This is why we perform the substitution of the variables in

αt. Finally, the right-hand-sides of the implications are strengthened by the

auxiliary invariants of the source and target systems; recall that qS
F and qT

f are

the output predicates of F and f , respectively.

If procedure f is not mapped to procedure F , the algorithm raises the Error.

Inlining and Tail-Recursion Elimination(TRE) introduce situations in which the

source code contains a call edge that corresponds to a subgraph in the target. In this

case, we prove the translation by “stepping into” the procedure call on the source.

Let eT = (i, a) be an unconditional assignment edge of the target such that there

exists a source call edge (κ(i), κ(j)), labeled by F (ES
G; ~uS

G); κ(a) is the entry node

of F ; and there exists the corresponding node b in the target such that κ(b) is the

exit node of the procedure F . If (b, j) is an unconditional assignment of T , proceed

with inlining verification conditions; otherwise, consider TRE.

36

Inlining

αl((~v
S
G, ~yS

F); ~yT
g)

j

bκ(a)

κ(i)

κ(b)

κ(j)

a

i

l

F (in : ~xS
F ; ~zS

F) g(in : ~xT
g ; ~zT

g)

[~yT
g := ERT

g]

αj(~y
S
G; ~yT

g)

αb((~v
S
G, ~zS

F); ~yT
g)

G(in : ~xS
G; ~zS

G)

F (ES
G; ~uS

G)

[~yT
g := ECT

g]

αi(~y
S
G; ~yT

g)

αa((~vS
G, ~xS

F , ~zS
F); ~yT

g)

VCcall:

αi(~y
S
G; ~yT

g) ∧ ϕT
i (~yT

g) ∧ ϕS
κ(i)(~y

S
G) → αa((~v

S
G, ES

G, ~uS
G); ECT

g)

VCret:

αb((~v
S
G, ~zS

F); ~yT
g) ∧ ϕT

b (~yT
g) ∧ ϕS

κ(i)(~y
S
G) ∧ qS

F (ES
G, ~uS

G; ~zS
F) → αj(~y

S
G[~uS

G 7→ ~zS
F]; ERT

g)

where ~vS
G = ~yS

G \ ~uS
G – are the variables of G excluding the ones passed by reference to F .

Figure 2.7: Inlining verification conditions

Consider the case depicted in Fig. 2.7 where a source call edge eS = (κ(i), κ(j)),

labeled by F (ES
G, ~uS

G), has been inlined. Suppose that the target locations i and

j belong to some procedure g. To simplify this presentation, we assume that there

is no nested inlining, so eS belongs to G such that g is mapped to G. The target

procedure should contain unconditional assignment transitions (i, a) and (b, j) that

correspond to the call to and return from procedure F on the source. Assume, (i, a)

is labeled by [~yT
g := ECT

g] and (b, j) is labeled by [~yT
g := ERT

g].

37

Define a set of target locations L ⊂ PT such that it includes all locations on every

path from i to j. Note that all the locations in this set will be mapped to the nodes

of the source procedure F . It is required that αl, l ∈ L does not depend on ~uS
G, the

variables whose references are passed to F . However, we do allow the dependance on

the corresponding formal parameters. This restriction comes from the fact that ~uS
G

may change during the execution of F . Inlining Verification Conditions, presented

in Fig. 2.7, are generated for each pair of target locations (i, j) that correspond to

the inlined call edge (κ(i), κ(j)). The VCcall condition checks the data abstraction

associated with locations a and κ(a), which are reached after the assignment on

the target and the call on the source; the VCret condition checks that the data

abstraction holds at locations j and κ(j) – after the corresponding assignment and

the return. This ensures that both of the target edges, (i, a) and (b, j), contribute

a condition to the set VC.

Tail Recursion Elimination

A call edge (i, t) of a procedure f(~x; &~z) is a TRE candidate if it is a recursive

call labeled by f(E(y); ~z) and t is the tail node of procedure f . Note that the

formal output parameters ~z are passed as the actual parameters in the tail call.

Let eT = (i, r) be an unconditional assignment edge of the target procedure g such

that there exists a TRE candidate source edge (κ(i), κ(t)) labeled by G(ES
G(~yS

G), ~zS
G),

where the target procedure g is mapped to the source procedure G. Under these

conditions, we guess that TRE optimization occurred and generate TRE Verification

Condition, shown in Fig. 2.8. The condition checks that the data abstraction holds

at the entry to the procedure: after a call on the source and the assignment on the

38

κ(t)

κ(i)

κ(r) r

i

t

F (ES
G; ~zS

G) eS

~yT
g = ECT

g (~yT
g) eT

αt(~z
S
G; ~zT

g)

αi(~y
S
G; ~yT

g)

αr((~x
S
G, ~zS

G); ~yT
g)g(in : ~xT

g ; ~zT
g)G(in : ~xS

G; ~zS
G)

VCcall: αi(~y
S
G; ~yT

g) ∧ ϕT
i (~yT

g) ∧ ϕS
κ(i)(~y

S
G) → αr((E

S
G, ~zS

G); ECT
g (~yT

g))

Figure 2.8: Tail recursion elimination verification conditions

target are performed. There is no target edge that corresponds to the return from

the recursive call on the source and, consequently, the exit verification condition is

not generated. Next, we explain why the requirements of the correct translation, as

defined in Section 2.2.3, are still satisfied. Consider a source computation σS that

contains m recursive calls to G and the corresponding target computation σT :

σS = . . .

〈κ(r), D0
r〉 −→ . . . −→ 〈κ(i), D0

i 〉
eS

−→

. . .

〈κ(r), Dm−1
r 〉 −→ . . . −→ 〈κ(i), Dm−1

i 〉
eS

−→

〈κ(r), Dm
r 〉 −→ . . . −→ 〈κ(t), Dm

t 〉

ret
−→ 〈κ(t), Dm−1

t 〉 . . .
ret
−→ 〈κ(t), D1

t 〉
ret
−→ 〈κ(t), D0

t 〉 . . .

39

σT = . . .

〈r, d0
r〉 −→ . . . −→ 〈i, d0

i 〉
eT

−→

. . .

〈r, dm−1
r 〉 −→ . . . −→ 〈i, dm−1

i 〉
eT

−→

〈r, dm
r 〉 −→ . . . −→ 〈t, dm

t 〉

. . .

Dk
l and dk

l denote source and target data interpretation, where k stands for the

recursion level in the source program and the iteration level in the target program.

First, we want to show that αt(~z
S
G; ~zT

g) holds. Validity of the verification condi-

tions generated for all target edges that end in t prove that αt(D
m
t ; dm

t) holds: αt

holds before we take the very first return transition in the source. Note that the

only source variables effecting αt(~z
S
G; ~zT

g) are the formal parameters passed by ref-

erence that match the actual parameters used for the tail call. Therefore, popping

the stack does not change ~zS
G, and αt is preserved by the return transitions.

Second, we show that for every target observation, there exists a

stuttering equivalent source observation. Consider the observations of

the source and target programs oS and oT that can be obtained by

applying the observation function O to the computations σS and σT :

40

oS = . . .

O(〈κ(r), D0
r〉) −→ . . . −→ O(〈κ(i), D0

i 〉)
⊤
−→

. . .

O(〈κ(r), Dm−1
r 〉) −→ . . . −→ O(〈κ(i), Dm−1

i 〉)
⊤
−→

O(〈κ(r), Dm
r 〉) −→ . . . −→ O(〈κ(t), Dm

t 〉)

⊤
−→ ⊤ . . .

⊤
−→ ⊤

⊤
−→ ⊤

︸ ︷︷ ︸

m return transitions

. . .

oT = . . .

O(〈r, d0
r〉) −→ . . . −→ O(〈i, d0

i 〉)
⊤
−→

. . .

O(〈r, dm−1
r 〉) −→ . . . −→ O(〈i, dm−1

i 〉)
⊤
−→

O(〈r, dm
r 〉) −→ . . . −→ O(〈t, dm

t 〉)

. . .

The verification conditions that we generate for each target edge ensure that for

every target transition in σT there exists a corresponding source transition in σS .

Furthermore, the I/O transitions (and the associated data) match. Thus, the source

observation oS can be obtained from the target observation oT by adding exactly m

pairs
⊤
−→ ⊤.

2.3.4 ITV Example: Constant Propagation and TRE

In Fig. 2.9, we show the source and the target programs. These programs output

(3 ∗ A)! + 5 given an input A. The target program, depicted on the bottom, is

obtained from the source after TRE is applied to the procedure fact, the value of

constant c is propagated, and the computation of the expression a ∗ 3 is moved due

41

6 87

1 2 4 53MAIN()

(N ≤ 1)?

FACT (N − 1, R)(N > 1)→ R := R ∗N
FACT (N ; &R)

write (B + C)read (A) (B, C) := (1, 5) FACT (A ∗ 3, B)

5431 2

7 86
(n > 1)→ r := r ∗ n

read (a) write (b + 5)(b, k) := (1, a ∗ 3) fact (k, b)

(n ≤ 1)?

n := n− 1
fact (n; &r)

main()

Figure 2.9: ITV example: the program before and after compilation

to instruction scheduling. Note our notation: we use uppercase letters to denote

the source variables and procedure names; we use their lowercase counterparts for

the target program. Let us apply the Interprocedural Translation Validation (ITV)

algorithm from Section 2.3.1 to prove that the target is the correct translation of

the source in this example.

Step 1: The control abstraction κ is identity.

Step 2: The inductive assertion network ΦS associates assertion (C = 3) with

locations l ∈ {3, 4, 5} and assertion true with l ∈ {1, 2, 6, 7, 8}. All the assertions in

ΦT are true. We omit the set of the verification conditions that prove inductiveness

of ΦS and ΦT since they are straightforward.

42

Step 3: The following data abstraction is generated:

α1 : true

α2 : (A = a)

α3 : (A ∗ 3 = k) ∧ (B = b)

α4 : (A ∗ 3 = k) ∧ (B = b)

α5 : true

α6 : (R = r) ∧ (N = n)

α7 : (R = r) ∧ (N = n)

α8 : (R = r)

Step 4: Below, we list selected translation verification conditions from the set VC.

We are going to omit the invariants that evaluate to true:

Read : VC(1 ,2) : α1 ∧ (A = a) → α2 ⇔ true ∧ (a = A) → (a = A)

Assign : VC(2 ,3) : α2 ∧ ρ(2 ,3)T → c(2 ,3)S ; α2 ∧ ρ(2 ,3)T ∧ ρ(2 ,3)S → α′
3 ⇔

(A = a) ∧ ((b ′ = 1) ∧ (k ′ = a ∗ 3) ∧ (a ′ = a)) → true;

(A = a) ∧ ((b ′ = 1) ∧ (k ′ = a ∗ 3) ∧ (a ′ = a)) ∧

((B ′ = 1) ∧ (C ′ = 5) ∧ (A′ = A)) → ((A′ ∗ 3 = k ′) ∧ (B ′ = b ′))

Call : VC(3,4) : VCcall : α3 ∧ ϕS
3 → α6 [(N ,R) 7→ (A ∗ 3 ,B); (n, r) 7→ (k , b)];

VCret : α3 ∧ ϕS
3 ∧ α8 → α4 [B 7→ R; b 7→ r] ⇔

((A ∗ 3 = k) ∧ (B = b)) ∧ (C = 5) → ((A ∗ 3 = k) ∧ (B = b));

((A ∗ 3 = k) ∧ (B = b)) ∧ (C = 5) ∧ (R = r) → ((A ∗ 3 = k) ∧ (R = r))

Write : VC(4,5) : α4 ∧ ϕS
4 → α5 ∧ (B + C = b + 5) ⇔

((A ∗ 3 = k) ∧ (B = b)) ∧ (C = 5) → true ∧ (B + C = b + 5)

TRE : VC(7,6) : α7 → α6 [N 7→ (N − 1); n 7→ (n − 1)] ⇔

((R = r) ∧ (N = n)) → ((R = r) ∧ (N − 1 = n − 1))

43

Step 5: We use an automatic theorem prover, such as [9, 1], to check the generated

conditions for validity. Since all the conditions in VC are valid, we conclude the

correctness of the translation.

2.4 Compiler Validation via Analysis of the

Cross-Product (CoVaC)

The previous section presented a translation validation algorithm for verification of

structure preserving optimizations. However, notice that most of the techniques it

used have been borrowed from the existing methodology for proving properties of a

single program. The question is: Is it possible to transform the program equivalence

problem to checking a property of a single program? If the answer is yes, the many

existing and future techniques and tools could be seamlessly incorporated to solve

the translation validation problem.

Additionally, notice that the previous algorithm relied on the compiler to pro-

vide the information necessary to construct the data abstraction and the control

abstraction. However, is it possible to deduce those without any help from the

compiler?

This section presents the framework for program equivalence checking using pro-

gram analysis of the cross-product framework, which addresses the two questions

posed above.

44

2.4.1 Introduction

The Compiler Verification by Program Analysis of the Cross-Product framework

(CoVaC) is a novel translation validation approach, in which one constructs a

comparison system – a cross-product of the source and target programs. The input

programs are equivalent if and only if the comparison system satisfies a certain

specification. This allows us to leverage the existing methods of proving properties

of a single program instead of relying on program analysis and proof rules specialized

to translation validation, used by the existing frameworks [67, 51, 59]. CoVaC is not

tailored to validation of compiler transformations – it targets program equivalence

in general; for example, it can be applied to validation of language-based security

properties [13].

The CoVaC framework can be used in various settings, and, while the check

for specification conformance is expected to be the same, the construction of the

comparison system may diverge. For example, compiler writers may use translation

validation for the creation of a self-certifying compiler and, thus, may assume full

knowledge of the inner workings of a particular compiler. In this case, the compiler

itself may output the comparison system. Section 2.4.3 pursues the other extreme –

it describes a method for automatic generation of the comparison system, and thus,

a translation validation algorithm, which accommodates no compiler cooperation.

To the best of our knowledge, the existing translation validation frameworks which

handle a comparable set of optimizations at least to some degree rely on compiler

assistance.

The lack of compiler dependency makes it possible to develop a general purpose

45

verification tool that can be used to verify the transformations performed by different

compilers. The only module that has to be developed in order to hook up a new

compiler to the tool is a translator from the compiler IR to the format accepted by

the tool. One advantage here is the reduction of the development time. Furthermore,

since our correctness claim relies on faithfulness of the translation validation tool,

another advantage is that most of the trusted core is reused. Such tool would be

especially useful to compiler users who may have to work with a particular existing

compiler. Additionally, this methodology can be of service to compiler developers to

facilitate testing of immature compilers. The traditional compiler test procedures

are limited to compilation of a program from a test suite; running the compiled

program on several fixed input values; and comparing the actual output, produced

by the compiler, to the expected one. Application of translation validation to the

programs in the test suite gives a much stronger guarantee – each source program

is the correct translation of the target only if their outputs match on all possible

inputs.

In order to make the validator of non-cooperative compilers feasible and effec-

tive, we restrict the set of transformations under consideration to intraprocedural

optimizations in which each loop in the target program corresponds to a loop in the

source program; we refer to such input systems as consonant . Many of the classical

compiler optimizations such as constant folding, reassociation, induction variable

optimizations, common subexpression elimination, code motion, branch optimiza-

tions, register allocation, instruction scheduling, and others fall into this category.

These optimizations are usually referred to as structure preserving [67]. Finally, we

46

have developed a prototype tool CoVaC that applies the developed framework to

verification of optimizing transformations performed by LLVM [7] – an aggressive

open-source C and C++ compiler.

In summary, Section 2.4 describes the following contributions. In the next sec-

tion, we present a novel deductive framework for checking equivalence of infinite

state programs. Section 2.4.3 defines the notion of consonance and shows how the

method can be effectively applied to consonant programs. The presented algorithm

does not rely on any additional input; thus, it can be used to verify compilations

while treating the compiler as a black-box. Section 2.4.5 describes the CoVaC tool.

It also lists the existing algorithms used by the tool for invariant generation. The

CoVaC tool utilizes a special algorithm for proving equivalence of unbounded mem-

ory regions, which is presented in Section 2.4.4. Finally, Section 2.4.6 focuses on the

experimental results.

2.4.2 Comparison Graphs

In this section, we show that the problem of establishing correct translation is equiv-

alent to construction of a cross-product (comparison) system C = S⊠T and checking

if C satisfies a set of correctness conditions. Our framework is general enough for

establishing translation correctness of deterministic systems in presence of a wide set

of intraprocedural transformations. Later, we present the application of the method

to proving translation of consonant systems. However, the general framework can

be used to reason about translation correctness in presence of structure modifying

optimizations such as loop transformations [68].

47

Assume we are given two programs, S and T . For each pair of the corresponding

source and target procedures, fS = (~yS, N S, ES) and fT = (~yT , N T , ET), a graph

satisfying the set of rules below is called a comparison transition graph, denoted

f = (~y, N , E) = fS ⊠ fT . f represents a simultaneous execution of fS and fT .

The collection of comparison graphs for all procedures constitutes the comparison

program C = S ⊠ T .

Rule 1. (Structural Requirement)

1. The variables of the comparison graph ~y = (~x, ~z, ~w) are defined as follows:

~x = ~xS ◦ ~xT ; ~z = ~zS ◦ ~zT ; and ~w = ~wS ◦ ~wT , where ~v ◦ ~u denotes concatenation

of two vectors.

2. Each node of f is a pair of source and target nodes: N ⊆ N S ×N T . Let rS,

tS and rT , tT denote the exit and entry nodes of fS and fT respectively. Then

r = 〈rS, rT 〉 and t = 〈tS, tT 〉 are the entry and exit nodes of f .

3. Each edge of the graph e = (〈nS, nT 〉, 〈mS, mT 〉) ∈ E , labeled by a pair of

instructions 〈opS; opT 〉, should be justified by one of the following:

• (nS, mS) ∈ ES and it is labeled by opS; (nT , mT) ∈ ET and it is labeled

by opT ; and opS and opT are instructions of the same type (either both

reads, writes, assignments, or calls to procedures with the same name).

• (nS, mS) ∈ ES, labeled by assignment opS; nT = mT ; and opT = ǫ.

• (nT , mT) ∈ ET , labeled by assignment opT ; nS = mS; and opS = ǫ.

Where, ǫ stands for assignment true?, which represents an idle transition.

48

Since the edges of a comparison graph are labeled by the same type instructions,

reads and writes of the two systems are performed in sync.

