A Translation System for Enabling Data Mining
Applications on GPUs

Wenjing Ma
Department of Computer Science and
Engineering
The Ohio State University
Columbus, OH
mawe@cse.ohio-state.edu

ABSTRACT

Modern GPUs offer much computing power at a very modest cost.
Even though CUDA and other related recent developments are ac-
celerating the use of GPUs for general purpose applications, sev-
eral challenges still remain in programming the GPUs. Thus, it is
clearly desirable to be able to program GPUs using a higher-level
interface.

In this paper, we offer a solution that targets a specific class of
applications, which are the data mining and scientific data analysis
applications. Our work is driven by the observation that a com-
mon processing structure, that of generalized reductions, fits a large
number of popular data mining algorithms. In our solution, the pro-
grammers simply need to specify the sequential reduction loop(s)
with some additional information about the parameters. We use
program analysis and code generation to map the applications to a
GPU. Several additional optimizations are also performed by the
system.

We have evaluated our system using three popular data min-
ing applications, k-means clustering, EM clustering, and Princi-
pal Component Analysis (PCA). The main observations from our
experiments are as follows. The speedup that each of these appli-
cations achieve over a sequential CPU version ranges between 20
and 50. The automatically generated version did not have any no-
ticeable overheads compared to hand written codes. Finally, the
optimizations performed in the system resulted in significant per-
formance improvements.

Categories and Subject Descriptors

D.1.3 [Concurrent Programming]: Parallel Programming

General Terms
Design

Keywords
GPGPU, CUDA, Data Mining

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICS’09, June 8-12, 2009, Yorktown Heights, New York, USA.

Copyright 2009 ACM 978-1-60558-498-0/09/06 ...$5.00.

400

Gagan Agrawal
Department of Computer Science and
Engineering
The Ohio State University
Columbus, OH
agrawal@cse.ohio-state.edu

1. INTRODUCTION

The availability of large datasets and increasing importance of
data analysis for scientific discovery is creating a new class of high-
end applications. Recently, the term Data-Intensive SuperComput-
ing (DISC) has been gaining popularity [8], and includes applica-
tions that perform large-scale computations over massive datasets.
This class of applications includes data mining and scientific data
analysis. Developing new data mining algorithms for scientific data
processing has been an active topic for at least the past decade.

With increasing dataset sizes, need for interactive response from
analysis tools, and recent trends in computer architecture, we be-
lieve that this area is facing a significant challenge with respect to
achieving acceptable response times. Starting within the last 3-4
years, it is no longer possible to improve processor performance
by simply increasing clock frequencies. As a result, multi-core ar-
chitectures and accelerators like Field Programmable Gate Arrays
(FPGAs) and Graphics Processing Units (GPUs) have become cost-
effective means for scaling performance.

Modern GPUs offer an excellent performance to price ratio for
scaling applications. Furthermore, the GPU computing capabili-
ties and programmability continue to improve rapidly. A very sig-
nificant recent development had been the release of CUDA (Com-
pute Unified Device Architecture) by NVIDIA. CUDA allows GPU
programming with C language-like features, thus easing the de-
velopment of non-graphics applications on a GPU. More recently,
OpenCL seems to be emerging as an open and cross-vendor stan-
dard for exploiting computing power of both CPUs and GPUs.

Even prior to these developments, there had been a growing in-
terest in the use of GPUs for non-graphics applications [9, 11, 14,
17, 19, 21, 43], as also documented in the GPGPU (General Pur-
pose computing with GPUs) web-site'. There are several reasons
why it is desirable to exploit GPU computing power for data min-
ing applications. Users with a single desktop usually have a pow-
erful GPU to support their graphics applications. Such users can
speedup their data mining implementations with this GPU. In other
scenarios, a cluster may be available for supporting large-scale data
processing. Such clusters often need to have visualization capabil-
ities, which means that each node has a powerful graphics card.

Even though CUDA (and now OpenCL) are accelerating the use
of GPUs for general purpose applications, several challenges still
remain in programming the GPUs. Both CUDA and OpenCL in-
volve explicit parallel programming, and explicit management of
its complex memory hierarchy. In addition, allocating device mem-
ory, data movement between CPU and device memory, data move-
ment between memory hierarchies, and specification of thread grid
configurations is explicit. This implies a significant learning curve

'www.gpgpu.org

for programmers who want to improve the performance of their
applications using the GPUs. Thus, it will clearly be desirable to
be able to program GPUs using a higher-level interface. Further-
more, as we will show in this paper, application performance on
GPUs can be optimized through methods that are not very obvious
or intuitive. Such optimizations can be easily and automatically
performed through an automatic code generation system.

In this paper, we offer a solution that is driven by the observation
that a common processing structure fits a large number of popu-
lar data mining applications. We had earlier made the observa-
tion that parallel versions of several well-known data mining tech-
niques share a relatively similar structure [29, 28]. We carefully
studied parallel versions of apriori association mining [2], Bayesian
network for classification [13], k-means clustering [27], k-nearest
neighbor classifier [24], artificial neural networks [24], and deci-
sion tree classifiers [37]. In each of these methods, parallelization
can be done by dividing the data instances (or records or transac-
tions) among the nodes or threads. The computation on each node
involves reading the data instances in an arbitrary order, processing
each data instance, and performing a local reduction. The reduc-
tion involves only commutative and associative operations, which
means the result is independent of the order in which the data in-
stances are processed. After the local reduction on each node, a
global reduction is performed. Thus, we can expect similarities in
how they can be ported on GPUs.

In our solution, the programmers simply need to specify the se-
quential reduction loop(s) with some additional information about
the parameters. We use program analysis and code generation to
map the applications to a GPU. Several additional optimizations
are also performed by the middleware. In addition, we allow the
programmers to provide other functions and annotation, which can
help achieve better performance. Overall, our work shows that very
simple program analysis and code generation techniques can allow
us to support a class of applications on GPUs with a higher-level
interface than CUDA and OpenCL.

We have evaluated our system using three popular data min-
ing applications, k-means clustering, EM clustering, and Princi-
pal Component Analysis (PCA). The main observations from our
experiments are as follows. The speedup that each of these applica-
tions achieve over a sequential CPU version ranges between 20 and
50. The automatically generated middleware version did not have
any noticeable overheads compared to hand written codes. Finally,
the optimizations performed in the system resulted in significant
performance improvements.

