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Abstract
I introduce a new set of natively probabilistic computing abstractions, including probabilistic gen-
eralizations of Boolean circuits, backtracking search and pure Lisp. I show how these tools let
one compactly specify probabilistic generative models, generalize and parallelize widely used
sampling algorithms like rejection sampling and Markov chain Monte Carlo, and solve difficult
Bayesian inference problems.

I first introduce Church, a probabilistic programming language for describing probabilistic
generative processes that induce distributions, which generalizes Lisp, a language for describing
deterministic procedures that induce functions. I highlight the ways randomness meshes with the
reflectiveness of Lisp to support the representation of structured, uncertain knowledge, including
nonparametric Bayesian models from the current literature, programs for decision making under
uncertainty, and programs that learn very simple programs from data. I then introduce systematic
stochastic search, a recursive algorithm for exact and approximate sampling that generalizes a
popular form of backtracking search to the broader setting of stochastic simulation and recovers
widely used particle filters as a special case. I use it to solve probabilistic reasoning problems
from statistical physics, causal reasoning and stereo vision. Finally, I introduce stochastic digital
circuits that model the probability algebra just as traditional Boolean circuits model the Boolean
algebra. I show how these circuits can be used to build massively parallel, fault-tolerant machines
for sampling and allow one to efficiently run Markov chain Monte Carlo methods on models with
hundreds of thousands of variables in real time.

I emphasize the ways in which these ideas fit together into a coherent software and hardware
stack for natively probabilistic computing, organized around distributions and samplers rather than
deterministic functions. I argue that by building uncertainty and randomness into the foundations
of our programming languages and computing machines, we may arrive at ones that are more
powerful, flexible and efficient than deterministic designs, and are in better alignment with the
needs of computational science, statistics and artificial intelligence.

Thesis Supervisor: Joshua B. Tenenbaum
Title: Paul E. Newton Career Development Professor
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“Every reader should ask himself periodically ‘Toward what end, toward what end?’
but do not ask it too often lest you pass up the fun of programming for the constipation
of bittersweet philosophy.”

– Alan Perlis, 1922 - 1990

“After growing wildly for years, the field of computing appears to be reaching its
infancy.”

– John Pierce, 1910 - 2002
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Chapter 1

Introduction

“For over two millennia, Aristotle’s logic has ruled over the thinking of western in-
tellectuals. All precise theories, all scientific models, even models of the process of
thinking itself, have in principle conformed to the straight-jacket of logic. But from
its shady beginnings devising gambling strategies and counting corpses in medieval
London, probability theory and statistical inference now emerge as better foundations
for scientific models, especially those of the process of thinking and as essential in-
gredients of theoretical mathematics, even the foundations of mathematics itself. We
propose that this sea change in our perspective will affect virtually all of mathematics
in the next century.”

— David Mumford, The Dawning of the Age of Stochasticity

We would like to build computing machines that can interpret and learn from their sensory

experience, act effectively in real time, and — ultimately — design and program themselves. We

would like to use these machines as models to help us understand our own minds and brains. We

would also like to use computers to build and evaluate models of the world that can help us interpret

our data and make more rational decisions.

Over the last 15 years, there has been a flowering of work on these problems, centered on prob-

abilistically coherent or “Bayesian” reasoning (36; 46; 65; 26; 10). A Bayesian reasoner — be it

an artificial agent, a program written to aid a human modeler, or a computational model of human

learning and reasoning — represents its beliefs via a probability distribution on possible states of

the world, including all quantities of potential interest that are not directly observable. This dis-

tribution assigns a nonnegative degree of belief to each possible world, such that the total amount

of belief sums to 1. A Bayesian reasoner then updates its beliefs in light of evidence according
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Figure 1-1: Probabilistic generative modeling involves probabilistically coherent reasoning over distribu-
tions on possible worlds and the causal histories that generated them. In this simple example, a causal
history consists of 3 independent coin flips, and all worlds are equally likely. Modern probabilistic models
regularly involve thousands or millions of stochastic choices with complex dependencies.

to the rules of the probability algebra: observed data is taken into account, or conditioned on, by

renormalizing (i.e. summing and then dividing) the belief distribution over all worlds consistent

with the observations. This renormalization results in a new probability distribution that represents

the reasoner’s degree of belief in each world after the evidence was observed.

Often the distribution is thought of in terms of a probabilistic generative process or “causal

history”: a sequence of probabilistic choices which produces a particular world, where probability

is introduced wherever the modeler has uncertainty about the outcome of a choice. Figure 1-1

shows a toy example, where the world is composed of three independent flips of a fair coin; typical

worlds in real examples are far more complex. Probabilistic learning and reasoning involves “in-

verting” this process using the probability algebra to identify the distribution on choices implied

by the observation of a particular condition or overall outcome. These generative models routinely

involve rich systems of latent variables that induce complex correlations and dependencies be-

tween observable quantities, rarely involving the strong independence, Gaussianity or steady-state

assumptions common to classical stochastic models.

This simple mathematical setup is a consistent generalization of deductive Boolean logic to
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the case of uncertain knowledge and plausible argument (36). It has been used to fruitfully attack

a range of problems in the computational sciences, artificial intelligence, cognitive science and

statistics. In each domain, probability is used to bring rich knowledge structures in quantitative

contact with noisy, incomplete and often qualitative data, and make predictions about the future

with calibrated uncertainty.

Its popularity reflects a growing awareness of its conceptual and technical advantages, such

as the ability to construct large probability models out of pieces, and the automatic Occam’s Ra-

zor that protects fully Bayesian inductive learners — which reason probabilistically about latent

choices that are re-used in future events — from overfitting (46). It also reflects the development

of computational tools for representing probability models and solving inference problems. The

most important of these are probabilistic graphical models (57; 42), which use ideas from graph

theory to capture symmetries that simplify the representation of probability distributions on finite

worlds, and inference algorithms based on variational methods from computational physics and

operations research (86).

However, it has proved very difficult to scale probabilistically coherent methods to either rich

structures of knowledge — such as distributions over graphs, trees, grammars, worlds with hidden

objects, and arbitrary programs — or to large volumes of data. These limitations of expressiveness

and efficiency are substantial. Fully Bayesian learning and reasoning is usually limited to small

worlds with tens or hundreds of latent variables, datasets with hundreds or thousands of datapoints,

and offline (as opposed to realtime) processing. To understand why, consider that a world com-

prised of 100 binary variables — just enough to segment a 10x10 image — has 2100 distinct states.

To build a model of that toy world, each of those states must be assigned a definite probability.

Very simple problems in phylogenetics and segmentation grow even quicker: there are over 6 bil-

lion binary trees with 20 nodes, and over 10 billion ways to assign only 16 objects into distinct

categories. This state-space explosion immediately leads to two challenges:

1. It seems hard to write down probability models, especially over richly structured worlds.

Specifying rich probability models boils down to specifying probability distributions over

very large spaces. The main challenges lie in writing down distributions on worlds without

needing to directly specify exponentially or infinitely many real numbers, using languages

that support the reuse and recombination of probability distributions into ever larger struc-

tures.

Graphical models mitigate this problem somewhat for finite worlds: they allow one to build
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up functions that compute the probability of a potentially large set of variables out of sub-

functions that depend only on subsets of the variables (86). However, they lack many of

the means of combination and abstraction that are supported by richer formal systems, like

programming languages, and are especially difficult to apply to worlds that are infinite or

involve recursive structures like trees and grammars. As a result, modelers working in these

settings exchange models using an informal mix of graphical models, mathematical notation

and natural language, impeding reuse and necessitating the development of a large number

of one-off inference schemes. This lack of expressiveness has restricted the complexity of

models people have been able to build, especially in situations involving metareasoning and

inductive learning of structured representations. Graphical models also suffer from the prob-

lem that conditioning on data frequently destroys the decomposition of the joint distribution

that a graphical model is based on. Put differently, they are not closed under reasoning,

which can make it hard to use them as a representation for the beliefs of an agent which

must reason repeatedly over time.

2. Accurate probabilistic inference seems computationally intractable.

Performing exact probabilistic inference based on functions that compute probabilities seems

to require intractable summations and produce exponentially or infinitely large objects. For

example, Bayes’ Rule tells us how to go from a model and some data to posterior beliefs:

P (H|D) =
P (H)P (D|H)

P (D)
=

P (H,D)∑
H P (H,D)

Unfortunately, evaluating the denominator requires computing a sum over exponentially

many hypotheses, and even if one could evaluate the probability function f(H) = P (H|D),

it remains computationally difficult to find high scoring hypotheses under f or integrate f to

make predictions. This intractability stems from the size of the domain. Graphical models

and variational methods attempt to mitigate these problems by focusing on finding an H

which maximizes P (H|D) and on computing marginal distributions which characterize the

average variability of a distribution around its mode, ignoring correlations between variables.

However, these problems are still often computationally intractable and require substantial

auxiliary approximations (86). They also tend to obscure multimodality. For example, con-

sider a distribution on 100 binary variables which labels them as either all true or all false.

A naive mean field (87) or belief propagation (42) approach will confuse that distribution —
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which allows just 2 possibilities — with one that says “each variable is independently either

true or false”, allowing all 2100 with equal probability.

Monte Carlo approximations, where a distribution is represented by a list of samples from

it, are often easier to apply to problems of probabilistic inference (2; 54; 16), and are often

used for structured problems. Unfortunately, they are often perceived as both unreliable and

slow, requiring tens of thousands of costly iterations to converge.

In this dissertation, I approach these problems of representational expressiveness and inference

efficiency from below, arguing that they reflect a basic mismatch between the mathematics of

probability and our fundamentally deterministic and deductive view of computation. Rather than

represent distributions in terms of functions that calculate probabilities, as in graphical models

and variational methods, I represent distributions using procedures that generate samples from

them. Based on this idea, I introduce a new set of natively probabilistic abstractions for building

and programming computing engines, including probabilistic generalizations of Boolean circuits,

backtracking search and pure Lisp, and lay out a program for developing them into a coherent stack

for natively probabilistic computation.

1.1 Distributions generalize functions, and sampling general-

izes evaluation

The most basic elements of digital computers, Boolean gates, correspond to elementary Boolean

functions that compute the truth functions for logical connectives in the Boolean algebra. Since

Turing, our theories of computation have defined computers as machines that evaluate determinis-

tic functions — things that produce definite outputs for given inputs — by a series of deterministic

steps. Our assessments of algorithmic complexity attempt to measure the resources needed for

binary, all-or-nothing decisions like Boolean satisfiability or graph colorability. Even our pro-

gramming languages center on deterministic functions and logical deduction. Lisp, one of the

oldest, was introduced to define recursive functions. Languages like Haskell generally restrict pro-

grammers to define pure functions in an algebraic style and require that the type structure of the

program be provably consistent before the program can be executed. The sloganized version of the

Curry-Howard isomorphism — that “proofs are programs and programs are proofs” — is perhaps

the most extreme version of the view that deduction and deterministic computation are one and the
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same. Although randomized algorithms are widely used in practice, they are typically presented as

strategies for approximately evaluating deterministic functions, for example by feeding the output

of a sampler into a Monte Carlo estimator.

Given this deterministic orientation, it might seem particularly natural to represent a proba-

bility distribution in terms of a function that evaluates the probability of a state. However, from

a mathematical perspective, we know that probability distributions contain functions as a special

case: any function can be written as a probability kernel which is a delta distribution for each input

– for each input x the kernel puts probability 1 on f(x) and probability 0 everywhere else. Put dif-

ferently, there are many more conditional distributions inducing stochastic mappings from some

set X to some set Y than there are functions from X to Y . The functions simply correspond to the

case where the mapping is 1 to 1. Of course, we normally circumvent this by using functions that

calculate probabilities, which have a different type signature: a conditional distribution becomes

a function from pairs (X, Y ) to [0, 1] ∈ R that evaluates the probability of a given input-output

pairing. This seemingly basic choice also lies at the heart of the measure theoretic approach to

probability, where we work with functions mapping subsets of a space of possible worlds — i.e.

predicates — to probabilities. However, it causes considerable difficulties when one wants to build

big distributions from pieces or generate samples from even small distributions efficiently.

First, if what I have is a distribution or density represented as a probability function p from

(X, Y ) to [0, 1], I need to develop independent methods to simulate from it, which rapidly grow

complex as enumeration rapidly grows intractable. Second, despite the fact that conditional distri-

butions can be arbitrarily composed, the output of such a function, a probability value, cannot be

used as the input to another one, which expects an input-output pair. Instead, I have to compute a

new probability function by some means that computes the probability function for the composi-

tion. This mismatch makes setting up probabilistic recursions especially cumbersome. Third, the

complexity of compositions appears to behave badly. If I compose two functions f and g, the com-

plexity of evaluating g(f(x)) is just the sum of the complexities of evaluating f and g. We would

like to be able to compose distributions in the same way. However, if I have two conditional prob-

ability distributions B|A and C|B, I have that their combined or “marginal” probability function is

p(C|A) =
∑

B P (C,B|A). The complexity of chaining conditional distributions together in terms

of their probability functions grows exponentially rather than linearly. Thus both specifying and

working with structures with even a small number of pieces rapidly becomes problematic.

The starting point for this dissertation is to make a different choice. Instead of representing a

probability distribution in terms of a deterministic procedure that evaluates the probability of pos-
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sible outcomes, I will represent probability distributions in terms of probabilistic procedures that

generate samples from them. A “computation” will involve simulating one of these probabilistic

procedures to generate a sample. Repeating a computation will, in general, yield a different result

— but the histogram or table of long-run frequencies of the recorded outputs of a computation will

converge to its underlying distribution1. This approach allows one to arbitrarily compose samplers,

constructing large stochastic systems out of pieces, while preserving linearity of complexity. Fur-

thermore, this approach contains the deterministic skeleton of computing, where a “computation”

involves evaluating a deterministic function to obtain a fixed value, as a special case where the

probabilistic procedure happens to consume no randomness. Throughout, I will view the speci-

fication of samplers and the efficient simulation from complex probability distributions, possibly

obtained from other distributions by chains of conditioning, as the main goal2.

Functions and deterministic procedures are used all throughout computing, from Boolean cir-

cuits through state machine updates to algorithms and programming languages. At each of these

levels, I will ask “what set of distributions and samplers contains this set of functions and deter-

ministic procedures as a well-defined special case, preserving its key properties?” My thesis is

that it is both feasible and useful to generalize basic computing abstractions in this way, yielding a

conceptually coherent hardware and software stack for natively probabilistic computing. By build-

ing uncertain knowledge and random processes into the foundations, systematically generalizing

functions to distributions and procedures for evaluation to samplers at every level, we may obtain

machinery that is more powerful, flexible and efficient than traditional designs. We may also find

the resulting natively probabilistic machines more suitable for uncertain reasoning and inductive

learning, and thus arrive at languages, algorithms and machines that are in better alignment with

the needs of modern computational science, statistics and artificial intelligence.

1This procedural view of distributions has the flavor of frequentism — we will interact with uncertain beliefs
through procedures that precisely model them random experiments. We will see, however, that this is a particularly
natural way to build computers that are good at Bayesian reasoning.

2Contrast this view with the traditional one, where randomized methods are mainly used to approximate functions.
For example, the Monte Carlo method is often seen as a way to approximate the value of of high dimensional integrals,
such as the expectation of functions with respect to probability distributions. The main object of computation, however,
is taken to be evaluating functions, for example to solve satisfiability problems, sort lists, find maxima or minima of
functions, or compute sums.
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1.2 Natively probabilistic computation via stratified design

The task of generalizing deterministic computing abstractions to the probabilistic setting immedi-

ately raises three, potentially thorny issues:

1. Every deterministic function can be obtained as the deterministic limit of many different

sequences of probability distributions. How should we choose among them?

2. How can we preserve the combinatorial expressiveness of computing technology as we make

our generalizations, so that we can build rich probabilistic structures out of reusable pieces?

3. How can we ensure compatibility between the different layers of abstraction in computing,

so that we can define an object at one level — for example, a distribution to be sampled

from — and be confident that implementation in terms of the lower levels — for example, an

algorithm to sample from it, and a circuit implementing that algorithm — will be possible?

I leave it to the reader to judge how natural, expressive, coherent and useful the generalizations

I present ultimately are. However, it is worth reflecting on the criteria that inform my approach.

The structure of deterministic computers, and in particular their stratified design, provides

the key constraint that guided the generalizations I sought. A stratified approach to synthesizing

complex systems involves building layers of language, each of which serves as an implementation

language for the layer above. To be a language in this sense, a formal system must:

1. Provide powerful primitives, which serve as the initial building blocks of statements in the

language.

2. Be closed under expressive means of combination, which allow compound statements to be

constructed by combining smaller statements.

3. Provide means of abstraction, by which statements can be referred to without reference to

their pieces, and objects can be created which are indistinguishable from built-in primitives.

Examples of such languages are ubiquitious in engineering; Table 1-2 lists a few examples,

drawn from signal processing, analog and digital electronics, and computer programming. A criti-

cal requirement for a stratified design is that one be able to both specify a complex system in terms

of pieces and then implement that system in terms of implementations of the pieces. As a conse-

quence, if I add something to the specification of a system, I can simply add a corresponding piece
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Language Primitives
Means of 

Composition and 
Abstraction

Relations

Linear Time-
Invariant Systems

Low-pass, high-pass filters; impulse 
responses

Serial composition as convolution, 
summation; black box abstraction

Used to implement signal processing 
operations; implemented in analog 
electronics and matrix algebra

Lumped-parameter 
circuits

Resistors, capacitors, inductors, 
transistors

Connection of device terminals; 
Thevenin and Norton equivalence

Used to implement LTI and digital 
systems, and to model 
electromagnetic, thermal and 
mechanical systems; implemented 
physically, hiding wave propagation

Combinational 
Boolean Logic

AND, OR, and NOT gates
Composition and abstraction of 
Boolean functions

Used to implement discrete, 
deterministic functions; implemented 
using lumped-parameter electronics

Synchronous 
Digital Electronics

Registered logic blocks, 
combinational blocks, and finite 
state machines

Discrete finite state machine 
composition and abstraction, 
inheriting from transition updates

Used to implement digital computers; 
implemented using combinational 
Boolean logic and lumped-parameter 
electronics

Lisp Literal values, primitive 
procedures, special forms

Compound expressions; lambda 
abstraction

Used to implement processes that 
transform structured data; 
implementable directly in terms of 
synchronous digital electronics

Figure 1-2: Engineering languages, equipped with powerful primitives and closed under expressive means
of composition and abstraction, form the basis of our ability to synthesize and analyze complex systems.
Many of these languages are related, so that specifications written in one language can be implemented in
another. Our stack of software and hardware abstractions for computing consists of these.

to the implementation, without worrying about all possible pairwise interactions among the parts.

This enables a powerful separation of concerns; the disciplines of programming languages and

semiconductor physics cooperate productively without their practitioners ever interacting directly.

Accordingly, the way we will look for good probabilistic generalizations is by insisting that the

probabilistic objects we construct satisfy two constraints:

1. They should preserve the composition and abstraction laws of their deterministic counter-

parts, in both the deterministic limit and in the broader, probabilistic setting. This ensures

we can build large structures out of reusable pieces.

2. Where appropriate, they should be implementable in terms of a lower layer of language, and

be useful for implementing higher-level layers, in ways that correspond with their determin-

istic counterparts. This ensures the levels of language interoperate, collectively bridging the

gaps between knowledge structures, programs, computing machines, and networks of gates.
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A

B
F = ¬AB

(define (marginal-prob graph x v)

   ...)

(define (joint-prob graph settings)

   ...)

Deterministic Languages & 
Programs

Boolean Circuits

Deterministic Finite State Machines

Graphical models &
Variational methods

(define (fact n)

  (if (= n 0)

      1

      (* n (fact (- n 1)))))

Figure 1-3: The layers of language supporting modern probabilistic AI. Each layer focuses on specifying
and evaluating deterministic functions, building up from Boolean functions, to state-update functions for
deterministic finite state machines, to programs in functional programming languages, to data structures and
functions for computing probabilities.

This approach has repeatedly yielded design constraints that seem to be responsible for many of

the pleasant properties of the abstractions I will introduce. We have already seen the first effect of

this constraint. We will be working with samplers, not probability functions, because samplers can

be recursively composed the way that functions can, and probabilistic procedures that implement

samplers can be cheaply composed the way that deterministic procedures for evaluating functions

can (but probability functions can’t).

The power and expressiveness of modern computing — as well as the means by which enor-

mous complexity is hidden from the users of each level — can be appreciated by understanding the

ways in which deterministic programming and digital computers embody the principles of strati-

fied design. Identifying some of the key layers of language that have composable implementations,
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we can construct an (admittedly simplified3) picture of the stack, shown in Figure 1-3. At the low-

est level, we construct our computers out of stateless Boolean circuits, implemented in terms of

transistor-based Boolean gates. We assemble these circuits into deterministic finite state machines,

arranged in structures especially appropriate for high-precision floating point arithmetic and for

the execution of sequential programs. We program these state machines in a variety of languages,

focusing on the specification and evaluation of complex, deterministic functions involved in nu-

merical linear algebra and combinatorial optimization. We sometimes link these functions together

to build engines for statistical and logical reasoning, and build our models and write AI programs

in special-purpose declarative languages that these engines interpret.

The stack of abstractions I propose is shown in Figure 1-4. At the lowest level, we will define

our machines in terms of stochastic digital circuits that naturally produce samples from probability

distributions rather than evaluate Boolean functions. We will wire these circuits into stochastic

finite state machines — or Markov chains — whose natural convergence dynamics carries out use-

ful sampling algorithms. Rather than perform any particular sequence of instructions precisely,

these machines will reliably produce reasonable outputs in appropriate proportions. We will adopt

reconfigurable computing, where reprogramming a machine feels much like rewiring a circuit, so

we can reflect the conditional independencies of each individual probabilistic program we run-

ning directly in the structure of our machines and leverage massive parallelism. At the top, our

programming langauges will allow us to define probabilistic procedures for generating samples

from recursively defined distributions, supporting both algorithm design and model-building in the

same notation. Both the inputs to and the outputs of learning and reasoning will be probabilistic

programs, along with the learning and reasoning algorithms themselves.