A composed transition 〈n; ~d〉
eS ; eT

−→ 〈n′; ~d′〉 is interpreted as a sequential com-

position of the source and target transitions with one exception. Let eS and eT be

labeled by read(~uS) and read(~uT). Then, the transition is enabled only if ~d′
uS = ~d′

uT ,

where ~d′
uS and ~d′

uT are obtained from ~d′ by restricting it to the values that corre-

spond to the variables ~uS and ~uT . Thus, we require that the values fed into the

source and target reads are equal. If n is a root node of the procedure, then the

transition is enabled only if ~d = ((~ξ ◦ ~ξ), (~ζ ◦~ζ), ~⊤) for some values ~ξ and ~ζ. In other

words, the same values are fed into the input parameters of fS and fT . Given σ in

Cmp(f), we use σ↑S to denote a path obtained by projection of σ onto the states

and transitions related to procedure fS.

Rule 2. There does not exist σ in Cmp(f) such that σ↑S or σ↑T contains an infinite

sequence of ǫ-transitions.

The following lemma follows directly from Rule 1 and Rule 2:

Lemma 1. ∀σ ∈ Cmp(f) : (∃σS ∈ Cmp(fS) : σS ∼st σ↑S) ∧ (∃ σT ∈ Cmp(fT) :

σT ∼st σ↑T); i.e. every computation of the comparison graph has the corresponding

computations in both source and target.

In addition, we should ensure the reverse of the previous claim: the computations

of the comparison graph represent all the computations of the input systems. We

say that computations of an input system, say Cmp(fS), are covered by Cmp(f)

when the following condition holds: ∀σS ∈ Cmp(fS), ∃σ ∈ Cmp(f) : σS differs

49

from σ↑S , by only finite sequences of (padding) ǫ-transitions. The notion of coverage

is stronger then stuttering equivalence, so it follows that σS ∼st σ↑S.

Rule 3. Computations of fS and computations of fT are covered by Cmp(f).

Note that following Rule 3, not all edges of the input graphs have to be in the

comparison graph, which allows us to disregard the unreachable states of the input

systems. Now as we have defined a comparison graph, let’s consider what properties

it should satisfy in order to guarantee the correctness of translation.

Definition 6. A comparison graph f = fS ⊠ fT , is a witness of correct translation

if for every ((~ξ ◦ ~ξ), (~ζ ◦ ~ζ))-computation of f , its target and source projections have

equal observations. Note, we restrict the computations under consideration to those

in which the input parameters are initialized with the same values.

The following theorem shows the relation of the comparison graphs and the

correctness of translation.

Theorem 1. Target function fT is a correct translation of source function fS if

and only if there exists a witness comparison graph f = fS ⊠ fT . In addition, if fT

is a correct translation of fS then every comparison graph f = fS ⊠ fT is a witness

of correct translation. (Refer to Section A for the proof of the theorem.)

According to Theorem 1, in order to determine the correctness of translation, it is

sufficient to construct a comparison graph and check if it is, indeed, a witness.

Example 2. Fig. 2.10 depicts an example of a witness comparison graph for pro-

cedure f(&(Y, y)) = fS(&Y) ⊠ fT (&y). We use capital variables to denote the

variables of the source and their lower case counterparts for the target. Here, the

source procedure accepts the argument Y , increments it by 25, reads in an integer

50

0,0 1,0 2,1 3,32,2

ǫ;

ǫ read(x)

read(X);

write(y ∗ x)

write(Y ∗ X);

y := y + 25

Y := Y + 12 + 13;

Figure 2.10: A comparison transition graph for f(&(Y, y))

input into X, and outputs Y ∗ X. The target procedure performs the same oper-

ations; however, the order of the read and the assignment is interchanged due to

instruction scheduling. Let σ be the (~⊤; (5, 5))-computation of the comparison graph

f(&(Y, y)) = fS(&Y)⊠fT (&y) defined by the user input 10. In other words, σ is the

computation in which the arguments passed into the source and the target procedures

both evaluate to 5 and both systems read the value 10 form the input device. The

observations of the source projection σ↑S and the target projection σ↑T are equal:

o(σ↑S) = o(σ↑T) = ⊥
⊥
−→ ⊥

read
−→ (10)

⊥
−→ (300)

write
−→ ⊥

Witness Verification Conditions

Let ϕn be an assertion associated with a node n. An assertion network ΦC = {ϕn :

n ∈ locations of C} for a program C is said to be invariant if for every state 〈n; ~d〉

occurring in a computation, d |= ϕn. That is, on every visit of a computation of

node n, the data state satisfies the corresponding assertion ϕn.

Suppose a comparison program C = S ⊠ T and an invariant network have

been constructed. The rules presented below can be used to generate Witness

Verification Conditions for C. Whenever the verification conditions are valid,

all the transition graphs that constitute C are witnesses of correct translation, so we

can apply Theorem 1 to safely conclude that the translation is correct; otherwise,

51

we report that the translation is erroneous.

• For a write edge (n, m) labeled by (write(~uS); write(~uT)):

ϕn → (~uS = ~uT).

• For a call edge e = (n, m) labeled by (gS(ES, ~uS); gT (ET , ~uT)), we check

that the call arguments are equal:

ϕn → (ES = ET) ∧ (~uS = ~uT)

• If n is the exit node of the comparison transition graph fS
⊠ fT , where

fS(~xS; &~zS) and fT (~xT ; &~zT), we check if the values of the variables passed

by reference are equal:

ϕn → (~zS = ~zT).

Claim 2. Let mainS and mainT be the main procedures of S and T respectively.

A comparison graph main = mainS ⊠ mainT is a witness of correct translation

and, consequently, S is a correct translation of T if all the Witness Verification

Conditions associated with the comparison program C = S ⊠ T are valid.

Note that since we are checking that the procedure input parameters are equivalent,

the invariant generation algorithm can be intraprocedural. Essentially, one can

apply an assume-guarantee reasoning, where f is checked to be a witness, assuming

that all the callees of a procedure f are witnesses themselves.

The presented conditions do not constitute an inductive proof of translation

correctness: it is assumed that the assertions in ΦC are indeed invariants of C. The

extra requirement that has to be satisfied in case such a proof is desirable is that the

52

invariant assertion network should be inductive [24]. The availability of such a proof

increases the level of confidence and allows third-party verification. In addition, it is

required if one is to employ invariant generation techniques that may introduce false

positives , such as probabilistic algorithms [28]. Automatic theorem provers such as

Simplify [19], YICES[9], and CVC3[1], can be utilized to independently check the

validity of the proof. The notion of inductiveness is formalized in Section 2.2.2.

Next, we describe a method for comparison system construction. However, gen-

eration of program invariants and checking their correctness are essential ingredients

for solving a translation validation problem. Here, one of the main advantages of

our approach comes into play. Since we have reduced the translation validation

problem to analysis of a single system, any existing technique out of a vast body of

work on invariant generation can be used. From our experiments, we found that,

among others, global value numbering [61] and assertion checking – a static program

verification technique based on computation of weakest-precondition [20], are quite

effective in this setting. Please refer to Section 2.4.5 and Section 2.4.4 for a detailed

discussion.

2.4.3 Comparison Graph Construction

The CoVaC framework can be used in various settings. For example, in a setting of

a certifying compiler, one can rely on the compiler to build the comparison graph.

However, when the compiler internals are unaccessible (or the auxiliary information

cannot be trusted), we may have to rely on an algorithm that only requires the

two input programs as the input. Note that the compiler hints do not need to be

53

prohibited; indeed, they can be incorporated into the algorithm and simplify the

analysis.

In this section, we present such an algorithm for consonant input programs (i.e.,

structurally similar programs) as defined in Section 2.2.4. The restriction to the

consonant programs allows for effective application of our methodology to verifi-

cation of optimizing compilers in absence of compiler annotations. The algorithm

discovers the control abstraction and merges the corresponding nodes of the two

input systems. To relate the variables of two input systems, our method relies on

invariant generation algorithm InvGen. Section 2.4.5 gives an overview of one such

algorithm; but, in principle, any invariant generation algorithm can be plugged into

the CoVaC framework. The second condition of consonance guarantees that such

an algorithm is realizable.

Recall that the comparison system C = S ⊠ T is just a collection of all graphs

f = fS ⊠ fT , where fS and fT are the corresponding procedures from S and T .

Thus, it suffices to present a construction algorithm for a procedure f .

Algorithm compose

Fig. 2.11 presents pseudocode for the compose algorithm that iteratively constructs

a comparison graph f = fS ⊠ fT for consonant input transition graphs fS and fT .

We start the construction with a node n0 = 〈nS
0 , nT

0 〉, where nS
0 and nT

0 are the

entry nodes of fS and fT , respectively. The new node n0 is added to the WorkList,

which is our discovery frontier: if a node n is placed into WorkList, it means that,

potentially, more edges outgoing from n may be discovered. At each iteration, we

remove a node n from the WorkList and apply matchEdges function to construct a

54

list of newly discovered outgoing edges. The end nodes of the edges, denoted ne, are

placed into WorkList1. Even though we always discover a new edge, ne could have

been added to f at some previous iteration and may also have successors in f . In

that case, all its eventual successors must also be added to WorkList. Intuitively, if a

new path leading to a node is added, that node has to be processed again since more

outgoing edges could be discovered. The function matchEdges may fail, returning

NULL. This happens when we cannot construct a comparison system satisfying the

requirements from Section 2.4.2.

//Initialization:

n0:=CompNode(n
S
0 , nT

0); C.Nodes:={n0}; C.Edges:={}; WorkList := {n0};

//Iteration:

while(! WorkList.isEmpty()) {
n := WorkList.removeElement();

MatchList := matchEdges(n,S,T);
if(MatchList == NULL) ABORT;

while(! MatchList.isEmpty()){
enew := MatchList.removeElement();

ne = NewCEdge.toNode();

C.Nodes.add(ne); //unlike the edge, ne may not be new1

C.Edges.insert(enew);

WorkList.add(ne);

WorkList.add(getDescendants(ne));

}
}

Figure 2.11: Algorithm compose that constructs f = fS ⊠ fT

Below is a set of rules used by matchEdges procedure to combine the source and

target edges. Every pair of matched edges forms a new edge that is added to the

1Procedure add does not add duplicate items to a collection.

55

comparison graph.

• Matching edges of the same type: Given a node 〈nS, nT 〉, we match the

outgoing edges if and only if τ(nS) = τ(nT). Here, τ(n) denotes the type of

the node n as defined in Section 2.2.4.

• Adding ǫ–transitions: If nS /∈ PS (implying τ(nS) = ua), we match the

source assignment edge with an ǫ–transition on the target. The case of nT /∈

PT is handled analogously.

• Raising error: If none of the rules are applicable to a node 〈nS, nT 〉, match-

Edges returns NULL, and the construction of C is aborted.

We always match read, write, and function call edges if both systems can take

such a step. Guarded assignment edges can also be composed with each other;

but we require that either both systems are currently at a branch node (or a loop

head depending on the desired granularity) or neither. Since the input systems are

consonant, this condition allows us to align the corresponding source and target

cut points. The case when only one of systems has reached a cut point is covered

via ǫ–transitions, so that it can wait for the other system to catch up. Note that

since ǫ is only composed with unconditional assignments, it is guaranteed that the

comparison system does not contain an ǫ–cycle, so the wait always is finite. Finally,

we fail when both systems are at cut point nodes nS, nT but τ(nS) 6= τ(nT). For

example, one system is ready to read while the other is about to execute a procedure

call.

56

Branch Alignment: Consider the case when τ(nS) = τ(nT) = br. By the first

rule of matchEdges, the outgoing edges should be matched. However, there is

an obvious efficiency problem with simply taking all possibilities (i.e., cartesian

product) when we consider two nodes with multiple outgoing assignment edges.

Such straightforward approach may lead to a number of edges in f being quadratic

in the number of edges in the input graphs. More importantly, if we mismatch the

branches, unreachable nodes could be introduced into the graph, which may lead to

further misalignment down the road. In particular, read, write, and function call

edges may get out of sync. Consider the example in Fig. 2.12. Suppose C = c,

X = x, and Y = y. Then fT is a correct translation of fS. However, if we

compose edges (0, 1) and (4, 6) just relying on the fact that they are both conditional

assignments (τ(0) = τ(4) = br), the algorithm presented so far will raise an error

when examining the newly added unreachable node 〈1, 6〉. Thus, there is a need for

comprehensive branch matching. One such method is presented below; in addition

to resolving the misalignment issue, it usually constructs a comparison graph linear

in the size of the input graphs.

1

0 4

5 62

0,4

1,6

read(X)read(x) write(y)

fS :

C ¬C
=⇒

read(X)

⊠

fT :

c ¬c

write(Y)

C ∧ ¬c

write(y)

Figure 2.12: Misaligned branches

57

Assume that we have an algorithm InvGen(fk) that, given a partially constructed

graph fk, obtained after the kth iteration of compose, outputs a set of invariants

{ ϕk
n : n ∈ locations of fk}. We will use these invariants to facilitate the edge

matching at iteration k + 1 so that the composed edges that would introduce infea-

sible paths are ruled out. Let ES
n represent the set of source edges outgoing from nS

s.t. each edge eS ∈ ES
n is labeled by cS → [~uS := ES(~y)]. We define ET

n similarly.

A pair (eS, eT) ∈ ES
n × E

T
n is matched if and only if

– it does not yet belong to the comparison graph and

– (ϕk
n ∧ cS ∧ cT) is satisfiable.

We only want to add an edge if there exists an execution through fk in which eS and

eT are enabled simultaneously. An important question to ask is how the decision

made using a partially constructed graph fk relates to the fully constructed graph

f . Let ϕfix
n be the invariant which can be obtained by running InvGen on the fully

constructed comparison graph f . Invariant ϕk
n is an under-approximation of ϕfix

n ,

meaning, for some assertion Φk
n, ϕk

n = (ϕfix
n ∧ Φk

n).

Lemma 2. No spurious predictions are possible: if the match (eS, eT) is made with

ϕk
n, it also complies with ϕfix

n .

Proof. Suppose, a match is made using ϕk
n on iteration k +1 and (ϕk

n ∧ cS ∧ cT) is

satisfiable. Since ϕk
n = (ϕfix

n ∧Φk
n), assertion (ϕfix

n ∧ cS ∧ cT) is also satisfiable.

Thus, the match would also be made with ϕfix
n .

58

As a practical consequence of the lemma, algorithm compose never has to remove

any of the previously added edges; thus, it never backtracks. The converse does not

hold: we may discover more matches with invariant ϕl
n, where l : l > k is a later

iteration of algorithm compose. For this reason, the algorithm adds ne and its

decedents to the WorkList (see Fig. 2.11).

Theorem 2. The following are properties of algorithm compose:

• Termination: algorithm compose terminates.

• Soundness: if algorithm compose succeeds, the resulting graph f = fS ⊠ fT

satisfies all of the requirements presented in Section 2.4.2.

• Completeness: if fT and fS are consonant, compose succeeds in construction

of a comparison graph f = fS ⊠ fT given a strong enough InvGen.

The proof of Theorem 2 is presented in Section A.

Note that the completeness of the algorithm is conditional on strength of InvGen

algorithm used for branch matching. Even for consonant graphs the invariant may

need to be strong enough to express reachability, which is undecidable for infinite

state systems. All hope is not lost: it is usually feasible to construct the invariants

sufficient for our particular application – verification of compiler transformations, in-

tuitively, due to the fact that compilers base their decisions on automated reasoning.

See Section 2.4.5 for the discussion on the InvGen used in practice.

59

Example

In this section, we present an example that demonstrates application of compose

algorithm to comparison system construction along with the generated invariants

and Witness Verification Conditions. Consider Fig. 2.13. The first two graphs

depict the source transition graph and the target obtained from the source after con-

stant copy propagation, if simplification, loop invariant code motion, reassociation,

and instruction scheduling. Cut point nodes are denoted by double circles. We use

capital letters to denote the source variables and their lowercase counterparts for

the target. MEM and mem denote the memory heaps. The procedure first reads in

two elements – one is stored in register K and the other one in memory at address

A. Then, ten elements of the array, stored starting at address P , are assigned to.

Finally, the first element of the array is printed out. We assume that the addresses

of the array elements do not overlap with A.

Below the source and the target graphs, we depict the comparison graphs ob-

tained at the three stages of the comparison graph construction. After the third

iteration of the algorithm compose (from Section 2.4.3), we obtain graph C3 (Com-

parison 3), which is constructed as follows. On the first iteration, an assignment

of the source is matched up with an ǫ-transition on the target. On the second it-

eration, node 〈1, 0〉 is considered, and since both procedures are ready to execute

reads, the composed read edge is added. Next, we examine node 〈2, 1〉. Since only

the source procedure has reached a cut point, it waits for the target system to catch

up by taking an ǫ-transition. On the fourth iteration, node 〈2, 2〉 is considered for

the first time and the algorithm InvGen(C3) returns ϕ3
〈2,2〉 : (I = i = 1), which

60

S
o
u
rc

e

2 4310

(I < 10 ∧ K > 0) → (MEM [P + I], I) := (I ∗ (MEM [A] + C) ∗ K, I + 1)

read (K, MEM [A]) write (MEM [P])(I ≥ 10)?

(I < 10 ∧ K ≤ 0) → (MEM [P + I], I) := (I ∗ (MEM [A] + 5) ∗ K, I + 1)

(I, C) := (0, 5)

0 1 432

T
a
rg

e
t write (mem[p])(i ≥ 10)?read (k, mem[a])

(i < 10) → (mem[p + i], i) := (i ∗ u, i + 1)

(i, u) := (0, k ∗ (mem[a] + 5))

2,1

0,0

2,2

C
o
m

p
a
ri

s
o
n

 3 1,0

ǫ
(I, C) := (0, 5)

(i, u) := (0, k ∗ (mem[a] + 5))
ǫ

read (k, mem[a])
read (K, MEM [A])

2,1

0,0

2,2

C
o
m

p
a
ri

s
o
n

 4 1,0

(I < 10 ∧ K > 0) → (MEM [P + I], I) := (I ∗ (MEM [A] + C) ∗ K, I + 1)

ǫ
(I, C) := (0, 5)

(i, u) := (0, k ∗ (mem[a] + 5))
ǫ

read (k, mem[a])
read (K, MEM [A])

(i < 10) → (mem[p + i], i) := (i ∗ u, i + 1)
(I < 10 ∧ K ≤ 0) → (MEM [P + I], I) := (I ∗ (MEM [A] + 5) ∗ K, I + 1)

(i < 10) → (mem[p + i], i) := (i ∗ u, i + 1)

0,0

3,3 4,42,2

C
o
m

p
a
ri

s
o
n

 6 1,0

2,1 ǫ

(I < 10 ∧ K > 0) → (MEM [P + I], I) := (I ∗ (MEM [A] + C) ∗ K, I + 1)

ǫ
(I, C) := (0, 5)

read (k, mem[a])
read (K, MEM [A]) (i ≥ 10)?