The rest of the paper is organized as follows. In Section 2, we
give background on GPUs and GPGPU. In Section 3, we discuss
parallel data mining algorithms and give an overview of our sys-
tem. Details of implementations of our system are presented in
Section 4. The results from our experiments are presented in Sec-
tion 5. We compare our work with related research efforts in Sec-
tion 6 and conclude in Section 7.

2. GPU AND GPGPU

Our work has used GeForce 8800 GTX and 9800 GX2 graphics
cards. In this section, we give a brief description of the architecture
and programming model of 8800 GTX card, which is also common
to many other newer cards.

This particular device has 16 multiprocessors, each with a 575
MHz core clock and 16 KB of shared memory. The device memory
totals 768 MB, with memory bandwidth of 86.4 GB/sec and 384-bit
memory interface. Starting with the 8 Series GeForce, NVIDIA has
started supporting high-level programming of the GPUs through

401

CUDA, which is a C-like parallel language. The computation to
be performed by the device can be written as in normal C, with
some predefined parameters and functions. Critical parameters of
the computation, such as the configuration of the thread grid and
size of shared memory to be used, have to be supplied by the de-
veloper explicitly.

The kernel function is executed by the GPU in a SIMD man-
ner, with threads executing on the device organized as a grid of
thread blocks. Threads in one block have access to the same shared
memory, which is a small piece of memory with high access speed.
A mechanism for thread synchronization within one block is pro-
vided [38]. Each thread block is executed by one multiprocessor,
and the threads within a block are launched in warps. Warps of
threads are picked by the multiprocessor for execution, the exact
order is undefined. The number of threads in a warp is fixed for
a particular architecture. In the GeForce 8800 GTX model that
we used, 32 threads are launched in every warp. The number of
thread blocks, however, can be varied by the developer based on
requirements of computation or other preferences, with the maxi-
mum number being 65536 in one grid.

#define BLOCK 8
#define THREADS 256
void compute(int* A, int* v, int n)

int* A_d, *v_d;

CUDA_SAFE_CALL(cudaMalloc((void**) &A_d,

n* sizeof(int)));

CUDA_SAFE_CALL(cudaMemcpy(A_d, A, n * sizeof(int),
cudaMemcpyHostToDevice));

CUDA_SAFE_CALL(cudaMalloc((void**) &v_d,

n* sizeof(int)));

CUDA_SAFE_CALL(cudaMemcpy(v_d, v, n * sizeof(int),
cudaMemcpyHostToDevice));

dim3 grid(BLOCK, 1, 1);

dim3 threads(THREADS, 1, 1);

add_device< << grid, threads,0 >>>(A_d, v_d, n);

CUDA_SAFE_CALL(cudaMemcpy(v, v_d, n * sizeof(int),
cudaMemcpyDeviceToHost));

CUDA_SAFE_CALL(cudaFree(A_d));

CUDA_SAFE_CALL(cudaFree(v_d));

__global__ void add_device(int* A_d, int* v_d, int n)
{
const unsigned int bid=blockldx.x;
const unsigned int tid=threadldx.x;
__syncthreads();
for(int i=0;¢ < n;i+=THREADS*BLOCK)
v_d[i+bid*THREADS+tid]+=A_d[i+bid*THREADS+tid];
__syncthreads();

Figure 1: Sample CUDA program

To illustrate how GPUs are programmed with CUDA, let us con-
sider the example in Figure 1. In this simple code, we add the
values of each element in array A[] to v[]. A[] and v[] are arrays of
n integers. compute () is the function that invokes the kernel on
the device. add_device () is the kernel function. The directive
__global__ implies that this function is called by host and ex-
ecuted on device. First, A[] and v[] are copied to device memory,
then the kernel function is configured and invoked. After the kernel
function returns, values of v[] are copied back to host memory. In
this example, shared memory is not used.

OpenCL, which is the emerging open and cross-vendor stan-
dard, offers similar programming abstractions. An example code

can be found from the Wiki entry for OpenCL (Please refer to
http://en.wikipedia.org/wiki/OpenCL).

3. SYSTEM DESIGN

Though CUDA and OpenCL are accelerating the use of GPUs
for non-graphics applications, it still requires explicit parallel pro-
gramming. Moreover, the programmers are also responsible for
managing the memory hierarchy and for specifying data move-
ment. As we can see from the example in Figure 1, knowledge
of CUDA functions for invoking procedures, allocating memory,
and data movement is also needed.

Our system is designed to ease GPU programming for a specific
class of applications. Besides a C program to be executed on CPUs,
the only required input from programmers is explicit recognition of
reduction functions to be parallelized on GPUs, with additional in-
formation about the variables. Given such user input, the system
can generate CUDA functions that execute these reduction func-
tions in parallel, and the host functions invoking them. While the
current implementation targets CUDA, we believe that the system
can be easily extended to generate OpenCL code as well.

The architecture of the system is shown in Figure 2. There are
four components in the user input. The first three are analyzed by
the system, they are: variable information, reduction function(s),
and additional optional functions. The fourth component is the host
program. The system itself has three components: code analyzer,
which obtains variable access patterns and combination operations,
variable analyzer, and the code generator. By analyzing the vari-
ables and the sequential reduction function(s), the system gener-
ates the kernel functions, grid configuration, and other necessary
code. By compiling these functions with the the user-specified host
program, an executable file is generated.

We used LLVM as the framework for program analysis [32]. We
particularly benefited from the clear structure of its Intermediate
Representation (IR).

User input
“Narable Reduction Optional
information functions functions
Code Analyzer
(InLLVM

\Fgaaﬁi able Aaccess

. ern an

Variable Analyzer Combination Operatio
‘_> Code Generator

] (]
: - - Host
Kernel Grid configuration
[functions} [and kernel %vocation J Program

| |
Executable

Figure 2: Overall System Design: User Input is Shown as
Shaded Boxes

3.1 Parallel Data Mining

Our system exploits a common structure underlying most data-
intensive and data mining algorithms. In our previous work [29,

402

28], we have made the observation that parallel versions of sev-
eral well-known data mining techniques share a similar structure.
We have carefully studied parallel versions of apriori association
mining [2], Bayesian network for classification [13], k-means clus-
tering [27], k-nearest neighbor classifier [24], artificial neural net-
works [24], and decision tree classifiers [37].