1.3 Contributions

My main contribution is to lay out a program of research aimed at developing natively probabilis-

tic computers, built around distributions and samplers rather than functions and evaluators. The

specific technical contributions I make in support of this research program include:

1. Church, a probabilistic programming language for describing probabilistic generative pro-

3Software running directly on the Scheme Chip probably came the closest to conforming to this stack, which omits
many the complexities associated with the economics of computing (including operating systems and virtualization
in both software and hardware). Instead, we are focusing only on the layers that are conceptually necessary for
computation in support of data analysis and intelligent behavior.
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Probabilistic Programs
Generative models

Inferences from data
Sampling algorithms

Stochastic Circuits

Stochastic Finite State Machines

Figure 4-1: Combinational stochastic logic. (a) The combinational Boolean logic abstraction, and one
example: the AND gate and its associated truth table. (b) The combinational stochastic logic abstraction.
On each work cycle, samples are drawn on OUT from P (OUT|IN), consuming h random bits on RAND to
generate nondeterminism. (c) An AND gate can be viewed as a combinational stochastic logic gate that
happens to be deterministic. (d) The conditional probability table and schematic for a Θ gate, which flips a
coin whose weight was specified on IN as a binary number (e.g. for IN = 0111, P (OUT = 1|IN) = 7/16).
Θ gates can be implemented by a comparator that outputs 1 if RAND ≤ IN.

function of its inputs on each work cycle. Each gate is representable by a set of truth tables, one

for each output bit; the abstraction and an AND gate example are show in in Figure 4-1a. Figure

4-1b shows a combinational stochastic logic gate, which adds random bit lines. On each cycle, the

gate puts a sample from P (OUT|IN) on its output lines, using the random bits – which must each be

flips of a fair coin – to provide the nondeterminism. Just as Boolean gates can be represented by

families of truth tables, individual stochastic gates can be represented by conditional probability

tables (CPTs), where all the probabilities are rational with finite expansions in base 2.

By explicitly representing the bitwidths of values and the entropy requirements per sample from

each CPT, we can directly map stochastic gates onto discrete, physical machines for performing

computation. Figure 4-1c shows how to recover deterministic Boolean logic gates by zero-entropy

CPTs, using the AND gate as an example. Figure 4-1d shows the conditional probability table and

schematic for a unit called Θ, which generates flips of a weighted coin whose weight is specifed

on its IN lines. The Θ gate is one important, recurring stochastic primitive, and the designs for

properly stochastic units that we have developed so far depend heavily on its use. We note that for

any combinational stochastic logic element, it is possible to abstract away the entropy lines; this is
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(query (list (flip) (flip) (flip))

       (lambda (flips)

          (= (sum flips) 2)))

Figure 1-4: A stack of abstractions for natively probabilistic computing. The stack builds up from probabilis-
tic circuits, to massively parallel, fault-tolerant stochastic finite state machines, to probabilistic programs.
Each layer is based on distributions and samplers, recovering the corresponding layer in Figure 1-3 as a
special case based on functions.

cesses that induce distributions. Church generalizes Lisp, a language for describing deter-

ministic procedures that induce functions. I highlight some of the ways stochasticity meshes

with the reflectiveness of Lisp to support the representation of structured, uncertain knowl-

edge, including nonparametric Bayesian models from the current literature, programs for

decision making under uncertainty, and programs that learn very simple programs from data.

2. Systematic stochastic search, a recursive algorithm for exact and approximate sampling that

generalizes a popular form of backtracking search to the broader setting of stochastic simu-

lation and recovers widely used particle filters as a special case. I use it to solve probabilistic

reasoning problems from statistical physics, causal reasoning and stereo vision.

3. Stochastic digital circuits that are universal for the probability algebra just as traditional

Boolean circuits are universal for the Boolean algebra. I show how these circuits can be used

to build massively parallel, low precision, fault-tolerant machines for sampling and allow
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one to efficiently run Markov chain Monte Carlo methods like Gibbs sampling on models

with hundreds of thousands of variables in real time.

We have a long way to go before the vision of natively probabilistic computation is realized. I

devote one chapter of this dissertation to a brief discussion of some of the remaining challenges,

which center on the problems of probabilistic computer architecture, probabilistic compilation (to

bridge the gap between probabilistic programs and either reconfigurable arrays of probabilistic

circuits or general-purpose probabilistic machines), and probabilistic computational complexity.

However, I hope this dissertation shows that it is possible to construct the main layers of the

stack today and understand conceptually how they fit together. I also hope it provides a convincing

argument that, given significant problem specific effort and some tool support, it is possible to

carry simple probabilistic reasoning problems involving probabilistic graphical models all the way

down from probabilistic programs to probabilistic circuits. Figure 1-5 contains a different, slightly

more detailed view of some of these contributions.

Along the way, we will note lessons about knowledge representation and computation stem-

ming from this natively probabilistic view, summarized here:

1. To write down and efficiently manipulate large probabilistic structures, we should focus on

building samplers, rather than functions that compute probabilities.

2. Probabilistic programs can be good vehicles for describing general-purpose models, unlike

deterministic programs, which are best for describing specific reasoning algorithms.

3. Algorithmic ideas like higher-order procedures, memoization and interpretation can clarify

and generalize widely used probabilistic modeling ideas, like clustering and sequence/time-

series modeling.

4. Using sampling, it is possible to build reasoning algorithms that perform well on both soft,

statistical problems and highly constrained, logical reasoning problems. We should try to

find algorithms that work well in both cases, automatically adapting their behavior as appro-

priate, rather than viewing them as separate domains subject to separate techniques.

5. We can build useful stochastic algorithms for exploring large state spaces that leverages,

rather than sidesteps, the rich body of work in discrete algorithms and combinatorial opti-

mization, including recursion and backtracking.
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6. Probabilistic procedures and sampling algorithms — and not just Monte Carlo estimators

built out of them — can often be massively parallelizable, due to the presence of conditional

independencies and exchangeability. Unlike in the deterministic setting, this fine-grained

parallelism is often easy to identify, as representations of distributions often make the con-

ditional independencies explicit.

7. Many sampling algorithms naturally require very low bit precision, can be implemented

without large, slow floating-point circuitry. Thus accurate probabilistic computation does

not require precise probability calculation.

8. Reconfigurable computing, where instead of reprogramming a processor one rewires a cir-

cuit, becomes an appealing strategy in the probabilistic setting, due to massive, exploitable

concurrency and low bit precision.

9. Probabilistic machines can be far more physically robust to faults than their deterministic

counterparts, because they are not expected to perform identically every time. They could

thus be implemented on noisy, unreliable substrates.

1.3.1 Moral: Don’t calculate probabilities; sample good guesses.

There is a simple way to sum up these lessons. Our most powerful computers are well suited

for logical deduction and high-precision arithmetic, capable of performing billions of elementary

Boolean inferences and floating-point operations per second. However, they are stymied by prob-

lems of uncertain reasoning and inductive learning over just tens of variables, despite the evidence

that vastly more difficult probabilistic inference problems are effortlessly and unconsciously solved

by the mind and brain. This is especially problematic given our increasing dependence on proba-

bilistic inference across computational science and large-scale data analysis, where we would like

to bring rich models of the world in contact with data.

By focusing our efforts on sampling, we may be able to avoid the worst computational bot-

tlenecks associated with probabilistic reasoning. We may also be naturally led to emphasize the

qualitative predictions made by our models, in terms of their typical simulated behavior, rather than

insist on a quantitative precision that has often proved elusive (and, at least sometimes, excessive)

outside of accounting, astronomy and quantum physics. The greatest potential for this approach,

however, may be in AI. We can try to build agents that sample good guesses rather than calculate

precise probabilities and reliably choose satisfactory actions rather than struggle to find guaranteed
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optimal ones. By giving up precision and guaranteed optimality, we will be trying to gain robust-

ness and flexibility. In this way, I hope that natively probabilistic computation will allow us to take

a small step closer towards the goal of constructing a thinking machine.
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Figure 1-5: Probabilistic programming languages like Church, which describe stochastic processes or proba-
bilistic generative processes, can be used to represent both uncertain beliefs and useful algorithms in a single
notation. Learning and reasoning will involve executing probabilistic programs and learning probabilistic
programs from data, using general machinery. For the subset of models described by factor graphs, I show
how to solve them using a new, recursive sampling algorithm, as well as generate static-memory stochastic
state machines for solving them, that can be implemented via massively parallel stochastic circuits.
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Chapter 2

Church: a universal language for
probabilistic generative models

“The computer revolution is a revolution in the way we think and in the way we ex-
press what we think. The essence of this change is the emergence of what might
best be called procedural epistemology – the study of the structure of knowledge from
an imperative point of view, as opposed to the more declarative point of view taken
by classical mathematical subjects. Mathematics provides a framework for dealing
precisely with notions of ‘what is.’ Computation provides a framework for dealing
precisely with notions of ‘how to.’ ”

– Sussman & Abelson, The Structure and Interpretation of Computer Programs

“93. When someone says ‘I want a programming language in which I need only say
what I wish done,’ give him a lollipop.”

– Alan Perlis, Epigrams on Programming

2.1 Introduction

The introduction of probabilistic modeling has given rise to an extensive body of work in machine

learning, statistics, robotics, vision, biology, neuroscience, AI and cognitive science. However,

many of the most innovative and useful probabilistic models currently being developed far outstrip

the representational capacity of our most popular formalism - probabilistic graphical models -

and are outside of the scope of the associated inference techniques. They also bear very little

resemblance to the linear regression models that have historically been most popular in statistics
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and data mining. Consider the following recent examples from artificial intelligence and cognitive

science:

• To model biochemical regulatory networks inside cells, Freidman, Koller and colleagues

(23; 24; 21) have introduced models that learn simple probabilistic graphical models from

data, with complex, biologically informed schemes for capturing higher-order structure in

the network fragments (67).

• To model scientific inferences such as Mendeleev’s discovery of the periodic table, Kemp

and Tenenbaum (41) employed a joint probability model over graph grammars, structures

generated by those grammars, diffusion processes over those structures, and data generated

by those processes. They used probabilistic inference over this space to learn forms and

structures from data, automatically discovering whether the data was best organized in terms

of clusters, a line, a low-dimensional space, a ring, a chain or a tree.

• To model the extraction of structured visual percepts from images, Zhu et al have used

probability models over parses of color images into regions, brush strokes, and objects (92;

83), building up to variants of Marr’s primal sketch (47; 31). Probabilistic inference in

these models can simultaneously segment an image, detect faces, and parse text, as well as

hallucinate completions for obscured regions.

Due to the lack of formal support, these models are communicated using a mix of natural lan-

guage, pseudo code, and mathematical formulae and solved using special purpose, one-off infer-

ence methods. Rather than precise specifications suitable for automatic inference, graphical mod-

els typically serve as coarse, high-level descriptions, eliding critical aspects such as fine-grained

independence, abstraction and recursion.

The lack of good languages has also limited the complexity and quality of the models we have

been willing to entertain. This is especially apparent in problems of metareasoning, or reasoning

about reasoning. If we do not have a single representation language that describe both what an

agent believes and how it reasons, it will be hard to build agents that have beliefs about the reason-

ing processes of other agents. We would like it if we had a language which also could represent

desires and plans, without requiring us to reinvent basic concepts like procedures and evaluation

each time they are needed in these different settings.

Church is a probabilistic programming language motivated by these problems. It provides

a universal notation for probabilistic generative processes and the distributions that they induce.
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Structured Formalism Model Classes Languages & Systems
Atomic world-states Probability theory

I Finite graphs over variables Probabilistic graphical models BUGS (45), BNT (52), HBC (13)
II Relational Databases RPMs (56), PRMs (22)
II First-order logic, closed world Markov (Weighted) Logic (63) Alchemy
II First-order logic, open world BLOG models (51) BLOG in Java, PyBLOG
III Programming languages Computable probability models Church (30), IBAL (59),

Infer.NET/CSoft (89), PTP (55) ...

Table 2.1: An overview of some of the mathematical and computational formalisms for uncertain knowledge
representation. Modern systems have come in three generations, using graph theory, logic, and programming
languages to manage structure and probability to manage uncertainty.

Processes can be simulated, as in a normal programming language. They can also be viewed as

generative models and conditioned on. The main idea behind Church is to represent a probabilistic

generative process in terms of a procedure that makes stochastic choices, where executing that

procedure simulates the process and samples a value from the distribution on values it induces.

Church generalizes the pure, or side-effect free, subset of Scheme, a dialect of Lisp used to describe

deterministic processes that induce deterministic functions.

In this chapter, we will focus on the ways Church relates to previous functional program-

ming languages and probabilistic modeling languages, paying particular attention to the advan-

tages gained by descending from Lisp. We will see how to write modern nonparametric, hierar-

chical probabilistic models in Church by marrying memoization with the Dirichlet process and

using higher-order procedures like UNFOLD. We will also take a look at new kinds of models en-

abled by Church, including universal planning and inductive probabilistic programming, as well

as the general shape of a Church implementation. We will close with the perspective probabilistic

programming provides on old issues like programming style and program synthesis.

2.1.1 Languages for Knowledge Representation

As the popularity of probabilistic modeling has grown, there have been a series of efforts to develop

mathematical formalisms for describing complex models and software systems for automating

aspects of modeling and inference. These can be grouped into three generations.

The first generation of probabilistic modeling tools focused on probabilistic graphical models,

based on directed and undirected graphs of variables. The central idea was to build big distributions

out of pieces by leveraging conditional independence, translating conditional independencies into
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decompositions of the joint probability distribution (for directed models) and the unnormalized

joint probability distribution (for undirected models). In the process, we learned how to formalize

aspects of causality in probabilistic terms (57), as well as how to connect the probabilistic models

and inference algorithms in use in AI and statistics with models and algorithms from computational

physics (90; 42). Software tools for graphical modeling came from the Bayesian statistics (45) and

machine learning communities. The simplest graphical models, known as Bayesian networks, have

even seen commercial development as part of probabilistic expert systems for decision support.

The second generation was motivated by the desire to build probability models over sets of

objects and structured relationships between them. These approaches use ideas from first-order

logic (and closed-world relatives, such as relational databases) to represent distributions on worlds

with objects and relations without decomposing them into elementary random variables.

One popular approach, typified by Markov Logic, involves using weights to directly induce a

distribution over the models of a theory written in first-order logic. he probability distribution on

worlds comes from renormalizing the weight function over the set of admissible models. This is

guaranteed to be well defined when there is a finite set of models, for example when all domains

have a finite number of entities, and parallels undirected graphical modeling. Another approach,

typified by probabilistic relational models or PRMS, involves extending Bayesian networks to the

setting of relational databases, by developing a template language for Bayesian networks based

on the schema of a relational database, and leveraging this structured template for learning and

reasoning. BLOG extends this idea to the setting of worlds with unknown numbers of objects and

uncertain identity1.

The third generation of modeling languages are based on combinations of probability and pro-

gramming languages. The key idea is that a program which makes probabilistic choices induces

a distribution on outputs. Thus programs can represent probabilistic models in terms of the prob-

abilistic generative processes that generate samples from them. Put differently, in probabilistic

programming, one writes a program which hallucinates possible worlds with probabilities that fol-

low a desired probabilistic model. All the typical tools progamming languages provide to control

the complexity of large knowledge structures become available in probabilistic modeling. For ex-

ample, IBAL modelers can use the ML typechecker to help debug their constructions, and exploit

algebraic data types to simplify the construction of combinatorially defined models. The underly-

1I personally prefer to interpret BLOG as a kind of nontraditional probabilistic programming language, since the
immediate semantics of a BLOG model is in terms of a generative process which happens to induce a distribution on
models of a logic, but it seems the inventors of BLOG prefer to emphasize its declarative, logical aspects.
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ing programming language and the approach to integrating inference provide the main axes along

which probabilistic programming languages vary. For example, IBAL and Infer.NET/CSoft both

use inference machinery that grounds out in finite graphs, and therefore do not support random

choices within recursive procedures.

2.1.2 Why Build on Lisp?

“Programming languages should be designed not by piling feature on top of feature,
but by moving the weaknesses and restrictions that make additional features appear
necessary.”

– Rees & Clinger (eds), Revised Revised Revised Report on the Algorithmic Language Scheme

“Scheme is an especially good vehicle for exhibiting the power of procedural abstrac-
tions because [...] Scheme does not distinguish between patterns that abstract over
procedures and patterns that abstract over other kinds of data.”

– Abelson & Sussman, Lisp: a language for stratified design

The essence of probabilistic generative modeling is its focus on processes as mechanisms for

representing uncertain knowledge. The essence of probabilistic programming is its use of for-

mal languages for describing processes, in terms of procedures that generate them. Our ability to

flexibility manipulate and abstract over procedures in the deterministic limit will bound our abil-

ity to flexibly manipulate and abstract over probabilistic generative models. Thus Scheme, with

its support for anonymous, untyped, higher-order procedures and the dynamic, procedure-based

programming style it supports, was a natural starting point.

The simplicity and elegance of the Scheme evaluator, and the explicitness of the substitution

and environment models of Scheme evaluation (1), were additional factors in our choice. Scheme’s

EVAL has only a small number of cases, and a compact, recursive definition that respects the lexical

structure of statements written in the language. Ultimately, this simplicity allowed us to develop

both a clean metacircular implementation of inference - which, almost magically, interacted cor-

rectly with the introduction of controlled forms of mutation into the language - as well as come

up with machinery for inverting Church programs that handle random procedures and arbitrary

probabilistic recursions.

Lisps are rare among functional languages in that they tend to be strongly but dynamically

typed - that is, values can be thought of as having types, but symbols are not restricted according
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to type and a program need not pass a type-checking step to be viewed as valid. This means it is

feasible to expose procedures for evaluation - and, as we will see, its probabilistic generalizations

to simulation and conditioning - within the language, without creating thorny typing issues. This

will allow us to remove unnecessary distinctions between “learning” and “inference”, and thereby

enable a variety of interesting kinds of models for metareasoning.

In addition to these technical considerations, some aesthetic considerations contributed to our

choice to work with Lisp. Although these are somewhat intangible, I feel that in the long run they

will prove to be the most important differentiators of Church, at least in artificial intelligence.

We would like to build the knowledge structures in our agents using the tools of stratified

design, organizing our agents’ knowledge in terms of layers of conceptual language that moves

from the general needs of probabilistic knowledge representation to the special needs of knowl-

edge representation in particular domains. For example, we might like to develop a language for

worlds with objects that have properties, say, corresponding to the modeling style encouraged by

BLOG. We might also like a more specialized language for describing systems of physical objects,

including balls and blocks, that carry with them knowledge from intuitive physics, such as persis-

tence and continuity of motion. Furthermore, we would like our agents to be able to learn these

languages from experience, along with particular programs written in these languages.

We thus need to work with a language that encourages the definition of sublanguages within

it, burdening the programmer - and, ultimately, the learner - with a minimum of overhead. This

stratified style of programming is the essence of the Lisp approach, supported by both its expressive

constructs for procedural abstraction and the “code is data” maxim of Lisp. As we want to be able

to someday learn not just probabilistic programs but domain-specific probabilistic programming

languages from data, we want to be sure that we can at least manually nest languages within

languages without needing to re-invent machinery at each stage. For example, it should be possible

to compactly write the primitives of the language, including those involved in interpretation of

the language and reasoning over programs written in the language, in the language itself. Such

primitives, once defined, should be indistinguishable from the built-in versions that have been

provided, and freely interoperate with them. This reflectiveness lies at the heart of the Scheme

design philosophy.
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2.2 A Brief Tour of Church

Church is based on a call-by-value Scheme with first-class environments and no mutation. In this

chapter, I assume familiarity with Scheme, and introduce Church by example.

The first way in which Church departs from Scheme is in its introduction of random primitive

procedures or ERPs. FLIP is the only logically necessary one, which generates a sample from a

Bernoulli distribution, with a default coin weight of 0.5. Technically, the contract that a random

primitive procedure must satisfy is that each application generates a fresh sample from some ex-

changeable sequence; we will return to this later in the chapter. For the moment, imagining ERPs

to introduce independent, identically distributed randomness won’t be too misleading, and will in

fact be a useful special case.

2.2.1 Stochasticity and Call-by-Value

In Scheme, (EVAL <expression> <environment>) returns the value of the expression

in the given environment. In Church, every expression-environment pair induces a distribution on

values, where the ERPs introduce the randomness. That is, each expression defines a conditional

probability distribution on results, which must be conditioned on a set of symbol bindings accessed

through an environment structure. While expressions which involve no ERPs can be evaluated as

regular Scheme expressions, we must decide how to handle expressions containing ERPs.

We make the choice that evaluting an expression in an environment draws a fresh sample

from its induced distribution on values. Evaluating a Church expression produces a definite value,

stochastically drawn from its induced distribution on values in the current environment. This

choice composes naturally with the Scheme call-by-value rule for procedure application, where

one evaluates the operands and operator of a compound expression in arbitrary order, then applies

the value of the operator to the values of the operands. The net effect is that random worlds

can be built up in environments, by binding sampled values to symbols. If one wants to bind

a distribution, one instead binds a procedure - representing a potentially probabilistic generative

process - that generates a sample from it.

Other languages, including IBAL, have chosen differently, reflecting the idea that they are

meant to be embedded within deterministic languages, rather than probabilistic generalizations of

them. The other main approach is to view the “value” of an expression with randomness in it as a

“distribution object” represented by a table of values with probabilities. For example, (flip) in

IBAL might deterministically evaluate to ((#t 0.5) (#f 0.5)), making probabilistic pro-
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((lambda (x) (+ x x)) (flip))
> 0, 2, 0, 0, 2, ...

(= x x)
> #t, #t, #t, #t, #t, #t, ...

(= (+ x y z) (+ x y z))
> #t, #t, #t, #t, #t, #t, ...

(= (flip) (flip))
> #t, #t, #f, #f, #f, #t, ...

Figure 2-1: Inputs and repeated outputs from a Church machine session showing the interaction of call-by-
value semantics with stochasticity. The first example shows interference stemming from binding at lambda
application. The second and third examples show how random worlds can be built using binding, where
the rules of logic apply to the values of expressions that only involve deterministic procedures and symbols.
The fourth example shows what happens when trying to compare the invocation of two coin flips. We argue
this is appropriate behavior for a knowledge representation system. (x) denotes the result of simulating the
(potentially stochastic) process named x, where x denotes the fixed value of the symbol x.

gramming into a kind of weighted variant of nondeterministic programming. Of course, this ap-

proach leads to all the difficulties with recursion and complexity mentioned in the introduction,

as the size of these probability tables grows exponentially (or infinitely, for certain stochastic re-

cursions). Replacing these tables with functions that compute probabilities is no better, as these

functions then can easily require exponential (or infinite) time to evaluate.

The choice to consistently generalize evaluation to stochastic simulation is one of the distin-

guishing features of Church. Interaction with a Church machine is done through a REPL, or Read-

Eval-Print Loop, where Church expressions are entered, parsed, and evaluated in the top-level

environment. The behavior of such a machine is indistinguishable from (and can be implemented

by) the results of calling (EVAL <parsed-expression> *global-environment*)).

Figure 2-1 shows example interactions which illustrate the interaction of stochasticity and call-by-

value semantics.