(I ≥ 10)?
write (mem[p])
write (MEM [P])

(i < 10) → (mem[p + i], i) := (i ∗ u, i + 1)
(I < 10 ∧ K ≤ 0) → (MEM [P + I], I) := (I ∗ (MEM [A] + 5) ∗ K, I + 1)

(i, u) := (0, k ∗ (mem[a] + 5))

(i < 10) → (mem[p + i], i) := (i ∗ u, i + 1)

Figure 2.13: CoVaC example: the source, the target, and the comparison graphs

61

is used to align the branches of the loop and obtain C4 (Comparison 4). How-

ever, ϕ3
〈2,2〉 ∧ (I ≥ 10) ∧ (i ≥ 10) is unsatisfiable. Thus, the matching of the

loop exit edges is ruled out by the invariant. At the end of the fourth iteration,

node 〈2, 2〉 is added to the WorkList again. Notice that ϕ3
〈2,2〉 does not hold in

system C4 since I and i are updated in the loop, so InvGen(C4) widens the invari-

ant, resulting in ϕ4
〈2,2〉 : (I = i), which allows to match up the loop exit edges

(ϕ4
〈2,2〉 ∧ (I ≥ 10) ∧ (i ≥ 10) is satisfiable). Finally, we match the write edges and

obtain C = C6 (Comparison 6).

After the comparison system is constructed, we generate the Witness Veri-

fication Condition to check that both systems write out the same values (follow-

ing the rules from Section 2.4.2):

ϕfix

〈3,3〉 → (MEM [P] = mem[p]).

An inductive invariant network for the comparison program is presented below. The

validity of the verification condition directly follows from ϕfix

〈3,3〉.

ϕfix

〈0,0〉 : (MEM = mem) ∧ (A = a) ∧ (P = p) ∧ (A /∈ [P..P + 9])

ϕfix

〈1,0〉 : (I = 1) ∧ (C = 5) ∧ ϕfix

〈0,0〉

ϕfix

〈2,1〉 : (K = k) ∧ ϕfix

〈1,0〉

ϕfix

〈2,2〉 : (I = i) ∧ (u = (MEM [A] + C) ∗K) ∧ (C = 5) ∧ ϕfix

〈0,0〉

ϕfix

〈3,3〉 : (MEM = mem) ∧ (P = p)

ϕfix

〈0,0〉 asserts our assumptions that at the entry to the programs, the memory heaps

of the source and target are the same; the corresponding address variables of the

two systems are equal; and the address variable A(a) does not overlap with the

addresses of the elements of the source(target) array. The most interesting invariant

62

is ϕfix

〈2,2〉, which asserts that, after each loop iteration, the source and target heaps

stay equivalent. Its validity is ensured by the following facts: the addresses at which

memory is updated are equal (due to I = i ∧ P = p); the expressions stored at

those addresses are equal (since u = (MEM [A] + C) ∗K

∧ I = i); MEM [A] is not altered by the loop (because A /∈ [P..P + 10]).

2.4.4 Correlating the Unbounded Heaps

Dynamic memory allocation is a very powerful and popular programming paradigm.

However, along with its power, comes the complexity that is often difficult to ana-

lyze. In the CoVaC setting, the comparison system contains two unbounded memory

regions from which the memory can be allocated and whose contents are manipu-

lated. This section is devoted to a program analysis technique that can be used

to generate the program invariants that show how these two memory regions (or

heaps) are related.

Program heaps are modeled by unbounded arrays, which allows us to employ

the theory of arrays available in theorem provers. For example in CVC3 [1], a heap

would be modeled by ARRAY INT OF REAL.

0
HS[a] := x HS[k] := z; HT [k] := z write(HS[l]); write(HT [l])

HS[i] := y; HT [i] := y;

1

2

3 4

Figure 2.14: Heaps equivalence example

Consider the comparison system example in Fig. 2.14. Here, HS and HT denote

63

the heaps of the source and the target programs. For simplification purposes, only

operations that involve HS and HT are shown in the figure. In addition, source

and target operations share the same variables as a result of value numbering. We

assume that a and b are aliases. Since HS[b] is being assigned to by the edge (1, 3),

the assignment to the source heap HS[a] := x is redundant and is removed in the

target. The assignment HS[k] := i is also redundant since k is not updated within

the loop and the value of HS[k] is altered by the edge (1, 3). In order to determine

if the constructed graph is a witness, the assertion checker needs to determine if

the values at the corresponding heap locations are equal: (HS[l] = HT [l]), for some

address l. Since the heaps are dynamically updated within the loop, the number

of locations which have to be considered can be unbounded. In addition, due to

various optimizations like code motion and dead code elimination, the source and

target heaps are not equal to each other at each node of the comparison program.

Going back to our example, since the redundant stores HS[a] := x and HS[k] := i

are eliminated in the target program, HS may not be equal to HT at the graph

nodes 1 and 2. The key assumption we use is that, at each node n of the graph, the

heaps only differ from each other at a finite set of memory locations and the values

at the rest of heap locations are equivalent. This assumption is fair in a setting of

compiler validation.

For our analysis, we assume that the input comparison system is in SSA form

[17]. Let NC denote the set of nodes of the comparison graph C (which can be

either a partially or a fully constructed comparison graph). Next, we describe the

procedure that computes ∆n : n ∈ NC - the set of symbolic heap locations at which

64

the heaps may possibly differ.

For every node n, ∆n is initialized with ∅. Then, we iterate and at each iteration

update the deltas according to the equation below. We stop when there is no

change. In other words, the set of deltas is computed as the minimal fixed point of

the equation.

Data Flow Equation: Let En be the set of edges incoming into node n. For an

edge e ∈ En, let head(e) denote the head node of e; and let δe denote the set of heap

locations that have been updated by the instructions of e.

∆n := ∆n

⋃
reduce(

⋃

e∈En

{∆head(e)

⋃
δe}, n)

For every edge e incoming into n, we add to the set ∆n the locations at which

the heaps may differ prior to executing the instructions of e and the locations that

have been updated by e. Note that e may update HS and HT by storing the same

expression at a location l. In that case, the HS[l] = HT [l] at n and ∆n should

not include l. The reduce procedure removes the locations at which the heaps will

become equal once we arrive at location n:

reduce (SymbolicLocationsSet Xn, Node n)

for each l ∈ Xn :

if (check assertion(HS[l] = HT [l], n))

Xn = (Xn \ l);

return Xn;

In the pseudocode above, we use the assertion checker to determine if the values

stored at the two heap locations are equal at node n. The assertion checker uses the

invariants based on alias analysis and the invariants generated from the ∆i, i ∈ NC

computed at the previous iteration. The invariant generation is described below.

65

An additional check has to be performed if the edge e = (m, n) is a loop back

edge. If any address from the set ∆m\∆n is modified in the loop (a possibly different

heap location is modified on each iteration of the loop), we report an error - the

number of locations at which the heaps differ may be unbounded.

Invariant Generation: Given the computed ∆n, we generate the following in-

variant for a node n:

ϕn = ∀i ∈ Z (
∧

∀l∈∆n

i 6= l → HS[i] = HT [i])

Going back to the example from Fig. 2.14, Table 2.1 displays the delta sets generated

after each iteration.

∆0 ∆1 ∆2 ∆3 ∆4

Initialization ∅ ∅ ∅ ∅ ∅
Iteration 1 ∅ {a} {k} ∅ ∅
Iteration 2 ∅ {a, k} {a, k} ∅ ∅
Iteration 3 ∅ {a, k} {a, k} ∅ ∅

Table 2.1: The heap delta sets

Let’s consider the second iteration of the algorithm. When considering node 1,

∆1 = {a}
⋃

reduce(δ(0,1)

⋃
∆2, 1) = {a}

⋃
reduce({a, k}, 1) = {a, k}. Next,

node 2 is processed and we compute ∆2 = {k}
⋃

reduce(∆1

⋃
δ(1,2), 2) =

{k}
⋃

reduce({a, i, k}, 2) = {a, k}. Since the edge (2, 1) is a back edge, we

check that k is not updated within the loop. When node 3 is processed, ∆3 =

reduce(∆1

⋃
δ(1,3), 3) = reduce({a, k, b}, 3) = ∅. All the locations are removed by

reduce since a and b are aliases, and the source and target heaps are overwritten

with the same values at k and b. Finally, we compute ∆4 = reduce(∆3, 4) = ∅.

The computation stabilizes after three iterations.

66

The corresponding invariants can be encoded as the following predicates in CVC3:

ϕ0 = ϕ3 = ϕ4 : FORALL (i : INT) : (HS[i] = HT [i])

ϕ1 = ϕ2 : FORALL (i : INT) : ((i 6= a)&(i 6= k))

=> (HS[i] = HT [i])

Below is a more efficient version, which can also be used if the theorem prover does

not support quantification:

ϕ0 = ϕ3 = ϕ4 : Hs = Ht

ϕ1 = ϕ2 : ((HS WITH [a] := HT [a])

WITH [k] := HT [k]) = Ht

Claim 3. If the algorithm terminates without an error, for every n ∈ NC, the

generated ϕn is invariant at n.

Proof. Assume that is not the case. Let the path π from the procedure entry r

to some node n be a shortest counter-example. Then, there exists a heap location

i, such that HS[i] 6= HT [i] at n, while ϕn asserts otherwise. Meaning, there is no

symbolic location l ∈ ∆n that evaluates to i at n.

Consider the last time node n is processed. Suppose, the edge (v, w) is the

last edge on the path π that assigned to the heap at location i. Then, there is

a location l ∈ δ(v,w) that evaluates to i. The location l will be propagated to n

according to the data flow equation, unless it is reduced or the value of l is changed

by a loop (the second would lead to an early termination with an error). Let’s

show that l cannot be reduced and thus belongs to ∆n. Assume wrongly that

check assertion(HS [l] = HT [l], u) returns true for some node u along the path from

w to n. However, since HS[l] 6= HT [l] at u for the execution π, it must be that one of

the invariants associated with the nodes appearing on π from the beginning up to the

67

last occurrence of u, but not including u, does not hold. Therefore, the counterex-

ample π can be truncated starting from u, resulting in a shorter counterexample,

which is a contradiction.

To finish the proof, we just need to show that l must evaluate to i at the last

state of π. Note that l evaluates to i when we were taking the edge (v, w). The

value is unchanged since the procedure is in SSA form and l is not being assigned

in a loop.

Claim 4. The algorithm terminates.

Proof. Termination is guaranteed since the number of locations added to ∆n : n ∈

NC monotonically grows; and the number of symbolic locations is limited by the

number of program expressions.

The number of iterations is bounded by NC ∗ c, where c is the number of heap

assignments. In practice, we rarely need to iterate for that long. First, we process

the nodes in the topological order and use the most recently computed deltas, instead

of the results obtained at the previous iteration. In addition, since loops usually

have zero net effect on delta, it is uncommon that a node is processed more than

twice.

Sound Treatment of Procedure Calls: Our analysis is intraprocedural. To en-

sure soundness, we check for the following:

• If an edge from a node n to a node m is a call to procedure foo, the procedure

foo must not access the heaps at the locations in ∆n. In fact, when dealing

68

with compiler verification, either ∆n is an empty set, or simple alias analysis

are sufficient to check the condition.

• If a node r is the procedure exit node, ∆r = ∅. For the entry node t, it is

assumed that ∆t = ∅ (Recall that the ∆t is initialized with ∅ and is never up-

dated by the algorithm since the entry node does not admit any input edges).

This condition ensures the zero net effect of the procedure. Consequently, for

a call edge e, δe = ∅.

2.4.5 CoVaC Implementation

We have constructed a prototype CoVaC tool based on the presented techniques

and used it to verify the optimizations performed by LLVM compiler. LLVM [7] is

an open source compiler for C and C++. The tool has been developed in C++ and

uses LLVM data structures for program representation and parsing. Its current line

count is at approximately 7,000. We currently support a subset of C, which does not

include function pointers, variable argument function calls, and support for system

level calls such as threads and long jumps. We also assume that the types of the

variables are either unbounded integers, unbounded reals, or aggregates of the two

base data types. The overall work flow of the CoVaC tool is presented in Fig. 2.15.

First, we transform the source and target input procedures into transition graph

representation. Placing one node per each loop gives a minimally necessary set

(see Section 2.2.1). Model construction based on a minimal set accommodates a

wide set of optimizations, but it may also cause an exponential blow-up in the

size of the model since we may need to enumerate all possible paths between the

69

No

Y
es

Assertion Checker CVC

Value Numbering
Oracle

Equivalence Checking

Construct C = S ⊠ T

Check if C is a witness

S

Error Success

T

(exp1 = exp2)?
equal?

Figure 2.15: The work flow of the CoVaC tool

nodes. Specifically, if a path from one node to another in the original program has

k consecutive if statements, that would amount to 2k edges in the the transition

graph. Another choice is to pick a location before each branch as a node, which

guarantees a linear-size model. A deeper analysis (one node per loop head) should

be performed only if the lightweight phase fails to prove translation. Note, such

failure is rare - it occurs mainly when optimizations change the order of conditional

branches. Presently, the CoVaC tool supports only the lightweight phase, where

each branch is represented by a node.

After the transition graphs are constructed, CoVaC runs the compose algorithm

(from Section 2.4.3) to produce a comparison system and then generates the Witness

Verification Conditions to verify the correctness of translation (as described at

the end of Section 2.4.2). If it succeeds in building a comparison graph and the

verification conditions are valid the tool asserts Success. Otherwise, it raises an

Error, which signifies that either an error in translation is detected or we ran into

a transformation that is not currently supported.

The completeness and efficiency of the CoVaC approach heavily depends on

invariant generation algorithms. The framework relies on auxiliary invariants to

70

generate the comparison graph and to check if a generated graph is a witness of

correct translation. We follow two strategies to obtain a practical solution. First,

the assertions that are generated are goal oriented. In particular, we assume that

we only need to check for the validity of the formulas of the form exp1 = exp2.

Second, we utilize a two-phase strategy where each phase provides a certain balance

of precision and efficiency. In the first phase, we apply fast lightweight analysis.

When it is not sufficient, we resort to deep and precise analysis.

Invariant Generation via Equivalence Checking

As shown in Fig. 2.15, instead of a general purpose invariant generation algorithm,

CoVaC tool uses an oracle that checks if two input expressions are equivalent at a

particular program location. Checking two expressions for equivalence is sufficient

when confirming whether a graph is a witness of correct translation. We just need

to ensure that at every node preceding the write instruction, the values that are

being printed by the source and the target are the same. Another place where we

need auxiliary invariants is branch alignment. We optimize the general approach

and align branches by checking equivalence of the corresponding conditions instead

of checking the satisfiability of the conjunctions as described in Section 2.4.3. While

this approach is less precise, it is still powerful enough to handle most classical

compiler optimizations.

Each time we have to align the conditional assignments, we essentially match a

branch instruction (or an if-statement) on the source with the one on the target.

Assume the source edge eS
+ is taken when CS holds; and eS

− is taken when ¬ CS

holds. Similarly, there are two edges on the target: eT
+ and eT

−, which are conditioned

71

on cT . Instead of checking the four formulas for satisfiability (following the method

in Section 2.4.3), we use the fact that we are dealing with branch instructions, where

the conditions are negations of each other, and consider the following cases:

• (CS ⇔ cT) is valid - the conditions are equal; thus, the following edges are

matched: (eS
+, eT

+) and (eS
−, eT

−).

• (CS ⇔ ¬ cT) is valid - one condition is the negation of the other; the following

edges are matched: (eS
+, eT

−) and (eS
−, eT

+).

• Otherwise, we assume that the conditions are not related, so either all possible

matches have to be made:

(eS
+, eT

+), (eS
−, eT

−), (eS
+, eT

−), and (eS
−, eT

+), or we can use an ǫ-transition and

freeze the execution of the source system, obtaining the following matches:

(eS
+, ǫ); (eS

−, ǫ). The second option turns out to be better suitable in practice.

It corresponds to an optimization in which both branches of a source if -

statement are removed by an optimizer.

The only case that we have not yet considered is when the conditions overlap. For

example, CS = (x ≥ 5) and cT = (x ≥ 6). In this case, the set of the edges should

be (eS
+, eT

+); (eS
+, eT

−); (eS
−, eT

−). We would have to use the general matching rule to

determine this dependency. However, the checks for such overlaps are rarely needed

when dealing with proving translation in presence of compiler optimizations. The

only exception is when one of the branches of a source if-statement is removed due

to branch simplification. To address this optimization, we execute a pre-processing

72

phase on both input programs in which we simplify the conditionals that evaluate

to true.

In order to cover most common compiler optimizations, the algorithm has to rea-

son using abstractions of uninterpreted functions and linear arithmetic. The prob-

lem of checking equality assertions in programs abstracted in the combined theory

of linear arithmetic and uninterpreted functions, and whose conditionals are treated

as non-deterministic, is coNP-hard [29]. Nevertheless, there exist efficient methods

that are useful in determining the relation between source and target expressions.

As depicted in Fig. 2.15, we employ a value numbering algorithm first. Global

value numbering [47] assigns the same value number to provably equivalent variables

and expressions throughout the procedure. This technique is particularly effective

since we need an oracle to decide the validity of the formula exp1 = exp2. Value

numbering is both fast and capable of detecting many value matches between the

source and target expressions, especially, in the code fragments that have not been

heavily optimized. Note that even when no optimizations are applied and the input

systems are identical up to the renaming of the variables, there must be a tech-

nique in place capable of efficiently determining if the corresponding two variables

are equal. We use the algorithm by Simpson [61], which provides a good balance

between reasoning in theories of uninterpreted functions and linear arithmetic: it

can detect a vast majority of equalities of expressions whose operators are treated

as uninterpreted functions but also can easily handle simple constant folding and

algebraic identities.

When value numbering is not strong enough to determine if two expressions are

73

equivalent (due to excessive optimization), we resort to assertion checking - a static

program verification technique based on computation of a weakest-precondition [20].