{ * Outer Sequential Loop * }
While () {
{ * Reduction Loop * }
Foreach (element e) {
(i,val) = process(e);
Reduc(i) = Reduc(i) op val;

}

Figure 3: Generalized Reduction Processing Structure of Com-
mon Datamining Algorithms

The common structure behind these algorithms is summarized in
Figure 3. The function op is an associative and commutative func-
tion. Thus, the iterations of the foreach loop can be performed in
any order. The data-structure Reduc is referred to as the reduction
object. The reduction performed is, however, irregular, in the sense
that which elements of the reduction objects are updated depends
upon the results of the processing of an element. For example, in
k-means clustering, each iteration involves processing each point
in the dataset. For each point, we determine the closest center to
this point, and compute how this center should be updated.

The generalized reduction structure we have identified from data
mining algorithms has some similarities with the map-reduce par-
adigm that Google has developed [15]. It should be noted that our
first work on generalized reduction observation with regard to par-
allel data mining algorithms was published in 2001 [29], prior to
the map-reduce paper by Dean and Ghemawat in 2004. There are
also some differences in the generalized reductions that we focus
on and the map-reduce style of computations.

For algorithms following such generalized reduction structure,
parallelization can be done by dividing the data instances (or records
or transactions) among the processing threads. The computation
performed by each thread will be iterative and will involve read-
ing the data instances in an arbitrary order, processing each data
instance, and performing a local reduction.

Our system targets GPU-based parallelization of only the func-
tions that follow this structure. By targeting a limited class of func-
tions, we can simplify program analysis and automatic generation
of GPGPU programs, while still offering a simple and high-level
interface for the programmers.

3.2 System API

Using the common generalized reduction structure of our target
applications, we provide a convenient API for a programmer. The
format of input for a reduction function is shown in Figure 4. If
there are multiple reduction functions, for example, the E phase
and M phase in EM clustering, the user can define more than one
section by specifying 1abels for each one. A host program, not
shown in Figure 4, invokes these reduction functions. Besides the
label and the host program, the other components are as follows.
Variables for Computing: As shown in Figure 4, the declaration
of each variable follows the following format:

name, type, length[value]

name is the name of the variable, t ype can be either a numeric
type like int or pointer type like int « , which indicates an array.
If this is a pointer, Length is the size of the array, which can be

label

Variable information:
variable_declare,
variable_declares

variable_declare,
functions // reduction and some optional functions

variable_declare:
name, type, lengthl[value]

Figure 4: Format of the User Input

a list of numbers and/or integer variables, and the size of the array
is the multiplication of these terms. Otherwise, this field denotes
a default value. We require all pointers to be one-dimensional,
which means the user should marshal the multi-dimensional arrays
and structures into 1-D arrays.

Sequential Reduction Function: The user can write the sequen-
tial code for the main loop of the reduction operation in C. Any
variable declared inside the reduction function should also appear
in the variable list as shown in Figure 4, and memory allocation for
these variables is not needed.

Optional Initialization and Combination Functions from the
User: Normally, the initialization and combination for the reduc-
tion objects and other variables is done by the code generator com-
ponent of the system. However, if the user is familiar with CUDA
programming, they can provide their own combination and initial-
ization functions, potentially improving the performance.

An example of user input for the k-means clustering algorithm
is shown in Figure 5. The first line is the number of reduction
functions, which is 1 here. The second line is the label kmeans.
The following 5 lines are variable descriptions. Then, a sequential
reduction function is provided.

4. SYSTEM IMPLEMENTATION

This section describes the implementation of our system.

4.1 Code and Variable Analysis

The program analysis part comprises of three components. The

first of these components is obtaining variable access information
from a reduction function.
Obtaining Variable Access Features: We classify each variable
as one of input, output and temporary. An input variable
is input to the reduction function, which is not updated in the func-
tion, and does not need to be returned. An output variable is to
be returned from the reduction function, as it is updated in the func-
tion. A temporary variable is declared inside the reduction func-
tion for temporary storage. Thus, an input variable is read-only,
and output and temporary variables are read-write. Variables
with different access patterns are treated differently in declaration,
result combination, and memory allocation strategies described in
the rest of this section.

Such information can usually be obtained from simple inspec-
tion of a function. However, since we are supporting C language,
complications can arise because of the use of pointers and alias-
ing. In our implementation, first an Intermediate Representation
(IR) is generated for the sequential reduction function with LLVM.
Second, we used Anderson’s point-to analysis [3] to obtain the

403

1

kmeans

k int

n int

data float* n 3
update float* 5 k
cluster float* 3 k

void device_reduc(float* data, float* cluster, float* update,
int k, int n)

for(int i=0;i<n;i++)
{
float min=65536*65, dis;
float* mydata=data+i*DIM;
int min_index=0;
for (int i=0;i<k;i++) {
float x1,x2,x3;
x1 = cluster[i*DIM];
x2 = cluster[i*DIM+1];
x3 = cluster[i*DIM+2];
dis = sqrt((mydata[0]-x1)* (mydata[0]-x1)+
(mydata[1]-x2)* (mydata[1]-x2)+
(mydata[2]-x3)* (mydata[2]-x3));
if (dis<min) { min=dis; min_index=i; }
}
update[5*min_index] += mydata[0];
update[S*min_index+1] += mydata[1];
update[5*min_index+2] += mydata[2];
update[S*min_index+3] +=1;
update[5*min_index+4] += min;

—_

Figure 5: User Input for k-means

point—-to set for each variable in the function’s argument list.
Finally, we trace the entire function. When a st ore operation is
found, if the destination of the store belongs to a points-to set of
any variable in the function’s argument list, and the source is not
in the same set, we conclude that it is an output variable. All
the other variables in the argument list are denoted as input vari-
ables, and all the variables that do not appear in the argument list
are considered temporary variables.

data input
update output
k input
n input
cluster input

Figure 6: Classification of Variables for K-means Reduction
Function

As an example, let us consider the user input for k-means that we
had shown earlier in Figure 5. The output obtained by analyzing
the IR generated by LLVM for the reduction function in shown in
Figure 6.

Variable Analysis and Parallelization: The variable analysis phase
focuses on identifying how the reduction loop should be paral-
lelized and if variables should be distributed or replicated.

We proceed by mapping the structure of the loop being analyzed
to the canonical reduction loop we had shown earlier in Figure 3.
We focus on the main outer loop and extract the loop variable. We
also identify (symbolically) the number of iterations in the loop,

and denote it as num_iter. If there are nested loops, for simplicity,
we only parallelize the outer loop.

