BegBunch — Benchmarking for C Bug Detection Tools

Cristina Cifuentes, Christian Hoermann, Nathan Keynes, Lian Li,

%
Simon Long, Erica Mealy, Michael Mounteney and Bernhard Scholz
Sun Microsystems Laboratories
o) __ Brisbane, Australia))
{cristina.cifuentes,christian.hoermann,nathan.keynes,lian.li}@sun.com

ABSTRACT

Benchmarks for bug detection tools are still in their in-
fancy. Though in recent years various tools and techniques
were introduced, little effort has been spent on creating a
benchmark suite and a harness for a consistent quantitative
and qualitative performance measurement. For assessing the
performance of a bug detection tool and determining which
tool is better than another for the type of code to be looked
at, the following questions arise: 1) how many bugs are cor-
rectly found, 2) what is the tool’s average false positive rate,
3) how many bugs are missed by the tool altogether, and 4)
does the tool scale.

In this paper we present our contribution to the C bug
detection community: two benchmark suites that allow de-
velopers and users to evaluate accuracy and scalability of
a given tool. The two suites contain buggy, mature open
source code; bugs are representative of “real world” bugs.
A harness accompanies each benchmark suite to compute
automatically qualitative and quantitative performance of a
bug detection tool.

BegBunch has been tested to run on the Solaris™ Mac
OS X and Linux operating systems. We show the generality
of the harness by evaluating it with our own Parfait and
three publicly available bug detection tools developed by
others.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics; D.2.5 [Software
Engineering]: Testing and Debugging

General Terms

Measurement, Experimentation

Keywords

Accuracy, scalability

1. INTRODUCTION

Benchmarking provides an objective and repeatable way
to measure properties of a bug detection tool. The key to a
good benchmark is the ability to create a common ground

*While on sabbatical leave from The University of Sydney,
scholz@it.usyd.edu.au

DEFECTS 09, July 19, 2009, Chicago, Illinois, USA.
Copyright 2009 Sun Microsystems, Inc.

for comparison of different bug detection tools or techniques
based on real, representative data that measure the qual-
itative and quantitative performance of the bug detection
tool. The compilers community has a long standing history
of performance benchmarks, and more recently the Java™
virtual machine community has established its benchmarks.

Benchmarks in the bug detection community have not
reached the level of maturity needed to prove useful to a
variety of users. A benchmark suite for bug detection tools
must be able to answer several questions about the tool’s
results:

Question 1. How many bugs are correctly reported?
Question 2. How many false reports of bugs are made?
Question 3. How many bugs are missed/not reported?
Question 4. How well does the tool scale?

Not all these questions can be answered by a single suite.
In order to measure scalability of a tool, large code distri-
butions with million lines of code are needed to be represen-
tative of the real world. However, determining how many
bugs are correctly and incorrectly reported, or how many
bugs are missed, is infeasible for large code bases, because
of practical limitations of finding where all bugs in a large
program are.

In this paper we present BegBunch, a benchmark suite
for C bug detection tools. Our contributions are two suites,
the Accuracy and the Scalability suites, and associated har-
nesses. The Accuracy suite evaluates precision, recall and
accuracy against marked-up benchmarks, while the Scala-
bility suite evaluates scalability of a tool against a set of
applications. BegBunch has been used as part of regression
and system-testing of the Parfait [2] bug detection tool.

2. RELATED WORK

We review the literature with respect to existing efforts
on bug detection benchmark suites. Table 1 reports on the
number of programs, bugs, lines of code (minimum, maxi-
mum and average), harness, language and platform support
for existing bug detection benchmarks. In this paper, all re-
ported lines of code are uncommented lines of code as gen-
erated using David A. Wheeler’s SLOCCount [14] tool. As
seen in the table, the bug detection community has focused
on two types of (accuracy) benchmarks.