We generally follow methods like the one described in [12], for development of our

assertion checker. A typical assertion checker (or a static program verifier) takes

as an input a program and some assertion and generates from these a verification

condition that implies the validity of the assertion in the program. The validity of

the verification condition is checked by a theorem prover. We use CVC3 [1], an au-

tomatic theorem prover for the Satisfiability Modulo Theories, as a back end validity

checker. Uninterpreted functions are used to represent the operators that are not

supported by CVC3. As long as the compiler does not perform any simplifications

based on the semantics of these operators, there is no loss of precision. The negative

result - the expressions are not equal, is reported if we are unable to determine if

two expressions are equivalent (for example, when the theorem prover is not strong

enough to determine the validity of a verification condition). This ensures soundness

of the method.

As a preprocessing step to the assertion checker, we simplify the input procedure

based on the results of the value numbering: the same name is used to represent the

variables with the same value number. This turns out to be crucial for both precision

and efficiency of the assertion checker. Additional loop invariants, similar to those

used in general purpose static verifiers [60], are used by the assertion checker. In

addition to using the existing invariant generation techniques, we have developed

the novel method that we use for proving equivalence of unbounded heaps. It is

described in Section 2.4.4.

74

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140

R
un

ni
ng

 ti
m

e
(s

ec
)

Procedure size (lines of LLVM bytecode)

Figure 2.16: Dependency between the running time and the size of the procedure

2.4.6 Experimental Results

We have constructed a prototype CoVaC tool based on the presented techniques

and used it to verify the optimizations performed by LLVM compiler. The tool

has been tested on a set of procedures with the total line count of 2K of LLVM

bytecode, compiled from the selected LLVM and CoVaC feature tests and third party

implementation of the classical algorithms like binary search, in-place heapsort,

mergesort, Qsort, strcmp, primality testing, shortest paths, etc. All the presented

benchmarks contain dynamically allocated data structures; thus, they require the

heap equivalence analysis presented in Section 2.4.4. On average, when validating

highly optimized code (1/2 optimizations per line), CoVaC spends 0.02 seconds

per every line of code. Fig. 2.16 shows the dependency of CoVaC tool running

time on the procedure size. The size of the ‘cross’ is proportional to the number

75

of optimizations performed. The most time is spent on assertion checking, which

is dispatched once per every 8 lines when it is difficult to find a strong invariant

with value numbering alone. This explains why the dependency of running time on

the procedure size and the number of optimizations is not always consistent. We

believe that the prototype’s performance provides a strong evidence that a practical

validator can be constructed (note that unlike a compiler, the tool is used few times

per program’s lifetime).

2.5 Related Work

We have discussed the different approaches to compiler validation in Section 2.1 and

refer the reader to [18] for a survey of compiler verification literature. This section

is devoted to translation validation, which is the idea behind the two presented

frameworks: ITV and CoVaC.

Translation validation approach was first introduced in [53] for verification of

translations from SIGNAL to C. Taking into account the difficulty of proving the

correctness of a particular translator or compiler, the authors proposed to tackle a

different problem. They have developed an automatic technique for verifying that

a particular translation (or a compiler run) produces the correct target code. The

approach is based on establishing an abstraction mapping (or refinement mapping)

and an inductive proof of it’s correctness. The described method is particularly

suitable for programs with a restricted control flow structure. In particular, the

C-code resulting from the SIGNAL to C translation consists of a single main loop

whose body is a loop free program.

76

In [51], the idea of translation validation was successfully applied to verification

of optimizing transformations performed by the GNU C optimizing compiler. The

verifier has been tested on very large code bases with the false alarm rate of about

10%. The method is based on inferring and then proving a simulation relation

between two programs S and T (the source and the target). The proposed algo-

rithm first analyzes the source and target programs and generates a set of symbolic

constraints. The major component of this phase is a branch navigation module,

which uses simple heuristics and compiler annotations to match structure of the

control flow graphs of the source and the target programs. The generated sym-

bolic constraints are solved during the second phase of the algorithm. The set of

the transformations it can handle is limited to intraprocedural structure preserving

optimizations.

TVOC [67, 68, 39, 69, 21] is a tool for validation of structure preserving opti-

mizations and loop reordering optimizations performed by the ORC compiler [2].

As described in Section 2.3, rule Validate is used for verification of structure pre-

serving optimizations. It is based on the computational induction approach [24],

first introduced for establishing properties of a single system. The TVOC tool

relies on the compiler annotations to provide the control abstraction and an under-

approximation of the data abstraction. Such annotations are often generated by the

compilers to facilitate debugging. However, they are not guaranteed, especially at

the high optimization levels and when the compiler under consideration is in the

development stage. In order to refine the data abstraction, the invariants have to

be generated ahead of time, which requires them to be as general as possible. The

77

construction of the data abstraction involves the maximal fixpoint computation that

is expensive since, at each iteration, it submits a query to the validity checker. Rules

for loop reordering transformations can be applied in addition to the Validate rule

to verify transformations such as loop interchange, fusion, distribution, and tiling.

The framework has to be extended to incorporate language features such as dynamic

memory allocation and interprocedural optimizations.

While the previously described validators handle only transformations over the

same intermediate languages, [59] relates the C source code with the generated Pow-

erPC assembly code. The validator uses symbolic transfer functions to represent

the behavior of code fragments. It also relates the notions of translation validation

and invariant translation, where a concrete semantic interpretation of the symbolic

transfer functions corresponds to translation validation while an abstract semantic

interpretation corresponds to invariant translation. The approach leads to creation

of a unifying framework for the certification of compilation and of compiled pro-

grams, which has been applied to verification of non-optimizing transformations of

the GCC compiler [6]. Like TVOC, the framework depends on the compiler debug

information to relate the source and target variables and program locations.

To facilitate the checking, both [68] and [59] generate invariants over the variables

of the source system based on the existing program analysis (like alias analysis) and

specially developed techniques [22].

The described approaches are targeted at a wide set of source code transforma-

tions. Moreover, translation validation has been applied to creation of verification

78

procedures targeted at specific optimizations. The advantage of the specialized val-

idators is that they are complete (raise no false alarms) and more efficient. [40]

describes a complete method for translation validation of register allocation and

spilling. The algorithm relies on data-flow analysis, which computes and relates the

webs of def-use chains. The tool can also produce detailed explanations of errors.

While several of the papers mentioned above come with on paper proofs, none has

been mechanically verified. A formally verified translation validator of instruction

scheduling optimizations is presented in [62]. Further, [64] presents a mechanically

checked proof of correctness of a validation algorithm for a lazy code motion. Both

proofs were done using the Coq proof assistant [5] and the validators were integrated

in the CompCert [4] formally verified compiler.

2.6 Conclusions

We presented two frameworks for compiler validation - ITV and CoVaC.

ITV is a novel framework for automatic translation validation of reactive pro-

grams in presence of interprocedural optimizations. In order to prove the context

sensitive constant copy propagation, the framework relies on a special algorithm for

invariant generation. ITV is effective when one has access to the mappings between

the variables and locations of the source and target programs.

CoVaC is a framework for checking program equivalence based on construction

of a cross-product system, which reduces the program equivalence problem to ver-

ification of a single program and allows for utilization of the existing off-the-shelf

program analyses and tools. In particular, we have shown how the CoVaC framework

79

can be applied to verification of non-cooperative compilers and used it on practice to

validate a wide range of optimizations performed by an aggressive modern compiler,

LLVM [7]. In addition, we presented a novel invariant generation algorithm useful

for proving equivalence of two unbounded memory regions, which is necessary when

the input programs contain dynamically allocated data structures. We showed how

this and the other existing program analysis techniques can be plugged into the

CoVaC framework.

Since we apply the translation validation approach to verification of infinite state

systems, there is no hope to have a complete method for proving correct transla-

tion in general. The program equivalence problem is undecidable and weaknesses

in the analysis lead to false alarms. The tools may report and error even in case

the translation is correct. However, because the focus is only on compiler optimiza-

tions, the number of false alarms can be drastically minimized or even eliminated.

Intuitively, since we are aware of the analysis used by the optimizing compilers, we

are optimistic in creation of a strong enough set of auxiliary invariants.

Many interesting questions remain. For example, CoVaC has yet to be extended

to support interprocedural optimizations. We are also interested in investigating

application of the CoVaC framework to development of a self-certifying compiler and

validation of language-based security properties, specifically, checking conformance

with information flow policies [13]. Finally, since we are ultimately interested in

correcting the bugs, it is essential to explore the ways in which the validator failures

can be analyzed and used to pinpoint compilation errors.

80

Chapter 3

Verifying multithreaded C

programs with pancam

3.1 Introduction

The compiler verification methods proposed in Chapter 2 assume that the code of

the source program satisfies the desired properties. However, even well understood

protocols such as Peterson’s protocol for mutual exclusion, whose algorithmic de-

scription takes only half a page, have published implementations that are erroneous.

Verification of implementation code, as opposed to checking abstract algorithmic de-

scriptions is hard. This is especially the case for programs written in the C language,

which has several constructs (such as function pointers, pointer arithmetic and ar-

bitrary type casting) that are difficult to model faithfully. And it is an unfortunate

fact of life that the programs most in need of verification are those that use such

constructs the most, viz., C programs for embedded systems. Further, the ITV and

81

CoVaC frameworks mainly focus on the optimization pass of the compiler. Conse-

quently, the compiler verification methods only cover a small part on the path from

a design to an executable. The assumption is that the rest of the translation is

verified elsewhere.

Instead of proving the properties of a model and then ensuring that they are pre-

served by implementation and compilation, we propose to model check the programs

directly at the level of optimized bytecode. In this chapter, we present pancam –

a model checker for optimized LLVM [7] bytecode. There are several advantages in

analyzing the bytecode as opposed to the executable. A native executable can be

difficult to decode. For example, when variable-width instructions are allowed (like

in Intel x86), the meaning of a program changes depending upon where decoding

begins. More importantly, even the decoded binaries lack the type information,

which is essential for program analysis.

pancam can be thought of as a specialized interpreter. It first compiles a multi-

threaded C program into optimized LLVM bytecode format. The framework relies

on Spin [8], an existing explicit state model checker, to orchestrate the program’s

state space search and utilizes the bytecode interpreter to compute the program

transitions and states. The advantage of using Spin is that we get the functionality

of the robust tool that has been in development for almost 30 years for free. Our

interpreter is compatible with most of Spin’s search options and optimization flags,

such as bitstate hashing and multi-core checking. pancam provides support for

dynamic memory allocation (the malloc and free family of functions) and for the

pthread library, which provides primitives often used by multi-threaded C programs.

82

When model checking the C implementations is the goal, scalability is the main

concern. Since the state space of even a small C program is typically much larger

than that of most algorithmic models, we consider various approaches to combat

the space explosion problem. In particular, we have developed a partial order reduc-

tion method that reduces the number of context switches using dynamic knowledge

computed on-the-fly, while being sound for both safety and liveness properties. We

also discuss how context-bounding [48] can easily be integrated within our tool, with

only a small modification to the interpreter. pancam users can constrain the state

space even further by defining the data abstraction functions.

The rest of this chapter is organized as following. We give an overview of the Spin

model checker and its support for embedded C code in Section 3.2. Next, Section 3.3

explains how Spin and pancam are integrated. pancam supports abstraction and

context-bounded checking as described in Section 3.4. Section 3.5 is devoted to the

superstep partial order reduction technique. We present the experimental results in

Section 3.6 and review the related work in Section 3.7.

3.2 Background

3.2.1 Spin

Spin [8, 34] is an open-source explicit state model checker for distributed software

systems. It has been in development for almost 30 years and has been recently

recognized by the Association for Computing Machinery with the prestigious System

Software Award for 2001. Spin is targeted at verification of high level models of

83

concurrent systems. It uses specialized PROMELA language for model capture

and fully supports Linear Temporal Logic (LTL) [54] as its property specification

language.

The model checker is based on systematically exploring the state space of a

system using depth-first search (DFS) algorithm, where branching corresponds to

non-deterministic choices due to parallelism or user input. Initially, Spin builds

automata corresponding to each of the input modules that are part of the distributed

system. The main attribute of the approach is that the model checker does not have

to pre-compute the automaton for the complete system. The search is performed

on-the-fly and the new states are computed as the paths leading to them are being

explored. The on-the-fly approach gives Spin its scalability.

In order to check if a system satisfies a safety property φ, Spin checks that

there are no reachable states satisfying ¬φ, such states would violate the property.

Model checking of liveness properties is more complex. In order to check if a system

satisfies a liveness property, one has to find an infinite run (ω-run) that contains

infinitely many accepting states. In finite state systems, ω-run corresponds to a lasso

– a run that leads into a cycle. If the cycle contains at least one of the accepting

states, the run is ω-accepting. Spin detects the ω-accepting runs using nested DFS

algorithm [37], which, first, searches for an accepting state and after such state is

found, performs another DFS to find out if this accepting state is reachable from

itself.

The DFS algorithm utilizes the following two data structures: the stack, which

corresponds to the system path that is being explored, and the visited state space,

84

which contains all the states visited so far. = The stack is used for DFS backtracking.

Note that the number of states stored on the stack is usually much smaller then the

number of the visited states. Furthermore, the main operation performed by the

search is determining if the state has been visited before or not. The performance of

the model checker greatly depends on how fast this can be done. Not surprisingly, the

visited states are stored in a hash table using a technique called bitstate hashing [33].

Abstraction is a well known way to combat the state space explosion problem.

The abstraction in Spin [36] exploits the separation of the states needed for back-

tracking (the stack) and the visited states (the hash table). It is essential that we

store the full (or concrete) state on the stack. The full state is required for computa-

tion of the alternative paths outgoing from that state upon backtracking. However,

an abstract state can be stored in the hash table. When abstraction is applied, the

search is not going to explore a state that is equivalent, under the abstraction, to a

previously visited state. In Spin, the objects that are stored on the stack are called

tracked and the object descriptors stored in the visited set are called matched.

Spin also uses internal static partial order reduction technique [31], which re-

duces the state space while preserving the soundness and completeness of the model

checker. The technique statically determines if some of the concurrently executed

transitions are commutative – result in the same state when executed in different

orders. When the commutative transitions are found, one can prune the DFS tree by

exploring only one execution order. Recently, due to the interest in multi-core com-

puting, the algorithms for multi-core model checking have been added to Spin [38].

Like most classical model checkers, Spin targets verification of a system’s model

85

rather then the implementation. In particular, the model should be described using

the PROMELA language. An advantage of checking the algorithmic descriptions is

that they usually represent good abstractions of the system and, thus, are tractable.

However, there are disadvantages. As we pointed out in Chapter 1, the correctness

of the executable is what really matters. In addition, the classical model checking

approach is labor intensive. First, a manual model of the complete system is built.

Next, whenever there is a change in the implementation, it has to be reflected in

the model.

3.2.2 Model Driven Verification

Our work extends previous work on model-driven verification, in which model check-

ing was applied to the verification of sequential C programs [36],[26]. Model-driven

verification is a form of software model checking for C programs that works by

executing C code embedded in a PROMELA model. The Spin model checker [8]

translates a PROMELA model (along with an LTL property to be checked) into

a C program pan.c. This program is a model checker that checks the property

in question. In a sense, Spin is really a model checker generator. Because Spin

compiles models into C code, recent versions allow fragments of C programs to be

embedded within PROMELA models. Each such fragment is treated as a determin-

istic atomic transition. This allows Spin to be used to check C programs against

LTL specifications using most of Spin’s search options, including bitstate hashing,

and multi-core execution. Two key options not supported for embedded code by

Spin are breadth-first search, which would require too much additional overhead,

86

and partial-order reduction, which is difficult for C programs because computing a

nontrivial independency relation is hard.

A significant limitation of model-driven verification is that each fragment of

embedded C code is executed as an atomic transition by Spin. This in turn means

that it is hard to

• check properties such as assertions and invariants at control points within the

embedded C code

• interrupt the control flow within a C function to simulate, say, a device inter-

rupt or an asynchronous reset

• explore interleavings of more than one fragment of C code, which is needed in

order to check multi-threaded C programs.

There exist ad hoc solutions to the first two issues [26]. However, they do not

solve the core problem.

3.3 Model Checking C programs with pancam

Our approach to checking a concurrent C program with Spin is to first translate

the program into bytecode for the Low Level Virtual Machine (LLVM) compiler

infrastructure [42]. This bytecode is then checked by executing it within the context

of an explicit-state model checker by using a virtual machine interpreter. In a

sense, this approach is similar to Java Pathfinder (JPF) [65] - an explicit state

model checker for Java bytecode. However, unlike JPF, we do not integrate the

87

model checker with the bytecode interpreter. Instead, our virtual machine executes

bytecode as directed by Spin.

pancamSpin

(pan.c) new state

pan step(thread id, granularity, state)

Figure 3.1: Interaction of Spin and pancam

Fig. 3.1 describes the high level idea behind the pancam framework (The ac-

tual implementation is described in the next two sections). The interpreter provides

pan step(state, thread id, granularity) method that is called by Spin to exe-

cute the next transition of thread thread id from the given state. The granularity of

the transition can be customized. pancam can execute a single bytecode instruction,

a basic block, run until a global variable is accessed, or rely on internal partial order

reduction technique to determine the stopping point. In a sense, therefore, Spin

orchestrates the search by deciding which thread to execute next, by storing visited

states in its hash table, and by restoring a previous state during a backtracking step.

This division of labor allows us to freely benefit from Spin’s unique abilities, notably

its scalability, search heuristics, and, lately, the capability to deploy it on multi-core

CPUs [35]. The C language does not have any built-in primitives for concurrency,

so our framework provides support for the constructs from the standard pthreads

library such as mutexes and condition variables. Even though the dynamic thread

creation is not yet fully implemented in pancam, the extension can be organically

incorporated into the framework. The only limitation would be on the total number

of threads, which should not exceed 255 (the bound imposed by Spin).

88

#include <pthread.h>

struct pa desc {
volatile int *f0, *f1 ;

int last ;

} ;

...

volatile int pa f0, pa f1, pa last ;

...

void pa desc lock(struct

pa desc *d) {
for (*d->f0=1, pa last=d->last;

*d->f1==1 && pa last==d->last;

) ;

}
...

int count = 0 ;

void threadx critical(void) {
count++ ;

... // critical section

count-- ;

}

void * thread1 main(void *args){
struct pa desc d ;

pa desc init(&d, 1) ;

for (;;) {
pa desc lock(&d) ;

threadx critical() ;

pa desc unlock(&d) ;

}
return NULL ; /*NOT REACHED*/

}

/* pancam helpers */

void init(void) {
pa f0 = pa f1 = pa last = 0 ;

}
Bool check exclusion(void) {
return (count <= 1) ;

}

Figure 3.2: Excerpt of Peterson’s Algorithm from the Wikipedia

Fig. 3.2 shows the C implementation of the Peterson’s mutual exclusion algo-

rithm that appears in the Wikipedia entry [3]. In the original implementation, the

two highlighted occurrences of volatile were missing, causing a potential race con-

dition. Let us illustrate how our framework works on this example. To simplify the

statement of the mutual exclusion property, we have added an additional variable

count as shown. The property to be checked is mutual exclusion, which is defined

by the boolean valued function check exclusion.