Next, we focus on the variables accessed in the loop. If a variable

is only accessed with an affine subscript of the loop variable, it is
denoted as a loop variable. Note that this variable could be an input,
output, or temporary variable. The significance of a loop variable
is that it can be distributed among the threads. All other variables
need to be replicated, if they are written in the loop.
Extracting the Combination Operations: After local reduction is
done by each thread, we need to combine their output variables,
which are then copied to the host memory. Because we are focus-
ing on reduction functions where output variables are updated
with associative and commutative functions only (see Figure 3),
the output variables updated by different threads can be correctly
combined in the end. However, we need to identify the particular
associative and commutative operator that is being used.

Earlier, we had generated the point—to sets for each parame-
ter of the reduction function. We now conduct a new scan on the
IR to find the reduction operator for each output variable. In the
combination function, the values for a particular output parameter
from each thread is combined using this function.

4.2 Mapping to GPGPU

Using the user input and the information extracted by the vari-
able and code analyzer, the system next generates corresponding
CUDA code and the host functions invoking CUDA-based parallel
reductions.

Grid Configuration and Kernel Invocation: The host reduction
function host_reduc () which invokes the kernel on device has
3 parts:

Declare and Copy: We allocate device memory for vari-
ables to be used by the computing function on the GPU. We copy
the ones that are needed to be read from host memory to device
memory. Currently, we allocate memory for all variables except
the temporary variables that are going to use shared memory. As
we described earlier, loop variables are distributed across threads,
depending upon how they are accessed across iterations. The read-
write variables not denoted as loop might be updated simultane-
ously by multiple threads, so we create a copy for each thread.
Again, because of the nature of the loops we are focusing on, we
can assume that a combination function can produce the correct
final value of these variables.

Compute: We configure the thread grid on the device, and in-
voke the kernel function. Different thread grid configurations can
be used for different reduction functions in one application. For
example, in EM clustering, E phase and M phase can use different
configurations. Currently, we configure the thread grid manually.
In our future work, we hope to develop cost models that allow us to
configure thread grids automatically.

Copy updates: We copy the variables needed by the host
function. We perform the global combination for output vari-
ables which are not loop variables.

Generating Kernel Code: This task includes generating global
function reduc() and device function device_reduc(), as well as de-
vice functions init() and combine(), if necessary. reduc() is the
global function to be invoked by the host reduction function. It
performs the initialization for the variables involves. The device
main loop function device_reduc() is then invoked. Finally, one
thread will execute combine() which performs the global combina-
tion. Between invocation of each function and at the end of reduc(),
a __syncthreads() is inserted.

Generating Local Reduction Function: device_reduc() is the main
loop to be executed on the GPU. This function is generated by

rewriting the original sequential code in the user input, accord-
ing to the information generated by the code and variable analyzer
phases. The modifications include: 1) Dividing the loop to be par-
allelized by the number of blocks and number of threads in each
block. 2) Rewriting the index of the array which are distributed.
For example, we have an access to data[i], it is changed to
data[i+index_n],where index_n isthe offset for each thread
in the entire grid. 3) Optimizing the use of shared memory, which
we will discuss later.

4.3 Optimizations

We now describe two key optimizations that are implemented in
our system.

4.3.1 Dealing with Shared Memory

Shared memory is a fast but very small read-write memory on
the GPU. By making effective use of this memory, the performance
of GPU applications can be improved dramatically. In various ap-
plication studies that have been reported on GPUs, users have ob-
tained significantly better performance with effective use of shared
memory. However, because of its very small size, deciding which
variables to put into shared memory is quite challenging.

Now we will describe the mechanisms we have developed in our
system, to make the use of shared memory transparent to the pro-
grammers. First, the amount of shared memory that each array
needs is calculated with the following expression:

Size = length * sizeof(type) * thread_in fo

Here, 1length is the length of this variable, type is one of
char, int, float. The last factor thread_infois 1 ifin-
put or loop is true, and n_threads otherwise. It implies that if
an array is read-write and not distributed over all threads, we need
n_threads copies of it.

To keep our system simple, we have focused on techniques that
do not require advanced program analysis. The three schemes we
have developed are as follows:

No sorting: In this intuitive approach, the variable declarations are
examined one by one. We simply allocate variables to shared mem-
ory as long as the memory requirements of all variables allocated
do not exceed the total size of the shared memory.
Greedy-sorting: Thus, in this approach, all the arrays are sorted
with increasing order of their size. We select the variables to
allocate onto shared memory from the beginning of this sorted array
list, until the size of data on shared memory exceeds its limit.
Write-first sorting: We found a non-intuitive optimization for the
shared memory. By allocating variables that are updated in the
reduction function at the lowest addresses in the shared memory,
we can further improve performance. Thus, our write-first sorting
is a variant of the greedy-sort strategy, where we insert variables
that are written at the beginning of the sorted list.

4.3.2 Reducing Memory Allocation and Copy Over-
heads

Memory allocation and data movement overheads can be signif-
icant on GPUs. To enable optimization of these costs, we allow
users to specify additional directives. Particularly, in applications
where a reduction function is invoked repeatedly, or where multi-
ple reduction functions are invoked, user directives can help reduce
memory allocation and data movement overheads.

As part of the input file, a user can use two directives, common
and extern, to indicate the features of certain variables. When a
variable is denoted as common, we allocate memory for this vari-
able only in the first invocation of the reduction function, and not
in subsequent iterations. Similarly, when a variable is declared as

extern, it implies that the variable neither needs to be allocated
in memory nor to be copied from host memory for this particular
reduction function. This means that we expect a valid copy of this
variables from the invocation of an earlier reduction function. For
example, in our experiments with EM clustering, some of the vari-
ables can be declared as common for the E phase, and extern
for the M phase. This is because an allocation and copy is needed
only for the first invocation of the E phase reduction function, and
not for M phase reduction functions, or subsequent invocation of E
phase reduction functions. In the future, we will like to use inter-
procedural analysis between the host function and various reduc-
tion functions to automate the identification of extern and common
variables.

S. APPLICATIONS AND EXPERIMENTAL
RESULTS

This section reports on three data mining applications we ported
on GPUs with our system. We also present a detailed evaluation
study. Specifically, we had the following three goals in our experi-
ments:

e Evaluating the overall performance of the system generated
programs, measured as their speedup over a single threaded
program executed on a CPU.

e Comparison of our system or middleware approach with a
manual version, to understand performance advantages or
disadvantages of our approach.

e Evaluation of the benefits from a number of optimizations
we have implemented in our system.