Small benchmarks come in the form of bug kernels and
synthetic benchmarks, with sizes from ten to one thousand
lines of code. Bug kernels are self-contained programs ex-
tracted from existing buggy code that expose a particular
bug. As such, bug kernels preserve the behaviour of buggy

LOC
Size Benchmark # Programs | # Bugs | | .. | max | ave Harness Language Multiplatform
Zitser 14 83 175 1.5K 657 No C Yes
Small || Kratkiewicz 291 x 4 873 6 27 14 No C Yes
SAMATE 375 408 20 1.1K 90 No C,C++,Java,PHP Yes
Large BugBench 10 19 735 692K | 149K No C Linux
Faultbench v0.1 6 11 1,276 | 25K K No Java Yes

Table 1: Characteristics of Existing Bug Detection Benchmark Suites

e accuracy is a measure of the ability of the bug detec-
tion tool to report correct bugs while at the same time

code. Zitser et. al. [15] extracted 14 bug kernels from 3
security-sensitive applications. Kratkiewicz [6] automati-

cally generated 291 synthetic benchmarks that test 22 dif-
ferent attributes affecting buffer overflow bugs. 4 versions
of each benchmark were made available: 3 with different
overflow sizes and a correct version of the code. The NIST
SAMATE Reference Dataset (SRD) project [11] compiled
a suite of synthetic benchmarks, mainly for the C, C++
and Java languages, that have been contributed by various
groups.

Large benchmarks in the form of complete program dis-
tributions were the focus of attention of BugBench [9] and
Faultbench v0.1 [4], with sizes varying from the low to high
thousands of lines of code. BugBench is composed of 17 pro-
grams including 19 bugs that were known to exist in these
programs. Faultbench provides a suite of 6 Java language
programs with 11 bugs.

Our Approach

Table 1 points out the main shortcomings of existing bug
detection benchmarks; namely,

e few bugs relative to the size of the programs,
e lack of a harness to run, validate and report data, and
e portability issues in some cases.

In other words, existing bug benchmarks are not general,
portable or reusable; all key properties to making a bench-
mark suite useful.

BegBunch addresses these deficiencies by providing two
suites to evaluate the qualitative and quantitative perfor-
mance of bug detection tools and to automate the execution
of the bug detection tool, the validation of the results, and
the reporting of the performance data. For convenience to
the general bug checking community, a third suite of exist-
ing synthetic benchmarks was also created to allow for the
existing body of synthetic benchmarks to be more accessi-
ble and usable. The benchmark suites provide portability
across Unix-based systems as they have been tested on the
Solaris, Mac OS X and Linux operating systems.

3. BEGBUNCH: METHODOLOGY

BegBunch consists of various suites that allow tool de-
velopers and users to measure different aspects of a tool.
We borrow terminology commonly used in the information
retrieval community [13] and apply it to bugs instead of doc-
uments retrieved (or not retrieved):

e precision is the ratio of the number of correctly re-
ported bugs to the total number of bugs reported,

e recall is the ratio of the number of correctly reported
bugs to the total number of bugs (both correctly re-
ported and not reported), and

holding back incorrect ones.

Bug Marked-up
Yes No
Yes TP FpP Precision
Bug Reported No N TN
Recall Accuracy

Table 2: Measurements Table

Based on bugs reported by a tool and bugs marked-up in
a benchmark suite, Table 2 defines the terms true positive
(TP, i.e., correctly reported bugs), false positive (FP, i.e.,
incorrectly reported bugs), false negative (FN, i.e., missed
bugs) and true negative (TN, i.e., potential bugs that are
not real bugs).

Precision and recall can be measured using standard equa-
tions. Given a bug detection tool, a bug kernel bk and a bug
type bt, the tool’s precision, p, and recall, r, with respect to
bt and bk is defined as:

T Pyt bk

Dbt,bk = {TPbthPbtbk TPt ok + FPotpr > 0
’ 1

otherwise

T Pyt bk

———— if TP FN,
Tht,bk = {prt,bk+Fth,bk bt bk + F'Not pie > 0
' 1

otherwise

Accuracy can be measured in different ways based on Ta-
ble 2. Heckmann and Williams [4] measure accuracy taking
into account TP, FP, FN and TN. Theoretically, true nega-
tives (TNs) can be measured on a per-bug type basis. For
example, for buffer overflows, we can look at the code and
determine all locations where a read or a write into a buffer is
made. Except for the locations where a real buffer overflow
exists, all other locations would be considered TNs. How-
ever, in practice, this measure is not intuitive and is hard to
comprehend. Instead, we favour the F-measure from statis-
tics and information retrieval [13], which computes accuracy
based on precision and recall alone. The F-measure provides
various ways of weighting precision and recall, resulting with
different Fn scores. We favour the F1 score as it is the har-
monic mean of precision and recall.