Our tool first compiles this program into LLVM bytecode, using the llvm-gcc

compiler. LLVM bytecode is like typed assembly language; a sample appears in

89

define void @pa desc lock(%struct.pa desc* %d) {
entry:

%tmp1 = getelementptr %struct.pa desc* %d, i32 0, i32 0

%tmp2 = load i32** %tmp1

volatile store i32 1, i32* %tmp2

%tmp4 = getelementptr %struct.pa desc* %d, i32 0, i32 2

%tmp5 = volatile load i32* %tmp4

volatile store i32 %tmp5, i32* @pa last

%tmp8 = getelementptr %struct.pa desc* %d, i32 0, i32 1

%tmp9 = load i32** %tmp8

br label %bb6

bb6:

%tmp10 = volatile load i32* %tmp9

%tmp11 = icmp eq i32 %tmp10, 1

br i1 %tmp11, label %cond next, label %return

cond next:

%tmp15 = volatile load i32* %tmp4

%tmp16 = volatile load i32* @pa last

%tmp17 = icmp eq i32 %tmp15, %tmp16

br i1 %tmp17, label %bb6, label %return

return:

ret void

}

Figure 3.3: LLVM bytecode for function pa desc lock

Fig. 3.3, which shows the bytecode corresponding to the pa desc lock function

shown in Fig. 3.2.

To check the C code for Peterson’s algorithm with our tool, we use a PROMELA

model to make appropriate calls to schedule the threads via our virtual machine.

Fig. 3.4 shows a Spin model for checking the program in Fig. 3.2. The c decl

primitive is used to declare external C types and data objects that are used in the

embedded C code. For simplicity, we assume the declarations needed by our model

90

are in the header file pancam peterson.h. Next, the c track declarations are track-

ing statements, which are discussed below. The PROMELA process init defines

the initialization steps for the Spin model: as shown, they consist of initializing

the interpreter (by calling pan setup()), registering an invariant (defined by the C

function check exclusion) with the interpreter, performing one-time initialization

of the C program (pan run function()), creating and starting the threads, and, fi-

nally, starting one PROMELA process for each thread. As shown, each PROMELA

process then consists of repeatedly executing a single step of the associated thread

(by calling pan step) provided that the thread is enabled. Note that we only pass

the thread id) and the granularity explicitly.

Passing the state vector as a parameter would be inefficient. A single contiguous

region of memory starting at address csbuf and occupying CS SIZE bytes is used for

storing the program state. The buffer has to be visible to both Spin and pancam.

pancam reads the state vector to execute the transition and updates it to reflect

the new state. During its depth first search1, whenever Spin reaches a state with

no new successors, it backtracks to the most recent state that has not been fully

explored. For PROMELA variables, restoration of earlier values when backtracking

is automatic, since they are stored in the state vector maintained by Spin. However,

the model checker also needs explicit knowledge of the region of memory where the

program state buffer is stored, so that it can copy and restore this memory during its

backtracking search. This knowledge is provided through the c track declaration

as shown in the figure.

1Spin currently supports execution of embedded C code only when using depth first search
mode.

91

c decl {
\#include "pancam peterson.h"

}
c track "csbuf" "CS SIZE" "Matched";

init() {
c code {

pan setup() ;

pan register invariant("check exclusion") ;

pan run function("init") ;

pan start thread(0, "thread0 main", NULL) ;

pan start thread(1, "thread1 main", NULL) ;

} ;

run thread0() ;

run thread1()

}
proctype thread0() {
do

:: c expr{pan enabled(0, garanul)} -> c code(pan step(0));

od

}
proctype thread1() {
do

:: c expr{pan enabled(1, garanul)} -> c code(pan step(1));

od

}

Figure 3.4: Spin driver for executing pancam on Peterson’s Algorithm

92

In using our tool to verify the Wikipedia C implementation of Peterson’s pro-

tocol, we discovered a bug in the implementation. The bug is interesting because

it manifests itself when the code is compiled with optimization enabled. The prob-

lem arose from the fact that certain global variables were not originally marked

as volatile (as indicated by the shaded keywords in Fig. 3.2). As a result, the

optimized bytecode reused stale values read earlier. For example, in the procedure

pa desc lock from Fig. 3.3, all the instructions that occur after the second store

were removed, leading to scenarios where mutual exclusion was violated. We have

since fixed the Wikipedia entry.

3.4 Addressing State Space Explosion

Not surprisingly, the biggest challenge in using a tool such as pancam is the problem

of state space explosion. Even though our main interest is in checking small em-

bedded C programs, the typical state vectors we encounter are much larger (of the

order of hundreds or even thousands of bytes) as compared to typical PROMELA

models (whose state vectors are smaller by one or two orders of magnitude). In

addition, because a single line of C may translate into many steps of bytecode, a

naive exploration of all interleavings of a set of threads would quickly make even the

smallest of problems intractable. To address these issues, pancam uses the following

three techniques.

• It allows users to provide data abstraction functions.

• pancam provides the ability for the user to enforce context-switch bounding

93

(see below).

• The framework employs an algorithm that performs an on-the-fly partial order

reduction to decrease the number of context switches without losing soundness

of checking.

We describe the first two of these techniques in the rest of this section; our

reduction method is described in Section 3.5.

3.4.1 Abstraction

en
ab

le
d

Concrete State (csbuf) Abstract State
(asbuf)

program stackFREEheapglobals

u
se

r
d
efi

n
ed

sy
st

em
Figure 3.5: How state is maintained by pancam

Fig. 3.5 shows the layout of the program state as it is stored by pancam. Even

small finite state C programs require a substantial concrete state buffer. The ab-

straction technique described in this section targets both the number of the states

that have to be explored as well as the size of each state.

Along with updating the concrete state of the program (csbuf), pancam also

provides an abstract state (asbuf). An abstract state consists of a user-defined

94

region and additional system information such as the program counter and the fields

that specify which threads are currently blocked. To compute the user-defined part,

pancam interprets function compute abst() that is supplied by the user of the tool

and is application specific. The compute abst() function updates a given memory

region based on the values of the global variables of the program. Our virtual

machine ensures that this function is interpreted after every Spin transition.

The ability of pancam to support abstractions is derived from the distinction

between tracked and matched objects in Spin (see Section 3.2.1). As discussed, a

tracked data object is stored on the stack used by Spin’s depth first search (DFS),

so that an earlier state of that object can be restored on each backtracking step

during the DFS. In almost all cases, any data that changes during model checking

should be tracked. Therefore, it is required that csbuf is stored on the stack. A

matched object, on the other hand, is one that is a part of the state descriptor that

Spin uses to determine if a state has been seen before. If bitstate hashing is used

for keeping track of the visited states, the descriptor is stored in the hash table. By

declaring csbuf to be tracked but not matched, we can therefore exclude it from

the state descriptor. Then, to ensure that Spin searches the abstract state space,

the abstract state asbuf is declared to be matched. This entails the direct space

reduction since the set of visited states consists of the abstract states rather then

the concrete states. Additionally, the abstraction leads to reduction in the number

of explored states since the search is not going to explore computations outgoing

from a state that is equivalent, under the abstraction, to a previously visited state.

95

c decl {
int last proc = -1 ;

int nswitch = 0 ;

int MAX SWITCH = -1 ;

Bool pan enabled cb(int p) {
int i ;

if (!pan enabled(p)) /* thread p is disabled */

return FALSE ;

if (last proc == p) /* no context switch */

return TRUE ;

/* Check if bound not specified, or not reached */

if ((MAX SWITCH < 0) || (nswitch < MAX SWITCH))

return TRUE ;

/* We have exhausted the context switch bound, and this

** thread is not the last one that was executed. Allow

** it only if the other thread is disabled.

*/

/* Check if any other thread is enabled */

for (i=0 ; i<ThreadCount ; i++)

if ((i != p) && pan enabled(i))

return FALSE ;

/* all other threads are disabled, so don’t preempt */

return TRUE ;

}

c track "&nswitch" "sizeof(int)" "UnMatched";

c track "&last proc" "sizeof(int)" "UnMatched" ;

Figure 3.6: Code for implementing context bounding with pancam

3.4.2 Context-Bounded Checking

The idea in context-bounded model checking [56, 48, 50] is to avoid state space

explosion in multi-threaded programs by enforcing an upper bound on the number

96

of allowed preemptive context switches. A context switch from process p to process q

is called preemptive if process p is enabled (and could therefore continue execution if

the context switch did not occur). Experience with context-bounded model checking

suggests that, in most cases, errors in multi-threaded software typically have shortest

counterexample traces that require only a small number of context switches [48].

Thus exhaustive exploration of runs with a small budget of allowed context switches

has a good chance of finding errors.

To extend our tool with support for context-bounded search, we change the top-

level Spin model that orchestrates the run by replacing calls to pan enabled(p)

(which check if thread p is enabled) by calls to the function pan enabled cb(p)

(which additionally checks the condition for context-bounding). Fig. 3.6 shows the

C code for the function pan enabled cb. As shown, we add two additional integers

last proc and nswitch to the state space (but note that these variables are only

tracked, and not matched). It is not hard to show that by using it to replace

the original pan enabled function, (and by appropriately updating last proc and

nswitch whenever a thread is executed) we achieve the desired effect of limiting the

number of preemptive context switches to the user-provided bound of MAX SWITCH.

3.5 On-the-fly Dynamic Partial Order Reduction

As described in Section 3.3, our tool uses a SPIN model to orchestrate the state

space search by choosing, at each step, a thread to execute, and executing its next

transition by invoking the virtual machine. An exhaustive search along these lines

would require exploring all possible interleavings of the threads in the program,

97

which is intractable for all but the smallest of programs. A common technique used

to deal with the problem is partial order reduction [52, 15]. Intuitively, partial order

reduction works by reducing the number of context switches, exploiting the fact that

transitions in different threads are often independent (in the sense that the order in

which they occur does not affect visible program behavior).

Most partial order methods described in the literature are static in the sense that

they determine independence of transitions by analyzing program text. Such analy-

ses are, however, not effective with C programs, and typically allow only very simple

and conservative independence relations to be computed. For C programs, therefore,

it is more instructive to look at dynamic partial order reduction methods[23],[27], in

which independence relationships are computed dynamically, during a model check-

ing run. For example, one of the simplest approaches to dynamic partial order

reduction is to only allow a context switch after an update or an access to a global

memory location.

In the context of our tool, however, there is one additional complication caused

by the fact that the model checking engine (SPIN) treats the model as having a

single transition (denoted by the function pan step). In particular, this means that

support for partial order reduction therefore requires either exposing additional

pancam state (which would require modification of SPIN), or for the reduction

to be implemented entirely within pancam. We adopt the latter strategy. pancam

performs partial order reduction on the state space by allowing a thread i to execute

a sequence of more than one instruction as part of a single SPIN transition from

a state s. We refer to such a sequence of instructions as a “superstep”. Since the

98

model checker only sees the first and last states of a superstep, the intermediate

states are hidden from the model checker, which in turn reduces the number of

interleavings to be explored (and therefore the number of states and transitions).

Of course, as with traditional partial order reduction, there are certain conditions

that must be satisfied by such supersteps in order to preserve soundness of model

checking. Section 3.5.1 and Section 3.5.2 present the formal foundations of the

superstep reduction and describe a set of conditions under which we can preserve

the soundness of next-time free LTL properties. In Section 3.5.4 and Section 3.5.3,

we show how it can be applied to checking of multithreaded programs and to pancam

in particular.

3.5.1 Preliminaries

A state transition system M is a tuple 〈 S, T, S0, L, AP 〉. Where S is a finite set

of states; S0 ⊆ S is the set of initial states; T is a set of transitions such that for

each α ∈ T, α ⊆ S × S; L : S → 2AP is a function that labels each state with

the set of atomic propositions true in that state.

A transition α ∈ T is enabled in a state s if there is a state s′ such that α(s, s′)

holds. We assume that transitions are deterministic and use the notation s′ = α(s)

instead of α(s, s′). We will use enabled(s) to denote the set of transitions enabled

at s.

A path from a state s0 in a state transition system is a finite or infinite sequence

of states and their labeled transitions σ = s0
t0→ s1

t1→ ... such that it satisfies the

following requirement: for every i, αi(si, si+1) holds. Note that a prefix of a path is

99

also a path. We use E(M, s) to denote the set of all maximal paths of M starting

at s. Given a finite path λ, we use last(λ) to denote the last state of σ.

A string is a sequence of transitions from T . Let T ∗ be the set of all the finite

and infinite strings over T . Let Λ be a string and i be a natural number. We use

Λ[i] to refer to the ith transition of the string. If Λ is finite, we use |Λ| to denote

its size. Since we assume that the transitions are deterministic, a string and a state

pair represent a path.

Let s be a state and Λ be a finite string. Define Λ(s) = ⊥ if ¬enM (s, Λ), where

⊥ /∈ S. Otherwise, we use s′ = Λ(s) to denote that s′ is the last state on the finite

path that can be obtained by applying the transitions of Λ to s. We use Π(s, Λ) to

denote such path. For a finite path λ, we use tr(λ) to denote a string Λ such that

λ = Π(s, Λ).

Definition 7. For a transition system M = 〈 S, T, S0, L, AP 〉 and a non-empty

string Λ ∈ T ∗, Λ is enabled in M at s ∈ S, denoted by enM(s, Λ), if and only if

there exists a path σ in M starting at s: tr(σ) = Λ.

Definition 8. Let Λ be a finite string and s be a system state, then we define a

superstep transition, denoted by s ⊲ Λ, to be a transition {(s, s′)} ⊆ S × S such

that s′ = Λ(s). In other words, s⊲Λ summarizes the execution of the path Π(s, Λ).

Note that when |Λ| = 1, s ⊲ Λ = Λ[1].

Let X and Y be two finite strings then X \ Y denotes a string obtained from X by

removing from it all the transitions that occur in Y , which is defined recursively. Let

ǫ denote the empty string; then X \ ǫ ≡ X. For a transition a, (X \a = V ◦W) ≡

((X = V ◦a◦W ∧ a /∈ V) ∨ (X = V ◦W ∧ a /∈ X)) and X \(a◦W) ≡ (X \a)\W .

100

An independence relation I ⊆ T × T is a symmetric, antireflexive relation,

satisfying the following two conditions for each state s ∈ S and each (α, β) ∈ I

such that α, β ∈ enabled(s).

1. α ∈ enabled(β(s)) (enabledness condition).

2. α(β(s)) = β(α(s)) (commutativity condition).

The dependency relation D is the complement of I, namely D = (T × T) \ I.

Given an atomic proposition p in AP and a state s in S, we use p(s) to denote

the value of p in the state s. A transition α is visible at a state s with respect to an

atomic proposition p, if for a state s′ : s′ = α(s), p(s) 6= p(s′) - a transition is visible

when its execution changes the value of the proposition. A transition is invisible

if it is not visible. Denote by vis(λ), where λ is either finite or infinite path, the

projection of λ onto the transitions visible with respect to any of the propositions

in AP , at the corresponding states of the path.

The concept of stuttering refers to a sequence of identically labeled states along

a path. Two infinite (finite) paths σ = s0
α0→ s1

α1→ ... and ρ = r0
β0→ r1

β1→ ... are

stuttering equivalent , denoted σ ∼st ρ, if there are two infinite (finite) sequences of

positive integers 0 = i0 < i1 < i2 < ... and 0 = j0 < j1 < j2 < ... such that for every

k ≥ 0,

L(sik) = L(sik+1) = ... = L(sik+1−1) = L(rjk
) = L(rjk+1) = L(rjk+1−1).

Intuitively, two paths are stuttering equivalent when they can be partitioned into

infinitely many blocks, such that all the states in the corresponding blocks from the

two paths are identically labeled.

101

Let M be the system 〈 S, T, S0, L, AP 〉 and let M ′ be the system

〈 S ′, T ′, S0, L, AP 〉. Then we say that M and M ′ are stuttering equivalent

if and only if

• M and M ′ have the same set of initial states.

• For each path σ of M that starts from an initial state s in S0, there exists a

path σ′ of M ′ starting from the same initial state s such that σ ∼st σ′.

• For each path σ′ of M ′ that starts from an initial state s in S0, there exists a

path σ of M starting from the same initial state s such that σ′ ∼st σ.

Let M and M ′ be two stuttering equivalent systems. It can be shown [15] that for

any LTL formula Af without the next time operator, and every initial state s ∈ S0,

s |= Af in M if and only if s |= Af in M ′.

3.5.2 Superstep Partial Order Reduction

A partial order reduction (POR) algorithm constructs a reduced state graph, referred

to as M ′, stuttering equivalent to the given graph M . The SPOR is similar to the

classical POR presented in [15]. In the classical approach, one starts with the input

graph M and iteratively applies a reduction procedure. At each step, a state s of

the graph is considered and a subset of transitions enabled at s is selected; this

subset is referred to as the ample set. The rest of the transitions outgoing from s

can be removed from the graph without sacrificing the soundness and completeness

of the LTL model checking. Unlike the classical POR, which considerers a subset of

enabled transitions at a state s, SPOR selects a subset of finite paths enabled at s;

102

such subset is called a cap set. Further, each path from a cap set is collapsed into

a single superstep transition.

Like the classical POR, SPOR can be applied on-the-fly, when the construction

of the reduced system and model checking are combined. This approach is more

efficient when applied to implicit state model checkers since the transitions and

states of the input transition graph are constructed on demand. On-the-fly model

checking makes it possible to identify a violation before completing the construction

of the state graph. In addition, SPOR does not assume any particular order in

which the states are visited. However, if the goal is to apply the reduction to

the complete graph, it is more efficient if no node is visited before its dominator

(assuming only one initial state), which ensures that we never explore the states

that will get removed in the future. In particular, the reduction can be combined

with both BFS and DFS model checking algorithms; however as we will show later,

the overhead of using DFS is greater.

Given a state s of transition graph M , let Cap(s) be a subset of finite strings

enabled at s. The reduction procedure on state s removes all the transitions

outgoing from s. Next, it adds the following new transitions to the graph:

{ s ⊲ Λ : Λ ∈ Cap(s) }. The reduction does not increase the number of states;

indeed, it potentially decreases the number of reachable states. Next, we present the

set of conditions that the set Cap(s) should satisfy in order to ensure that stuttering

equivalence is preserved.