Probabilistic purity admits exchangeable mutation

Some deterministic functional programs are pure: if I evaluate an expression in an environment

multiple times, I always get the same value. More formally, the sequence of values obtained by
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evaluating an expression in an environment is a constant sequence. A language is pure if it only

permits pure programs to be written. For example, a minimal Scheme without DEFINE and SET!

is pure. If I write some function (foo x) in such a pure Scheme and evaluate (foo 3) twice,

I will get the same value back both times. The procedure foo, like all pairs of an expression and

an environment, is guaranteed to represent a well-defined deterministic function as a consequence

of purity.

Church programs that involve random primitives like flip are, clearly, not pure. If I evaluate

(flip) twice in some environment, I will get the same answer only with probability 0.5. This is a

direct consequence of evaluation as stochastic simulation. However, flip induces a well-defined

distribution on return values: each draw is taken independently from some Bernoulli distribution.

We might think that this defines the natural probabilistic notion of purity to be “evaluating

an expression in an environment multiple times results in a sequence of independent, identically

distributed random variables”. However, it turns out this is too restrictive. Consider the program

in Figure 2-2, which describes a pure procedure sample-coin that generates pure procedures.

If we have our hands on one such returned procedure, my-coin, and apply it repeatedly, we will

be drawing from some Bernoulli distribution whose coin-weight is hidden (or closed over) in the

environment associated with my-coin.

The sequence of values corresponding to calls to my-coin is not independent and identically

distributed, conditioned only the contents of the calling environment. Intuitively, knowledge that

the first 10 values are #t, for example, makes it seem more likely that the hidden coin weight is

high so next value will probably be #t. Of course, conditioned on the contents of the closure inside

my-coin, the sequences of values is actually IID. If we chose to define probabilistic purity by

requiring the sequence resulting from repeated evaluation of expressions to be IID, we would have

to view call-by-value languages as impure, since simple binding of randomness inside a procedure

can result in dependencies.

In fact, we can implement sample-coin differently, in terms of mutation. This implemen-

tation is shown in Figure 2-3. A caller unable to peer inside procedures would be unable to dis-

tinguish between these two implementations. Both generate procedures that produce individual

samples from a sequence of coin flips p(x1, ..., xn). The version with mutation never generates an

independent, identically distributed sequence. We can analyze the resulting distribution on values

in terms of two different decompositions. In the first case, we sample a coin weight θ and bind it

in the environment. To a caller of the returned procedure, this coin weight is integrated out, and so
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we have

p(x1, · · · , xn) =

∫
dθp(θ)

∏
i

p(xi|θ)

In the new version with mutation, we sample directly from a sequence of predictive distributions,

where each new coin flip is conditioned on the particular history of flips that have happened previ-

ously:

p(x1, · · · , xn) = p(x1)p(x2|x1) · · · p(xn|x1, · · · , xn−1)

To advance along the sequence of predictive distributions each time the returned procedure is

called, we must remember the statistics of past coin flips and update them on each flip using

mutation.

We thus suggest that the right generalization of purity to the probabilistic setting is “the se-

quence of values obtained by evaluating an expression in an environment is exchangeable”. A

sequence of random variables is called exchangeable if the joint distribution on the variables is

invariant to the ordering in the sequence. For finite sequences X1 · · ·XN and permutations σ, we

can write this condition as:

Pr[X1 = x1, · · · , XN = xN ] = Pr[Xσ(1) = xσ(1), · · · , Xσ(N) = xσ(N)]

Exchangeability intuitively corresponds to a commonly valued consequence of functional pu-

rity, namely that the order of evaluation of a sequence does not matter. As long as this exchange-

ability property holds, there are a family of representation theorems, commonly referred to as “De

Finetti’s Theorem” (14), that guarantee (subject to various technical conditions) a representation

exists in terms of independent, identically distributed draws given some latent random variable. In

fact, Freer and Roy (64) have shown that a large class of computable exchangeable sequences have

a computable representation in the style of the first version of sample-coin. Thus requiring ex-

changeability of evaluation sequences corresponds to the idea that some distribution is being drawn

from, without requiring that distribution to be made explicit, and thus allowing random values to

be bound in environments. Mutation is permitted, as long as it preserves independence to order of

evaluation (and therefore does not generate a system that counts).

Memoization

Church includes a primitive procedure (mem <proc>), which takes a procedure and returns a

memoized version — one that only applies itself once for each set of arguments. In the determin-
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(define (sample-coin)
(let ((coin-weight (random-beta 1 1)))

(lambda () (flip coin-weight))))

(define my-coin (sample-coin))
(my-coin)
> #t
(my-coin)
> #f
(define your-coin (sample-coin))
(your-coin)
> #t

Figure 2-2: Expressing the Beta-Bernoulli model as a pure thunk valued procedure. To construct a coin,
we return a procedure that closes over a single randomly chosen coin weight. Calls to such procedures
are exchangeable, not independent and identically distributed: the order of the calls doesn’t matter, but
knowledge of one return value does change our expectations about other return values. However, if we
can look inside the closed-over environment, we see the representation in terms of independent, identically
distributed draws.

istic setting, this trades space (to store old values) for time (as each value is only computed once).

In the probabilistic setting, memoizing a procedure in general changes its meaning. For example,

Figure 2-4 shows a simple example where memoization is used to build infinite random streams.

We will see other uses of memoization later on in this chapter.

Memoization requires some form of mutation — or an unpleasant, whole-program transfor-

mation, prior to interpretation — to implement. However, it is clearly exchangeable: the joint

distribution on simulated values of a memoized procedure does not depend on the order in which

they are drawn. This allows memoization to be treated as an ordinary random primitive procedure.

We think other impure higher-order functions and linguistic constructs that seem to preserve the

identity of the procedures and programs they act on may be helpfully viewed as generating ex-

changeable sequences. Siskind and Pearlmutter’s differential operator (73; 58) is one interesting

candidate. Lisp’s gensym is another: the meaning of a program with gensym does not depend

on the values it returns, but only on the property that they be distinct, which is invariant to their

ordering. Thus we see that exchangeability recovers an intermediate point between purity and mu-

tation in the deterministic limit, while serving as the natural notion of purity in the probabilistic

setting.
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(define (sample-coin)
(let ((counts (list 1 1)))

(lambda ()
(let ((result (flip (/ (car counts) (+ (car counts) (cdr counts))))))

(if result (set-car! counts (+ (car counts) 1))
(set-cdr! counts (+ (cdr counts) 1)))

result))))

(define my-coin (sample-coin)
(my-coin)
> #t
(my-coin)
> #f
(define your-coin (sample-coin))
(your-coin)
> #t

Figure 2-3: Mutation is allowable as long as it preserves exchangeability. Using this idiom, we give an
alternate representation for the Beta-Bernoulli from Figure 2-2, which operates by sampling from a sequence
of predictive distributions, updating sufficient statistics after each call.

2.2.2 Universal Bayesian Inference and Conditional Simulation

We have seen how it is natural to generalize the notion of executing processes that evaluate func-

tions to the idea of simulating probabilistic generative processes that sample from distributions.

This allows us to write programs that correspond to probabilistic generative processes, giving us a

new, procedural notation for distributions in probabilistic modeling. To have an effective modeling

language, we need to somehow support inference, which involves conditioning the model.

In Church, we support inference by generalizing evaluation further, to conditional simulation

of any probabilistic generative process, where both the process and the condition can be arbi-

trary probabilistic procedures. Rather than organize computation around the procedure (EVAL

<expression> <environment>), we organize computation around the procedure (QUERY

<expression> <environment> <predicate>). The job of QUERY is to simulate from

the induced distribution on values for the given expression in the given environment when condi-

tioned on the predicate being true on its output.

To understand this choice, it is worth contrasting it with the prototypical view of Bayesian

inference. In a typical Bayesian problem, one has a prior probability distribution Pr(H = h) on
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(define notastream (lambda (idx) (flip)))
(define bitstream (mem (lambda (idx) (flip))))

(notastream 0)
> #t
(notastream 1)
> #t
(notastream 0)
> #f
(notastream 0)
> #t

(bitstream 0)
> #f
(bitstream 1)
> #t
(bitstream 0)
> #f
(bitstream 0)
> #f

Figure 2-4: Memoization, an exchangeable operation, can be used to construct infinite random objects whose
pieces are indexed by the arguments to procedures, such as streams of random bits. This permits delayed
evaluation in the probabilistic setting.

hypotheses h, capturing beliefs before a given set of observations will be taken into account. One

also has a data model Pr(D = d|H = h), that specifies the probability of any given data set

d assuming that the hypothesis h holds. Often, both these probability functions are individually

easy to evaluate, and are induced by complex, probabilistic generative processes. Bayes’ Rule, or

really some applications of the rule of conditional probability, is then used to describe the posterior

distribution Pr(H = h|D = d):

Pr(H = h|D = d) =
Pr(H = h)Pr(D = d|H = h)

Pr(D = d)
=

Pr(H = h,D = d)∑
H Pr(H = h,D = d)

This new object is a conditional distribution on hypotheses h given data sets d. Its probability func-

tion is usually difficult to evaluate, because it requires a sum over exponentially many hypotheses

h. It is also a “large” object, and difficult to manipulate even if it were easy to evaluate for any
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given pair of d and h. That is, being able to evaluate the posterior probability would not necessarily

make it easy to evaluate posterior expectations, examine typical world states responsible for the

data, or make predictions about future data sets. This complexity issue is just a special case of the

complexity issues involved in all probability function based representations for distributions.

In Church, one way to specify the canonical Bayesian reasoning setup is by providing a pro-

cedure that takes a prior and a likelihood, both represented as samplers, and produces a procedure

that samples from the posterior whenever applied:

(define (make-posterior-sampler prior-sampler likelihood-sampler)

(lambda (observed-data)

(query ’(let ((H (prior-sampler))

(D (likelihood-sampler H)))

(cons H D))

(get-current-environment)

(lambda (HD)

(equal? (cdr HD) observed-data)))))

The following properties of Church’s QUERY construct stem from its Lispiness and distinguish

it from most other probabilistic programming langauges:

1. It recovers EVAL when pred is always true (for example, (lambda (x) #t)). Thus it

contains unconditional simulation as a special case, respecting environment structure, and

can be applied recursively to conditionally simulate from a conditionally simulated distribu-

tion.

2. It can be implemented exactly, even when the space of possible causal histories associated

with exp is exponentially large or infinite, as the process of simulating exp halts with

probability 1. This exactness in the presence of an infinite support is hard to archieve with

any description of a distribution that is not based on probabilistic procedures that produce

samples.

3. It permits arbitrary, probabilistically computable predicates, which themselves might include

randomness (arising, for example, when representing a collapsed rejection sampling algo-

rithm).
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(define (query exp env pred)
(let ((val (eval exp env)))

(if (pred val)
val
(query exp env pred))))

Figure 2-5: A metacircular description of QUERY, which generalizes EVAL to provide lexically-scoped
conditional simulation of an admissible stochastic process. QUERY takes an expression, an environment
and a predicate, and returns a sampled value from the conditional distribution on values induced by the
expression, given the constraint that the predicate applied to that value is true.

4. As we will see in the next section, QUERY can be written within the language, and a native

implementation is indistinguishable from the built-in one (due to first-class environments).

Thus it demonstrates universality of Church for conditional simulation: in Church, you can

write a reasoner that will halt with probability 1 for all queries where the expression and

predicate both halt with probability 1.

Metacircular Implementation

We provide a metacircular implementation of QUERY in Figure 2-5, building on the well-known

metacircular implementation of EVAL in pure Scheme (1). We use rejection sampling, a version

of guess and check: simulate the underlying process, and accept the results if and only if the target

condition is met, retrying as many times as necessary.

We note that when designing Church, our original notion of conditional simulation was not

compatible with metacircular interpretation, nor did it correctly recover evaluation as a special

case. We did not arrive at a version of QUERY which correctly functioned outside of the top-level

— removing arbitrary restrictions on when and where probabilistic modeling and inference, as

opposed to just forward simulation, could occur — until we were able to provide a definitional

interpreter for Church’s QUERY (62). This admittedly abstract constraint yielded a definition of

query in terms of rejection sampling that has repeatedly held up to subtle extensions to the lan-

guage, including the introduction of random primitive procedures that include exchangeable mu-

tation. While we do not fully understand the reason that preserving metacircularity has led to such

stability — avoiding errors in the conditioning constructs in some other probabilistic programming

languages — we have found its results indispensable.

Efficient algorithms for conditional simulation have been the subject of a vast literature. This
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rejection sampling based implementation has the property that it will only be efficient — in both

time and number of attempted samples — when the conditioning operation does not change the

distribution “too much”, so most samples are accepted. In the special case of the standard Bayesian

model, this means the prior and posterior are relatively similar. We will touch on approximation

algorithms with different efficiency properties later on. We emphasize the rejection sampler, how-

ever, because it defines the desired behavior for query in a stable and procedural way, and forces

us to develop algorithms for exact and approximate reasoning that are appropriately generable and

recursively composable.

Stochasticity, not nondeterminism

The idea of using a program to represent the models of some declarative theory has a long history

in logic, going back to McCarthy’s AMB construct (1; 49; 72). The idea behind AMB is to represent

an ambiguous value via a nondeterministic choice, subject to Boolean constraints, induced via the

construct REQUIRE. A search algorithm operating behind the scenes is responsible for finding

answers. For example, this nondeterministic program represents a SAT problem:

(let ((a (amb #t #f))

(b (amb #t #f))

(c (amb #t #f)))

(require (or (and a (not b)) c))

(list a b c))

Implementations of systems for so-called “nondeterministic” programming also frequently pro-

vide procedures like (ALL-SOLUTIONS <expr>), which list all possible values of an ambigu-

ous expression. This same basic approach can be used to understand reasoning systems like Prolog,

and procedural embeddings of a range of logics.

In Church, we might encode the related but different (!) problem of sampling a satisfying

assignment for a Boolean formula as follows, using a simple lexicalized variant of QUERY that

takes a let-style named list of variables, an expression to evaluate against these names to return,

and a predicate expression:

(lex-query ’((a (flip))

(b (flip))

(c (flip)))
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’(list a b c)

’(or (and a (not b)) c))

Church and amb share the idea of capturing a space of possible outcomes using programs with

some kind of choice operator and a predicate written as an arbitrary Boolean-valued expression. To

convert Church into a language for nondeterministic programming we need to convert stochastic

choices into nondeterministic ones and stochastic conditions into satisfiability or counting prob-

lems. For example, one could imagine first replacing (flip) with (amb #t #f), and then re-

placing (query <exp> <pred> <env>)with two procedures, (some-satisfying-value

<exp> <pred> <env>) and (all-satisfying-values <exp> <pred> <env>).

However, Church is stochastic, capturing models of probabilistic knowledge, where amb is

nondeterministic, capturing models of logical knowledge. This means, for example, that Church

programs can potentially manage exceptions and weight alternate explanations, where a logical

reasoner can only report the presence of perfectly consistent solutions or failure. Furthermore,

because we sample, although the space of possible solutions grows exponentially in the number

of stochastic choices (as with AMB), the cost of running the program forward to produce a typical

solution grows only linearly. Of course, the complexity of adding conditions is more complicated

and currently only poorly understood.

An Ergodic Walk On Execution Histories of a Lisp Machine

Another advantage of the QUERY construct is that it provides a uniform target for the design of

universal approximation algorithms. Several such algorithms have been developed; here, I present

the simplest one based on Markov chain Monte Carlo methods, to give a flavor for the general

problem. A description of more advanced methods and associated experiments is left for future

work.

The idea behind MCMC methods is to construct a sample approximately according to some

distribution of interest by inventing a Markov chain whose long run distribution is the target and

which is itself cheap to simulate. One then iterates this chain repeatedly to obtain the desired

answer. One approach to inference in Church, then, is to define a state space and a random walk

over this space such that the long run distribution is the conditional distribution on values implied

by some query.

The state space we choose is the space of computation traces of a Church program. A com-

putation trace is a directed acyclic graph composed of two directed trees, one tree for the envi-
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ronment structure of the program and one tree for the reduction steps involved in simulating each

subexpression. It makes the dependency structure of the computation — including its determinis-

tic subparts — completely explicit, and in particular records the dependencies between stochastic

choices and their particular outcomes. Figure 2-6 shows an example schematic trace for the expres-

sion ((lambda (x) (+ x 1)) (flip)), while Figure 2-7 shows a complete computation

trace captured from an early implementation of this algorithm on a simple satisfiability problem.

A detailed discussion of our Metropolis-Hastings algorithm for approximating QUERY is be-

yond the scope of the dissertation. However, the basic idea (due to Noah Goodman) is to:

1. Initialize the trace by executing the query expression, recording the EVAL recursion and

environment structure as it progresses.

2. Select a place in the trace where a random choice was made, uniformly at random. Re-

evaluate the choice. Propagate changes in the values of subexpressions and of bound symbols

along the trace in all directions, conservatively keeping it consistent, stopping when no more

changes are necessary. If the predicate of a conditional is reached, produce a trace fragment

for the newly taken branch and consume the old branch, keeping track of the probabilities of

each.

3. Accept or reject the new proposed trace according to the Metropolis-Hastings rule, rejecting

if the outermost predicate is violated, and thus guaranteeing asymptotic convergence. Peri-

odically mix it with a proposal that re-evaluates the trace by running the program forward to

ensure ergodicity.

Random choices can either correspond to random primitive procedures or to procedures that

have been tagged with a means of computing the marginal probability of an outcome given the

input. Other procedural tags that are sometimes useful include the ability to “undo” sampling a

value (rolling back any internal, exchangeable state associated with that value, such as sufficient

statistics) and alternate MCMC kernels for resampling the value (such as Gaussian perturbation

kernels for continuous values). Taken together, these additions constitute the information needed

to use a procedure in not just forward simulation but MCMC-based approximate conditional sim-

ulation, and allow the general framework described here to recover popular MCMC algorithms for

specific models. Of course, Markov chain iteration is an inherently stateful process, and thus the

Metropolis-Hastings algorithm cannot be straightforwardly implemented within Church without

costly build up and repeated, recursive recopying of the entire history of the Markov chain.
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Figure 2-6: A schematic computation trace, showing the DAG obtained by connecting the tree of Church
expressions and subexpressions with the tree of environments during the evaluation of the expression
((lambda (x) (+ x 1)) (flip)).

This algorithm has the appealing property that the complexity of basic steps of reasoning —

here, proposing new substructures in a trace, and updating a trace to reflect these proposals —

follows directly from the complexity of simulating from subpieces of a structure of knowledge. It

thus preserves the ability for a programmer — or an inference compiler, or uncertain reasoner — to

rewrite a belief in a form that makes reasoning over it more efficient without changing its meaning

and without leaving the basic Church language.

2.2.3 Expressiveness

The expressiveness of Church can be seen in the concise descriptions of recently introduced mod-

els that it enables as well as the ways in which it supports new kinds of models that were previ-

ously difficult to formally capture. In this chapter, I will focus on nonparametric Bayesian models,

stochastic memoization, undirected models, inductive programming, and sequential decision mak-

ing, since these exemplify the kinds of problems that Church can handle but other programs cannot.

Dirichlet Processes and Nonparametric Hierarchical Bayes

We start with the Dirichlet process, a popular object from the nonparametric Bayesian statistics

literature, that is an infinite dimensional generalization of the Dirichlet distribution on the simplex.

Figure 2-8 shows one implementation in Church.

The Dirichlet process maps a distribution onto a “clumpy” version of itself, where early draws

are more likely to recur as the process is replayed. From this perspective, the Dirichlet Process can
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Figure 2-7: A complete computation trace saved using the trace debugging facility of the Blaise implemen-
tation of Church.

(define (DP concentration base-measure)
(let ((sticks (mem (lambda j (random-beta 1.0 concentration))))

(atoms (mem (lambda j (base-measure)))))
(lambda ()

(let loop ((j 1))
(if (flip (sticks j)) ;; with probability (stick j)

(atoms j) ;; return j’th sample from base measure
(loop (+ j 1))))))) ;; otherwise move to (j+1)’th stick

Figure 2-8: The Dirichlet Process can be naturally expressed as a higher-order Church procedure. Since its
de Finetti or stick-breaking representation is infinite, we use MEM to delay the evaluation of the sticks until
needed.
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(define (DPmem alpha proc)
(let ((restaurants (mem (lambda args (DP alpha

(lambda () (apply proc args)))))))
(lambda args ((apply restaurants args)) )))

Figure 2-9: Using the DP as a primitive, we can stochastically generalize memoization, yielding a ver-
sion where a procedure is re-evaluated (possibly resulting in a new value, if the procedure is stochastic)
with probability following the Chinese restaurant process each time it is called. With α = 0 we recover
deterministic memoization, where the procedure is only evaluated once, and with α = ∞ we recover the
absence of memoization (but wasting space to store the intermediate values). This idiom helps to explain the
widespread popularity of the Dirichlet Process in probabilistic generative modeling, where it often serves
the role of “stochastically caching” fragments of a generative process.

be usefully viewed as the key component of a kind of stochastic generalization of memoization,

which yields procedures that sometimes return previously sampled values and sometimes sample

new (and potentially different) ones. Figure 2-9 shows an example stochastic memoizer built using

the Dirichlet process.

We can combine this procedural design idiom with ideas from functional programming to com-

pactly express a range of widely used models based on stochastic transitions. First, we express the

general process of unfolding, or building a structure recursively:

(define (unfold expander symbol)

(if (terminal? symbol)

symbol

(map (lambda (x) (unfold expander x))

(expander symbol) )))

Given this, we can build a Church model for PCFG transitions via a fixed multinomial over

expansions for each symbol:

(define (PCFG-productions symbol)

(cond ((eq? symbol ’S) (multinomial ’((S a) (T a)) (0.2 0.8)))

((eq? symbol ’T) (multinomial ’((T b) (a b)) (0.3 0.7))) ))

(define (sample-pcfg) (unfold PCFG-productions ’S))
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The HDP-HMM (5; 81) uses memoized symbols for states and memoizes transitions. Fresh

symbols are generated by the exchangeable (but stateful) primitive gensym, which returns distinct

symbols on each call:

(define get-symbol (DPmem 1.0 gensym))

(define get-observation-model (mem (lambda (symbol) (make-100-sided-die))))

(define ihmm-transition (DPmem 1.0 (lambda (state)

(if (flip) ’stop (get-symbol)) )))

(define (ihmm-expander symbol)

(list ((get-observation-model symbol)) (ihmm-transition symbol)) )

(define (sample-ihmm) (unfold ihmm-expander ’S))

The HDP-PCFG (44), a nonparametric, recursive, probabilistic grammar, is also straightfor-

ward in Church, although it has no graphical model representation:

(define terms ’( a b c d))

(define term-probs ’(.1 .2 .2 .5))

(define rule-type (mem (lambda symbol)

(if (flip) ’terminal ’binary-production))

(define ipcfg-expander (DPmem 1.0 (lambda (symbol)

(if (eq? (rule-type symbol) ’terminal)

(multinomial terms term-probs)

(list (get-symbol) (get-symbol)) ))))

(define (sample-ipcfg) (unfold ipcfg-expander ’S))

Making adapted versions of any of these models (38) only requires stochastically memoizing

unfold (although there are some subtle issues here involving recursive, stochastically memoized

functions that are beyond the scope of this dissertation):

(define adapted-unfold

(DPmem 1.0 (lambda (expander symbol)

(if (terminal? symbol)

symbol

(map (lambda (x) (adapted-unfold expander x))

(expander symbol)) ))))
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In all these settings, we see how higher-order programming idioms from the functional world,

like memoization and unfold, can be generalized probabilistically and used to create new models.