The sequential baseline executions were obtained on a Dell Di-
mension 9200 PC. It is equipped with Intel(tm) Core™™ 2 E6420
Duo Processor with 2.13 GHz clock rate, 1GB Dual Channel DDR2
SDRAM memory at 667 MHz, a 4MB L2 cache and a 1066 MHz
front side bus. The GPU versions used the same CPU, and a 768MB
NVIDIA GeForce 8800 GTX, with 16 multiprocessors and 16KB
shared memory on each multiprocessor. Some of our experiments
were also performed using the GeForce 9800 GX2 card.

5.1 K-means Clustering

Clustering is one of the key data mining problems and k-means [27]

is one of the most popular algorithms. The clustering problem is as
follows. We consider transactions or data instances as representing
points in a high-dimensional space. Proximity within this space is
used as the criterion for classifying the points into clusters. Four
steps in the sequential version of k-means clustering algorithm are
as follows: 1) start with k given centers for clusters; 2) scan the
data instances, for each data instance (point), find the center closest
to it and assign this point to the corresponding cluster, 3) deter-
mine the k centroids from the points assigned to the corresponding
center, and 4) repeat this process until the assignment of points to
cluster does not change.

The user input was shown earlier in Figure 5. In the variable
description, k is the number of clusters, n is the length of the data
block, data is the input data, and update stores reduction ob-
jects.

The performance of automatically generated programs on a 384
MB dataset is shown in Figure 7. All results are reported as a
speedup over a sequential version execution on the 2.13 GHz CPU.
Since the execution time does not change over iterations, we only
show the execution time of the first 2 iterations. On the X scale,

405

n+m implies executions with m block and n threads per block. The
execution time on GPUs had two distinct components: the compu-
tation time, and the time spent moving data and results between the
CPU and the GPU. We report two different speedup numbers. The
computing speedups show the ratio between the execution time
on the CPU and the computing time on the GPU. The computing
with copy speedups show the ratio between the execution time
on the CPU and the total execution time (including data movement
time) using the GPU.

We also repeated the same experiment using GeForce 9800GX2.
The results are shown in Figure 8. The speedups are somewhat
lower than that on GeForce 8800GTX. This is because the memory
bandwidth on 1 GPU of GeForce 9800GX2 is lower than that on
GeForce 8800. As there was only a small difference in the per-
formance between these two cards, we only report results from
8800GTX card in the rest of this section.

Input: k, # of clusters,
Y ={y1...yn}, set of n p-dimensional points,
€, a tolerance for loglikelihood,
maxiterations, maximum number of iterations.
Output: C, R, W, the matrices containing the updated mixture
parameters.
X, a matrix with cluster membership probabilities.
Initialize: Set initial values for C, R, and W (random
or approximate solutions)
WHILE: §(llh) > € and maziterations has not been reached
DO E and M steps
E step
C''=R =W =1h=0
fori=1ton

sump; =0

forj=1tok
6ij = (yi —ij)tR*l(yi —103')
pij = (27‘.);)/21‘12‘1/2 6!1}])(—561])
sump; = sump; + pij

endfor

x; = pi/sump; , llh = llh + In(sump;)

C'=C"+yixt , W =W +a;
endfor
M step
forj=1tok
C; = C5/W;

fori=1ton
R =R+ (yi — Cj)wij(yi — C5)"
endfor
endfor
R=R'/n, W=W'/n

Figure 9: Sequential code for the Expectation Maximization
Algorithm

The best speedups are nearly a factor of 50 over the CPU ver-
sion. However, when the data movement times are included, the
speedup decreases to nearly 20. Another observation is that the
execution times of middleware versions are almost identical to the
hand-coded version, showing that middleware does not introduce
any overheads. In fact, the only observable difference is with 1
block and 64 threads, and in this case, the middleware version is ac-
tually faster. This is because with a smaller number of threads, all
replicated copies of centroids to be updated (the variable update)
fit into the shared memory. The middleware detected this feature
and benefited from using shared memory. The manual version was
designed to execute on all configurations, and because replicated
copies of this variable cannot fit in shared memory with larger num-

—&— manual-computing
—%<— manual-computing with copy
—&— middleware-computing

—#— middleware-computing with copy

60

50 / ;\

40

30

20
10

Speedup over CPU sequential version

64*1
128*1
256*1
512*1
256*2
256%4
256*8

256*16
256%*32
256*64
256*256

Figure 7: Speedup of k-means on GeForce 8800GTX

—— manual-computing

—l— manual-computing with copy
—¥— middleware-computing

—&— middleware-computing with copy

=]

£ 20

E 16 //
5 14 .
g 12

2 10 /
Q

x

g

Q

g o0

wn

64*1
128*1
256*1
256%2
256%4
256*8

256*16
256%*32
256*64

256*256

Figure 10: Scalability of EM Application

ber of threads, this optimization was not performed. The best per-
formance is obtained with 256 thread per block and 16 or 32 blocks.
More threads per block allows more concurrency. The maximum
threads we can use in a block is 512, but this configuration does not
obtain the best speedup, because of the larger amount of time that
is spent on global combination. As there are 16 multiprocessors,
best speedups are obtained with 16 or 32 blocks. Using a larger
number of blocks only increases contention for resources, and does
not allow any more parallelism.

5.2 EM Clustering Algorithm

The second data mining algorithm we have considered is also
for clustering. Expectation Maximization (EM) is another popular
clustering algorithm. The EM algorithm was first introduced in the
seminar paper [16]. EM is a distance-based algorithm that assumes

406

—— middleware-computing
—>*— middleware-computing with copy
—&— manual-computing
,E —@ — manual-computing with copy
5 40
= 35 FAA_‘N
g 30
= /
2 25
¥
S D)
% 10 A—‘ /'/
o
g 5
3
o 0 1 1 1 1 1 1 1 1 1
wn
— —_ - — o~ <+ © o <t \O
* * * * * * * — o N v
<t x© O A O NN * * (o]
el (9] Vel — vy e] vy Nel Ned Ned *
— (o] v (o] (o] (o] e e Vel O
(o] N N)
N
Figure 8: Speedup of k-means on GeForce 9800GX2

—&— E-No sorting
—&— E-Write first
—¥— M-Greedy sorting

—&— E-Greedy sorting
—&— M-No sorting
—&— M-Write-first

6
5 *

3 N

53 —

'Ez [g ~————— A

|

'{

256%4
256*8
256*16
256*32
256*64

256*256

Figure 11: Comparison of E and M Phase computing time
among the 3 Shared Memory Layout Strategies

the data set can be modeled as a linear combination of multivari-
ate normal distributions. There are several advantages to using EM
for clustering data: it has a strong statistical basis, it is robust to
noisy data, it can accept the desired number of clusters as input, it
provides a cluster membership probability per point, it can handle
high dimensionality and it converges fast given a good initializa-
tion [39]. The goal of the EM algorithm is to estimate the means
C, the covariances R and the mixture weights W of a Gaussian
probability function [39]. The algorithm works by successfully im-
proving the solution found so far. The algorithm stops when the
quality of the current solution becomes stable, as measured by a
monotonically increasing statistical quantity called loglikelihood.
The sequential algorithm is shown in Figure 9.