Let X ≪ Y denote that X is a (noncontiguous) subsequence of Y ; formally

X ≪ Y ≡ (∃Z : Y \ Z = X).

103

Definition 9. Given finite non-empty strings Θ and Λ such that Λ ≪ Θ, Λ is a

core of Θ at a state s if and only if

1. ∀ t, t′ : t ∈ (Θ \ Λ), t′ ∈ Λ : I(t, t′)

2. vis(Π(s, Λ)) = vis(Π(s, Θ))

3. |vis(Π(s, Λ))| ≤ 1

Note that Θ is a core of Θ at any state s ∈ S.

Lemma 3. If Λ is a core of Θ at s, then

1. Θ(s) = (Λ ◦ (Θ \ Λ))(s)

2. Π(s, Θ) ∼st Π(s, Λ) ∼st Π(s, Λ ◦ (Θ \ Λ))

Please, refer to B for the proof of the lemma.

Definition 10. Let s be a state of a transition system M and Cap(s) be a subset

of strings enabled at s. Then Cap(s) covers s if and only if ∀σ ∈ E(M, s) :

∃ Θ, Λ : Θ is a finite non-empty prefix of tr(σ)

∧ Λ ∈ Cap(s)

∧ Λ is a core of Θ at s.

Intuitively, Cap(s) covers s if for every non-empty outgoing prefix of transitions Θ,

there exists another prefix of transitions Λ such that exploring Λ would cover the

sequence of states undistinguishable from the one that would be seen if one is to

take Θ. Thus, Θ can be pruned away. First, let’s show that all the states that get

explored after following the path Π(s, Θ) will also get explored by following Π(s, Λ).

104

(b)

rr r’

s

(a)

r’

s

ΛΘ

Θ \ Λ

L(r)

L(r)

L(s)

L(s)

Figure 3.7: Correctness of SPOR

According to Lemma 3.1, since Λ and Θ only differ in independent transitions,

Λ◦Θ\Λ is enabled at s and will result in the same state as Θ. Refer to Fig. 3.7(a) for

the illustration, where the common state is labeled by r. Second, we need to ensure

that the sequences of states produced by Θ and Λ ◦ Θ \ Λ cannot be distinguished

from one another with respect to any LTL property, formally stated by Lemma 3.2:

Π(s, Θ) ∼st Π(s, Λ ◦ (Θ \ Λ)). By definition of core, both Π(s, Λ) and Π(s, Θ)

share the same visible transition; and at most one such transition is allowed. Thus,

as depicted on Fig. 3.7(b), all states on the paths Π(s, Θ) and Π(s, Λ ◦ (Θ \ Λ))

can be partitioned into two sets Seq and Req:

• ∀s′ ∈ Seq : L(s′) = L(s)

• ∀r′ ∈ Req : L(r′) = L(r)

Since all three strings: Θ, Λ, and Θ\Λ, are finite, the paths are stuttering equivalent.

Note that even after the path Π(s, Λ) is substituted by a single superstep transition

s ⊲ Λ, the stuttering equivalence is preserved.

105

Definition 11. Given system M = 〈 S, T, S0, L, AP 〉 and a set of superstep

transitions Cap = {s ⊲ Λ : s ∈ S, Λ ∈ Cap(s)} such that ∀s ∈ S : Cap(s) covers

s. The reduced system M ′, obtained by application of the reduction procedure to

all the states in M , is formally defined as follows: M ′ = 〈 S, Cap, S0, L, AP 〉.

Note that the set of all the transitions enabled at a state s satisfies Cap(s).

Thus, the definition of a reduced system applies to systems in which the reduction

procedure is not necessarily applied to all the states; and (∀s ∈ S : Cap(s) =

enabled(s)) → Cap = T . Our main result states that our superstep reduction is

sound:

Theorem 3. The transition graphs M and M ′ are stuttering equivalent.

The proof is shown in appendix B.

3.5.3 Application to Multithreaded Programs

For convenience, we consider programs with a finite number of deterministic threads

(or processes), where the only source of nondeterminism comes from thread schedul-

ing. We also assume that each transition can access at most one global memory

location. This assumption is safe to make about the LLVM bytecode, which uses

designated instructions store and load to access memory. We say that two transi-

tions conflict if both access a common memory location and at least one of them is

a write. Under the assumption that one thread may enable or disable another only

by means of mutexes, which are a type of a shared object, the absence of a conflict

between transitions implies independence as long as the transitions do not belong

106

to the same thread. Note that not only the conflicting transitions may produce

different results depending on the execution order, but they may also disable each

other.

Definition 12. For a given state s, ThreadedCap(s) is a finite subset of strings

enabled at s such that, for every thread i enabled at s, it includes exactly one string

Λs
i such that Λs

i only includes the transitions of thread i and satisfies the following

three requirements:

1. Superstep Size Λs
i must be finite and contain at least one transition. The

check for finiteness can be implemented conservatively by setting an upper

bound on the number of transitions in a superstep sequence or the number of

loop heads within the sequence.

2. Independence Only the very last transition of the path Λs
i conflicts with any

of the transitions in Λs
k for any thread k 6= i.

3. Visibility At most one transition which changes the value of any of the atomic

propositions is allowed in Λs
i . If exists, it must be the very last transition of

the superstep sequence.

For example, consider Fig. 3.8, which depicts the superstep sequences of the three

program threads (Th1, Th2, and Th3) from the program state s. By the requirements

above, α1, β1, γ1, γ2 are independent of each other. Whereas transitions α2, β2, γ3

may be interdependent.

Lemma 4. For any state s, the set ThreadedCap(s) covers s.

107

r’ r’’

r’’’

s

Th3

α2

α1 β1

β2

γ3

γ2

γ1

Th1 Th2

Figure 3.8: Application of SPOR to threads

Thus, whenever a model checking algorithm visits a state s, it is sufficient to only

explore the successor states that result in the execution of the superstep transitions

{s ⊲ Λ : s ∈ S, Λ ∈ ThreadedCap(s)}. As follows directly from Lemma 4 and

Theorem 3, such reduction preserves the soundness of next-time free LTL model

checking. Please refer to for the proof of Lemma 4.

3.5.4 Implementation of Superstep Reduction in pancam

Next, we describe how superstep reduction is implemented as part of pancam, which

piggybacks the nested depth-first search algorithm used by SPIN. One of the at-

tractions of using SPIN’s nested depth-first search is that, unlike the case with

breadth-first search [27], our implementation is fully compatible with checking of

liveness properties. (And, although, we do not describe it here, our method can be

straightforwardly extended to cooperate with breadth-first search, if desired.)

108

During its state exploration, Spin issues calls to pan step(i), which, given the

current state s, computes the state s′ obtained by executing one or more instructions

of thread i. The executed instructions form the superstep sequence Λs
i . The super-

step size requirement guarantees that at least one instruction would be executed;

consequently, unless there is a loop in the state space, s 6= s′. Due to the nature of

depth-first search, pan step will be called multiple times on the same state s. In

particular, after exploring the state space in which thread i is executed from state

s, Spin backtracks and attempts to execute the thread i + 1 from the same state s

in response to which pancam computes Λs
i+1.

The pseudocode of pan step is presented in Fig. 3.9. If the state s is visited

by the depth-first search for the very first time, pan step executes initialization

routines. Further, each time Spin calls pan step(i), we compute the superstep

sequence for thread i by interpreting the enabled instructions of thread i one by

one. On each iteration, we check that addition of the corresponding instruction to

the sequence does not violate any of the requirements stated above (in practice, the

checks are only required for the instructions that access a global program location).

The most non-trivial check is the verification of the independence condition

for which one could use various static and dynamic methods. Fig. 3.10 presents

the dynamic independence check employed by pancam. Due to the nature of the

independence requirement, the superstep of one thread depends on the transitions

that constitute the supersteps of the other threads. An eager approach to this

problem is to compute the supersteps for every thread the very first time the state

s is visited (with the request to take step on thread one) and use the precomputed

109

ConflictType = { CONTINUE, POST STOP, PRE STOP }

pan step(ThreadID i) {
superstep length = 0;

if (not backtracking) {
init independence tester();

}

while (true) {
tri = get next instruction(i);

ConflictType error = test for independence(i, tri);

if (error == PRE STOP) break;

execute instruction(tri);

superstep length++;

if (superstep length ≥ MAX SUPERSTEP LENGTH) break;

if (error == POST STOP) break;

if (is proposition modifying(tri)) break;

} }

Figure 3.9: Pseudocode of pan step with superstep reduction.

supersteps on all the subsequent visits to the same state (when Spin backtracks to

take step on the other threads). However, this solution leads to inefficiencies since

computing the supersteps effectively entails computation of the successors of the

state s. Storing the successor states along with the current state leads to a large

space overhead. Recomputing the successor states, on the other hand, would impair

the running time.

The solution we present computes the supersteps lazily - whenever pan step(i) is

called, it only computes the superstep for thread i. To convey the information about

the supersteps which have already been computed, we store additional information

along with the program state on the depth-first search stack. For each state s and

110

init independence tester() {
for (every enabled thread k) {
AccessTables

k
.add(get access pair(get next instruction(k)));

}
}

test for independence(ThreadID i, Instruction tri) {
ai = get access pair(tri);

for (all threads k : k 6= i) {
for (all ak ∈ AccessTables

k
) {

if (conflict(ai, ak)) {
if (ak 6= last of(AccessTables

k
)) {

return PRE STOP;

} else {
if (tri 6= first of(Λs

i
)) AccessTables

i
.add(ai);

return POST STOP;

} } } }
if (tri 6= first of(Λs

i
)) AccessTables

i
.add(ai);

return CONTINUE;

}

Figure 3.10: Pseudocode of the independence condition tester

each thread i, we store AccessTables
i

- the list of location and access type pairs.

Each instruction of Λs
i that accesses a global is represented by a pair (l, ty); it

records the global location l that is accessed and the flag ty stating whether the

transition is a read or a write. AccessTable is not stored as the part of the state

tracked by Spin but maintained externally within pancam VM since the data it

stores is updated each time the state is visited.

The very first time state s is visited, init independence tester() initializes

the AccessTables
i

of each enabled thread i with the access information derived

from the very first instruction to be executed on the thread i. Further, before

111

adding an instruction tri to the superstep sequence of thread i, pan step consults

with test for independence(i, tri) to ensure that the independence condition is

met. test for independence may return three different values. CONTINUE means

that the instruction can be added to the superstep Λs
i since it does not conflict with

any instructions in Λs
k for all threads k 6= i. POST STOP means that tri introduces

a conflict with some other thread, but adding it to Λs
i does not violate the indepen-

dence requirement as long as it is the very last transition of Λs
i . Finally, PRE STOP

means that adding tri to Λs
i leads to a violation since the transition with which it

conflicts is not the very last transition of thread k for some k 6= i; thus, tri must not

be executed. Due to the initialization of AccessTables
i
, it is not possible to have

a PRE STOP on the very first transition of any of the threads; thus, the superstep

size requirement is met - pan step always executes at least one transition. Finally,

test for independence(i, tri) updates the AccessTablei
s

with the access pair de-

rived from tri if the instruction is to be added to Λs
i and if it is not the very first

instruction of Λs
i . Recall that the AccessTable is updated with the access pairs cor-

responding to the very first instructions of each thread as part of the initialization

routine.

The above technique requires no space overhead when used as part of breadth-

first search state exploration. However, when used with depth-first search, the

AccessTable must be stored on the search stack. In cases when the sets are quite

large, one could use approximations. For instance, one idea is to use a coloring

abstraction, in which the memory is partitioned into regions with distinct colors,

and each transition is associated with the set of colors it reads and writes.

112

s
Th3Th2

y := 6

Th1

t := *k ptr

t := t - x

t := t + y

m := m + 1

m := 4

l: = k

*x ptr := 8

Figure 3.11: The example of the Superstep POR algorithm

Example 3. Let us demonstrate the algorithm on an artificial example from

Fig. 3.11 that depicts the instructions that the three threads can execute from the

state s. The solid arrows represent the instructions that form the supersteps from

the state s. We assume that the variables k, x, y, and m are global variables; t, l,

x ptr, k ptr are local; x ptr and k ptr are the pointers to x and k, respectively.

When the state s is visited for the very first time, init independence tester

initializes the AccessTable with the information derived from the very first instruc-

tions of each thread as following:

AccessTables
1

= ((k ptr, read))

AccessTables
2

= ((ad(y), write))

AccessTables
3

= ((ad(m), write))

Here ad(x) stands for the address in memory where the variable x is stored

(AccessTable stores the actual addresses of the accessed variables). After the ini-

tialization, pan step issues calls to test for independence passing the instruc-

tions of Th1 one by one. The function returns CONTINUE when passed t := *k ptr

113

and t := t - x. However, since t := t + y conflicts with the very first instruction

of Th2, POST STOP is returned as the result of the third call. The table is updated

accordingly:

AccessTables
1

= ((k ptr, read); (ad(x), read); (ad(y), read))

When the depth-first search backtracks to schedule Th2, pan step calls

test for independence with y := 6 as the argument. Due to the conflict with

the last instruction of Th1, the function returns POST STOP, making y := 6 to be

the only instruction forming Λs
2. The AccessTables

2
does not need to be updated.

Finally, when pan step(3) is called, the check for independence on the first three

instructions of Th3 returns CONTINUE. Note that even though both the third instruc-

tion of Th3 and the first instruction of Th1 read from the same memory location:

it can be determined at run time that k ptr equals ad(k), no conflict is reported.

However, the fourth instruction, *x ptr := 8, conflicts with the second entry in

AccessTables
1

raising the PRE STOP return code. Since the conflicting transition is

not the last transition of Λs
1, *x ptr := 8 should not be included in Λs

3.

3.6 Experimental Results

We have gathered some initial experimental results with our prototype on a few small

multi-threaded C programs. Fig. 3.12 and Fig. 3.13 show results from checking two

versions of the implementation of Peterson’s algorithm in C, described in Section 3.3.

Fig. 3.12 shows the number of states explored against varying context bounds for

the version of the program with the missing volatile keyword bug, while Fig. 3.13

shows similar results for the version of the program without the bug. The graphs

114

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10

S
ta

te
s

E
xp

lo
re

d

Context Bound

global access without abstraction
global access with abstraction
superstep without abstraction

superstep with abstraction

Figure 3.12: Context bounding for peterson.c with bug

also compare a heuristic that runs a thread until it makes an access to any global

state (labeled “global access” in the figure) versus our superstep reduction method

(labeled “superstep”). As the graphs indicate, the bug is found fairly easily in

all versions, though increasing the context bound beyond a certain point makes it

harder to find the bug. (This is likely a consequence of the fact that Spin uses

depth-first search.) The graphs also show the benefit of an abstraction function

we used which tracks only the algorithmic state of the protocol (the value of the

abstract “flag” and “turn” variables).

Fig. 3.14 shows results from the “robot” benchmark example [27]. This example

115

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10

S
ta

te
s

E
xp

lo
re

d

Context Bound

global access without abstraction
global access with abstraction
superstep without abstraction

superstep with abstraction

Figure 3.13: Context bounding for peterson.c without bug

consists of two threads that move across a shared board of size N × N in slightly

different patterns; the program checks that the robots meet only in expected loca-

tions. As the graph shows, our superstep method provides a noticeable reduction in

the number of states over the global access method, as the size of the board grows.

Table 3.1 compares the improvement of superstep reduction with respect to the

global access heuristic on two more examples. The first is a C implementation of the

classic dining philosophers algorithm, with varying number of philosophers (denoted

by parameter n). The second example is an inter-process communication module

for an upcoming NASA Jet Propulsion Laboratory mission. The module consists

116

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 4 5 6 7 8 9 10 11 12

S
ta

te
s

E
xp

lo
re

d

Board Size

global access superstep

Figure 3.14: The Robot example

Benchmark #states #states
global access superstep

Phil n=2 59 37
Phil n=3 534 380
Phil n=4 4762 3130
Phil n=5 42386 25021
IPC m=1 156863 234
IPC m=2 625359 316
IPC m=3 1529342 479
IPC m=4 ! 654
IPC m=15 ! 22629

Table 3.1: Other experiments with pancam

117

of around 2800 lines of (non-commented) C source code (including some support

modules that it relies on). It implements a communication system that supports

prioritized messages and provides thread-safe primitives for sending and receiving

messages. To give meaningful results, we restricted the model to a single producer-

consumer pair, and forced a bound of 4 context switches, while varying queue depth

(denoted by m). Even with the small configuration parameters, the default global

access heuristic exhausts memory resources for m = 4 (as denoted by the symbol !)

on a machine with 32 GBytes of RAM, whereas the superstep method can handle

much larger configurations (well over m = 15).

3.7 Related Work

There has been considerable interest in applying model checking directly to imple-

mentation code. The Bandera checker [16] translates Java programs to the input

language for a model checker, while Java Pathfinder (JPF) [65] uses an approach

more similar to ours, in that it interprets bytecode. However, JPF tightly integrates

model checking with the virtual machine. In contrast, our tool uses the Spin model

checker to orchestrate the search, using our virtual machine to execute the transi-

tions. This allows us to inherit (for free) the various optimizations and features of

Spin (both those that exist, and those yet to be invented). In spite of this loose

integration, our approach is flexible; for instance, as shown in Section 3.3, adding

support for bounding context-switches was done fairly easily in our tool. Using

Modex [32] - a tool which extracts PROMELA models from C implementations

provides similar benefits. However, the model extractor is guided by user-defined

118

abstractions, construction of which requires a considerable manual effort.

For verification of multi-threaded C programs, the CMC tool [49] uses explicit-

state model checking. One limitation of CMC, however, is that it requires a manual

step by the user to convert an existing C program into a form that can be used

by CMC. In contrast, by working directly on bytecode, our tool design is simpler

(interpreting typed LLVM bytecode is much easier than interpreting C). In addi-

tion, we are able to detect errors introduced during compiler optimization (like the

Wikipedia error in Peterson’s algorithm, described in Section 3.3).

In this respect, our work is related to “WYSINWYX: What You See Is Not What

You eXecute” [11], in which program analysis is applied to a model constructed

from an executable. WYSINWYX framework is not coupled with any particular

compiler. Another advantage of the framework is that the errors introduced by a

compiler back-end would also be discovered. However, the constructed model is

not precise since it has to recover information about variables and types, which is

especially difficult for aggregates (i.e., structures and arrays).