A wide variety of nonparametric models for relational clustering are also naturally describable in

Church using similar techniques.

Constraint Networks, Undirected Modeling and Integrable Functions

Probabilistic generative models can be used to capture systems of constraints as well as systems of

directed (or causal) relationships. The dominant metaphor for such models comes from statistical

mechanics: every configuration ~x of a system is assigned an “energy” E(~x), and the distribution

on configurations is defined to be the Boltzmann distribution:

p(~x) =
1

Z
e−

1
T
E(~x)

Such “Gibbsian” systems favor configurations which have low energy. As the temperature T ap-

proaches 0, they place all their mass on configurations with the lowest energy, and as T approaches

infinity, they place probability mass uniformly over their support.

A wide variety of “soft” or “probabilistic” constraint networks can be described using this

formalism. Markov random fields or “undirected” graphical models (27; 42) form one important

class, where nodes correspond to variables and the graph structure captures an additive decom-

position of the energy function E(~x) in terms of factors on neighboring variables. Stereo vision

problems provide one important example.

We can induce such systems using generative processes via the metaphor of thermodynamic

equilibration: we build an ergodic Markov chain whose long run distribution follows p(~x) above.

Thus one option for representing constraint systems in Church would be to write down probabilistic

fixed-point iterations that converge to the desired distribution. However, without information on the

mixing rate of the Markov chain (or termination techniques like coupling from the past), running

the iteration for a finite number of steps could yield an approximate sample. Alternately, we can

describe these systems using a QUERY where the predicate is probabilistic:

(query ’(uniformly-sample (variables-with-domains system))

(lambda (sampled-world)

(flip (exp (* -1 (energy-of-setting sampled-world system))))))

By modeling such systems in terms of conditional simulation, we achieve two goals simultane-
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ously. First, we capture their intractability — in these models, forward simulation is a challenge,

unlike directed models (like Bayes nets) where simulation only becomes difficult after condition-

ing. Second, we capture the separation between the specification of an undirected model in terms

of conditional simulation and the particular generative process we use to simulate from it. For

example, approximate Markov chain based implementations of QUERY can be swapped in for the

above definition without changing the model.

We can also use this technique to model optimization of integrable functions2 without com-

mitting to a particular optimization algorithm: we let the energy equal the integrable function and

anneal to some appropriately low temperature.

Inductive Probabilistic Programming

In true Lisp spirit, EVAL and QUERY are exposed as ordinary Church procedures, and can be

written in a form indistinguishable from the built-in versions even if not. Exposing EVAL means

that one can write a program that simulates a randomly chosen probabilistic program. Nesting

EVAL within QUERY means that one can conditionally simulate from a probabilistic process that

samples probabilistic programs.

From the standpoint of probabilistic modeling and Bayesian learning, this means one can do in-

ference over a hypothesis space of probabilistic programs, and induce probabilistic programs from

data, without needing any special machinery. We can thus avoid the common distinction between

inference “within” a modeling framework and making inferences about (or learning) models writ-

ten in that framework — for example, inferring the value of unobserved variables in a Bayes net

versus learning the Bayes net parameters from data. Learning a Church program from data is no

more difficult, conceptually, than implementing QUERY, since Church programs are just another

kind of Church data.

Much work remains to be done developing this approach further, especially in defining hypoth-

esis spaces (and prior distributions) over programs and in identifying algorithms for conditional

simulation that work well in these general spaces. However, to concretize the basic concept, I

include a very simple example in Figure 2-10. The gen-exp procedure returns a symbolic arith-

metic expression drawn from a simple grammar, and the query returns samples from the posterior

distribution on expressions given that the result is 24.

2Technically, if the domain is infinite, we may need to augment the predicate of the query with a bound, so that the
rejection sampler is well-defined.
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(define (gen-exp)
(if (flip .4)

(list (if (flip) ’+ ’*)
(gen-exp)
(gen-exp) )

(+ 1 (sample-integer 10)) ))

(lex-query
’((exp (gen-exp)))
’exp
’(begin

(equal? (eval exp (get-current-environment)) 24) )

> ((* 4 6) . -859.5675368561048)
> ((* 3 8) . -1122.505663959104)
> ((+ (+ 5 (* 1 6)) (+ 6 7)) . -38.9947074465309)
> ((+ 6 (+ 10 8)) . -4268.056871640514)
> ((+ (* 4 5) 4) . -3828.4984617978816)
> ((* 4 6) . -2427.0969393313953)

Figure 2-10: Nesting EVAL inside QUERY allows one to express the problem of learning Church programs
from data, without having to reinvent the representational machinery of a programming language. This
program learns various ways of expressing the value 24, consistent with a particular context-free grammar
on program text in symbolic expression form.
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Planning as Sampling

We can also express softmax-optimal planning as inference in Church, following Toussaint et

al. (82), though working in the policy free setting. Figure 2-11 shows an example skeleton of

a planner, which chooses an action today under the assumption that future actions will be cho-

sen approximately optimally. Here, we are using a lexicalized form of query, (lex-query

<object-association-list> <query-expression> <conditioning-expression>),

which lets you build a random world out of named pieces and refer to those pieces in later expres-

sions. This example illustrates three aspects of Church’s expressiveness, resulting from combining

sampling with structured processes:

1. Decision making is normally cast in terms of a maximization: choose an action a according

to the program maxactions aEP (future f |action a)[value(f)]. However, we can approximate

both the maximization and the expectation using conditional sampling: we sample from

a distribution proportional to a Monte Carlo estimate of the objective. We can make the

approximation exact by combining annealing (for the max) with increasing the number of

samples drawn for the Monte Carlo estimation. Thus the same algorithmic machinery used

for implementing query can be used for other computationally difficult tasks in probabilistic

AI, and improved algorithms for conditional sampling can immediately yield improvements

to planners.

2. Planning represents a simple form of metareasoning, where the reasoning agent being rea-

soned over is a model of the future version of the agent doing the planning. This requires

building probability models over reasoning processes, or in Church terminology, the nesting

of queries. Church enables compact representation of versions of this problem using general

machinery, where the reasoning algorithm, the optimization algorithm for decision making,

and the world being reasoned over are all represented in Church.

3. Actions are arbitrary Church objects, and rewards are computed by evaluating an arbitrary

energy-valued Church expression. This means that the same planning kernel could be used

to select program-valued actions from a large space of possible programs, and that all the

machinery of Lisp is available to represent hierarchical, recursive structure in actions, plans,

and rewards.
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(define (choose-action state)
(lex-query ’((action (action-prior)))

’action
’(flip (normalize-reward

(sample-reward action state)))))

(define (sample-reward action state)
(let ((next-state (state-transition state action)))

(+ (reward next-state)
(if (terminal? next-state) 0

(sample-reward (choose-action next-state)
next-state)))))

Figure 2-11: Planning as inference — or, more formally, softmax-optimal decision making in a sequential
decision problem — is one instance of metareasoning, or reasoning about reasoning. The essential recursion
captures the question “how should I act today, given that I will reason and act approximately optimally after
taking that action?”.

2.3 Discussion and Directions

We obtained Church by (1) adding stochasticity to a lexically scoped, call-by-value Lisp with first-

class environments, (2) generalizing the idea of evaluation to stochastic simulation, with purity

becoming exchangeability and (3) generalizing simulation to conditional simulation for universal

Bayesian inference. We then saw how higher-order programming idioms from functional program-

ming could be generalized probabilistically and used to simplify nonparametric Bayesian model-

ing, and how the Lispiness of Church opens the door for inductive programming and probabilistic

metareasoning. Work on probabilistic programming, however, is just beginning.

2.3.1 Inference and Complexity

The main practical challenge facing the Church project is the development of better algorithms for

query, along with massively parallel implementations.

One starting point is the “initialization” of an MCMC-based QUERY, where we currently use

rejection, supported by a suite of constraint propagation heuristics. Finding a computation trace

that is compatible with the predicate of a query from which to “start” MCMC is a full inference

problem in its own right. An exact sample from the posterior would be the perfect initialization. A

means of building up an initial trace out of pieces, biased towards high probability traces, would
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be a significant contribution. The systematic sampling algorithm described in the next chapter

may provide some useful leads. The main outstanding challenge is finding a means to “reverse”

evaluation locally.

Partial evaluation provides another avenue of attack on the inference problem. In probabilistic

programming, partial evaluation may be generalizable to marginalization by integration. If I know

the distribution on values for some argument to a probabilistic procedure, I can potentially use that

knowledge to simplify its contents by integrating out the variable. Query decomposition to syn-

tactically leverage conditional independencies in a Church program seems like another promising

technique. The procedural nature of Church and the close coupling of algorithm and belief give us

hope that the inference problem may be tractable without an infinite regress into algorithm design.

However, much of compiler research for deterministic languages can be interpreted as the art of

accelerating EVAL, so our work is certainly cut out for us.

The theoretical study of the complexity of Church programs is another important area for future

work. Only a small subset of Church programs naturally coincide with the decision or evaluation

based complexity classes traditionally studied in theoretical computer science. However, there

are some interesting analogies that might suggest useful generalizations of the theory. For ex-

ample, one can view the set of Church QUERY expressions where both the expression and the

predicate are easy to evaluate as a kind of stochastic analogue of the problem class NP : it is easy

to check if a candidate solution satisfies the desired constraints, and easy to generate candidate

solutions, although possibly hard in general to generate candidate solutions that satisfy the desired

constraints. Finding an appropriate embedding of existing complexity classes into Church, and de-

signing Church implementations which behave appropriately even on deterministic subproblems,

seems like an important challenge.

2.3.2 Semantics and First-class Objects

The semantics of Church and connections with advanced constructs in functional programming are

another potentially interesting area of research. For example, at present, because of the semantic

restriction to programs that halt with probability 1, programming in Church may be viewed as

a stochastic generalization of total functional programming. On the one hand, it seems difficult

to avoid this restriction and retain the essential idea of Church, where distributions are induced

by stochastic procedures. It is at present unclear how to define the “value” of an expression for

which evaluation does not halt. On the other hand, this restriction may rule out certain potentially
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sensible objects, such as conditional samplers for PCFGs which place some mass on infinite strings

but which, given a finite yield, place all their mass on finite parses. Better understanding these

technical limitations may help to clarify the formal foundations of Church.

Exploring fully lazy (or call-by-need) variants of Church also seems interesting. Currently,

delayed evaluation is introduced by MEM, requiring a special exchangeable random primitive. The

choice to make Church call-by-value was partly driven by expediency and partly driven by the

observation that it is easy to simulate lazy behavior in a call-by-value language, but difficult to

simulate eager behavior (with its associated potential savings of time and space, especially for

recursive processes) when one only has lazy primitives. However, some programs that do not halt

in eager languages do halt in ones that are lazy by default, and laziness may mesh well with the

declarative nature of many Church programs.

The exclusion of SET! from the Church language has been the cause of considerable debate

among the coinventors of Church. On the one hand, it has clearly proven helpful to be able to

define primitives that mutate local state but satisfy an exchangeable contract. On the other hand,

it is hard to decide how SET! should be treated if it occurs inside a QUERY (in some sense re-

quiring the maintainence of a temporal history of the environment of the computation) or to weigh

the cost of giving up exchangeability by construction. This issue connects more broadly with the

question of the flow of time in Church programs. Currently, all Church programs define “timeless”

distributions, meshing well with the declarative uses of Church; this is at the heart of exchange-

ability. However, this very timelessness makes it difficult to implement an efficient single-threaded

Church engine within Church, and impossible to implement a massively parallel Church engine.

Furthermore, it is currently unclear how to model continuous time stochastic processes in Church

without leaning on complex strategies for nonuniform discretization. The development of concur-

rent stochastic programming primitives might well simultaneously settle both the practical issues

of concurrent inference and allow for the natural modeling of continuous time stochastic processes.

Finally, we have avoided introducing first-class continuations into Church or thinking carefully

about the stochastic significance of generalized tail recursion. We are not sure what a good no-

tion of a stochastic delimited control construct is, or how such a construct would interact with the

declarative semantics of a Church program. We suspect tail-recursive processes using arguments

with bounded space may correspond to distributions with finite dimensional sufficient statistics

(e.g. exponential families), since tail recursion seems analogous to closure under sequential condi-

tioning. We also wonder if continuations could enable the expression of exchangeable primitives

without mutation. We regretfully leave these expressiveness questions to future work.
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2.3.3 Probabilistic programs, integer programs and logic programs

In computing, programming has come to mean two different things. Programmers often think

of programming as defining or describing procedures and processes that machines will execute.

Applied mathematicians often think of programming in the sense of linear programing and integer

programming (and AI researchers in terms of logic programming): the definition of declarative

problems involving maximization or satisfiability, solved by particular algorithms.

Conditional simulation in Church captures important aspects of both of these approaches. A

query expression is a program in the programmer’s sense, while the predicate defines a constraint

in the applied mathematician’s sense. Taken together, they define a declarative program over a

space of values that was specified procedurally. In fact, by taking the view of Church queries

as undirected models from computational physics and applying techniques like annealing, one

can write down linear programs, integer programs, and weighted logic programs as probabilistic

programs.

A Church engine solves these programs by using general-purpose reasoning machinery (e.g.

in MCMC) that repeatedly simulates parts of the query expression to probabilistically satisfy the

constraints of the query. Algorithmic knowledge is thus split between the choice of one particular

query expression among some equivalent set and the implementation of query in the underlying

Church engine. Finding representations of linear programs as query expressions which allowed the

Church MCMC algorithm to automatically recover the techniques in, say, interior point methods,

seems like one particularly interesting way to explore these procedural/declarative relationships.

2.3.4 Inductive Programming and Programming Style

“54. Beware of the Turing tar-pit in which everything is possible but nothing of interest
is easy.”

— Alan Perlis, Epigrams on Programming

“The real power of Lisp is that its unrestricted abstractions support the construction of
new languages, greatly facilitating the strategy of stratified design.”

— Abelson & Sussman, Lisp: a language for stratified design
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We have been trying to produce programs that are capable of programming since almost the

origins of the field. While the deepest problems of program synthesis remain very much open,

probabilistic programming may offer a new perspective for these problems and for problems of

formalizing programming style.

It seems to us that programming languages are deemed “expressive” when it is possible to write

a range of interesting programs and languages in them compactly, and when these new programs

and languages will themselves be easy to extend. Probabilistic programming lets us begin to ex-

plore this issue formally, by viewing a “style” as a probabilistic program or grammar that generates

programs in a given style. We can measure the ease of writing a program in a style by asking about

the probability of the program under that style. For styles that adapt as programs are generated —

for example, because they involve defining reusable symbols and programs — we can even study

how the probability of a given program varies as a function of the number of symbols that have

already been defined. These same issues will let us understand the inductive biases that result from

different prior probability distributions on the space of programs.

The ability to study nested hypothesis spaces of programs — where a programming style or

embedded language is learned, along with a program in it — is one new tool that probabilistic pro-

gramming has to offer efforts in program synthesis. Another difference is that the goal is framed

in terms of sampling a program from the induced posterior on programs, as opposed to finding the

best program, so all the algorithmic techniques for approximately sampling over nonconvex energy

landscapes can be brought to bear. The most important reason, however, may be that probabilis-

tic programs can get partial credit for good answers. A probabilistic program does not need to

deterministically produce a desired answer to be represented in the posterior on programs. Small

changes to a program might increase the probability that it produces a desired output, allowing

search algorithms to get partial credit.

In fact, this softening suggests other ways to generate new probabilistic programming con-

structs. We can take deterministic operators — like AND and IF — and view them as limits of

appropriate families of probabilistic variants. For example, a noisy IF might take the wrong branch

with some probability, and noisy logical operators could be built in terms of noisy IFs:

(IF (IF (flip *noise-level*) <pred> (not <pred>))

<consequent>

<alternate>)

This kind of softening was a key contributor to the success of neural networks over multilayer
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perceptrons, by making gradient based methods possible. It can be applied to a program as a

program transformation, and can itself be written as a simple Church macro. By noising up more

general operators in programming languages, even structured, deterministic programs could be

automatically relaxed into probabilistic programs that get partial credit.
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Chapter 3

Systematic Stochastic Search

“I think all our favorite [inference] methods – Gibbs sampling, overrelaxation, hybrid
Monte Carlo, variational methods, EM, gradient descent – are all too creepy-crawly
slow... The world isn’t an adversary. It should be possible to solve many learning
problems in a couple of iterations through a reasonable data set, rather than thousands.
It may be too much to ask for a one-shot learning method, but maybe we should be
looking for one-and-a-half-shot learning algorithms.”

– David J. C. MacKay, quoted in Graphical Models for Machine Learning and
Digital Communication

“Eliminate the impossible, and whatever remains, however improbable, must be the
truth.”

– Sir Arthur Conan Doyle, Sign of Four

3.1 Introduction

Efficient inference in high-dimensional, discrete probability models is a central problem in com-

putational statistics and probabilistic AI. It arises in a variety of situations, including medical

diagnosis, when trying to reason from the results of tests to underlying symptoms, and in computer

vision, when trying to reason from observed pixel values to depth maps.

In this chapter, we introduce a recursive algorithm for exact and approximate sampling aimed

at solving this problem in the presence of multimodality. Our goal is to develop samplers that work

well at diagnosing causes even when there are only a small number of high probability explanations

for the data that are very different. In these settings, we want reasoning algorithms that recover this
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qualitative structure, and capture the relative probability of these ’main’ explanations as reliably

as possible. We would like to do this efficiently even when there are exponentially many possible

explanations and so the search problem seems difficult and prone to local minima.

We do this by generalizing ideas from classic AI search to the stochastic setting. Just as sys-

tematic search algorithms like A* recursively build complete solutions from partial solutions, se-

quential rejection sampling recursively builds exact samples over high-dimensional spaces from

exact samples over lower-dimensional subspaces. Our method exploits and generalizes ideas from

classical AI search for managing deterministic dependencies, including depth first search with

backtracking, to tractably generate exact and approximate samples.

3.1.1 Sampling can manage multimodality where other inference methods
fail

Many popular approaches to inference, such as mean-field variational methods (39), convex relax-

ations (88; 75), and generalized belief propagation (91), focus on approximating MAP assignments

or (low-dimensional, e.g. 1 or 2 variable) marginal distributions. That is, they ignore the corre-

lations between variables, instead looking for the “average” value of each variable individually,

hoping that will lead to sufficiently accurate inferences. While effective in many settings, low-

dimensional marginals (and MAP assignments, or “most probable” configurations) often do not

capture the essential features of a distribution, especially in the presence of multimodality. Ferro-

magnetic Ising models provide one source of extreme examples:

p(x) = exp
{
−J

∑
(i,j)∈E

xixj

}
, xi ∈ {−1, 1}. (3.1)

As the coupling parameter J increases, the joint distribution on spins approaches a 2-component

mixture on the “all up” and “all down” states, which has only 1 bit of entropy. Put differently, as

J increases, the Ising approaches a SAT formula where all variables are constrained to be equal.

In physical terms, we see a phase transition on the structure of solutions, from a disordered mess

through a graded region of high complexity to a region where two qualitative states dominate.

A MAP approximation misses the fundamental bimodality of the distribution. Thus optimization-

based approaches will ignore all but one of the valid explanations. A minimum-KL product-of-

marginals approximation (as in naive mean field) confuses this distribution with the uniform dis-
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tribution on spins. That is, ignoring correlations between variables in cases where there are only

a small number of qualitative explanations destroys the critical structure these situations naturally

exhibit.

When a high-dimensional distribution contains many widely separated, hard-to-find modes, it

becomes difficult to parametrically approximate. Accordingly, simulation-based inference, where

we represent the distribution in terms of a stochastic procedure that samples from it, seems ideal.

If an efficient sampler1 can be found, we can invoke it to produce accurate Monte Carlo estimates

that take all modes into account or use it as a subroutine in the construction of ever-larger samplers,

leveraging well-known composition laws (8). Fundamentally, a sampler-based (not sample-based!)

representation of a distribution allows us to work with a program that can, when invoked, lets us

explore the qualitatively important region of the distribution on demand. We thus avoid the need

to come up with a complete, exponentially large, quantitative description. If we wish to ultimately

build probabilistic agents that maintain and reason over uncertain beliefs for long periods of time,

we will need to work with a representation for distributions that has this basic property.

Exact and approximate sampling are also problems of intrinsic interest in computational physics

(60; 19), allowing us to directly inspect typical configurations of model systems defined in terms

of thermodynamic equilibrium. Unfortunately, popular methods like Gibbs sampling often run

into severe convergence problems in precisely those settings where the distribution of interest is

highly multimodal and therefore sampling would be most desirable. These difficulties have his-

torically motivated a number of specialized samplers that exploit sophisticated data augmentation

techniques (78), as well as a variety of model-specific proposal designs. Our algorithm mitigates

the problems of multimodality by generalizing ideas for managing deterministic dependencies

from the constraint satisfaction literature. In particular, it operates by a stochastic generalization

of systematic search.

3.1.2 Systematic vs Local Algorithms, Fixed Points, and Samplers

In deterministic systematic search, solutions to a problem are built up piece-by-piece, according

to some scheme that ensures the first complete solution found will be good. This approach can

be usefully contrasted with with local searches, generally based on fixed-point iteration, where a

1We note that practical efficiency here means no worse than linear in problem size with a manageable constant.
This is a far stricter criterion than the theoretical notions of efficiency, which generally settle for performance that
scales polynomially in problem size.
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Domain Systematic Local
Sorting MergeSort BubbleSort
SAT solving DFS, BFS, arc consistency, DPLL Min constraint
ODEs/PDEs Shooting (e.g. Euler, RK4) Relaxation (e.g. Gauss-Seidel)
Linear systems Algebraic (e.g. LU/QR) Iterative (e.g. conjugate gradient)

Table 3.1: Systematic algorithms build up complete solutions out of sequences of partial pieces, while local
algorithms attempt to iteratively improve structurally complete candidate solutions. The systematic/local
distinction cross-cuts many fundamental algorithmic problems.

complete but possibly poor quality approximate solution is repeatedly iterated on until it stabilizes.

Table 3.1 provides a domain-general list of example algorithms of both sorts.