Given a bug type bt in a bug kernel bk, a tool’s accuracy
with respect to bt in bk is defined as:

2XPbt,bk XTbt,bk

if pye ok + Tot,pr > 0
accuracyy pk = { Dbt bk TTbt bk ’)
0

otherwise

A bug benchmark is said to test a bug type if it exposes
that bug type or it provides a corrected version of it. The

kernels LOC # bugs
Category From | Bug Type CWE;q per category | min | max | avg intra:inter
Zitser | Buffer overflow (write,read) | 120,125 14 90 618 304 5:78
Buffer overflow (BO) || Lu Buffer overflow 120 5 16 | 1,882 417 1:6
Sun Buffer overflow (write,read) | 120,125 40 36 | 2,860 496 44:37
Memory /pointer Lu Double free 415 1 5,807 | 5,807 | 5,807 0:1
(M/P) Sun Null pointer dereference 476 2 35 41 38 0:4
Integer overflow (I0) || Sun Integer overflow 190 3 47 64 58 0:3
Format string (F'S) Sun Format string 134 2 30 94 62 0:2
[Overall I | | | o7 [16]53807 | 481 50:131 |

Table 3: Characteristics of the Accuracy Suite of Bug Kernels

accuracy for the corrected version of a bug kernel is either 0
or 1 depending on whether the tool (incorrectly) reports a
bug in the corrected version or not.

Given a suite of n bug benchmarks with b benchmarks
that test one or more instances of bug type bt; 1 <= b <= n;
the overall accuracy of a tool over bt is the average of the
individual benchmark results over the set b:

b

Accuracyp; = E accuracyyt bm
bm=1

(1)

Questions 1-3 can be answered by measuring the true posi-
tive, false positive and false negative rates of a bug detection
tool against a given benchmark suite. These raw data allow
us to compute precision, recall and accuracy on a per bug
type and bug benchmark basis. The overall accuracy fig-
ure, i.e., equation (1), provides an indication of the tool’s
accuracy with respect to a given bug type.

3.1 The Accuracy Suite

The aim of the Accuracy suite is to measure precision,
recall and accuracy of a bug detection tool against a set
of bug kernels extracted from existing buggy open source
applications. The suite is intended to be representative of
existing bugs in C/C++ code bases.

[Bug Category [[04] °05] 06 [Total | % |
Buffer overflow 152 | 195 | 209 556 | 71.2%
Memory/pointer bug 13 15 7 35 | 4.5%
Integer overflow 34 25 61 120 | 15.4%
Format string 21 29 19 69 | 8.9%

Table 4: Summary of MITRE’s OS vendor data for
the years 2004-2006

To determine the ratio of bugs to be part of the benchmark
suite, we used MITRE’s data on reported vulnerabilities in
operating system code for the years 2004-2006 [1] and in-
ternal feedback from Sun’s product groups as to the most
common types and category of bugs in systems code. This
narrowed the set of bug types of interest to four main cate-
gories, as summarized in Table 4: buffer overflows, i.e., read
and write accesses to an array outside its bounds; mem-
ory/pointer bugs, i.e., memory leak and double-free bugs;
integer overflow, i.e., over or under flow of an integer; and
format string, i.e., vulnerabilities arising as a consequence
of tainted format strings.

We extracted bug kernels from existing open source ap-
plications such as the OpenSolaris™ operating system, the
MySQL™ server, etc., by inspecting bug tracking systems
and mailing lists, aiming to ensure there was a breakdown

between easy, medium and hard to find bugs (measured by
lines of code in the bug kernel and complexity of the code
as represented by whether the bug relies on intra- or inter-
procedural information). As pointed out in other forums,
a benchmark suite that only holds hard cases is not very
useful in practice [12] as it does not allow for meaningful
comparison. Each bug kernel was tested with the gcc com-
piler to reproduce the bug in 3 different platforms: Solaris,
Mac OS X and Linux, to ensure generality and completeness
of the code.