Another tool for verifying C programs is VeriSoft [25], which uses stateless model

checking. VeriSoft uses static partial order reduction, which typically results in little

reduction when applied to C programs, since the independence relation is hard to

compute. More recent work on dynamic partial-order reduction [23] addresses this

problem. Inspect tool [66] applies the idea to verification of C programs. Since

the technique is only applicable to the stateless search in which the search depth is

bounded, it poses a challenge for programs whose state graphs have cycles.

More directly related to the superstep reduction presented in Section 3.5 is the

119

work on “cartesian partial order reduction” [27], which is a method that dynamically

computes independence relationships, and tries to avoid context switching whenever

possible. The ideas behind cartesian partial order reduction and superstep reduction

are closely related, though there are significant implementation differences. In par-

ticular, our reduction is done in the context of Spin’s depth-first search. While this

complicates the design somewhat, and incurs some additional memory overhead, it

can be applied even when checking liveness properties. (In contrast, the cartesian

reduction method was applied only in the context of checking assertion violations

and deadlocks.)

Our approach to enforcing context-bounding is directly inspired by the work on

the CHESS model checker for concurrent C code [50, 48]. One point of departure is

that, even with fair scheduling, the CHESS model checker only checks livelocks; in

contrast, our approach is able to handle general liveness properties.

120

Chapter 4

Conclusion

We have presented two approaches to ensuring the correctness of compiled code

– compiler verification (TVI, CoVaC) and model checking of optimized bytecode

(pancam).

Each of these approaches has its advantages. Model checking wins when one has

to check Linear Temporal Logic properties over relatively small programs (under 10K

lines of code). If pancam is chosen, we have a very high assurance that what we check

is what will be executed. Of cause, since we check bytecode and not the machine

code, there is still a possibility of error at the very last step (in the translation from

bytecode to machine code). However, model checking of bytecode gets us very close

to the ultimate goal. More importantly, pancam gives the most advantage when

one has to check multi-threaded applications. Note that the presented compiler

verification techniques are targeted at verification of sequential programs. Take for

example the problem from Section 3.3 where a missing volatile modifier lead to a race

condition. This bug would not be detected by CoVaC. Even though we can ensure

121

that there are no miscompilations involving the volatile variables by representing

the access and stores to the volatiles using the read and write instructions, there is

no way of ensuring that the modifier is used in the first place. Furthermore, one

may rightly argue that catching missing volatile modifiers is not in the realm of a

compiler verifier. On the other hand, this error would also go undetected by the

tools for source code analysis.

There are several settings in which one would go back to translation validation.

One such setting is when the application being checked is large. In particular, since

CoVaC performs intraprocedural analysis, it is expected to scale well when applied

to modular code. Another setting is when we are only interested in verifying if

the compiler optimizations preserve the semantics of the program. This is true

in compiler testing, where translation validation can be used instead of unit tests.

Additionally, this is the case when one prefers using a particular verification tool to

check that the program satisfies the desired property. For example, suppose we have

an application that has to be resilient to security vulnerabilities. Here, it might be

advisable to use some existing tools targeted at checking security properties. These

tools may come equipped with an extensive catalog of security properties, which may

not be available to the user. This makes using the off-the-shelf verifier more efficient

and effective then constructing our own list of security properties and checking for

conformance with pancam.

Here is another way of contrasting the two approaches. pancam is a checker that

ensures that the bytecode satisfies an LTL specification. Whereas CoVaC ensures

that the bytecode obtained after the compilation is equivalent to the non-optimized

122

version. The non-optimized source code serves as the specification for CoVaC. So,

effectively, it checks conformance to a much stronger specification then that of pan-

cam. Intuitively, in order to be uncovered by pancam, a compiler bug has to directly

effect the LTL property that is being checked. Of cause, since the presented trans-

lation validation algorithms target only structure preserving optimizations, they

verify a relatively small segment on the road from the model of the system to the

executable. To conclude, the two techniques are orthogonal and it would not be

redundant to apply both to verification of a single program.

123

Appendix A

CoVaC Proofs

Lemma 5. ∀σ ∈ Cmp(f) : (∃σS ∈ Cmp(fS) : σS ∼st σ↑S) ∧ (∃ σT ∈ Cmp(fT) :

σT ∼st σ↑T). The claim follows directly from Rule 1 and Rule 2.

Theorem 1 Target function fT is a correct translation of source function fS if and

only if there exists a witness comparison graph f = fS ⊠ fT . In addition, if fT is a

correct translation of fS then every comparison graph f = fS ⊠ fT is a witness of

correct translation.

Proof. In one direction, suppose there exists a witness graph f = fS ⊠ fT . By

Lemma 5, ∀σT ∈ Cmp(fT), ∃σ ∈ Cmp(f) : σT ∼st σ↑T . By Lemma 5, ∃σS ∈

Cmp(fS) : σS ∼st σ ↑S. By Definition 6, o(σ ↑T) = o(σ ↑S); so we conclude

σT ∼st σS. Similarly, we prove ∀σS ∈ Cmp(fS), ∃σT ∈ Cmp(fT) : σS ∼st σT .

Thus, fT is a correct translation of fS.

In the other direction, suppose, fT is a correct translation of fS. There exists a

witness comparison graph f = fS ⊠ fT . This can be shown by construction of such

124

graph while observing the computations of fS and fT . The graph will be finite, the

construction is not finite due to possible infinite input computations.

To prove the second statement, suppose again that fT is a correct translation

of fS. We need to show that there does not exist a comparison graph which is not

a witness of correct translation. Let’s proof this by contrapositive. Assume there

exists f such that ∃σ ∈ Cmp(f) : o(σ↑S) 6= o(σ↑S), implying ¬(σ↑S∼st σ↑S) .

By Lemma 5, ∃σS ∈ Cmp(fS) : σS ∼st σ↑S and ∃σT ∈ Cmp(fT) : σT ∼st σ↑T

but by our assumption, ¬(σS ∼st σT). Since fS is a correct translation of fT ,

∃̺T ∈ Cmp(fT) : (̺T ∼st σS) ∧ (̺T 6= σT). By definition of composed transition,

σT and σS agree on all input and read values. On the other hand, ̺T ∼st σT

implies that ̺T and σT agree on all input and read values. However, since fT is

deterministic, ̺T = σT ; hence we reach a contradiction.

Lemma 2 No spurious predictions are possible: if the match (eS, eT) is made with

ϕk
n, it also complies with ϕfix

n . As a practical consequence, algorithm compose never

has to backtrack (due to removal of previously added edges).

Proof. Suppose, a match is made using ϕk
n on iteration k +1 and (ϕk

n ∧ cS ∧ cT) is

satisfiable. Since ϕk
n = (ϕfix

n ∧Φk
n), assertion (ϕfix

n ∧ cS ∧ cT) is also satisfiable.

Thus, the match would also be made with ϕfix
n .

Theorem 2 (Termination) Algorithm compose terminates.

Proof. Following Lemma 2, the algorithm never removes edges and nodes from

125

the comparison graph, so the graph monotonically grows. In addition, each cross-

product edge and node can only be added once, so the number of new nodes and

edges is bounded.

Theorem 2 (Soundness) If algorithm compose succeeds, the resulting graph f =

fS ⊠ fT satisfies all of the requirements presented in Section 2.4.2.

Proof. Clearly, the structural requirement, Rule 1, is satisfied. Since we explicitly

require that the graph does not include any ǫ-cycles, Rule 2 is also satisfied.

To prove Rule 3, let’s show that all computations of fS and fT are covered

by the constructed graph. To support the statement, we argue that if a source or

target edge is never added to the comparison graph, it does not participate in any

computations of the input system.

Suppose a target edge eT from nT to mT , conditional on cT , is the first edge

not added to the fully constructed comparison graph (assume topological ordering).

Since node n = 〈nT , nS〉 belongs to the comparison system, it had been added to the

WorkList; and every time we attempted to match the source edges outgoing from nS

with eT , we failed. Let’s consider the last time the matching was attempted. Since

this was the last try, no new edges that may influence the states at location n were

added afterwards, so the invariant used ϕk
n = ϕfix

n . The match failed, meaning that

for every source edge eS
i outgoing form nS and conditioned on cS

i , ϕfix
n ∧ cS

i ∧ cT was

unsatisfiable. Since the source program is non-blocking: ∧cS
i = true, it must be that

ϕfix
n ∧ cT is unsatisfiable. Recall that eT is the first edge of the target program that

is not added to the comparison program, so the invariant of the comparison system

at location n, ϕfix
n , fairly represents the states of the target program; thus it must

126

be that cT evaluates to false in all computations of the target, and the transitions

corresponding to eT are never taken. An inductive argument can be used for all the

following edges.

Theorem 2 Completeness If fT and fS are consonant, algorithm compose succeeds

in construction of a comparison graph f = fS ⊠ fT given a strong enough InvGen.

Proof. Algorithm compose fails only when we cannot match branches of the source

and target. Consider the matchEdges rules presented in Section 2.4.3. For the first

two conditions not to be applicable, it must be the case that the algorithm visits

a node 〈nS, nT 〉 such that (nS ∈ PS) ∧ (nT ∈ PT) ∧ (τ(nS) 6= τ(nT)). Our goal is

to show that this situation is ruled out. In particular, we are going to show that

(nS ∈ PS) ∧ (nT ∈ PT) =⇒ τ(nS) = τ(nT). (Recall that PT and PS denote the

sets of the source and the target cut points. τ(n) denotes the type of a node. See

Section 2.2.4 for the full definition of these concepts.)

Since InvGen is strong enough, the node 〈nS, nT 〉 is reachable in f . Thus, there

exists σC ∈ Cmp(f) that goes through the node 〈nS, nT 〉. Applying the same

argument as for the soundness proof to the partially constructed graph and rules

Rule 1 and Rule 2, there exist σS ∈ Cmp(fS) and σT ∈ Cmp(fT) that differ from

σ↑S and σ↑T by only finite number of ǫ-transitions. Since the composed programs

are consonant it only remains to show that nS and nT are the ith cut points in the

cut point sequences for σS and σT .

Consider an arbitrary node 〈n̂S, n̂T 〉 that is visited no later then the node

〈nS, nT 〉. Let rank of either a source or a target node n̂ be the number of cut points

before or at the node the corresponding computation (σS or σT , respectively). We

127

are going to use induction on the length of σC to proof that rank of n̂S is the same

as rank of n̂T when both are cut points or when both are not. If only one of the

systems is at a cut point, its rank is precisely one more then that of the other one.

• Base Case: When 〈n̂S, n̂T 〉 is the first node of σC , n̂S and n̂T are the roots of

the composed procedures and are the first elements in the corresponding cut

point sequences. Therefore, the rank of both nodes is simply 1.

• Induction Step: According to matchEdges there are only two ways to extend

the computation:

− Matching edges of the same type: For this rule to apply both sys-

tems or none must be at a cut point location and by induction hypothesis

have the same rank i. When both systems move to a new cut point their

ranks are simply increased by 1. When both system move to a non cut

point node (unconditional assignment node) the rank is preserved. And,

finally, if only one of system moves to a new cut point its rank becomes

i + 1, an the other one must still have the rank i.

− Adding ǫ-transitions: For this rule to apply and according to our in-

duction hypothesis one of the systems must be at cut point and have a

rank i. The other system should be about to preform an assignment and

have rank i− 1. These ranks and node types are either preserved by this

match rule or the slower system catches up and both systems reach their

ith cut point.

128

Appendix B

Correctness of SPOR

In this section, we present a formal proof for the correctness of superstep partial

order reduction (SPOR), specifically, we will show that the systems M and M ′

defined in section Section 3.5.2 are stuttering equivalent. To do this, we use a proof

technique similar to the one presented in [15].

Given an atomic proposition p and a transition α, let V(p, α) 7→ (Sα
p ⊂ S) be a

function that returns the set of states Sα
p such that (s ∈ Sα

p) ←→ (p(s) 6= p(α(s))).

Thus, V(p, α) partitions the sate space into the states in which the execution of α

flips the value of p and those in which the execution of α does not change the value

of p.

Lemma 6.

∀p ∈ AP : (s /∈ V(p, t)) ∧ I(t′, t) =⇒

(t′(s) /∈ V(p, t)) ∧ ((t(s) ∈ V(p, t′)) ←→ (s ∈ V(p, t′)))

In other words, given a path s
t
→ t(s)

t′

→ such that t and t′ are independent and t

129

is not visible from s, the invisible transition can be moved to the right resulting in a

path s
t′

→ t′(s)
t
→ and the visibility and invisibility of the transitions with respect to

every predicate is preserved.

Proof. Let the proposition p be (x = val) for some variable x and value val. First,

if the invisible transition t does not modify x, the lemma trivially holds. Second,

consider the case when t does modify x. Then since I(t, t′), both t and t′ set x to the

same value val′. Without the loss of generality, assume that p(s) = true (p holds at

s). That means that x evaluates to val in s. Two cases are possible. If val′ = val, t′

is invisible at s and t(s), and t is invisible at s and t′(s), so the invisibility property

is preserved. If val′ 6= val, then t is visible at s, which contradicts the lemma’s

assumption.

Lemma 3 (from Section 3.5.2) If Λ is a core of Θ at s, then

1. Θ(s) = (Λ ◦ (Θ \ Λ))(s)

2. Π(s, Θ) ∼st Π(s, Λ) ∼st Π(s, Λ ◦ (Θ \ Λ))

Proof. Lemma 3.1 follows directly from Definition 9.1. Let’s prove Lemma 3.2. By

Lemma 3.1, path Π(s, Θ) is enabled if and only if Π(s, Λ) and Π(s, Λ ◦ (Θ \ Λ))

are enabled. Path Π(s, Λ) is obtained from Π(s, Θ) by moving the transitions from

Θ \Λ to the right of the transitions in Λ. Since the transitions in Θ \Λ are invisible

from the corresponding states, by Lemma 6, the move preserves the visibility of all

the transitions. Thus, if there is one visible transition t in Π(s, Θ), it will be the

only one visible transition in both Π(s, Λ) and Π(s, Λ ◦ (Θ \Λ)). By the definition

130

of visibility, t is the only transition that may change the label of the states along

the paths. In addition, the paths are finite and the very first and the very last state

of all the paths must be the same by Lemma 3.1, implying that they have the same

label. Consequently, the paths must be stuttering equivalent.

Let ω be a path of M starting at some initial state s0. First, we will iteratively

construct a sequence of strings tr(ω) = π0, π1, π2, Every ith sequence can

be partitioned as following: πi = ηi ◦ oi, where |ηi| = i; ηi is a string of superstep

transitions; and oi is a sequence of transitions of the input system M . Furthermore,

enM ′(s0, ηi) - there exists a path in M ′ starting at s0 with transitions ηi. Let

si = ηi(s0) be the final state on that path, then enM(si, oi) - there exists a path in

M starting at si with transitions oi.

Suppose that we have partially constructed the sequence π0, π1, ..πi for some

i. We construct πi+1 as follows. Let oi = θi ◦ ρi, such that |vis(θi)| ≤ 1. Let

λi ∈ Cap(si) be a core of θi, which must exist as a consequence of Definition 9

and Definition 10. We choose ηi+1 = ηi ◦ si ⊲ λi and oi+1 = (θi \ λi) ◦ ρi. Then

si+1 = ηi+1(s0).

Since si ⊲ λi ∈ Cap, enM ′(s0, ηi+1). Let’s show that enM (si+1, oi+1). By induc-

tive assumption, enM(si, θi ◦ ρi). By Lemma 3.1, enM (si, (λi ◦ (θi \ λi)) ◦ ρi). By

Definition 8, si+1 = λi(si), so enM (si+1, (θi \ λi) ◦ ρi), which was required to show.

Lemma 7. Let η be the string constructed as the limit of the finite strings ηi. Then,

Π(s0, η), belongs to the reduced transition graph M ′.

Proof. String η is well defined since ∀i : ηi < ηi+1. Additionally, for all i:

enM ′(s0, ηi) implying that Π(s0, ηi) is a path in M ′.

131

Definition 13. Given two transitions t and t′ we are going to use notation t ∼= t′,

if and only if either t = t′ or (t = s ⊲ Λ) ∧ (vis(Π(s, Λ)) = t′).

Lemma 8. The following hold for all i, j such that j ≥ i ≥ 0.

1. vis(πi) ∼= vis(πj).

2. Let ξi be a prefix of πi and ξj be a prefix of πj such that vis(ξi) ∼= vis(ξj).

Then L(ξi(s0)) = L(ξj(s0)).

Proof. It is sufficient to consider the case where j = i + 1. Then πi = ηi ◦ θi ◦ ρi and

πj = ηi ◦ s ⊲ λi ◦ (θi \ λi) ◦ ρi.

To prove Lemma 8.1, it is sufficient to show that vis(θi) ∼= vis(s ⊲ λi ◦ (θi \ λi)).

By Definition 9 and Lemma 6, transitions in (θi \ λi) are invisible; furthermore,

at most one transition in λi and, consequently, one transition in θi is visible. Let

vis(θi) = vis(λi) = t, then t ∼= s ⊲ λi. On the other hand, if all of the transitions in

λi are invisible, then the equality trivially holds.

To prove Lemma 8.2, suppose vis(θi) ∼= si ⊲ λi
∼= tk and then πi = ηi ◦ ti+1 ◦ .. ◦

tk ◦ .. ◦ tl ◦ ρi.

Lemma 8.2 holds for prefixes with k− 1 visible transitions. It is enough to show

that ∀tj : i < j < k : L(ηi(s0)) = L(ηi ◦ ti+1..◦ tj(s0)) holds; which is the case since

all tj are invisible.

Next, we show that the statement holds for the shortest prefixes with k visible

transitions. Let s′ = ηi ◦ ti+1 ◦ .. ◦ tk(s0) - the first state on the path πi after taking

the visible transition tk; and let s′′′ = ηi ◦ s ⊲ λi(s0) - be the first state after the

superstep transition is taken. Path πj has been obtained after application of the

132

superstep reduction to a path π′
i = ηi ◦ (γ ◦ tk ◦α)◦ (θi \λi)◦ρi, where λi = γ ◦ tk ◦α.

Let s′′ be the first state on this path after transition tk: s′′ = ηi ◦ γ ◦ tk(s0). Since

λi is a core of θi, s′ = β(s′′), where β = (ti+1 ◦ .. ◦ tk−1) \ γ is a sequence of

invisible transitions independent of transitions in λi. Additionally, s′′′ = α(s′′),

furthermore, α contains no visible transitions since |vis(λi)| ≤ 1. By definition of

invisible transitions, L(s′) = L(s′′) and L(s′′′) = L(s′′) implying L(s′) = L(s′′′).