More formally, most local searches can be cast as fixed-point iteration algorithms. One is

looking for some specific x∗ ∈ X , for example a permutation that sorts the elements of some

list. One then designs an f such that f(x∗) = x∗, finds some x0 ∈ cX , and computes xout =

f(f(· · · f(x0))). In bubble sort, for example, f can be viewed as a map from the initial permutation

of the list to one after a full pass of “bubbling up” has taken place. Alternately, one can augment

the space X to include a variable indicating what element of the permutation is currently being

modified, and have f represent a single bubble-sort swap. In deterministic algorithm design, one

typically attempts to argue that iterating f from the chosen x0 will yield xout = x∗ in some finite

- and ideally both short and automatically computable - number of steps. One way to do this is

by finding a Lyapunov function which is 0 for the desired x∗ and decreases strictly monotonically

under the action of f . In the case of bubble sort, one can use the number of out-of-order elements

in the list, and it is easy to show that this reaches 0 when the algorithm has completed the nth full

sweep of the initial list.

Markov chain based methods for simulation generalize this basic idea of fixed-point iteration

to the broader setting of stochastic simulation2. Here, one wants to generate a sample from some

distribution of interest π(·). Note that this stochastic goal of generating a sample from some

fixed distribution strictly generalizes the goal of deterministically obtaining a particular value x∗.

Obtaining such a value can be viewed as evaluating a no-argument function - that is, a function of

2While they have historically been used as part of Monte Carlo estimators for functions, yielding the label “Markov
chain Monte Carlo” or MCMC methods, I argue it makes sense to view them as a tool for sampling in their own
right. Monte Carlo estimation can then be viewed as the addition of a subsequent stage, resulting in a sample from a
distribution whose mean is hopefully close to some quantity of interest.
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no arguments that deterministically returns x∗.

For simplicity, we will assume that π(·) is a distribution on a discrete space X , and represent

π(·) as a vector ~π and our Markov chain transition kernel T (x) : X → X as a stochastic matrix

T. Markov chain based methods work by exploiting T s with respect to which π is invariant, or

in terms of probability functions, Tπ = π. This is the stochastic generalization of the fixed-

point condition above. Samples are generated by drawing x0 from some initial distribution π0(·)
- again, analogous to the choice of x0 above - and returning T (T (· · ·T (x0))) as a sample drawn

approximately from π. Termination analysis is more complex in the stochastic setting, but recent

advances like coupling from the past (60; 34; 12) provide one set of approaches, by enabling

automatic determination of the number of iterations needed for exact convergence. Up to the

technical constraints and regularity conditions imposed by discreteness, this embedding is fully

general. Accordingly, we can view each of the deterministic local searches above as a special case

of a Markov chain simulation method.

For example, bubble sort can be fruitfully viewed as an MCMC algorithm whose goal is to

sample permutations to approximately sort the list. The energy function π counts the number of

neighboring pairs under the permutation that are out of order. The transition kernel of the MCMC

algorithm is a deterministic cycle of kernels that make Metropolis-Hastings proposals for pairwise

swaps. When we anneal the energy so it is 0 if all elements are in order and ∞ otherwise and

we use Gibbs kernels on swaps instead of Metropolis-Hastings, we will always swap elements if

they are out of order, and swap with probability 0.5 if they are in order. Repeated iteration thus

recovers the swaps made by bubble sort, with additional random choices to guarantee a uniform

sample from all consistent partitionings.

The view of MCMC methods as stochastic local searches invites the question “what are use-

ful stochastic generalizations of systematic searches?”. In systematic searches, the first complete

candidate solution is either exact (as in backtracking search or A*) or approximate (as in beamed

searches), and strategies for search tree expansion are often used to manage deterministic depen-

dencies among chains of choices. We introduce a method that automatically recovers a randomized

variant of one such method, depth first search with backtracking, when applied to constraint satis-

faction problems, generalizing these ideas to the setting of sampling. Furthermore, if the rejection

step in our algorithm is replaced with importance sampling with resampling (and particular re-

stricted choices of variable orderings or choice points for divide-and-conquer are used) we recover

widely-used particle filtering algorithms for approximate sampling.

In this chapter, we present the mathematical and algorithmic underpinnings of our approach and
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measure its behavior on ferromagnetic Isings and other probabilistic graphical models, obtaining

exact and approximate samples on a range of realistic sampling problems with surprisingly low

algorithmic cost.

3.2 The Adaptive Sequential Rejection Algorithm

Consider the problem of generating samples from an unnormalized, high-dimensional distribution

p(x), x ∈ X , where X = Y ×Z and p(x) = p(y, z) ∝ ψ1(y)ψ2(y, z). This setting arises in factor

graph inference, where the unknown constant in p is due to either the partition function of the

underlying undirected model or the marginal likelihood of the evidence in the underlying directed

model. For concreteness, in stereo vision, we might have x be a complete depth map, and z be the

depth value at a single pixel, and y be the depth values for all other pixels.

Our algorithm generates exact samples from p by recursively generating an exact sample from

p′(y) ∝ ψ1(y) (which we assume has an analogous decomposition, i.e. Y and ψ1 split into pieces),

and then extending it to an exact sample from p by rejection. The idea is to use the standard

computer science device of wishful thinking: find a way to solve the problem when the last pixel

is removed, and then find a way to extend that partial solution into a solution to the full problem.

To apply our algorithm to an arbitrary factor graph, we need a way of recursively decomposing

the model into distributions that are themselves decomposable. That is, we need general methods

of divding factor graph inference problems into subproblems. To recover backtracking, so that we

don’t bother reconsidering states that we know to be inconsistent, we need to adapt proposals over

time to reflect information we have learned during sampling. We will return to these issues later in

the chapter, initially focusing on the main recursion.

First, we define3 the Gibbs transition kernel

qp(z | y) ,
p(y, z)∑
z′ p(y, z

′)
(3.2)

=
ψ1(y)ψ2(y, z)∑
z′ ψ1(y)ψ2(y, z′)

(3.3)

=
ψ2(y, z)∑
z′ ψ2(y, z′)

(3.4)

and use p′ qp as the proposal distribution for a rejection sampler for p: i.e., we first generate an

3We will use , to denote definitions.
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exact sample ŷ from p′ (by induction) and then generate an exact sample ẑ from qp(· | ŷ). Let

x̂ = (ŷ, ẑ) and define the weight of the sample x̂ as

wp′→p(x̂) ,
p(ŷ, ẑ)

p′(ŷ) q(ẑ | ŷ)
(3.5)

=
p(ŷ, ẑ)

∑
z′ p(ŷ, z

′)

p′(ŷ) p(ŷ, ẑ)
(3.6)

=

∑
z′ p(ŷ, z

′)

p′(ŷ)
(3.7)

=

∑
z′ ψ1(ŷ)ψ2(ŷ, z

′)

ψ1(ŷ)
(3.8)

=
∑
z′

ψ2(ŷ, z
′). (3.9)

Note that the weight does not depend on ẑ and so we will consider the weight wp′→p(ŷ) as a

function of ŷ.

Recall that in rejection sampling with proposal p′ and target p, we need to find some cp′→p >

wp′→p(y) for all y ∈ Y . We can then accept x̂ as an exact sample from p with probability

wp′→p(ŷ)

cp′→p
, (3.10)

In general, loose upper bounds on each c are easy to find, but will introduce unnecessary rejections.

Overconfident values of c are also easy to find, but will result in approximate samples. Both these

variants may have practical value. Here, we focus on the setting where we actually use the optimal

rejection constant:

c∗p′→p , max
y
wp′→p(y) = max

y

∑
z′

ψ2(y, z
′). (3.11)

If y = (y1, . . . , yn) is high-dimensional, then the worst case complexity of calculating c∗p′→p is

exponential in n. However, when the sequence of distributions we are using has sparse dependen-

cies (i.e., when ψ2(y, z) is a function of only O(log n) dimensions yi), then we can calculate c∗p′→p
in polynomial time. For example, in grid Ising graphs, ψ2 depends on at most three neighbors and

therefore c∗ can be calculated in constant time.

This inductive argument describes the non-adaptive sequential rejection sampler. Later on,

we will describe a way to recursively build a good sequence of decompositions of the problem
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by borrowing from the constraint propagation literature. However, before we do this, it is worth

considering cases where we believe that rejection will be intractable, either because cs will be too

hard to compute or because the rejection rate will be too high. In such settings, we might be content

with approximate samples, but we would still like to leverage the systematic approach presented

here.

There are many ways to relax our method to yield potentially useful approximate variations.

The simplest is to replace the rejection step with k particle importance sampling plus resampling,

avoiding the need to compute c or wait for acceptance at the cost of a biased approximation.

Another option is to collapse all the rejection steps into one large sequence where sequential im-

portance sampling with resampling is performed: rather than propagate 1 exact sample, we prop-

agate k weighted particles which approximate the distribution of interest. This provides a kind of

stochastically beamed, breadth-first alternative to the depth-first approach of the rejection sampler.

We will later see how this version recovers widely used particle filtering algorithms as a special

case.

The choice of the Gibbs transition kernel is important. Incorporating the ψ2(y, z) factor into

the proposal prevents the algorithm from proposing samples ẑ that are already known to be incom-

patible with the setting ŷ. Put differently, in the process of building up a sample, we shouldn’t

bother trying out things we can already know for certain will be inconsistent or unlikely.

3.2.1 Adaptation Stochastically Generalizes Backtracking

Systematic searches typically avoid reconsidering partial solutions that have been discovered in-

consistent, eliminating the impossible case by case until a valid answer is found. This behavior

is known as backtracking, and requires dynamically recording the information about inconsistent

states obtained over the course of search. We accomplish this in the broader setting of sampling by

introducing an adaptation rule into our sampler, which recovers this deterministic avoidance in the

limit of deterministic inconsistency.

Our non-adaptive sampler accepts samples with probability

αp′→p =
Ep′{wp′→p(ŷ)}

c∗p′→p . (3.12)

Let p(y) =
∑

z′ p(y, z
′) be the marginal (unnormalized) distribution of y under p; let Zp =∑

y p(y) =
∑

y

∑
z′ p(y, z

′), be the normalization constant of the distribution p; and let Zp′ be
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the normalization constant for p′. From Eq. 3.7, we have that

wp′→p(ŷ) =
p(ŷ)

p′(ŷ)
, (3.13)

therefore,

Ep′{wp′→p(ŷ)} = Ep′

{
p(ŷ)

p′(ŷ)

}
(3.14)

=
∑
ŷ

p′(ŷ)

Zp′

p(ŷ)

p′(ŷ)
(3.15)

=
Zp
Zp′

, (3.16)

and finally,

αp′→p =
Zp
Zp′

1

c∗p′→p (3.17)

=
Zp
Zp′

1

maxy′
p(y′)
p′(y′)

(3.18)

= min
y′

1
Zp′
p′(y′)

1
Zp
p(y′)

. (3.19)

Note that the acceptance probability αp′→p depends only on the choice of p′ and p and is precisely

the largest ratio in absolute probability assigned to some y ∈ Y .4 An interesting special case is

when the simpler distribution p′ matches the marginal p(y). In this case, wp′→p = 1 and we always

accept.5 Assuming each attempt to generate samples from p′ by rejection succeeds with probabil-

ity αp′ , the entire rejection sampler will succeed with probability αp′αp′→p. If this probability is

O(2−w), where w is the tree width of the factor graph, then, in expectation, we will be no better

off than using variable clustering and dynamic programming to calculate marginals and sample

exactly.

Our goal then is to drive αp′→p → 1 (and inductively, αp′ → 1). Consider the extreme case

4In particular, the acceptance is positive only if p(y) > 0 =⇒ p′(y) > 0 (i.e., p′ is absolutely continuous with
respect to p).

5While it may be tempting to think the problem is solved by choosing p = p′, if each stage of the algorithm
performed this marginalization, the overall complexity would be exponential. The key to adaptation will be selective
feedback.
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where a sampled value ŷ is revealed to be inconsistent. That is, ψ2(ŷ, z) = 0 for all z and therefore

wp′→p = 0. We should then adjust p′ (and its predecessors, recursively) so as to never propose

the value ŷ again. Certainly if p′ is the marginal distribution of p (recursively along the chain of

rejections), this will take place.

Consider the distribution

p′S(y) ∝ p′(y)
∏
y′∈S

(
wp′→p(y)

c∗p′→p

)δyy′

(3.20)

where S ⊂ Y and δij is the Kronecker delta. Then

wp′S→p(x̂) ,
p(ŷ, ẑ)

p′S(ŷ) q(ẑ | ŷ)
(3.21)

=
wp′→p(y)∏

y′∈S

(
wp′→p(y)

c∗
p′→p

)δyy′
(3.22)

=

c∗p′→p y ∈ S
wp′→p(y) y 6∈ S.

(3.23)

Therefore c∗p′S→p = c∗p′→p. In particular, if S = Y , then wp′S→p = c∗p′S→P
= c∗p′→p and every sample

is accepted. In fact,

p′S=Y(y) ∝ p′(y)
∏
y′∈Y

(
wp′→p(y)

c∗p′→p

)δyy′

(3.24)

∝ p′(y)wp′→p(y) (3.25)

= p′(y)
p(y)

p′(y)
(3.26)

= p(y) (3.27)

and therefore an exact sample from p′Y is a sample from the marginal distribution of p. The Gibbs

kernel exactly extends this to a sample from the joint.

Adaptation then involves the following modification to our algorithm: after proposing a sample

(ŷ, ẑ), we augment S with ŷ. As S → Y , p′S(y)→ 1
c∗
p′→p

p(y) pointwise.

This change can be implemented efficiently by storing a hashmap of visited states for every dis-
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tribution in the sequence and modifying density evaluation (and, therefore, the Gibbs kernels) to

reflect hashmap contents. Each stage of the sampler pushes states to the previous stage’s hashmap

as adaptation proceeds, moving each proposal distribution towards the ideal marginal. Because

such adaptation leaves c∗ unchanged (see Appendix), adaptation increases the algorithmic com-

plexity by only a linear factor in the number of sampling attempts, with overall complexity per

attempt still linear in the number of variables. Taken together, the hashmaps play the role of the

stack in a traditional backtracking search, recording visited states and forbidding known bad states

from being proposed.

3.2.2 Sequences of Distributions for Graphical Models

To apply this idea to graphical models, we need a way to generically turn a graphical model into

a sequence of distributions amenable to adaptive sequential rejection. We accomplish this - and

introduce further ideas from systematic search - by introducing the idea of a sequence of restric-

tions of a given factor graph, based on a variable ordering, i.e. permutation of the variables in

the model). Each sequence of restrictions can be deterministically mapped to a nested sequence

of factor graphs which, for many generic orderings, capture a good sequence of distributions for

sequential rejection under certain analytically computable conditions.

We denote by Xi a random variable taking values xi ∈ Xi. If V = (X1, . . . , Xk) is a vector

random variables, then we will denote by XV the cartesian product space X1 × · · · × Xk in which

the elements of V take values v = (x1, . . . , xk).

Definition 3.2.1 A factor graph G = (X,Ψ, V ) is an undirected X,Ψ-bipartite graph where X =

(X1, . . . , Xn) is a set of random variable and Ψ = {ψ1, . . . , ψm} is a set of factors. The factor ψi
represents a function XVi

7→ [0,∞] over the variables Vi ⊂ X adjacent to ψi in the graph. The

graph represents a factorization

p(v) = p(x1, . . . , xn) =
1

Z

∏
i

ψi(vi) (3.28)

of the probability density function p, where Z is the normalization constant.

Definition 3.2.2 The restriction GS of the factor graph G = (X,Ψ, V ) to a subset S ⊂ X is the

subgraph (S,ΨS, VS) of G consisting of the variables S, the collection of factors ΨS = {ψi ∈ Ψ |
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Figure 3-1: A four node Ising model, and its restriction to the variables x1 and x3.

Vi ⊂ S} fully determined by the variables in S, and the edges VS = {Vi | ψi ∈ ΨS} connecting

the edges S and factors ΨS . We denote by ZS the normalization constant for the restriction.

See Figure 3-1 for an example restriction of an Ising model. Consider a factor graph G =

(X,Ψ, V ) and let X1:k = {x1, . . . , xk} ⊂ X , (k = 1, . . . , n) be the first k variables in the model

under some order. The sequence of distributions we consider are the distributions given by the

restrictions GX1:k
, k = 1, . . . , n.

We recover likelihood weighting (generalizing it to include resampling) on Bayesian networks

when we use the importance variant of our algorithm and a topological ordering on the variables.

Similarly, we recover particle filtering when we apply our method to time series models, with

resampling instead of rejection and an ordering increasing in time.

In this chapter, we focus on generically applicable strategies for choosing an ordering. All our

exact sampling results use a straightforward ordering which first includes any deterministically

constrained variables, then grows the sequence along connected edges in the factor graph (with

arbitrary tie breaking). This way, as in constraint propagation, we ensure we satisfy known con-

straints before attempting to address our uncertainty about remaining variables. If we do not do

this, and instead sample topologically, we find that unlikely evidence will lead to many rejections

(and approximate rejection, i.e. likelihood weighting, will exhibit high variance). In general, we

expect finding an optimal ordering to be difficult, although heuristic ordering information (possibly

involving considerable computation) could be exploited for more efficient samplers. An adaptive

inference planner, which dynamically improves its variable ordering based on the results of previ-

ous runs, remains an intriguing possibility.

3.3 Experiments

First, we measure the behavior on ferromagnetic Ising models for a range of coupling strengths, in-

cluding the critical temperature and highly-coupled regimes where Gibbs samplers (and inference
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Figure 3-2: (left 4) Exact samples from a 100-dimensional grid ferromagnetic Ising just below the critical
temperature. (right 4) Exact samples from a 100-dimensional grid ferromagnetic Ising just above the critical
temperature.

methods like mean-field variational and loopy belief propagation) have well-known difficulties

with convergence; see Figure 3-3 shows some of our results.

We have also used our algorithm to obtain exact samples from 10,000-dimensional antifer-

romagnetic (repulsive) grid Ising models at high coupling, with no rejection, as is expected by

analytic computation of the αs, describing probability of acceptance. At this scale, exact methods

such as junction tree are intractable due to treewidth, but the target distribution is very low entropy

and generic variable orderings that respect connectedness lead to smooth sequences and therefore

effective samplers. We have also generated from exact samples from 400-dimensional ferromag-

netic grid Isings at more intermediate coupling levels, where adaptation was critical for effective

performance.

We also measured our algorithm’s behavior on randomly generated (and in general, frustrated)

Ising models with coupling parameters sampled from U [−2, 2]. We report results for a typical run

of the adaptive and non-adaptive variants of sequential rejection sampling on a typical problem

size; see Figure 3-4 for details. We also note that we have successfully obtained exact samples

from 64-dimensional Isings with randomly generated parameters, using adaptation. On the models

we tested, we obtained our first sample in roughly 5000 attempts, reducing to roughly one sample

per 1000 attempts after a total of 100,000 had been made.
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Figure 3-3: (left) Ferromagnetic (right) Antiferromagnetic. (both) Frequency of acceptance in nonadaptive
(blue, lower) and adaptive (red, higher) sequential rejection as a function of coupling strength J . Naive
rejection approaches suffer from exponential decay in acceptance probability with dimension across all cou-
pling strengths, while generic MCMC approaches like Gibbs sampling fail to converge when the coupling
reaches or exceeds the critical value. Note that adaptive rejection improves the bound on the region of
criticality.

Given the symmetries in the pairwise potentials in (even) a frustrated Ising model without

external field - the score is invariant to a full flip of all states - our algorithm will always accept with

probability 1 on tree-structured (sub)problems. This is because the combination of Gibbs proposals

with the generic sequence choice (connected ordering) can always satisfy the constraints induced

by the agreement or disagreement on spins in these settings. Accordingly, our algorithm is more

efficient than other exact methods for trees (such as forward filtering with backward sampling)

in these cases. If, on the other hand, the target distribution does not contain this symmetry (so

some of the initial choices matter), there will be some probability of rejection, unlike with forward

filtering and backward sampling. This helps to explain the bands of rejection sometimes seen in

the nonadaptive algorithm and the opportunity for adaptation on Ising models, as it is impossible

for the algorithm to reject until a variable is added when its already added neighbors disagree.

We also applied our method to the problem of diagnostic reasoning in bipartite noisy-OR net-

works. These problems motivated several variational inference algorithms and in which topolog-

ical simulation and belief propagation are known to be inaccurate (66). Furthermore, as in the

ferromagnetic Ising setting, it seems important to capture the multimodality of the posterior. A

doctor who always reported the most probable disease or who always asserted you were slightly

more likely to be sick having visited him would not have a long or successful professional life.
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The difficulty of these problems is due to the rarity of diseases and symptoms and the phenomenon

of “explaining away”, yielding a highly multimodal posterior placing mass on states with very

low prior probability. We explored several such networks, generating sets of symptoms from the

network and measuring both the difficulty of obtaining exact samples from the full posterior distri-

bution on diseases and the diagnostic accuracy. Figure 3-5 shows exact sampling results, with and

without adaptation, for a typical run on a typical network, generated in this regime. This network

had 20 diseases and 30 symptoms. Each possible edge was present with probability 0.1, with a

disease base rate of 0.2, a symptom base rate of 0.3, and transmission probabilities of 0.4.

The noisy-OR CPTs result in large factors (with all diseases connected through any symptoms

they share). Accordingly, the sequential rejection method gets no partial credit by default for

correctly diagnosing a symptom until all values for all possible diseases have been guessed. This

results in a large number of rejections. Adaptation, however, causes the algorithm to learn how to

make informed partial diagnoses better and better over exposure to a given set of symptoms.

Finally, we applied our method to a larger-scale application: approximate joint sampling from a

Markov Random Field model for stereo vision, using parameters from (79). This MRF had 61,344

nodes, each with 30 states; Figure 3-6 shows our results. We suspect exact sampling is intractable at

this scale, so we used the sequential importance relaxation of our algorithm, leveraging our general

recursive machinery to introduce variables one at a time. We compared versions using 1 and 5

particles to widely-used Gibbs sampling approaches. Because of the strong - but not deterministic

- influence of the external field, we needed a more informed ordering. In particular, we ordered

variables by their restricted entropy (i.e. the entropy of their distribution under only their external

potential), then started with the most constrained variable and expanded via connectedness using

entropy to break ties. This is one reasonable extension of the “most constrained first” approach to

variable choice in deterministic constraint satisfaction. The quality of approximate samples with

very few particles is encouraging, suggesting that appropriate sequentialization can leverage strong

correlations to effectively move through the sample space.