We performed a scalability study, similar to the one we reported
earlier for k-means, and the results are shown in Figure 10. We used

—&— E-copying —=— M-copying
—&— optimized-E-copying —l— optimized-M -copying
2 /
gLs —+% . b b b =
\(f)/ -~ Y r_Y Y Y A
2 1 = = = = s——n
£0.5
) —m= L L i L _
< 2] o (o] <t O
* * — on \O el
Ne Ne * * * o
'e) 'e) Nel Nel Ne *
(@\l (o)l Vel) 'g) O
()] (o] (o] (l(:

Figure 12: Comparison of E and M Phase memory copy
time between Normal and Optimized Memory Allocation
Strategies

a 12 MB dataset. All execution times are for 11 iterations. The best
speedups are nearly 19, though when the data movement costs are
included, they reduce to 12. The speedups are lower than what
we obtained for k-means, because of a larger number of memory
operations, and, relatively, less computation.

Earlier in Section 4.3, we had described several schemes for ef-
fectively using the shared memory. The middleware generated ver-
sion whose performance we have reported is based on the use of
scheme that performed the best, which is the write-first strat-
egy. This also turns out to be the strategy that the manual version
used. Overall, the two versions are almost identical in the compute
time, but the manual version is slightly faster in the data copying
time.

Next, we focus on examining the impact that different shared
memory utilization schemes have on performance. The EM al-
gorithm involves a number of distinct variables that are accessed
with different patterns. Thus, unlike k-means and PCA, we no-
tice significant differences from different strategies. The comput-
ing time of E and M phases using the 3 strategies are displayed in
Figure 11. In the E phase, no-sorting is slower than the other
two. This is because the other two strategies copied more vari-
ables onto shared memory. In the M phase, no-sorting again
did not do well, but further, write—-first strategy outperformed
the greedy—-sort strategy. The reason for this seems to be that
this particular chip achieves better performance when data to be
updated is stored at lower addresses in the shared memory. Over-
all, the total speedup in the computing time between the version
that best uses the shared memory, and a version that does not use
shared memory at all, is 40.

We also used the EM application to study the benefits from using
optimized copying schemes. The results are shown in Figure 12.
We can see that the execution time for both E and M phases is re-
duced by eliminating unnecessary memory operations. Particularly,
the M phase copying costs are reduced to almost zero, as the input
data block could be declared as extern, and their values can be
reused from the values at the end of the E phase reduction function.

5.3 Principal Component Analysis

Principal Components Analysis is a popular dimensionality re-
duction method. This method was developed by Pearson in 1901.

407

—&— computing
—#— computing with copy
—&— optimized computing

—&— optimized computing with copy

=

5 25

=

= //A\
= 815

Qg

§>10

o 5

2

8 0 L L L L L L
o

wn

64*1
128*1s
256*1
128*2
128*4
128*8
128*16
128*32
128*64

Figure 13: Speedup of PCA: With and Without User-
provided Optimized Combination Function

Since it has many steps which are not quite compute-intensive, we
only converted the creation of the correlation matrix to CUDA.
Though we did not have a manual version for comparison, we did
create a version with manually written combination function. This
function was more efficient than the version automatically gener-
ated by our system.

The speedups on an input matrix of 256K rows, 80 columns are
shown in Figure 13. Unlike the previous two applications, the best
performance was achieved with 128 threads per block. This, in
turn, was because of the increasing overhead of global reductions
with a larger number of threads.

The optimized versions are the one with user-provided com-
bination function. These versions are faster by nearly 20%, and
show a limitation of the current program analysis and code gener-
ation performed by our middleware. The best speedups are nearly
24, though including the data movement costs, they reduce to 20.
The speedups are higher than what we obtained from EM, but not
as high as those from k-means. This is because of a higher fraction
of memory accesses, and a relatively larger cost of global combi-
nation. This is also the reason that performance decreases rapidly
when more than 16 blocks are used.

6. RELATED WORK

Exploring the computing power of GPU has been a topic of much
investigation. Before the development of CUDA, Peercy et al. [40]
proposed a computing model for GPU very similar to CUDA. Data
representation and features of operations for GPU computing were
also explored by Trancoso et al. [46]. Brook was a language devel-
oped to provide operations for data stream processing on GPUs [9].
Tarditi ez al. [45] developed techniques to compile C# with an Ac-
celerator, which evaluates the parallel part of the programs on a
GPU, and the other parts on the CPU. While their system has many
similarities with our work, they do not support complex reductions
on parallel collections, which are common in data mining opera-
tions. NVIDIA is also making efforts to make CUDA compatible
with OpenCL (Open Computing Language), an emerging open and
cross-vendor standard for GPU programming [47]. This will be an
important issue for future versions of our system.

Analysis and code generation for reduction operations has been
studied by a number of distributed memory compilation projects [1,

5,20, 26, 31, 49] as well as shared memory parallelization projects[7,
22, 23, 35, 36, 41, 48]. More recently, reductions on emerging
multi-cores have also been studied [34]. Our work has many simi-
larities, but is specific to the features of GPUs.