The statement also holds for longer prefixes ξi and ξj, up to ξi = ηi ◦ θi and

ξj = ηi ◦ s ⊲ λi ◦ (θi \ λi), since the invisible transitions preserve the state labels.

Finally, let s′ = ηi ◦ θi(si) = (s ⊲ λi ◦ (θi \ λi))(si). All prefixes that contain more

visible transitions then those just considered will end in the same state since the next

visible transition should be on the path Π(s′, ρi), which is shared by both Π(s0, πi)

and Π(s0, πj). The existence of the shared state s′ is guaranteed by Lemma 3.1.

The same argument is used when |vis(θi)| = 0.

Lemma 9. Let v be a prefix of vis(π0). Then there exists a string ηi such that

v ∼= vis(ηi).

Proof. The proof is by induction on the length of v. For |v| = 0, the empty string

η0 satisfies the requirement. In the inductive step we must show that for a visible

transition t, if v ◦ t is a prefix of vis(π0) and ∃ ηi : v ∼= vis(ηi), then there is a

string ηj with j > i such that vis(ηj) ∼= v ◦ t. First, consider the case when t

is the visible transition of λi+1 then the statement holds with j = i + 1. Next,

consider the case when λi+1 does not contain a visible transition. Then, t is the first

visible transition in oi+1. Let δ be a prefix of oi+1 such that oi+1 = δ ◦ t ◦ χ and

133

δ does not contain t. Then, ∀ k : (i + 1 < k) ∧ vis(λk) 6= t, λk is a non-empty

(noncontiguous) subsequence of δ. Thus, at some point δ must be exhausted and

∃ j : k < j ∧ vis(λj) = t.

Theorem 3 (from Section 3.5.2) The transition graphs M and M ′ are stuttering

equivalent.

Proof. By Definition 11, M and M ′ have the same set of initial states.

In one direction, we need to show that for each path η in M ′, there exists a path σ

in M such that η ∼st σ. Let η = s0
s0⊲λ0→ s1

s1⊲λ1→ ... Consider path σ = s0
λ0→ s1

λ1→ ...

By Definition 10, each string λi is enabled at the corresponding state si, and, thus,

σ belongs to M . Further, by Definition 9, |vis(λi)| ≤ 1 implying that η ∼st σ.

In the other direction, we need to show that for each path σ in M , there exists

a path η in M ′ such that σ ∼st η. Indeed, we will show that the path η constructed

as the limit of the finite path ηi is stuttering equivalent to σ = π0.

First, we show that vis(π0) ∼= vis(η). By Lemma 9, η contains the visible

transitions equivalent to those in π0 in the same order, because for any prefix of π0,

there is a prefix ηi of η with equivalent visible transitions. On the other hand, π0

must contain the visible transitions of η in the same order. Take any prefix ηi of η.

According to Lemma 8.1, πi = ηi ◦ oi has the same visible transitions as π0. Thus,

π0 has a prefix with the same sequence of visible transitions as ηi.

Let π0 = s0
α0→ s1

α1→ ... and η = r0
β0→ r1

β1→ We construct two infinite

sequences of indexes 0 = i0 < i1 < ... and 0 = j0 < j1 < ... that define the

corresponding stuttering blocks of σ and η. Assume that both π0 and η contain

at least n visible transitions. Let in be the length of the smallest prefix ξin that

134

contains exactly n visible transitions. Let jn be the length of the smallest prefix ηjn

such that vis(ξin) ∼= vis(ηjn
). By Lemma 8.2, L(sin) = L(rjn

). In addition, let ξin−1

be the smallest prefix of σ with n− 1 visible transitions, and similarly define ηjn−1 .

As before, let |ξin−1| = in−1 and |ηjn−1 | = jn−1. Then for in−1 ≤ k < in−1 : L(sk) =

L(sin−1) since the transitions between in−1 and in − 1 are invisible. Similarly, for

jn−1 ≤ l < jn − 1 : L(rl) = L(rjn−1).

If both π0 and η have infinitely many visible transitions, then this process will

construct two infinite sequences of indexes. In the case where π0 and η contain only

a finite number m of visible transitions, we have that for k > im, L(sk) = L(sim)

and for l > jm, L(rl) = L(rjm
). We then set for k ≥ m, ik+1 = ik + 1 and for

l ≥ m, jl+1 = jl + 1. Thus, for k ≥ 0, the blocks of states sik , sik+1, ..., sik+1−1 and

rik , rik+1, ..., rik+1−1 are the corresponding stuttering blocks; implying π0 ∼st η.

Lemma 4 (from Section 3.5.3) For any state s, the set ThreadedCap(s) covers s.

Proof. Consider a path σ ∈ E(M, s) that results from execution of a finite number of

threads in some order. We will show that the set ThreadedCap(s) contains a string

Λ such that Λ is a core of a finite prefix of σ. Let W denote the set containing only

the very last transitions from each superstep string in ThreadedCap(s), which is

defined in Definition 12. Let Θ be a finite prefix of tr(σ) such that all its transitions

except for the last one are not in W .

Such prefix exists. Suppose that is not the case. Since the supersteps are finite,

there must exist a transition on the path σ that is not contributed by a superstep.

Suppose, the very fist such transition belongs to thread i and it is the lth transition

135

of σ. Let Λs
i = α1α2..αkαk+1..αm and let η be the prefix of σ : |η| = (l − 1). Let

αk be the last transition of Λs
i in η. Then αk+1 has been disabled by a transition

that occurs before it in η. It cannot be a transition of thread i since enM (s, (Λs
i)).

So this transition has to belong to a superstep of another thread, which contradicts

the independence requirement.

Without the loss of generality, assume that the last transition of Θ is a transition

of thread i. Θ contains all the transitions of Λs
i . Every other transition t ∈ Θ \Λs

i

belongs to a superstep of another thread and t /∈ W . So by the independence

requirement, transitions in Θ \ Λs
i are independent of the transitions in Λs

i . In

addition, there might be at most one visible transition and vis(Θ) = vis(Λs
i).

Thus, Λs
i is a core of Θ at s.

136

Bibliography

[1] CVC3: An Automatic Theorem Prover for Satisfiability Modulo Theories

(SMT). http://www.cs.nyu.edu/acsys/cvc3/.

[2] Open Research Compiler for ItaniumTM Processor Family.

http://ipf-orc.sourceforge.net.

[3] Peterson’s algorithm. http://en.wikipedia.org/wiki/Peterson’s_algorithm.

[4] The CompCert verified compiler. http://compcert.inria.fr/.

[5] The Coq proof assistant. http://coq.inria.fr/.

[6] The GNU Compiler Collection. http://gcc.gnu.org.

[7] The LLVM Compiler Infrastructure Project. http://llvm.org.

[8] The Spin Model Checker. http://spinroot.com/spin/whatispin.html.

[9] The YICES SMT Solver. http://yices.csl.sri.com.

[10] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc., 1986.

137

http://www.cs.nyu.edu/acsys/cvc3/
http://ipf-orc.sourceforge.net
http://en.wikipedia.org/wiki/Peterson's_algorithm
http://compcert.inria.fr/
http://coq.inria.fr/
http://gcc.gnu.org
http://llvm.org
http://spinroot.com/spin/whatispin.html
http://yices.csl.sri.com

[11] G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum. Wysinwyx: What

you see is not what you execute. In In VSTTE, page 1603, 2005.

[12] Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured

programs. In PASTE, 2005.

[13] Gilles Barthe, Pedro D’Argenio, and Tamara Rezk. Secure information flow

by self-composition. In Computer Security Foundations Workshop, page 100.

IEEE Computer Society, 2004.

[14] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a C

compiler front-end. In FM 2006: Int. Symp. on Formal Methods, volume 4085

of Lecture Notes in Computer Science, pages 460–475. Springer, 2006.

[15] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT

Press, 2000.

[16] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and

H. Zheng. Bandera: Extracting finite-state models from java source code.

In Proceedings of the 22nd International Conference on Software Engineering

(ICSE), June 2000.

[17] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-

neth Zadeck. Efficiently computing static single assignment form and the con-

trol dependence graph. ACM Transactions on Programming Languages and

Systems, 13(4):451–490, Oct 1991.

138

[18] Maulik A. Dave. Compiler verification: a bibliography. SIGSOFT Software

Engineering Notes, 28(6):2–2, 2003.

[19] D. Detlefs, G. Nelson, and J. Saxe. Simplify: A theorem prover for program

checking, 2003.

[20] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[21] Yi Fang. Translation Validation of Optimizing Compilers. PhD thesis, New

York University, 2005.

[22] Yi Fang and Lenore D. Zuck. Improved invariant generation for TVOC. In

Proceedings of the 5th International Workshop on Compiler Optimization meets

Compiler Verificaiton, 2006.

[23] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for

model checking software. In Proceedings of the 32nd ACM Symposium on Pro-

gramming Languages (POPL), pages 110–121, 2005.

[24] Robert W. Floyd. Assigning meanings to programs. In Symposia in Applied

Mathematics, volume 19:19-32, 1967.

[25] P. Godefroid. Model checking for programming languages using verisoft. In

Proceedings of the 24th ACM Symposium on Principles of Programming Lan-

guages (POPL), 1997.

[26] Alex Groce and Rajeev Joshi. Extending model checking with dynamic analysis.

In Conference on Verification, Model Checking and Abstract Interpretation,

2008.

139

[27] Guy Gueta, Cormac Flanagan, Eran Yahav, and Mooly Sagiv. Cartesian

partial-order reduction. In SPIN Workshop on Model Checking of Software,

pages 95–112, 2007.

[28] Sumit Gulwani and George Necula. Global value numbering using random

interpretation. In 31st Symposium on Principles of Programming Languages,

pages 342–352. ACM Press, 2004.

[29] Sumit Gulwani and Ashish Tiwari. Assertion checking over combined abstrac-

tion of linear arithmetic and uninterpreted functions. In The 15th European

Symposium on Programming, pages 279–293. Springer, March 2006.

[30] Daniel Halperin, Thomas S. Heydt-Benjamin, Benjamin Ransford, Shane S.

Clark, Benessa Defend, Will Morgan, Kevin Fu, Tadayoshi Kohno, and

William H. Maisel. Pacemakers and implantable cardiac defibrillators: Soft-

ware radio attacks and zero-power defenses. IEEE Symposium on Security and

Privacy, 2008.

[31] G. J. Holzmann and D. Peled. An improvement in formal verification. In

International Conference on Formal Methods for Networked and Distributed

Systems, 1994.

[32] Gerard Holzmann and Margaret Smith. A practical method for verifying event-

driven software. In International Conference on Software Engineering, pages

597–607, 1999.

140

[33] Gerard J. Holzmann. An analysis of bitstate hashing. Formal Methods in

Systems Design.

[34] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley Professional, 2003.

[35] Gerard J. Holzmann and Dragan Bosnacki. The design of a multi-core extension

of the spin model checker. In IEEE Transactions on Software Engineering,

volume 33, pages 659–674, October 2007.

[36] Gerard J. Holzmann and Rajeev Joshi. Model-driven software verification. In

SPIN Workshop on Model Checking of Software, pages 76–91, 2004.

[37] Gerard J. Holzmann, D. Peled, and M. Yannakakis. On nested depth-first

search. In SPIN Workshop on Model Checking of Software, pages 23–32, 1996.

[38] G.J. Holzmann and D. Bosnacki. The design of a multi-core extension of the

Spin model checker. IEEE Transactions on Software Engineering, 33:659–674,

2007.

[39] Ying Hu, Clark Barrett, Benjamin Goldberg, and Amir Pnueli. Validating

more loop optimizations. In Proceedings of the 4th International Workshop on

Compiler Optimization meets Compiler Verificaiton, 2005.

[40] Yuqiang Huang, Bruce R. Childer, and Mary Lou Soffa. Catching and identi-

fying bugs in register allocation. In Static Analysis Symposium, pages 281–300.

Springer, 2006.

141

[41] Anick Jesdanun. GE energy acknowledges blackout bug. Associated Press,

2004. http://www.securityfocus.com.

[42] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation. In Proceedings of the 2004 International

Symposium on Code Generation and Optimization (CGO’04), Palo Alto, Cali-

fornia, Mar 2004.

[43] Sorin Lerner, Todd Millstein, and Craig Chambers. Automatically proving

the correctness of compiler optimizations. In Proceedings of the 2003 ACM

SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), pages 220–231, 2003.

[44] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. Automated

soundness proofs for dataflow analyses and transformations via local rules. In

Proceedings of the 32th ACM Symposium on Principles of Programming Lan-

guages (POPL), 2005.

[45] Xavier Leroy. Formal certification of a compiler back-end, or: programming a

compiler with a proof assistant. In Proceedings of the 33th ACM Symposium

on Principles of Programming Languages (POPL), pages 42–54. ACM Press,

2006.

[46] Nancy G. Leveson. An investigation of the Therac-25 accidents. IEEE Com-

puter, 26:18–41, 1993. http://sunnyday.mit.edu/papers/therac.pdf.

142

http://www.securityfocus.com
http://sunnyday.mit.edu/papers/therac.pdf

[47] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufmann, 1997.

[48] Madan Musuvathi and Shaz Qadeer. Iterative context bounding for systematic

testing of multithreaded programs. In Proceedings of the 34th ACM Symposium

on Programming Languages (POPL), pages 446–455, 2007.

[49] Madanlal Musuvathi, David Park, Andy Chou, Dawson Engler, and David Dill.

CMC: A pragmatic approach to model checking real code. In Symposium on

Operating System Design and Implementation, 2002.

[50] Madanlal Musuvathi and Shaz Qadeer. Fair stateless model checking. In Pro-

ceedings of the ACM SIGPLAN Conference on Programming Languages Design

and Implementation (PLDI), 2008.

[51] George C. Necula. Translation validation for an optimizing compiler. In Pro-

gramming Language Design and Implementation, pages 83–95. ACM Press,

2000.

[52] Doron Peled. All from one, one for all: on model checking using representatives.

In Proceedings of the 5th Conference on Computer Aided Verification, pages

409–423. Springer, 1993.

[53] A. Pnueli, O. Shtrichman, and M. Siegel. Translation validation for synchronous

languages. Lecture Notes in Computer Science, 1443:235–250, 1998.

[54] Amir Pnueli. The temporal logic of programs. In 18th IEEE Symposium Foun-

dations of Computer Science (FOCS 1977), pages 46–57, 1977.

143

[55] Amir Pnueli. Verification of procedural programs. In We Will Show Them!

Essays in Honour of Dov Gabbay, Volume Two, pages 543–590. College Publi-

cations, 2005.

[56] Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent

software. In Tools and Algorithms for the Construction and Analysis of Systems,

pages 93–107, April 2005.

[57] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural

dataflow analysis with applications to constant propagation. In Proc. of the

Sixth International Joint Conference CAAP/FASE, Aarhus, Denmark, 1995.

[58] Martin C. Rinard. Credible compilation. Technical Report MIT-LCS-TR-776,

MIT, 1999.

[59] Xavier Rival. Symbolic transfer function-based approaches to certified compila-

tion. In 31st Symposium on Principles of Programming Languages, pages 1–13.

ACM Press, 2004.

[60] S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful techniques for the automatic

generation of invariants. In Rajeev Alur and Thomas A. Henzinger, editors,

Proceedings of the Eighth International Conference on Computer Aided Verifi-

cation CAV, volume 1102, pages 323–335, New Brunswick, NJ, USA, / 1996.

Springer Verlag.

[61] Loren Taylor Simpson. Value-Driven Redundancy Elimination. PhD thesis,

Rice University, 1996.

144

[62] Jean-Baptiste Tristan and Xavier Leroy. Formal verification of translation val-

idators: a case study on instruction scheduling optimizations. In Proceedings of

the 35th ACM Symposium on Principles of Programming Languages (POPL).

ACM Press, 2008.

[63] Jean-Baptiste Tristan and Xavier Leroy. Verified validation of Lazy Code Mo-

tion. In Programming Language Design and Implementation 2009, 2009. To

appear.

[64] Jean-Baptiste Tristan and Xavier Leroy. Verified validation of lazy code mo-

tion. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI). ACM Press, 2009.

[65] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio

Lerda. Model checking programs. Automated Software Engineering, 10(2):203–

232, April 2003.

[66] Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert M. Kirby. Dis-

tributed dynamic partial order reduction based verification of threaded soft-

ware. In Dragan Bosnacki and Stefan Edelkamp, editors, SPIN, volume 4595

of Lecture Notes in Computer Science, pages 58–75. Springer, 2007. Model

Checking Software, 14th International SPIN Workshop, Berlin, Germany, July

1-3, 2007, Proceedings.

[67] Lenore Zuck, Amir Pnueli, Yi Fang, and Benjamin Goldberg. VOC: A method-

ology for the translation validation of optimizing compilers. Journal of Univer-

sal Computer Science, 9(3):223–247, 2003.

145

[68] Lenore Zuck, Amir Pnueli, Benjamin Goldberg, Clark Barrett, Yi Fang, and

Ying Hu. Translation and run-time validation of loop tranformations. Formal

Methods in System Design, 27(3):335–360, 2005.

[69] Lenore Zuck, Amir Pnueli, and Raia Leviathan. Validation of optimizing com-

pilers. Technical Report MCS01-12, Weizmann Institute of Science, 2001.

146

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions

	Compiler Verification
	Background
	Preliminaries
	Transition Graphs
	Inductive Assertion Network
	The Notion of Correct Translation
	Consonant Transition Graphs
	Notation

	Interprocedural Translation Validation
	Interprocedural Translation Validation Algorithm
	Invariants for Interprocedural Constant Propagation
	Translation Verification Conditions
	ITV Example: Constant Propagation and TRE

	Compiler Validation via Analysis of the Cross-Product (CoVaC)
	Introduction
	Comparison Graphs
	Comparison Graph Construction
	Correlating the Unbounded Heaps
	CoVaC Implementation
	Experimental Results

	Related Work
	Conclusions

	Verifying multithreaded C programs with pancam
	Introduction
	Background
	Spin
	Model Driven Verification

	Model Checking C programs with pancam
	Addressing State Space Explosion
	Abstraction
	Context-Bounded Checking

	On-the-fly Dynamic Partial Order Reduction
	Preliminaries
	Superstep Partial Order Reduction
	Application to Multithreaded Programs
	Implementation of Superstep Reduction in pancam

	Experimental Results
	Related Work

	Conclusion
	CoVaC Proofs
	Correctness of SPOR
	Bibliography