3.4 Discussion

Our experiments suggest that tools from systematic search, appropriately generalized, can mitigate

problems of multimodality and strong correlation in sampler design. When variables (and their

attendant soft constraints) are incorporated one at a time, a sampler may be able to effectively

find high probability regions by managing correlations one variable at a time. This brings some
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of the benefits of the divide-and-conquer approach to algorithm design to the broader setting of

stochastic simulation. Additionally, any sample produced by sequential rejection is, by definition,

exact. Aside from providing comfort to pracitioners nervous about the equilibration rate of their

Markov chains, this exactness allows for our method to be embedded as part of larger stochastic

processes in places where the theory does not readily admit approximations. For example, one

might use adaptive sequential rejection to perform blocked Gibbs sampling on a subset of the

variables in a very large graphical model, where use of an approximate variant would introduce

multipath problems.

It would be interesting to compare and combine our algorithm with Markov chain methods,

yielding hybrid systematic/local algorithms for stochastic simulation. Such work would likely

require the theory of sequential Monte Carlo samplers (and in particular, backward kernels) from

(15) and (32). In the case of approximate sampling, other work has used deterministic search as

the subroutine of a sampler (29), but to the best of our knowledge there has been no other work on

samplers that recover search behavior when applied to deterministic problems.

The phase transition plots for Ising models and our (unreported) preliminary experiments ap-

plying adaptive sequential rejection to Boolean satisfiability problems (expressed as deterministic

MRFs) suggest it would be interesting to compare success probability to known results on phase

transitions of hardness of SAT. It would also be interesting to see how the rejection rate and mem-

ory consumption of adaptation in our algorithm relate to the cost of dynamic programming (ala

junction tree), and to explore the behavior of straightforward blocked variants of our method where

multiple variables are added simultaneously.

This chapter only begins to explore the possibilities afforded by properly recursive sampling.

For example, many deterministic divide and conquer algorithms operate by more aggressive re-

cursion. The cost of merge sort, for example, can be characterized by a recurrence of the form

T (n) = 2T (n/2) +O(n), involving a recursion depth that is logarithmic in the length of the input.

Our method recurses with linear depth. Sampling algorithms that leverage conditional indepen-

dence for more aggressive recursions could potentially be tremendously more effficient than the

sampling methods that are typically constructed today.

More generally, we believe the design space for sampling algorithms is far, far larger than peo-

ple typically consider. Every deterministic algorithm, be it a local search, a systematic search,

or some hybrid, is the deterministic limit of a potentially useful sampling algorithm. The control

structures routinely leveraged by deterministic algorithm designers are far richer than those that

have been exploited in the stochastic setting, even given languages for composable inference (8).
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For example, first-order systematic searches like FDPLL (4) dynamically construct and solve ab-

stract subproblems on their path to satisfying solutions. We feel that bringing the tools from this

space into the stochastic setting represents a fruitful and pressing area for future research. This

control expressiveness may also be of benefit to cognitive modelers, as the execution histories of

a recursive sampler sometimes seem to better match the intuitive feel of real-world probabilistic

reasoning than the wandering paths taken by stochastic fixed-point iteration.

Deductive reasoning problems - like deterministic constraint satisfaction - are special cases

of probabilistic reasoning problems, recovered as soft constraints harden. Sampling naturally

bleeds into satisfiability in this limit. Despite this natural embedding, the algorithmic literature

on sampling-based inference and deductive reasoning has historically been mainly disjoint, with

many practitioners of the opinion that logical reasoning and probabilistic inference are fundamen-

tally different problems that should be tackled with fundamentally different techniques. Instead,

we argue that good sampling algorithms can and should automatically become effective algorithms

for deduction when appropriate, and that adopting this constraint will lead to more effective algo-

rithms for both probabilistic and logical reasoning.

3.5 Appendix

If the distribution p is not the target distribution but instead the distribution at some intermediate

stage in a sequential rejection sampler, the downstream stage will adapt p to match its marginal.

We show that these additional factors not only satisfy the existing pre-computed bound c∗, but also

that sequential rejection on the adapted distribution p eventually accepts every sample. Consider

now that p has its own set of additional factors x ∈ R for which there are weights φx ∈ [0, 1]. If

x 6∈ R, let φx = 1. Then

wp′→pR
(y, z) ,

pR(y, z)

p′(y) qR(z | y)
(3.29)

=
∑
z′

ψ2(y, z
′)
∏
x∈R

φ
δx(y,z′)
x (3.30)

and therefore

wp′→pR
(y, z) ≤

∑
z′

ψ2(y, z
′) = wp′→p(y). (3.31)
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We claim that wp′S→pR
(y, z) ≤ c∗p′→p. Let R′ and φ′ be the set of x = (y, z) and weights that have

been fed back to p in previous iterations of the algorithm. Consider

wp′S→pR
(y, z) ,

pR(y, z)

p′S(y) qR(z | y)
(3.32)

=
wp′→pR

(y)∏
y′∈S

wp′→pR′
(y′)

c∗
p′→p

(3.33)

=

wp′→pR
(y) y 6∈ S

wp′→pR
(y)

wp′→pR′
(y)
c∗p′→p y ∈ S.

(3.34)

Eq. (3.31) implies that when y 6∈ S, we have wp′S→pR
(y, z) ≤ wp′→p(y) ≤ c∗p′→p. Therefore, the

claim is established for y ∈ S if
wp′→pR

(y)

wp′→pR′
(y)
≤ 1. We have that

wp′→pR

wp′→pR′
(y)

=

∑
z′ ψ2(y, z

′)
∏

x∈R φx
δx(y,z′)∑

z′ ψ2(y, z′)
∏

x∈R′ φ
′
x
δx(y,z′)

(3.35)

First note that, x ∈ R′ =⇒ x ∈ R. Therefore, the inequality is satisfied if φ′x ≥ φx for all x.

We prove this inductively. When a value x is first added to R, x 6∈ R′, hence φ′x = 1 ≥ φx. By

induction, we assume the hypothesis for φx and show that φ′y ≥ φy. Consider Eq. (3.34). If y 6∈ S,

then φy =
wp′→pR

(y)

c∗
p′→p

≤ wp′→p

c∗
p′→p

≤ 1 = φ′y by the optimality of c∗ and Eq. 3.31. If y ∈ S, we have

φ′x ≥ φx for all x by induction, proving the claim.

Evidently, the weights decrease monotonically over the course of the algorithm. Of particular

note is that when R = X , and S = Y . In this case the acceptance ratio is again 1 and we generate

exact samples from pR. Of course, |R| and |S| are bounded by the number of iterations of the

algorithm and therefore we expect saturation |R| = |X | only after exponential work.
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Figure 3-4: Comparison of adaptive (top-red, center) and nonadaptive (top-blue/dashed, bottom) rejection
sampling on a frustrated 36-dimensional Ising model with uniform [−2, 2] distributed coupling parameters.
(top) Cumulative complete samples over 100,000 iterations. (lower plots) A black dot at row i of column
j indicates that on the jth iteration, the algorithm succeed in sampling values for the first i variables. Only
a mark in the top row indicates a successful complete sample. While the nonadaptive rejection sampler
(bottom) often fails after a few steps, the adaptive sampler (center), quickly adapts past this point and starts
rapidly generating samples.
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Figure 3-5: Comparison of adaptive (top-red, center) and nonadaptive (top-blue/dashed, bottom) rejection
sampling for posterior inference on a randomly generated medical diagnosis network with 20 diseases and
30 symptoms. The parameters are described in the main text. (top) Cumulative complete samples over
100,000 iterations. (lower plots) show the trajectories of a typical adaptive and non-adaptive run in the same
format as Figure 3-4. Here, adaptation is critical, as otherwise the monolithic noisy-OR factors result in
very low acceptance probabilities in the presence of explaining away.
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Figure 3-6: Comparison of an aggressively annealed Gibbs sampler (linear temperature schedule from 20
to 1 over 200 steps) to the non-adaptive, importance relaxation of our algorithm. The red circle denotes the
mean of three 1-particle runs. The horizontal bars highlight the quality of our result. (a) Gibbs stereo image
after sampling work comparable to an entire 1-particle pass of (b) our algorithm. (c) Gibbs stereo image
after 140 iterations.
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Chapter 4

Stochastic Digital Circuits for Probabilistic
Inference

“I basically know of two principles for treating complicated systems in simple ways;
the first is the principle of modularity and the second is the principle of abstraction. I
am an apologist for computational probability in machine learning, and especially for
graphical models and variational methods, because I believe that probability theory
implements these two principles in deep and intriguing ways – namely through factor-
ization and through averaging. Exploiting these two mechanisms as fully as possible
seems to me to be the way forward in machine learning.”

– Michael I. Jordan, quoted in Graphical Models for Machine Learning and Digital
Communication

4.1 Introduction

Structured stochastic processes play a central role in the design of approximation algorithms for

probabilistic inference and nonlinear optimization. Markov chain (50; 27) and sequential (17)

Monte Carlo methods are classic examples. However, these widely used algorithms - and prob-

abilistic reasoning and Bayesian statistics in general - can seem unacceptably inefficient when

simulated on current general-purpose computers.

This high apparent cost should not be surprising. Computers are based on deterministic Boolean

circuits that simulate propositional deduction according to the Boolean algebra (9; 69), while prob-

lems of inference under uncertainty - and many stochastic algorithms for solving these problems -
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are best described in terms of the probability algebra (36). To perform probabilistic inference on

computers based on all-or-none, deterministic logic circuits, one typically rewrites algorithms in

terms of generic real-number arithmetic, which is then approximated by general-purpose Boolean

circuits for floating-point arithmetic (40). This indirection has many disadvantages: it obscures

fine-grained parallelism, complicates algorithm analysis, and is needlessly costly in both time and

space.

In this chapter, I present an alternative approach, based on a novel circuit abstraction called

combinational stochastic logic. Combinational stochastic logic circuits stand in relation to the

probability algebra as Boolean gates do to the Boolean algebra. Every single-output combinational

Boolean circuit evaluates the truth value of some propositional sentence, given the truth values of

its inputs. Analogously, every single-output combinational stochastic logic circuit samples the

truth value of some propositional sentence from its associated probability, given sampled truth

values for its inputs. As in Church, we are choosing to represent distributions using samplers,

rather than probability evaluators, recovering function evaluators as a deterministic special case.

In this case, however, our representation language is graph-based, making time, space and bit-

width requirements explicit - we are playing the same game at the level of circuits, rather than the

Lisp.

We make three contributions. First, we show how combinational stochastic logic circuits gener-

alize Boolean logic, allowing construction of arbitrary propositional probabilistic models. Second,

we combine our stochastic logic gates with ideas from contemporary digital design, showing how

to build stochastic finite state machines that implement useful sampling algorithms. In particular,

we show how to directly implement MCMC algorithms for arbitrary Markov random fields in hard-

ware in a massively parallel fashion. Finally, we estimate the performance of our approach when

implemented on commodity reconfigurable logic, finding substantial improvements in time effi-

ciency, space efficiency and price. We also show that stochastic logic circuits can perform robustly

in the presence of a range of transient and persistent faults, suggesting interesting possibilities for

distributed computing on unreliable substrates.

4.2 Stochastic Logic Circuits

Our central abstraction, combinational stochastic logic, generalizes combinational – or stateless –

Boolean circuits to the stochastic setting, recovering Boolean gates and composition laws in the

deterministic limit. A Boolean gate has input bit lines and output bit lines, and puts out a Boolean
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Figure 4-1: Combinational stochastic logic. (a) The combinational Boolean logic abstraction, and one
example: the AND gate and its associated truth table. (b) The combinational stochastic logic abstraction.
On each work cycle, samples are drawn on OUT from P (OUT|IN), consuming h random bits on RAND to
generate nondeterminism. (c) An AND gate can be viewed as a combinational stochastic logic gate that
happens to be deterministic. (d) The conditional probability table and schematic for a Θ gate, which flips a
coin whose weight was specified on IN as a binary number (e.g. for IN = 0111, P (OUT = 1|IN) = 7/16).
Θ gates can be implemented by a comparator that outputs 1 if RAND ≤ IN.

function of its inputs on each work cycle. Each gate is representable by a set of truth tables, one

for each output bit; the abstraction and an AND gate example are show in in Figure 4-1a. Figure

4-1b shows a combinational stochastic logic gate, which adds random bit lines. On each cycle, the

gate puts a sample from P (OUT|IN) on its output lines, using the random bits – which must each be

flips of a fair coin – to provide the nondeterminism. Just as Boolean gates can be represented by

families of truth tables, individual stochastic gates can be represented by conditional probability

tables (CPTs), where all the probabilities are rational with finite expansions in base 2.

By explicitly representing the bitwidths of values and the entropy requirements per sample from

each CPT, we can directly map stochastic gates onto discrete, physical machines for performing

computation. Figure 4-1c shows how to recover deterministic Boolean logic gates by zero-entropy

CPTs, using the AND gate as an example. Figure 4-1d shows the conditional probability table and

schematic for a unit called Θ, which generates flips of a weighted coin whose weight is specifed

on its IN lines. The Θ gate is one important, recurring stochastic primitive, and the designs for

properly stochastic units that we have developed so far depend heavily on its use. We note that for

any combinational stochastic logic element, it is possible to abstract away the entropy lines; this is
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Figure 4-2: Composition and abstraction laws. (a) Boolean gates support expressive composition and ab-
straction laws. The law of composition states that any two Boolean gates f and g with compatible bitwidths
can be composed to produce a new Boolean gate h. The law of abstraction states that h can now be used in
designing further Boolean circuits without reference to the components f and g that it is composed of. (b)
The analogous laws for combinational stochastic logic: one can sample from joint distributions built out of
pieces, or view a complex circuit abstractly as a primitive that samples from a marginal distribution. Note
that in this case the input entropy is divided among the two internal elements; the abstraction preserves the
notion of a single incoming source of randomness, even though internally the elements receive effectively
distinct streams.

implementable in a variety of ways, using pseudorandom or physical entropy sources bundled with

the stochastic elements. However, we prefer to emphasize both the simulability of these elements

on a deterministic logic substrate and to explicitly track flow of entropy throughout the computa-

tion, both to facilitate debugging of stochastic circuits in simulation and because we suspect the

entropy flow through a circuit may relate to its fundamental physical resource requirements.

Boolean gates support expressive composition and abstraction laws, shown in Figure 4-2, phys-

ically reflecting the composition and abstraction laws supported by Boolean functions. By re-

peatedly composing and abstracting, digital designers build up adders, multipliers, and complex

switching networks out of basic Boolean logic operations. Adding stateful elements then leads

to flip-flops, accumulators and vector memories, ultimately leading to universal processors. The

ubiquity of digital logic depends critically on these laws: they allow designers to build on each
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others’ work, without having to concern themselves with the details of each others’ implementa-

tions. For example, recent pentiums have had over 800,000 Boolean gates, and VLSI circuits are

routinely designed by teams of tens to hundreds of engineers using programs that automate aspects

of the low-level design. These artifacts, collaborative processes and software programs rely criti-

cally on the fact that compositions of Boolean elements can be analyzed simply in terms of their

pieces.

We have developed stochastic generalizations of these basic laws. Feeding the output of one

gate into the input of another results in samples from the joint distribution of the two elements, al-

lowing construction of samplers for complex distributions from simpler pieces. Furthermore, one

can abstract away the details of a complex stochastic circuit, viewing it as a single combinational

stochastic gate that simply generates samples from the marginal distribution of the original output

gate’s value given the original input gate’s input value. Taken together, these laws support the con-

struction of arbitrarily complex probabilistic (and Boolean) systems out of reusable components.

In this chapter, we will start with stateless Θ gates that flip weighted coins, and build up to circuits

for general purpose, MCMC based approximate inference in factor graphs. The detailed design of

circuits for systematic algorithms (like sequential Monte Carlo and sequential rejection sampling)

and for conditional sampling over recursive stochastic processes or more structured stochastic pro-

cesses will be largely left to future work.

4.2.1 Sampling is linear, while probability evaluation is exponential

It is important to note that our choice to generalize function evaluation to sampling - rather than,

for example, probability computation - is a critical enabler of the composition and abstraction

properties stated here. This is because sampling inherits the complexity structure of evaluation,

as follows. The cost of evaluating g ◦ f(x) = g(f(x)) is at most equal to the sum of the cost

of evaluating f and the cost of evaluating g, in time and space on a serial computer and in circuit

depth and width. On a serial machine, one stores f(x) in some temporary location y, then computes

g(y). In a circuit, one feeds the output of a circuit that computes f as the input into a circuit that

computes g. More generally, then, the cost of a k-step composition (or a k-stage circuit, if you

like) is only linear in k.

In the stochastic setting, evaluating the probability of the composition of two conditional distri-

butions requires computing a marginal probability, P (C|A) =
∑

B P (C,B|A) =
∑

B P (C|A,B)P (B|A).

If our basic units can only answer probability queries on input/output pairs, then constructing a
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composite unit out of pieces will require a sum equal to the number of possible states of the in-

termediate quantity in the composition. This means that the cost of evaluating P (C|A) would be

the product of the costs of P (C|A,B) and P (B|A), and that more generally, the cost of k-step

compositions grows exponentially in the depth k. This cost, which would be paid in the space

and complexity of a circuit that iterated over possible outcomes, say, by time-division multiplex-

ing, and in the time complexity associated using such a circuit, is prohibitive. Sampling, on the

other hand, brings the cost back to the linear one we expect, as we can generate samples from the

marginal distribution P (C|A) by sampling from P (B|A) and feeding that sample as input to a

sampler for P (C|A,B).

This complexity difference is one fundamental argument in favor of viewing probabilistic sys-

tems as a generalization of deterministic ones, via stochastic simulation, instead of trying to em-

bed them inside deterministic ones by probability calculation. The ability that samplers provide to

tractably represent exponentially large objects - and to estimate global properties of these objects

in constant time, via the Monte Carlo method, escaping the “curse of dimensionality” - may be the

key to computationally tractable probabilistic reasoning.

4.2.2 Probabilistic Completeness and Finite Precision

An important aspect of Boolean logic circuits is their logical completeness. That is, we can build a

Boolean circuit using AND, OR and NOT gates that evaluates the truth value of any Boolean formula

that uses a finite set of propositions (69). This corresponds to the class of Boolean functions.

To see this, first enumerate all Boolean functions on k input bits. There are 2k distinct inputs,

and the function could output a 0 or a 1 for each of these. Thus there are 22k distinct Boolean

functions, listable in dictionary order. For any function in this list, we first construct a sentence

in the propositional algebra with k atomic propositions that is true exactly when the function is

1 and false otherwise. One way to do this is via turning it into a sum of products in the Boolean

algebra, also known as writing it in disjunctive normal form. This yields a c-clause formula, where

each clause uses AND and NOT to pick out exactly one unique setting of the k inputs where the

function is 1, and the clauses are connected by ORs. By construction, this formula is true for a

given setting of the input propositions if and only if the function is 1 for the analogous inputs.

We can then construct a Boolean circuit by replacing each variable in the formula with a wire (or

“node”) in the circuit, and each logical connective with its corresponding Boolean gate. While we

can often find smaller circuits by, for example, applying the laws of the Boolean algebra to the
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normal form representation above, this “lookup table” representation is logically sufficient. Given

this ability to compute Boolean functions, we can build machines to compute any discrete function

simply by fixing a coding scheme that maps the discrete outputs to sequences of 0s and 1s and then

computing a bank of Boolean functions using the above method, one for each bit.

Assuming one can implement Θ gates with arbitrarily precise probabilities1, we can show the

analogous probabilistic completeness properties of our stochastic logic circuits. We build a Θ

gate for each of the 2k input values, fixed to their base probabilities, and use a standard digital

multiplexer to select the output. Generalizations to l-bit outputs are straightforward though costly

in circuit width; circuits which compress the table in terms of latent variables will be more efficient

in general.

There are straightforward ways to implement arbitrarily precise Θ gates in either bounded time

but unbounded space and entropy, by adding more wires, or bounded space but unbounded time,

by arithmetic decoding or some other bitwise, iterative scheme. However, in practice, as with all

high-precision or nearly smoothly varying quantities on current digital computers, we will typically

approximate our probabilities to some specific, sufficient precision.

We expect the actual probability precision needed for exact and approximate sampling algo-

rithms in typical machine learning applications will be low for four reasons. First, fixed parameters

in probability models are known only to finite precision, and often only to within an order of magni-

tude. Second, sampling variance masks small differences in sampling probabilities; approximation

error will often be literally in the noise for approximate inference algorithms. Third, most approx-

imate sampling algorithms (e.g. sequential and Markov chain Monte Carlo) depend on ratios of

probabilities and weights to obtain the probabilities sampled from during simulation, further push-

ing dependence up to high order bits. Fourth, expected utility decisions only depend on the low

order bits of estimated expectations as the outcomes become increasingly indistinguishable. We

recognize that some applications (such as satellite tracking or ab initio physical calcuations) may

require substantially higher precision. Obtaining tight analytical bounds on the precision require-

ments of stochastic circuits for exact and especially approximate sampling is an important open

challenge, recovering the classic Boolean circuit minimization problem in the deterministic limit.

1That is, Θ gates for arbitrarily finely specified coin weights

97



4.2.3 Stochastic Circuit Complexity and Design Patterns

We now consider some recurring patterns in probability and stochastic processes, directly trans-

lating them to useful designs for stochastic circuits. Our first example is a binomial distribution;

we use the conditional independencies in the process to show time and space tradeoffs. For ex-

ample, Figure 4-3a shows a circuit for sampling from a binomial distribution on n coin flips using

O(log(n)) time and O(n) space by both sampling and adding in parallel (via a logarithmic adder

tree implementation of +). Figure 4-3b shows another circuit for the same problem usingO(log(n))

space and O(n) time, operating by serial accumulation. Both require O(n) bits of entropy.

The question of the intrinsic time, space and entropy - really, circuit depth, “width” and entropy

- requirements for sampling seems like a particularly interesting direction for future work, as it

gives us a new view of the hardness of sampling with all the benefits associated with a fully

discrete circuit model of computation. For example, we can quantitatively study the hardness

of sampling in terms of depth, width and entropy. For some distributions, we may be able to

do no better than the standard upper bound resulting from a strategy of “build an exponentially

large look-up table beforehand”, but for others, stochastic circuit minimization may yield far more

efficient alternatives. Furthermore, the non-uniformity of circuit models of computation seems

especially appealing in the current age of massive parallelism. For example, Markov chain Monte

Carlo algorithms build up approximate samples from distributions over exponentially large spaces

by building on the ability to rapidly generate samples from smaller spaces. Whether or not they

will be efficient depends in a large part on exactly how big the smaller spaces are, which will

determine the amount of physical space we need to make simulation from those smaller spaces

nearly instantaneous. More generally, as we start exploiting finer and finer time-space tradeoffs,

we find that constant factors matter more and more; a circuit model for sampling, rather than for

approximately evaluating binary decisions (as in BPP), may help us gain traction on these issues.