The resulting Accuracy suite is the combination of our
work, 47 bug kernels, combined with the 14 bug kernels from
Zitser et. al. [15], and 6 bug kernels extracted from Bug-
Bench [9] that mapped to the above classification. Table 3
summarizes the data in our benchmark suite. For each bug
category, we list the bug types that belong to the category
along with their unique Common Weakness Enumeration
(CWE) ID [10], the number of kernels, the code size based
on uncommented lines of code, and the ratio of intra- vs.
inter-procedural bugs. The table also summarizes the total
number of bugs in the suite: 67 kernels in 4 bug categories
with a total 181 bugs and a 50:131 intra:inter-procedural
ratio.

3.2 The Scalability Suite

The aim of the Scalability suite is to measure how well
a bug detection tool scales, i.e., answer Question 4. This
suite is composed of open source applications that include a
distribution of small to large code sizes in various domains.

[Application [LOC | Domain |
MySQL 5.0.51a 886,718 | Database
Perl 5.8.4 428,595 | Scripting language
Asterisk 1.6.0.3 290,079 | Telephone PBX
MEME 4.0.0 216,976 | Biotech
Sendmail 8.12.3 87,751 | Systems
Tcl 8.0.5 70,377 | Scripting language
OpenSSH 3.6.1p1 46,191 | Systems
WU-ftpd 2.6.0 17,564 | Systems

Table 5: Characteristics of the Scalability Suite

Table 5 shows the applications that belong to the Scalabil-
ity suite. For each application, the number of uncommented
lines of C/C++ code and the application’s domain are re-
ported. The suite ranges from systems-level code, to virtual
machines, databases and general-purpose applications.

4. THE HARNESS

In order to measure accuracy and scalability, we developed
a couple of harnesses that compute these figures based on the

output of a bug detection tool. The harnesses are written
in Python and are extensible; they can support various bug
detection tools.

4.1 The Accuracy Harness

Each bug that appears in the benchmark suite is anno-
tated with an XML-like markup on the same line that ex-
poses the bug, surrounding the relevant part of the statement
containing the bug. The following syntax is used:

¢/* <bug’ [‘interproc’] <bug-type>‘> %/’ <C/C++ block>
/¥ </bug> */’

where the default is for bugs to be intra-procedural unless
otherwise stated. For example, to markup a memset state-
ment that has a null pointer dereference that is based on
an argument to the function, we add the following markup
surrounding the memset at fault:

/* <bug interproc null-pointer-deref> */ memset(
a->password, 0x55, strlen(a->password)) /* </bug> */;

Where a bug is exposed may be a matter of discussion.
Given a bug kernel, it contains all the code of the appli-
cation except for standard C libraries. A bug is exposed
at the location where the error is first observed if the pro-
gram was to be run. In the case of an intra-procedural bug,
the bug is exposed within the procedure. In the case of an
inter-procedural bug, the bug is exposed within the called
procedure. In the case of bugs due to calls into C library
functions, the bug is exposed at the call site, not within the
library code, as the tool does not have access to the code in
order to analyze it.

The Accuracy harness checks a bug detection tool’s output
against the marked up bugs in the suite and computes how
many bug reports were correct (i.e., true positives), how
many were incorrect (i.e., false positives) and how many
were missed (i.e., false negatives), on a per bug type and
benchmark basis. It then applies equation (1) to compute
overall accuracy on a per-bug type basis.

4.2 The Scalability Harness

The Scalability harness allows for configuration of the var-
ious benchmarks and computes the time it takes to build the
code, along with the extra overhead time to run the bug de-
tection tool to analyze the code. Both these data are plotted,
allowing users to see how well the tool scales over a range
of small to large applications. The plot also gives an idea of
how much time the bug detection tool takes to run beyond
standard build time.

5. EVALUATION

We tested the extensibility of the BegBunch v0.3 har-
ness with publicly available bug detection tools that sup-
port C and/or C++ code: Parfait [2] v0.2.1 (our own tool),
Splint [3] v3.1.2, the Clang Static Analyzer [8] v0.175 and
UNO [5] v2.13.