At Illinois, CUDA-lite [4] is being developed with the goal being
to alleviate the need for explicit GPU memory hierarchy manage-
ment by the programmers. The user input to our system is at a
higher-level, in the sense that they do not need to write parallel
code. However, our system is limited to a specific class of ap-
plications. MCUDA [44] is a compiler effort which takes CUDA
code as input, and maps it to multi-core machines. Baskaran et
al. [6] use the polyhedral model for converting C code into CUDA
automatically. Their system is limited to affine loops, and cannot
handle irregular reductions we focus on. A version of Python with
support of CUDA, Pycuda, has also been developed, by wrapping
the CUDA functions and operations into classes that are easy to
use [30]. Some recent work has also made progress in translating
OpenMP into CUDA [33]. The reported results are from simple
stencil computations, and their is no support for handling complex
reductions.

map-reduce is a widely used parallel computing tool developed
by Google, and there is already a CUDA version of map-reduce
called Mars [25]. The map-reduce API typically results in high
overheads for more compute-intensive data mining applications,
because of the need for sorting reduction elements. Our system
also supports a higher-level (almost sequential) API for these ap-
plications.

There have been a large number of application studies with GPUs.
We restrict our discussion to only data mining or data-intensive
application studies. One of the popular data mining algorithms,
k-Nearest Neighbor search, has been studied on GPUs by several
groups [10], [42], [18] and [18]. Hall and Hart [21] ported differ-
ent versions of k-means to GPU using Cg. Che et al. [12] did an
analysis of CUDA computing model and a comparison with other
architectures. Particularly, they tested k-means in CUDA, and got a
speedup of about 70 over sequential code. This report, published in
July 2008, is based on a more advanced GPU (Geforce 260 GTX).
Since our system is more general, it is to be expected that we can
optimize a single application to the same extent. However, their
work does form a basis for additional optimizations we can per-
form in our system in the future.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a solution for high-level pro-
gramming of GPUs. Our solution targets a specific class of ap-
plications, which are the data mining and scientific data analysis
applications. We exploit the common processing structure, gen-
eralized reductions, that fits a large number of popular data mining
algorithms. In our approach, the programmers simply need to spec-
ify the sequential reduction loop(s) with some additional informa-
tion about the parameters. Program analysis and code generation is
used to map the applications to a GPU. Several additional optimiza-
tions (mainly on optimizing memory usage) are also performed to
improve the performance.

We have evaluated our system using three popular data min-
ing applications, k-means clustering, EM clustering, and Principal
Component Analysis (PCA). The speedup that each of these ap-
plications achieve over a sequential CPU version ranges between
20 and 50. The code automatically generated by our system did
not have any noticeable overheads compared to hand written codes.
Finally, significant performance improvements were obtained with
the optimizations we have implemented.

408

Our work has also indicated additional optimization that can be
developed through more advanced compiler analysis techniques.
Better code analysis can allow us to optimize the global combina-
tion functions without user intervention. Similarly, inter-procedural
analysis can enable reduction in memory allocation and copying
costs, without requiring specification of extern and common from
the programmer. We can also take into account the variable ac-
cess frequency for improving shared memory allocation schemes.
We will also like to consider bank conflicts to further improve the
utilization of shared memory.

Acknowledgements

This work was supported by NSF grants 0541058, 0619041, and
0833101. The equipment used for the experiments reported here
was purchased under the grant 0403342.

8. REFERENCES

[1] Vikram Adve and John Mellor-Crummy. Using Integer Sets
for Data-parallel Program Analysis and Optimization. In
Proceedings of the SIGPLAN 98 Conference on
Programming Language Design and Implementation, June
1998.

R. Agrawal and J. Shafer. Parallel Mining of Association
Rules. IEEE Transactions on Knowledge and Data
Engineering, 8(6):962 — 969, June 1996.

P. Anderson, D. Binkley, G. Rosay, and T. Teitelbaum. Flow
Insensitive Points-To Sets. scam, 00:0081, 2001.

Sara Baghsorkhi, Melvin Lathara, and Wen mei Hwu.
CUDA-lite: Reducing GPU Programming Complexity. In
LCPC 2008, 2008.

Prithviraj Banerjee, John A. Chandy, Manish Gupta, Eugene
W. Hodges IV, John G. Holm, Antonio Lain, Daniel J.
Palermo, Shankar Ramaswamy, and Ernesto Su. The
Paradigm Compiler for Distributed-Memory
Multicomputers. I[EEE Computer, 28(10):37-47, October
1995.

Muthu Manikandan Baskaran, Uday Bondhugula, Sriram
Krishnamoorthy, J. Ramanujam, Atanas Rountev, and

P. Sadayappan. A Compiler Framework for Optimization of
Affine Loop Nests for GPGPUs. In International Conference
on Supercomputing, pages 225-234, 2008.

W. Blume, R. Doallo, R. Eigenman, J. Grout, J. Hoelflinger,
T. Lawrence, J. Lee, D. Padua, Y. Paek, B. Pottenger,

L. Rauchwerger, and P. Tu. Parallel programming with
Polaris. IEEE Computer, 29(12):78-82, December 1996.
Randal E. Bryant. Data-Intensive Supercomputing: The Case
for DISC. Technical Report CMU-CS-07-128, School of
Computer Science, Carnegie Mellon University, 2007.

L. Buck, T. Foley, D. Horn, J. Sugerman, K. Mike, and

H. Pat. Brook for GPUs: Stream Computing on Graphics
Hardware, 2004.

Benjamin Bustos, Oliver Deussen, Stefan Hiller, and Daniel
Keim. A Graphics Hardware Accelerated Algorithm for
Nearest Neighbor Search. In Vassil N. Alexandrov,

Geert Dick van Albada, Peter M. A. Sloot, and Jack
Dongarra, editors, Computational Science — ICCS 2006,
volume 3994 of LNCS, pages 196-199. Springer, 2006.
Maria Charalambous, Pedro Trancoso, and Alexandros
Stamatakis. Initial experiences porting a bioinformatics
application to a graphics processor. In Panhellenic
Conference on Informatics, pages 415-425, 2005.

Shuai Che, Jiayuan Meng, and Jeremy W. Sheaffer. A
Performance Study of General Purpose Applications on
Graphics Processors.

P. Cheeseman and J. Stutz. Bayesian classification
(autoclass): Theory and practice. In Advanced in Knowledge

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]

[15]

(16]

(17]

(18]
(19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

(30]
(31]

(32]

Discovery and Data Mining, pages 61 — 83. AAAI Press /
MIT Press, 1996.

Matthias Christen, Olaf Schenk, and Helmar Burkhart.
General-Purpose Sparse Matrix Building Blocks using the
NVIDIA CUDA Technology Platform. In First Workshop on
General Purpose Processing on Graphics Processing Units,
Oct 2007.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, pages 137-150,
2004.