This view, and the binomial example, also exposes a fundamental property of sampling with

potentially significant implications for computational tractability of probabilistic inference: every

conditional independence in a given stochastic process yields an opportunity for parallel evalua-

tion, or the shortening of circuit depth at the cost of circuit width. We will exploit this property

in the main application later on in this chapter. A simple binomial distribution is embarassingly

parallel, at the level of individual coin flips, or random bits. Many simple distributions can be

simulated in a variety of ways, exploiting decompositions that reflect different independencies.

Each such decomposition yields different time and space tradeoffs, which may be appropriate for
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Figure 4-3: Example stochastic circuit designs. (a) and (b) show two circuits for sampling from a binomial
distribution on n flips of a coin of weight p, consuming nh total bits of entropy. (a) shows a circuit where
the coins are flipped in parallel and then summed, costing O(n) space and O(log(n)) time per sample.
(b) shows a serial ciruit for the same problem, using O(log(n)) space (for the accumulator) and O(n)
time. Clocked registers are shown as units with inputs and outputs labeled D and Q. (c) shows a stochastic
finite state machine (or finite-state Markov chain), with a state register connected to a combinational state
transition block.

different situations. Large probabilistic systems built up out of large numbers of coin flips will in

general exhibit many opportunities for fine-grained space/time tradeoffs, and thus guide the circuit

microarchitecture of machines for stochastic simulation.

Many more interesting circuits become possible when we combine stateless circuits with stan-

dard tools from contemporary digital design for maintaing state. For example, we can implement

rejection sampling by combining a purely combinational proposal sampler circuit with a Boolean

predicate as part of a state machine that loops until the predicate is satisfied. This circuit uses

bounded space but possibly unbounded (and in general exponential) time. To implement MCMC,

an approximate sampling method, we can combine a combinational circuit that samples from the

MCMC transition kernel with a register that stores the current state of the chain. Figure 4-3c shows

the circuit structure of a generic stochastic finite state machine (FSM) applicable to these sampling

algorithms. The FSM could be implemented by storing the current state in a clocked register, with

a stateless block consuming random bits to sample one next state via a stochastic transition model

on each cycle. We will apply this design idiom to perform approximate joint sampling from large

Markov random fields in the next section.
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4.2.4 Approximate Inference using MCMC and Gibbs processors

We focus on tempered Gibbs sampling algorithms for Markov random fields (MRFs) because

they are simple and general but usually considered inefficient. Many other Monte Carlo recipes,

including Metropolis-Hastings and sequential importance sampling, can also be built using the

same techniques.

To implement a Gibbs MCMC kernel for a given variable, we must score each possible setting

given its neighbors under the joint density of the MRF, temper those scores, compute the (log) nor-

malizing constant, normalize the energies, convert them to probabilities, and generate a sample.

This pipeline is shown in Figure 4-4a, and can be implemented in linear time in the size of the vari-

able by standard techniques combined with a simple stochastic accumulator for sampling (which

can be thought of as the k-outcome generalization of a Θ gate, for generating draws from arbitrary

discrete distributions). However, when the CPT for the variable has sufficiently small size, we can

do better: by precomputing CPTs and using the design in 4-4b, we can obtain samples in constant

time. This will be tractable whenever the energy precision requirements are not too high and the

degree of the MRF is not too large2.

We can then combine Gibbs kernels into massively parallel Gibbs samplers by exploiting con-

ditional independencies in the MRF. Specifically, given a coloring of the MRF (an assignment of

colors to nodes so no two adjacent nodes have the same color), all nodes of each color are con-

ditionally independent of each other given all other colors, and thus can be sampled in parallel.

This was first observed in (27) for square-lattice MRFs. Figures 4-4c and 4-4d show two example

colorings. The degree of parallelism depends inversely on the number of colors, and the commu-

nication cost between Gibbs units is determined by the total bits crossing coloring boundaries in

the MRF. Figure 4-4e shows a massively parallel circuit built out of Gibbs units exploiting a graph

coloring, clocked in a distributed fashion to implement the two-phase structure of a parallel cycle

of single site Gibbs kernels. For very large models this pattern can be tiled arbitrarily, preserving

constant time Gibbs scans independent of lattice size at linear space cost in lattice area.

Gibbs sampling circuits can be viewed as breaking down the problem of generating a sample

from the full joint distribution on variables into generating samples from individual variables in

sequence and waiting for convergence. Of course, groups of nodes in a Markov Random Field

2We note that these nonlinear dependencies on size parameters provide further support for the appropriateness of a
circuit model for probabilistic computation. Sampling methods become computationally favorable as representations
for distributions as soon as the dimensionality of the distribution gets high enough that the exponential space or time
costs associated with other representations become infeasibly large.
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can be collapsed into supernodes, resulting in exponential growth in the domain of the variables,

but potentially exponential savings in convergence times. Running a regular Gibbs sampler on

the collapsed problem is the same as running a “blocked” Gibbs sampler on the original problem.

This can sometimes result in a net savings improvement, since the bases of the exponents might

be different. For example, one might only need to increase the cost of individual Gibbs kernels

by a factor of 1000 - in time or in space - to improve convergence by a factor of 100,000. This is

especially likely when blocking variables changes the dependency structure of the graph in ways

that significantly improve its coloring number. Also, since the bandwidth needed between Gibbs

kernels increases linearly with the number of nodes being blocked, such an approach might actually

substantially increase exploitable parallelism.

More generally, we can see that Gibbs samplers can be viewed as a kind of parameterizable

processor for building sampling algorithms, where we pay in space to view certain exponentially

costly operations that have low exponents as cheap in time. The size and number of these pro-

cessors will determine what problems are tractable on a given probabilistic computer, potentially

changing tractability by an exponential factor if space is truly plentiful.

Figure 4-4: Designs for Gibbs samplers. (a) shows a schematic Gibbs pipline, outlining the operations
needed to numerically sample a single arbitrary-size variable. (b) shows a condensed implementation of a
Gibbsable binary variable unit, which internally stores both a current state setting and a precomputed CPT
lookup table (LUT), and runs in 3 clock cycles. (c) and (d) show colored MRFs, where all variables of each
color can be sampled in parallel. (e) shows a distributed circuit that implements Gibbs sampling on the MRF
in (c) using the Gibbs units from (b).
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4.2.5 Implementation via commodity FPGAs

To estimate the performance of stochastic circuit designs on current physical substrates for compu-

tation and compare to widely available general purpose processors, we implemented our stochastic

circuits on Xilinx Spartan 3 family Field Programmable Gate Arrays (FPGAs). FPGAs provide

digitial logic elements that can be reprogrammed arbitrarily to directly model any digital circuit.

They are widely used in consumer electronics and signal processing because they offer lower de-

velopment cost compared to traditional application specific integrated circuits (ASICs).

Stochastic circuits nominally require large quantities of truly random bits. However, in prac-

tice, almost all Monte Carlo simulations use high-quality pseudorandom numbers, which can be

produced by well-known methods. For our FPGA implementation, we use the 128-bit XOR-SHIFT

pRNG from Marsaglia (48), which has a period of 2128 − 1, directly implementing one pRNG in

digital logic per stochastic element in our circuit (each initially seeded differently). This imple-

mentation was chosen because of economic expediency, for debuggability (because pseudorandom

bitstreams can be replayed) and because it highlights those wins that come from structuring a cir-

cuit for stochastic simulation according to our abstractions independent of the economics of the

semiconductor industry. We expect physically stochastic implementation will result in substantial

additional design wins.

Since logic utilization influences circuit cost, energy efficiency, and speed, we briefly mention

some techniques we use to compress the logic in our circuits. We can use these ideas whenever

the analytical relationships and conditional independencies that directly lead to exact, compact

sampling circuits are unavailable, as is often the case in MCMC and SMC proposal generation.

The key is to represent state values, energies (i.e. unnormalized log probabilities), and proba-

bilities in a fixed-point form, with m bits for the integer parts of energies, n bits for the deci-

mal part, and 1 + m + n total bits for probability values. We then compactly approximate the

logsumexp(e1,e2) function (to add and normalize energies) and the exp(e1) function (to

convert energies to probabilities), and sample by exact accumulation. We note that numerically

tempering a distribution - exponentiating it to some 1
τ

- can be parsimoniously implemented as

energy bit shifting, for dyadic τ . Heating a distribution by 2k causes k low-order bits of energy to

be lost, while cooling a distribution causes low-order bits to become arbitrarily significant.

We have also built a compiler that produces finite-precision parallel automata for sampling-

based inference in factor graphs that are bit-accurate representations of our circuits, substantially

reducing development time. I defer discussion of this compiler to the next chapter.
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4.2.6 Related Work

The pioneering work of von Neumann (85) and Gaines (25) addressed the reliable implementation

of Boolean algebra and arbitrary real arithmetic using stochastic components. Our work is dif-

ferent in motivation and in application: we have introduced methods for engineering large-scale,

probabilistic systems, without indirection through generic real arithmetic, which can be used with

both deterministic and noisy substrates.

Adaptive or noise-resistant circuit implementations made from stochastic elements have arisen

in analog VLSI (28) (53), ultra low power digital logic (via “probabilistic CMOS” (11)), and

self-assembled nanoscale circuit fabrication (61). Our work is at a different level of abstraction,

providing complete, compositional specifications of stochastic yet digital circuits for probabilistic

arguments and circuit patterns for sampling algorithms. However, our stochastic circuits could be

implemented on these substrates, potentially yielding cheaper, more efficient circuits than is possi-

ble with standard digital semiconductor techniques. Finally, in mainstream digital design, various

application specific accelerators for particle filtering have been explored; see (7) for one detailed

example. These efforts have focused on efficient parallel architectures for particle advancement

and resampling, using classical methods – not direct rendering of the structure of stochastic pro-

cesses into digital hardware – to simulate from forward models and compute weights.

4.3 Performance Estimates

We synthesized parallel Gibbs circuits on Spartan 3 family FPGAs, measuring the clock rate

achieved, clock cycles per sample, and circuit space costs. Figures 4-5b and 4-5c show our results

for a circuit for Gibbs sampling on a binary, square-lattice Markov Random Field, using the Gibbs

lookup table design. We show estimated price/performance curves for 16 bit samplers. In many

applications, quantization error due to 16-bit truncation of probabilities for binary variables will

be washed away by noise due to Markov chain convergence, Monte Carlo variance, and model un-

certainty. Each horizontal step corresponds to a range of problem sizes that fit on the same number

of FPGAs; this tiling, and therefore our price/performance results, should actually be achievable

in large-scale practice (with only a 3 clock-cycle overhead for FPGA to FPGA communication).

We include performance estimates for parallel sampling on microprocessors, to highlight the

gains coming from combining parallel sampling with direct simulation in hardware. These esti-

mates generously assume zero cost in time and dollars for interprocessor communication, and 20
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Figure 4-5: FPGA price/performance estimates. (a) shows an example synthesized FPGA layout for
Gibbs sampling on a 9x9 lattice. (b) compares the price/performance ratio of a stochastic circuit to an
optimistic estimate for conventional CPUs, in billions of single-site samples per second per dollar, for a
binary square-lattice MRF. (c) shows a zoomed-in comparison. (d) shows price/performance results for
stereovision. Approximately 10 billion samples per second are needed for real-time (24 FPS) performance
at moderate (320x240 pixels) resolution.

clock cycles per sample, ignoring the serial costs due to memory accesses, branch prediction, cycle

cost of floating-point operations, and random bit generation. In our experience the actual perfor-

mance in practice of even highly efficiently programmed parallel Gibbs samplers on conventional

CPUs is lacking, with these costs playing a substantial role. Since a conservative MCMC run typ-

ically entails hundreds of thousands of complete Gibbs scans, our circuits should make it possible

to affordably obtain reasonable solutions to models with hundreds of thousands of variables in real

time.

Another way to view these design wins is that massive parallelization - simultaneous execution

of hundreds of thousands to millions of densely communicating “processes” - is only economical

when the operations to be done in parallel are very simple. In that limit, parallel computation needs

to look more like circuit design to be economically (and physically) sensible. Highly pipelined,
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high precision numerical computation is just too costly in silicon area. However, by building

stochasticity into the foundations of digital logic, we find that the operations needed for stochastic

simulation and probabilistic inference are actually exceedingly simple, and map well onto small,

fast, distributed circuits.

Figure 4-5d shows price/performance estimates for a realistic application: annealed Gibbs sam-

pling on an MRF for stereovision (80). The model has 32 distinguishable disparities per pixel. Fig-

ure 4-6 gives a rough sense of the quality of the stereo results and their dependence on numerical

precision. Our gains should allow generic, annealed Gibbs sampling for discrete variable MRFs

to support affordable, dense, real-time stereovision (using standard digital techniques to stream

calibrated images into the registers storing MRF potentials on an FPGA). For example, a 320x240

image requires ∼380 million single-site samples per frame, assuming 5000 full Gibbs sweeps of

the image for MCMC convergence. With ∼$300 of hardware, we should be able to solve this

problem at 24 frames per second in 15-bit precision. For different models, the time per sample

increases roughly linearly with MRF clique size and with graph coloring number, as individual

sites take longer to sample and fewer sites can be sampled in parallel. Thus the complexity of

the knowledge structure directly constraints the complexity of inference, reflecting its conditional

independencies.

We have endeavored to make our price-performance comparison as meaningful as possible,

comparing the off-the-shelf price for both commodity x86 hardware and commodity FPGAs. This

does not take into account the (nontrival) cost of support hardware, such as PCBs, power, and

cooling. It is not clear that this is an advantage on either side – while commodity x86 motherboards

are cheaper than low-quantity custom-designed FPGA PCBs, it is also much easier to add dozens

of FPGAs to a single PCB, which no commodity x86 motherboards support.

4.3.1 Robustness

“The major difference between a thing that might go wrong and a thing that cannot
possibly go wrong is that when a thing that cannot possibly go wrong goes wrong, it
usually turns out to be impossible to get at or repair.”

– Douglas Adams

Classical digital logic yields state machines that are unstable to even transient faults: a one-bit

error in a state representation can yield a next state that is arbitrarily far from the desired next state
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in Hamming distance. This instability is inherited from the brittleness of combinational Boolean

circuits, where the underlying design contract does not allow for the possibility of occasional error

due to its fundamental determinism, and further amplified by the serial design idioms encouraged

by deterministic digital design.

We expect stochastic circuits to be fundamentally more robust in many cases. First, even for

serial designs, although a one-bit error - transient or persistent - might result in a particular sample

being sampled from an incorrect distribution, the computation is specified in terms of a distribution

on outputs. This specification space has a continuous topology, unlike deterministic circuits, whose

specification space has a discrete topology. It is therefore at least possible for specifications of our

digital circuits to be meaningfully violated by degrees, leaving wiggle room for errors to only

distort the resulting answer. Second, if we attempt to analyze the behavior of a faulty stochastic

circuit, we can bring the tools of probability to bear. The uncertainty we have as designers about the

presence or absence of persistent faults from faulty fabrication, along with our best probabilistic

model of the transient faults our devices will be subject to in a given environment, can be modeled

by simply modifying the abstract model for the stochastic elements that we use. For example,

a semiconductor implementation where a node shorts to ground with some probability on each

clock cycle, say due to high temperature or cosmic rays, could be modeled as a weighted mixture

between the desired FSM transition and one that includes a randomly chosen node fault.

Beyond the theoretical possibility that our stochastic circuits might exhibit robust behavior, we

expect that the design idioms we have advocated - distributed finite state machines implement-

ing methods like Markov chain Monte Carlo - will further encourage robustness behavior. First,

our circuits are naturally distributed, translating the conditional independencies in the underlying

stochastic process into high width. Accordingly, deviations from the specification in the state up-

date stochastic logic will only directly influence the probabilities for some of the elements of the

state vector, not all of them. Second, Markovian fixed-point iteration (as in ergodic convergence

of MCMC) yields a “restoring force” that reduces the impact of transient faults over time and en-

courages local consistency despite persistent faults. That is, at each iteration, the local stochastic

computation for each variable is (probabilistically) moving in a direction more consistent with its

neighboring variables, under the local constraints from the global probability model. This encour-

ages recovery from extreme transient faults.

We quantitatively explore these properties on a small but illustrative example shown in Figure

4-7, using numerical techniques to exactly compute the equilibrium distribution on states for a

parallel Gibbs circuit with stochastic transient faults, where the state value for a given site is flipped
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with some probability. The circuit performs inference in a butterfly-structured attractive binary

Markov random field, and thus has a potential central point of failure. Deterministic digital design

normally requires Boolean primitives to be extremely reliable, e.g. fault probabilities around 10−8.

Here we see that with fault probabilities of 10−2, the equilibrium distribution of our Gibbs circuit

is very close to the target, and is still reasonable even with 50% fault probability per site per cycle.

If faults are restricted only to the critical central site, performance only degrades slightly, due to

the Gibbs sampler’s pressure for local consistency.

The core intution is that if we design our systems with stochastic behavior in mind, we no

longer need to fear the stochasticity of the physical world. The kinds of error rates we are likely

to incur due to physical faults may well be very small with respect to the intrinsic variablity (or

entropy, or uncertainty) in the computation our machine is performing, and thus they can be dis-

regarded. As we continue to explore increasingly unreliable physical substrates for computation,

bring our computing machines into increasingly harsh physical environments, or attempt to un-

derstand how to compute with coffee cups and brain cells, this kind of robustness may become

increasingly important. Detailed empirical and theoretical characterization of the robustness prop-

erties of large circuits - ideally by comparison to exact calculation or analytical bounds from the

theory of Markov chains - remains an open challenge.

4.4 Discussion and Future Work

In this chapter, we introduced combinational stochastic logic, a complete set of stochastic gates

for the probability algebra, naturally generalizing the deterministic, Boolean case. We have shown

how to construct massively parallel, fault-resistant stochastic state machines for Monte Carlo algo-

rithms, using designs quite unlike the real-valued, vector-arithmetic structures underlying current

computers. Instead, we directly model the probability algebra in digital hardware, finding that the

conditional independences in the processes of interest combined with the inherently low bit preci-

sion needed for stochastic simulation naturally lead to small, fast, parallel circuits whose physical

structure matches the structure of the stochastic processes they are designed to simulate. When

implemented on tiled arrays of commodity FPGAs, our circuits should support low-cost, real-time

approximate inference on models with hundreds of thousands of variables.

Much work remains to be done. First, we should explore different implementation substrates.

For example, we could use Gaines-style circuits built via analog VLSI to cheaply implement our

Gibbs pipeline elements, combining the speed and energy efficiency of analog computation with
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the arbitrary composability of digital machines. We could also build reliable stochastic circuits

out of nanoscale substrates, exploiting the robustness of our approach. Second, we should explore

hypotheses in computational neuroscience based on stochastic circuits implementing approximate

inference. One starting point is the observation that time-averaging a wire in a stochastic circuit

yields a “rate code” that approximately reports the wire’s “instantaneous” marginal probability.

Third, we should develop mathematical connections between the finite-size time, space and entropy

requirements of stochastic circuits and asymptotic complexity results from randomized algorithms.

We should also construct more sophisticated circuits. We can start by building circuits for ap-

proximate inference in nonparametric and hierarchical Bayesian models by combining stochastic

samplers with stack-structured memories (for growing statespaces) and content-addressible mem-

ories (for e.g. sufficient statistics). Just as with our MRF application, we expect the knowledge

structures we are interested in performing inference over to be reflected in the physical structures

for needed for conditional simulation. We can also directly use the pieces from our Gibbs pipeline

to implement advanced techniques like sequential Monte Carlo and Swendsen-Wang.

More speculatively, we can consider what stochastic digital circuits suggest about the design

of physical memories. The registers we currently use take the same amount of time to store and

to recall all bit strings, and are thus (implicitly) optimal with respect to the uniform probability

model on symbols. However, we know that all symbols in some set to be remembered are rarely

equally likely, and that finding a coding scheme efficiently mapping symbols to be remembered to

a string of bits that have uniform probability is the central problem in source coding. A stochastic

logic circuit that samples symbols according to the code - by arithmetic decoding, say - can then

provide the interface to the physical memory.

Finally, we are actively exploring novel reprogrammable computer architectures better suited

to probabilistic inference than traditional stored-program machines. For example, we have begun

development of the IID, an FPGA-hosted, stochastic version of the Connection Machine architec-

ture (33), which will be programmed by specifying a probability model and relying on a compiler

to automatically produce an appropriate inference circuit. Some of the current challenges involved

in that effort, and in connecting these ideas up with Church, will be detailed in the next chapter.

The apparent intractability of inference has hindered the use of Bayesian methods in the de-

sign of intelligent systems and in the explanation of computation in the mind and brain. We hope

stochastic logic circuits help to address this concern, by providing new tools for mapping proba-

bilistic inference onto existing digital computing machinery, and suggesting a new class of natively

stochastic digital computing machines.
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Figure 4-6: (Top left) The left camera image in the Tsukuba sequence from the Middlebury Stereo Vision
database. (Bottom left) The ground truth disparity map. (Top right) The solution found by an annealed
Gibbs sampler run at floating point precision after 400 iterations. (Bottom right) The solution found by
simulation where probabilities were truncated after calculation but before sampling to 8 bits (which we
expect is roughly comparable to full computation on our arithmetic pipeline with 10 to 15-bit fixed point).
Note that quality is only slightly degraded.
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Figure 4-7: Robustness to faults. (a) shows a butterfly-structured binary Markov random field with at-
tractive potentials. (b) shows robustness results to transient single site faults (assessed by deviation of the
equilibrium distribution of a Gibbs sampler circuit from the target).
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Chapter 5

Challenges in Connecting the Layers

“There is, however, one feature that I would like to suggest should be incorporated in
the machines, and that is a ’random element’.”

– Alan Turing, Intelligent Machinery, A Heretical Theory

“83. What is the difference between a Turing machine and the modern computer? It’s
the same as that between Hillary’s ascent of Everest and the establishment of a Hilton
hotel on its peak.”

– Alan Perlis, Epigrams on Programming

When we program in a high-level language, we are usually oblivious to the fine-grained ar-

chitecture of the machine we are programming, let alone the details of the digital circuitry that

implements it. Instead, we pick algorithmic problems and evaluate programming choices based on

approximate mathematical models of generic computing machines. We hope our computer archi-

tects design our physical computers such that our models are not too wrong to be useful and that

a wide range of problems can be solved efficiently. We rely on compiler writers to build software

that automatically translates our high-level programs into code that will run natively and efficiently

on whatever machine we are actually programming.

If we want probabilistic learning and reasoning over rich knowledge structures to be easy and

efficient in practice, we need to develop generalizations of these techniques. In particular, we need:
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1. Efficient, parallelizable inference algorithms for conditionally simulating from arbi-
trary probabilistic programs. These algorithms must themselves be writeable as short

probabilistic programs. Church’s rejection and MCMC algorithms and systematic stochastic

search represent just one step in this direction.