5.1 The Accuracy Suite

For each tool, a Python class that parses the output of
the tool was written. On average, 100 lines of Python code
were written for the abovementioned tools. Time was spent
understanding the output produced by the various tools and
trying to ensure that the reported data are representative of

the tool. However, in some cases, some of the tools either
did not support some of the bug categories in BegBunch or
expected annotations in the source code of the benchmark
suite in order to be more precise (e.g., Splint). We did not
add annotations to the source code and used Splint with the
strict mode.

[Tool [Type [# TP | # FP | # FN [Accuracy |

Darfait | BO 53 0 118 11.8%
Splint BO 10 | 359 122 16.8%
Splint || NPD 0 1 4 0%
Clang || NPD i 0 3 25.0%
UNO BO 2 p) 169 7%

Table 6: Evaluation of C bug detection tools against
the Accuracy suite

Table 6 provides the results of our evaluation against the
Accuracy suite. For each tool, data are reported against
a bug type, summarizing the number of correctly reported
bugs (TP), incorrectly reported bugs (FP) and missed bugs
(FN), along with the accuracy rate. The bug types reported
by some of these tools are: buffer overflow (BO) and null
pointer dereference (NPD).

The table is meant to show the extensibility of the Beg-
Bunch harness rather than provide comparative data be-
tween the various tools. We realize that tools are written
for different purposes and are at different levels of maturity.
Further, bugs reported by other tools may use a different
definition of where a bug is exposed.

5.2 The Scalability Suite

O Build O Parfait-build B Parfait

500 4742
400
300
200
” lu
P = I = E

openssh-3.6.1p1 sendmail-8.12.3 asterisk-1.6.0.3 mysql-5.0.51a

wu-ftpd-2.6.0 tcl-8.0.5 meme-4.0.0 perl-5.8.4

Figure 1: Time plot for Parfait running over the
Scalability suite

The scalability of Parfait was measured on an AMD Opt-
eron 2.8 GHz with 16 GB of memory. Three times (in sec-
onds) are reported in Figure 1: the build time, i.e., the time
to compile and build the C/C++ files (using gcc with the So-
laris operating system), the Parfait build time, i.e., the time
to compile and build the C/C++ files using the LLVM [7]
frontend, and the Parfait analysis time.

Parfait makes use of the LLVM infrastructure, as such
files are compiled and linked into LLVM bitcode files. The
Parfait analysis time consists of loading the bitcode files into
memory, analysing them and producing the results. Using
the harness, other tools can measure scalability in the same
way.

bugs LOC # bug
Bug Category From CWEp per category | min | max | avg || benchmarks
Kratkiowicz 120 873 83| 106 | o1
Buffer overflow (BO) SAMATE 120 134 22 | 1,127 | 119
Memory /pomter (M/P) |[SAMATE I0T,415,416,476, 590 51 20 90 [50
Integer overflow (I0) SAMATE 190 13 26 77 46 1,691
Format string (FS) SAMATE 37 9 2 750 [130
73,78,79,89,99,132,195,197,215,243,
Other (0) SAMATE 252,255,329,366,457,468,636,628 165 20| 178 | 57
[Overall I | [i12ds [201127] s8] 1691 |

Table 7: Characteristics of the Synthetic Suite of Bug Kernels

6. CONCLUSIONS AND EXPERIENCE

Benchmarking of tools reflects the level of maturity reached
by a given tool’s community. Bug detection tools are reach-
ing maturity whilst benchmarks for bug detection tools are
still in their infancy. Benchmarking helps tool developers,
but more importantly, it helps users in general to better
understand the capabilities of the various tools available
against a set of parameters that are relevant to them.

In this paper we present BegBunch v0.3, a benchmark for
C bug detection tools that measures accuracy and scalability
of a tool. BegBunch’s suites and harnesses allow developers
and users to determine the state of their tool with respect
to bug benchmarks derived from mature open source code.