Arthur Dempster, Nan Laird, and Donald Rubin. Maximum
Likelihood Estimation from Incomplete Data via the EM
Algorithm. Journal of the Royal Statistical Society,
39(1):1-38, 1977.

Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne
Yoakum-Stover. GPU Cluster for High Prformance
Computing. In SC *04: Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, page 47, Washington, DC,
USA, 2004. IEEE Computer Society.

Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k
Nearest Neighbor Search using GPU, 2008.

Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh
Manocha. GPUTeraSort: High Performance Graphics
Co-processor Sorting for Large Database Management. In
SIGMOD °06: Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pages
325-336, New York, NY, USA, 2006. ACM.

Manish Gupta and Edith Schonberg. Static Analysis to
Reduce Synchronization Costs in Data-Parallel Programs. In
Conference Record of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
322-332. ACM Press, January 1996.

Jesse D. Hall and John C. Hart. GPU Acceleration of
Iterative Clustering. Jun 2004.

M. Hall, S. Amarsinghe, B. Murphy, S. Liao, and M. Lam.
Maximizing Multiprocessor Performance with the SUIF
Compiler. IEEE Computer, (12), December 1996.

H. Han and Chau-Wen Tseng. Improving Compiler and
Runtime Support for Irregular Reductions. In Proceedings of
the 11th Workshop on Languages and Compilers for Parallel
Computing, August 1998.

Jiawei Han and Micheline Kamber. Data Mining: Concepts
and Techniques. Morgan Kaufmann Publishers, 2000.
Bingsheng He, Wenbin Fang, Qiong Luo, Naga K.
Govindaraju, and Tuyong Wang. Mars: A MapReduce
Framework on Graphics Processors. In PACT0S: IEEE
International Conference on Parallel Architecture and
Compilation Techniques 2008, 2008.

Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng.
Compiling Fortran D for MIMD distributed-memory
machines. Communications of the ACM, 35(8):66-80,
August 1992.

A. K. Jain and R. C. Dubes. Algorithms for Clustering Data.
Prentice Hall, 1988.

R. Jin and G. Agrawal. Shared memory parallelization of
data mining algorithms: Techniques.
citeseer.ist.psu.edu/article/jin02shared.html, 2002.

Ruoming Jin and Gagan Agrawal. A Middleware for
Developing Parallel Data Mining Implementations. In
Proceedings of the first SIAM conference on Data Mining,
April 2001.

Andreas Klockner. PyCuda, 2008.

C. Koelbel and P. Mehrotra. Compiling Global Name-Space
Parallel Loops for Distributed Execution. IEEE Transactions
on Parallel and Distributed Systems, 2(4):440-451, October
1991.

Chris Lattner and Vikram Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

409

[33]

[34]

(35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann.
OpenMP to GPGPU: A Compiler Framework for Automatic
Translation and Optimization. In PPoPP’09, 2009.
Shih-Wei Liao. Parallelizing user-defined and implicit
reductions globally on multiprocessors. In Chris R. Jesshope
and Colin Egan, editors, Asia-Pacific Computer Systems
Architecture Conference, volume 4186 of Lecture Notes in
Computer Science, pages 189—-202. Springer, 2006.

Yuan Lin and David Padua. On the automatic parallelization
of sparse and irregular Fortran programs. In Proceedings of
the Workshop on Languages, Compilers, and Runtime
Systems for Scalable Computers (LCR - 98), May 1998.

Bo Lu and John Mellor-Crummey. Compiler Optimization of
Implicit Reductions for Distributed Memory
Multiprocessors. In Proceedings of the 12th International
Parallel Processing Symposium (IPPS), April 1998.

S. K. Murthy. Automatic Construction of Decision Trees
from Data: A Multi-disciplinary Survey. Data Mining and
Knowledge Discovery, 2(4):345-389, 1998.

NVidia. NVIDIA CUDA Compute Unified Device
Architecture Programming Guide. version 2.0.
http://developer.download.nvidia.com/compute/cuda/2.0-
Beta2/docs/Programming_Guide_2.0beta2.pdf, June 7
2008.

C. Ordonez and P. Cereghini. SQLEM: Fast Clustering in
SQL Using the EM Algorithm. In Proceedings of the ACM
SIGMOD Conference on Management of Data, pages
559-570. ACM Press, June 2000.

Mark Peercy, Mark Segal, and Derek Gerstmann. A
Performance-oriented Data Parallel Virtual Machine for
GPUs. In SIGGRAPH *06: ACM SIGGRAPH 2006 Sketches,
page 184, New York, NY, USA, 2006. ACM.

William M. Pottenger. The Role of Associativity and
Commutativity in the Detection and Transformation of
Loop-Level Parallelism. In Conference Proceedings of the
1998 International Conference on Supercomputing (ICS),
pages 188-195. ACM Press, July 1998.

Timothy J. Purcell, Craig Donner, Mike Cammarano,
Henrik Wann Jensen, and Pat Hanrahan. Photon Mapping on
Programmable Graphics Hardware. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware, pages 41-50. Eurographics
Association, 2003.

Erik Sintorn and UIf Assarsson. Fast Parallel GPU-Sorting
Using a Hybrid Algorithm. In First Workshop on General
Purpose Processing on Graphics Processing Units, Oct
2007.

John Stratton, Sam Stone, and Wen mei Hwu. MCUDA: An
Efficient Implementation of CUDA Kernels for Multi-Core
CPUs. In 21st Annual Workshop on Languages and
Compilers for Parallel Computing (LCPC’2008), July 2008.
David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator:
Using Data Parallelism to Program GPUs for
General-purpose Uses. In ASPLOS-XII: Proceedings of the
12th international conference on Architectural support for
programming languages and operating systems, pages
325-335, New York, NY, USA, 2006. ACM.

Pedro Trancoso and Maria Charalambous. Exploring
Graphics Processor Performance for General Purpose
Applications. In Eighth Euromicro Symposium on Digital
Systems Design (DSD 2005), pages 306-313, 2005.

Neil Trevett. OpenCL: The Open Standdard for
Heterogeneous Parallel Programming, 2008.

Hao Yu and Lawrence Rauchwerger. Adaptive Reduction
Parallelization Techniques. In Proceedings of the 2000
International Conference on Supercomputing, pages 66—75.
ACM Press, May 2000.

Hans P. Zima and Barbara Mary Chapman. Compiling for
Distributed-Memory Systems. Proceedings of the IEEE,
81(2):264-287, February 1993. In Special Section on
Languages and Compilers for Parallel Machines.