2. Compilers that can turn recursive probabilistic programs into efficient circuits for mas-
sively parallel execution. This will depend on a good, high-level language for circuits, and

an effective scheme for making time/space tradeoffs for executing recursive processes. I

briefly outline a prototype compiler based on State-Density-Kernel graphs (8) that takes a

step in this direction, simplifying parts of this process for discrete factor graph models, but

leaving the hardest problems of handling recursive processes left unsolved.

3. Microarchitectures for probabilistic computers. Circuit fragments that do elementary

propagation steps for MCMC inference over Church traces or can handle conjugate Bayesian

models may play analogous roles to register files and arithmetic logic units in classical ar-

chitectures. I sketch some of the ideas we have been developing to manage these issues.

4. Models of complexity for probabilistic computation. Assessing the efficiency of a prob-

abilistic program involving a query will require a better understanding of the complexity of

sampling than seems to be available via current complexity theory.

In this chapter, I try to clarify some steps towards these goals. I first briefly outline a compiler

that can produce circuit designs for problems with fixed-structure state spaces. I then describe two

key challenges, namely parallelizing recursive processes and representing structured data, that both

need to be solved if we want efficient Church MCMC in digital hardware. I also touch on some

intuitions about computational complexity that may help us better understand what programs we

expect to be efficient.

5.1 Generating Circuits That Solve Factor Graphs

Figure 5-1 shows the basic dataflow for a compiler we have written that automatically produces

block diagram level circuit designs for inference in discrete factor graph models. This compiler

sheds light on the basic challenges that more general efforts to connect the layers that future

toolchains will face, automatically identifying and exploiting fine-grained conditional independen-

cies implied by a simple but widely-used class of stochastic programs. Our goal was to automate
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Figure 5-1: An overview of the compiler we have implemented to simplify the generation of stochastic
digital circuits to simulate from factor graphs. Graph coloring is used to automatically identify fine-grained
conditional independencies in the model. These independencies are used to automatically generate a graphi-
cal description of a parallel Gibbs sampler in the State-Density-Kernel language, serving as a block diagram
level design for the digital circuit. A combination of software support and hand digital design (e.g. for
implementing potentials) is needed for the final translation to executable digital circuit.

the process of producing circuits for solving propositional probability models, and to link this ca-

pability up with standard reconfigurable logic to obtain a general-purpose facility for stochastic

computation.

Our compiler accepts as input a discrete variable factor graph, specified using a Python API.

Figure 5-2 shows an example use. It operates by extracting the underlying undirected graph linking

variables and coloring this graph to identify opportunities for conditional independence in Gibbs

sampling: according to the semantics for Markov Random Fields, all nodes of the same color are

conditionally independent of each other given all the nodes of all other colors. This means they can

be sampled simultaneously, in principle requiring only local state and access to the state of their

neighbors. Thus the topology of the graph, the number of bits needed to describe each variable and
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the coloring number of the graph dictate the communication costs associated with fully exploiting

its parallelism.

Figure 5-2: A screen capture of a Python fragment invoking our factor graph inference compiler. The dis-
played fragment generates a factor graph, identifies opportunities for exploitable parallelism, and generates
an SDK description of a stochastic FSM for sampling from the distribution induced by the factor graph. The
code fragment includes boilerplate to generate native code using LLVM for efficient, bit-accurate circuit
simulation.

Our compiler uses this coloring to construct a State-Density-Kernel graph description of a dis-

tributed stochastic automaton that generates samples from the joint distribution implied by the fac-

tor graph. The State-Density-Kernel language (slightly modified here from its original form from

(8)) allows one to specify a stochastic automaton out of pieces, making the dependencies between

pure functions (such as probability densities or energy terms), pieces of state (such as variables)

and stochastic transition functions (such as MCMC transition kernels) graphically explicit. Figure

5-3 shows the SDK generated for the inference problem from Figure 5-2.

With the SDK in hand, we can automatically generate native x86 code to perform bit-accurate

simulation of the stochastic circuit the SDK represents, using LLVM (43) to manage native code

generation. Critical low-level optimizations can also be managed at the LLVM level. The SDK de-

scription also serves as the block diagram level design of a digital circuit, which we then implement

at the logic level using parametric instantiations of the states and kernels and hand engineering for

the densities.

Currently, the supported language for potential functions is limited to a small, pre-specified list,

with logic-level digital design work required to extend it. This is primarily because the contribution

of the compiler lies in its ability to construct distributed stochastic circuits from factor graphs, and
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Figure 5-3: A State-Density-Kernel graph automatically produced by our compiler for performing parallel
Gibbs sampling in a 2x2 Ising lattice. The density and kernel structure make explicit the full conditional
independencies in the underlying factor graph for maximally parallel execution.

from the standpoint of this process the generation of circuits for potential evaluation can be viewed

as calling out to a deterministic black box. If the arity of the discrete values in the variables is low

and each factor is only connected to a small number of variables, then representing potentials as

tables is feasible. However, as the complexity of the tables in terms of number of bits grows, it

becomes important to compress the tables by writing them in terms of functions that compute their

values, opening up the general problem of function-to-hardware compilation. We have not solved

that general problem, although it is a special case of the more general problem of probabilistic

compilation which we will describe in the next section.

5.2 Probabilistic Compilation and Architecture

“12. Recursion is the root of computation since it trades description for time.”

– Alan Perlis, Epigrams on Programming
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The discrete factor graph setting allowed us to focus on inference over a fixed, finite state space

comprised of discrete values and work with Gibbs sampling, a probabilistic fixed-point iteration

algorithm. We could thus construct a finite graphical description of a stochastic automaton for

performing inference. We could also identify conditional independencies by graph coloring and

use these to execute parts of the automaton in parallel. The exploitable parallelism is the source of

the design wins in our circuitry, while its explicitness is what enables our compiler, and therefore

our reconfigurable architecture.

If we want efficient probabilistic computation in the more general Church setting, we need to

leverage conditional independence to yield exploitable parallelism, and simulate independent parts

of our probabilistic processes in parallel using small, space-efficient processes. As this parallelism

becomes increasingly finer grained, we will again approach reconfigurable computing, where pro-

gramming becomes rewiring and compiler support becomes increasingly important. Moving to the

broader Church setting adds two main layers of complexity over discrete factor graphs: executing

recursive processes in parallel and representing structured data. A reconfigurable computer for

Church inference that uses MCMC will need to have combined answers to these two problems,

informing both its compiler and its architecture. Figure 5-5 captures a fantasy diagram for that

situation.

5.2.1 How should we parallelize recursive processes?

Consider a machine that peforms Church inference using rejection sampling. We have seen how to

implement this algorithm in Church, and thus in Scheme, assuming we are provided with random

primitive procedures. The key insight needed to translate this implementation into a serial circuit

for implementing it can be seen in Steele & Sussman’s classic paper on the Scheme79 architecture

(77):

LISP, like traditional stored-program machine languages and unlike most high-

level languages, conceptually stores programs and data in the same way and explicitly

allows programs to be manipulated as data. LISP is therefore a suitable language

around which to design a stored-program computer architecture. LISP differs from

traditional machine languages in that the program/data storage is conceptually an un-

ordered set of linked record structures of various sizes, rather than an ordered, index-

able vector of integers or bit fields of fixed size. The record structures can be organized

into trees or graphs. An instruction set can be designed for programs expressed as such
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trees. A processor can interpret these trees in a recursive fashion, and provide auto-

matic storage management for the record structures.

That is, we can leverage the “code as data” aspect of Lisp to build a stored-program architecture

centered around symbolic, recursive processes rather than iterative, numerical ones. The same

thing is possible for Church, and conceptually straightforward - although practically extremely

involved - for the rejection sampler implementation of QUERY. However, such an architecture

would make only peripheral use of stochastic digital elements, in precisely those places where

primitive operations were performed. It would lack robustness to faults because it would not be

performing inference by stochastic fixed-point iteration. It would not be tremendously faster than

traditional architectures because it would ignore conditional independencies between subparts of

the computation.

In any side-effect free deterministic functional language, all subevaluations are independent;

the only sharing occurs through bound variables in the environment, though in principle they could

be recomputed. In principle, every recursive call to EVAL in a meta-circular evaluator could be

implemented by copying the environment and sending it off to a new thread (or copying it into the

memory of a nearby Scheme79 circuit). However, a machine that did this would spend all its time

shuttling argument and environment data to and from different evaluators.

One main problem, then, is to devise a means of deciding when to recurse in place and when to

recurse by transferring data to another point in space and causing computation to proceed in parallel

at that location. These choices are hidden when a process - including the process of evaluation - is

described in Scheme notation.

In the probabilistic setting, this basic challenge - deciding when to exploit the opportunities

for parallelism that conditional independence makes explicit, in the setting of recursion - remains.

The one additional wrinkle is that exchangeable random procedures that are not IID introduce

locking constraints on environments. This is because I cannot run two instances of an exchangeable

random procedure that performs internal mutation at the same time, since both will be reading to

and writing from the same internal state. An allocator must trade off the advantages of running a

subprocess in parallel with the cost of transmitting environment data back and forth and the waiting

due to locks.
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5.2.2 How should we represent structured state for MCMC?

If we can obtain satisfactory solutions to the time/space allocation problem, we will still need

two architectural innovations over the Scheme79 architecture to bridge the gap between structured

Church programs and basic stochastic digital circuitry. First, we will need to build a stateful circuit

fragment that can represent a piece of a computation trace in a local memory and execute the

rules associated with trace updating by cycling the memory through trace recursions. To support

concurrent trace updating, we will want this trace unit to have hooks for other trace units, including

means of linking their subexpression and environment structures with the current one.

Second, we will want appropriate circuit fragments to compactly represent and compute over

common exchangeable random primitives. These play the analogue of the units for applying prim-

itive procedures in the Scheme chip, or of basic arithmetic operations in a standard FPU. Their

job is to capture the state of an exchangeable random sequence, along with the basic operations

needed for MCMC. Consider a discrete distribution over a finite list of symbols of known length.

We would like to be able to represent this kind of random draw, both in the case where the distribu-

tion is explicitly represented (and so the probabilities of each outcome are provided as a parameter

to the circuit fragment) and where the distribution is integrated out, yielding an exchangeable se-

quence of symbols. In the exchangeable case, we need to support the following operations:

1. Generating a sampled symbol from the distribution, conditioned on previous draws via its

internal state.

2. Evaluting the probability of a symbol.

3. Incorporating a sampled symbol into the state.

4. Removing a sampled symbol from the state, i.e. “unsampling” the symbol, for use when

moves are rejected in MCMC.

5. Copying the state to and from the state of another discrete distribution unit.

The state is just the sufficient statistics of the distribution. For a short list of possibilities,

i.e. a low-dimensional multinomial distribution, a count array is likely to be the most efficient

representation. However, as the list grows very long - for example, when we have a distribution

over millions of word tokens - the symbols are likely to beecome sparsely represented as the

distribution approaches a Dirichlet process. Accordingly, a sparse, list-based representation of the

counts may be a more efficient use of time and space.
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Similar fragments for IID and exchangeable binomials, Gaussians, and so on will form an

important primitives library, and make the locus of many of the most important state manage-

ment and time/space tradeoffs explicit. We imagine that much like a modern FPGA has banks of

floating-point MULITPLY-ACCUMULATE units, reflecting its focus on convolution, a reconfig-

urable stochastic accelerator might have banks of units for sampling from various primitive distri-

butions. While simulating these operations using general purpose memories and processors is of

course possible, it is precisely this simulation that obscures the low intrinsic time/space efficiencies

in sampling algorithms, and can make them seem unacceptably slow.

5.3 Probabilistic Computational Complexity

Computability and complexity classes are specified in terms of sets with definite boundaries, de-

fined by the domains and ranges of definite functions, such as “the set of all pure Lisp programs

that halt” and “the set of all Boolean formulae on n variables in 3-term conjunctive normal form

which are satisfiable”. Computability and complexity theorists study the logical possibility of eval-

uating these functions — “is it possible to decide if a given 3-CNF formula is satisfiable” — as

well as the time and space requirements needed for such evaluations (71). The theory of descrip-

tive complexity explicitly identifies the classes under study in complexity theory with the models

of theories written in various logics (20; 35), identifying the difficulty of logical reasoning with

traditional complexity classes. The amount of effort spent on “derandomizing” methods (74) for

approximate function evaluation is another indication of the ways in which the theory of computa-

tion emphasizes determinism.

We need a new theory of computational complexity that addresses the main questions of interest

in probabilistic computing, including:

1. A uniform theory of the complexity of sampling that can explain the costs in time, space and

entropy for simulating Church expressions involving QUERY as well as those involving only

EVAL.

2. A non-uniform theory of the hardness of sampling in terms of depth, width and entropy

stochastic digital circuits, keeping in mind that the tractability of sampling depends crucially

on the amount of exponentially hard work one can do cheaply (e.g. to set up a look-up table

in a machine to build a fast Gibbs unit before a long sampling run).
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These theories must explain the empirical fact that problems of Bayesian inference are often

easy to approximately solve - at least, approximate well enough - in practice, especially by sam-

pling methods. While I do not know how to bridge the gap between the practice of approximate

sampling and probabilistic computing and complexity theory, I can suggest four independent but

combineable ways in which the standard setting for complexity theory could be changed to bring

it closer:

1. Consider the problem of sampling witnesses to problems in NP (or co-NP), uniformly at

random, rather than finding satisfying assignments. For NP, this involves implementation as

a Church query where the expression draws a candidate solution uniformly at random and

the predicate checks the desired condition.

2. Sample from variants of the problem where the energy landscape is replaced by a smoothed

version. For problems in NP, obtain this landscape by working with noisy versions of the

predicate. For example, in SAT, replace AND with a noisy AND that sometimes returns

true when one input is false. Sampling on the energy landscape in such a smoothed version

allows for generic means of obtaining partial credit.

3. Sample approximately, e.g. from a Markov chain that has not completely converged, rather

than insisting on exact sampling. Exploit the fact that it may be easy to generate exact

samples without being able to know for certain that they are exact.

4. Consider the probabilistic process by which the world generates problem instances, allowing

the world to make errors if it attempts to generate (or transmit) hard instances (as in semi-

random sources (84; 6) and smoothed analysis (76)).

There may be a way to view our current theories of complexity as focusing on a limiting case of

probabilistic computation, with the setting most relevant for conditional simulation in probabilistic

AI lying outside of this limiting plane. The theory of randomized algorithms typically focuses

on (and has yielded positive results about) the use of samplers in function approximation (3; 18).

However, this theory does not focus on the difficulty of sampling; it instead measures the difficulty

of solving satisfiability problems (as in NP) or counting (as in #P).

There is work that directly bears on the difficulty of sampling, for example from the study of

the convergence rates of certain Markov chains (37; 70). However, to the best of my knowledge,

it has only been linked to “complexity theory” through the lens of approximating functions via
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Monte Carlo estimation. By combining the four relaxations of deterministic complexity mentioned

above, we might be able to develop stronger connections that shed light on the real computational

tractability of both deterministic and probabilistic computation. The hope would be to recover

the structures of complexity theory, focused on function evaluation, as the deterministic limits

of a larger class of sampling problems. Enlarging the space might help us gain perspective on

properties of complexity theory that are currently hard to explain. For example, many NP complete

problems exhibit phase transitions of hardness and are often very easy in practice; see (68) for

one example of work in this large literature. However, problems like graph isomorphism and

factoring seem hard in practice, even though they are not NP-complete. One possibility is that

NP complete problems relax to approximate sampling problems that are easy to solve, whereas

the sampling problems that recover graph isomorphism or factorization in the limit are remain

difficult. Regardless, understanding the structure of complexity for probabilistic computation and

its relationships to existing structures remains an intriguing challenge.
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Figure 5-4: A synthesized FPGA layout for a circuit for a 9x9 Ising lattice, consistent with a 9x9 design (as
SDK) produced by our compiler. This circuit assumes random bitstreams are provided from off the FPGA.
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Figure 5-5: An ideal compiler for stochastic computation would involve automatic, universal conditional
simulation (to remove all queries) and automatic identification and negotiation of time/space tradeoffs in-
formed by the architectural constraints of the available machine.
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Chapter 6

Conclusion

“The possibility that the logic of Gibbsian systems (set up for physical chemistry)
might be equally applicable to biological and social systems, was considered more
and more seriously..”

– Hans Lukas Teuber, personal notes

“With our artificial automata we are moving much more in the dark than nature appears
to be with its organisms. We are, and apparently, at least at present, have to be much
more ‘scared’ by the occurrence of an isolated error and by the malfunction which
must be behind it. Our behavior is clearly that of overcaution, generated by ignorance.”

– John von Neumann, The General and Logical Theory of Automata

In this dissertation, I introduced a new set of natively probabilistic computing abstractions,

including probabilistic generalizations of Boolean circuits, backtracking search and pure Lisp.

I showed how these tools let one compactly specify probabilistic generative models, generalize

and parallelize widely used sampling algorithms like rejection sampling and Markov chain Monte

Carlo, and solve difficult Bayesian inference problems. I will now close with some admittedly

optimistic reflections.

Computation has changed the way we build models of the world, allowing us to specify and

solve systems of equations and optimization problems that are vastly more complex than was

previously possible. My hope is that the integration of probability into our programming languages

and computing machines will help to continue this transformation in three main ways:
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1. Our programs themselves will become our general-purpose, generative models. In clas-

sical AI and discriminative machine learning, programs typically describe algorithms for

solving problems. They are written to go directly from percepts or assertions to causes. For

example, one might write a vision program that takes in an image and produces a list of

the objects in it. The reverse direction, which goes from causes to effects, correponds to

modeling. However, because of determinism, programs written in the reverse direction —

for example, computer graphics engines — are hard to directly employ as models. Without

probabilities, it is unclear how to choose between the infinitely many inputs that are logi-

cally consistent. With probabilistic programming, we can write and extend programs that

hallucinate possible worlds and explanations. In this example, such a program might choose

typical objects and list them along with a rendered view. We could then explore the typical

consequences of the model by running it forward and also bring it into contact to data by

using universal probabilistic reasoning algorithms to run it backwards, going from the pro-

gram that describes our model to an algorithm that solves the model given data via general

purpose machinery.

This approach also sidesteps the problems of feature engineering that have been at the heart

of discriminative learning methods. Rather than search for features that are invariant to a

transformation one would like to match across, one writes procedures that apply randomly

chosen transformations. For example, to recognize images across rotations, one could write

a probabilistic program that samples images and then rotates them, and invert this program

to perform recognition. Of course, the algorithmic problem of inverting the program may

still be quite hard in practice; building inference engines that are up to the task of inverting

general programs remains an important challenge.

2. We will begin to expect a probabilistically consistent treatment of uncertainty when we
build and fit models. We will expect to be able to simulate a model to get a sense of the

variability in outputs or the stability of data-driven conclusions. We may also grow suspect

of models that come with high-precision parameters, and be naturally led to focus on the

qualitative (if uncertain) consequences, rather than trusting aspects that depend on low-order

bits.

3. Our machines will begin to sanity check implausible inputs and sample plausible al-
ternatives rather than blindly follow our instructions. Our interactions will someday be

taken as noisy evidence, interpreted with respect to probabilistic programs that model our
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intent, rather than taken as definite inputs to some deterministic function. This epistemolog-

ical flexibility, arising from the wiggle room afforded by probability, could potentially allow

us to one day build a probabilistic computer that is not well described by the phrase “garbage

in, garbage out”.

The flavor of probabilistic computing is interestingly different from both deterministic compu-

tation and quantum computation. Probabilistic algorithms and state machines work by massively

parallel stochastic walks, rather than carefully coordinated sequences of deterministic steps. We

expect them to eventually produce desired outputs in reasonable proportions, rather than perform

any given step precisely. This may help us model biological, neural, psychological and social sys-

tems, which robustly exhibit reasonable behavior under a wide range of conditions but rarely - if

ever - can be made to repeat themselves perfectly. Metaphors from statistical physics - and, ulti-

mately, metallurgy and chemical engineering - may become increasingly appropriate for describ-

ing our algorithmic processes as our computers themselves are naturally viewed as Gibbsian rather

than deterministic systems. Perhaps annealing was a particularly fortuitous beginning, showing

how optimization, one of the key problems in deterministic computation, can be fruitfully viewed

as the limit of a broader, probabilistic view. We also hope that in the process some of the more

unpleasant mismatches between computation and classical physics, such as its lack of scale invari-

ance and its instability to local failures (33), may begin to be mitigated. As we build computers

out of larger and larger collections of smaller and smaller components, this kind of convergence

between theories of computation and physics will probably grow more important.

Probabilistic computation may also provide clues for understanding neural computation and

cognitive architecture. We can let go of our focus on calculating probabilities and optimal actions,

instead favoring systems that sample good guesses. For example, neural systems may appear noisy

because they are trying to solve problems of inference and decision making under uncertainty

by sampling. The variability might not be Gaussian error around some linearized set-point, but

rather the natural dynamics of a distributed circuit that is robustly hallucinating world states in

accordance with a generative probabilistic model and the evidence of the senses. At the cognitive

level, we may be able to build agents that use probabilistic programs as the inputs, outputs and

executable descriptions of their learning, reasoning and planning systems, with their beliefs and

desires represented using layers of increasingly domain-specific language in a stratified design.

When we build probabilistic circuits, algorithms and programs, we give up many of the concep-

tual and practical advantages of determinism. Our systems become harder to characterize, to test,

to analyze and to debug, requiring new concepts, mathematics and practical tools. Furthermore,
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some applications seem to require determinism; it is hard to imagine the IRS using probabilistic

methods in the core of their accounting and bookkeeping systems (although they might be help-

ful in suggesting audits). However, it seems like there are some potentially powerful synergies

between probability and the basic abstractions we use in computing:

• Programming languages give us tools for managing large structures of procedural knowl-

edge. Marrying them with probability helps us use programs declaratively (as generative

models), and also tolerate exceptions, manage uncertainty, and learn inductively.

• Search algorithms let us explore large spaces efficiently. Marrying them with probability

helps us avoid local minima, account for multiple solutions to reasoning problems without

combinatorial explosion, and exploit fine-grained parallelism that was exposed via condi-

tional independence.

• Circuits let us reflect the structure of our computations in our machines. Marrying them

with probability lets us save space by exploiting low bit precision, save time by exploiting

exposed parallelism, and deal with very high fault rates.

We are a long way from fully developing the technology needed to make probabilistic modeling

easy and efficient in everyday practice, and, in all probability, even farther from building a general

purpose thinking machine. However, I hope I have convinced you that by viewing stochasticity and

uncertainty as an ally, not an enemy, and marrying it with our basic computational abstractions, we

have some new and interesting avenues to explore.
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