It took hundreds of hours to put together the BegBunch
suites and harnesses. Extraction of bug kernels took, on
average, 2 days each. We found that most bug tracking sys-
tems do not keep track of which bugs are fixed in a given
commit. BegBunch has proven to be useful for our own
testing purposes. We hope that once it is open sourced,
the community will contribute to increase the types of bugs
covered by the suites and improve on it. For more informa-
tion please refer to http://research.sun.com/projects/
downunder/projects/begbunch

7. REFERENCES

[1] S. Christey and R. A. Martin. Vulnerability type
distributions in CVE. Technical report, The MITRE
Corporation, May 2007. Version 1.1.

[2] C. Cifuentes and B. Scholz. Parfait — designing a scalable
bug checker. In Proceedings of the ACM SIGPLAN Static
Analysis Workshop, pages 4-11, 12 June 2008.

[3] D. Evans and D. Larochelle. Improving security using
extensible lightweight static analysis. IEEE Software, pages
42-51, January/February 2002.

[4] S. Heckman and L. Williams. On establishing a benchmark
for evaluating static analysis alert prioritization and
classification techniques. In Proc. of the Second ACM-IEEE
International Symposium on Empirical Software
Engineering and Measurement, pages 41-50, October 2008.

[5] G. J. Holzmann. Static source code checking for
user-defined properties. In Proceedings of 6th World
Conference on Integrated Design € Process Technology
(IDPT), June 2002.

[6] K. Kratkiewicz and R. Lippmann. Using a diagnostic
corpus of C programs to evaluate buffer overflow detection
by static analysis tools. In Proc. of Workshop on the
Evaluation of Software Defect Detection Tools, June 2005.

[7] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In
Proceedings of the 2004 International Symposium on Code
Generation and Optimization (CGO’04), March 2004.

[8] LLVM/Clang Static Analyzer.
http://clang.llvm.org/StaticAnalysis.html. Last

accessed: 1 December 2008.

[9] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou.
BugBench: A benchmark for evaluating bug detection
tools. In Proc. of Workshop on the Evaluation of Software
Defect Detection Tools, June 2005.

[10] MITRE Corporation. Common Weakness Enumeration.
http://cwe.mitre.org/, April 2008.

[11] NIST. National Institute of Standards and Technology
SAMATE Reference Dataset (SRD) project.
http://samate.nist.gov/SRD, January 2006.

[12] S. E. Sim, S. Easterbrook, and R. C. Holt. Using
benchmarking to advance research: A challenge to software
engineering. In Proceedings of the 25th International
Conference on Software Engineering, pages 74—83,
Portland, Oregon, 2003. IEEE Computer Society.

[13] C. van Rijsbergen. Information Retrieval. Butterworth, 2
edition, 1979.

[14] D. A. Wheeler. More Than A Gigabuck: Estimating
GNU/Linux’s Size. http://www.dwheeler.com/sloc/, 2001.
Last accessed: 16 March 2009.

[15] M. Zitser, R. Lippmann, and T. Leek. Testing static
analysis tools using exploitable buffer overflows from open
source code. In Proc. of International Symposium on
Foundations of Software Engineering, pages 97-106. ACM
Press, 2004.

APPENDIX — The Synthetic Suite

For completeness, we collated the synthetic bug benchmarks
from Kratkiewicz [6] and the SAMATE dataset [11] into a
Synthetic suite that makes use of the BegBunch harness.
Errors in the SAMATE dataset were fixed and reported back
to NIST. Most benchmarks in this suite are intra-procedural.

[Tool [Type [# TP | # FP | # FN [Accuracy |

Parfait BO 869 0 184 85.7%
Splint BO 582 380 471 49.4%
Splint NPD 2 1 7 20.0%
Splint UAF 8 1 9 47.1%
Splint Uv 10 1 4 69.0%
Clang NPD 3 1 6 30.0%
Clang Uv 7 0 7 50.0%
UNO BO 457 5 596 45.2%

Table 8: Evaluation of C bug detection tools against
the Synthetic suite

Table 7 summarizes the synthetic bug benchmarks by bug
category, where category Other groups all benchmarks that
contain types not defined in our Accuracy suite. Table 8
shows the evaluation of various bug detection tools against
this suite. The bug types reported by these tools are: buffer
overflow (BO), null pointer dereference (NPD), use after free
(UAF) and uninitialized variable (UV).

