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Abstract fact, there has been an increase in recent years of at-
, tack methods against the operating system (OS) kernel.
Systems that enforce memory safety for today’s Operrhere are reported vulnerabilities for nearly all commod-

ating system kernels and other system software do nq{y OS kernels (e.g., [2, 28, 43]). One recent project went
account for the behavior of low-level software/hardwareg, ¢. 4< to present one OS kernel bug every day for a

interactions such as memory-mapped /O, MMU config-pqnh for several different open source and commercial

_ura'uon,_ and context SW”Gh'”Q- Bugs in such low-level o [26] (several of these bugs are exploitable vul-
interactions can lead to violations of the memory Safetynerabilities). Preventing these kinds of attackguires
guarantees provided by a safe execution environment arﬂ

| loitable vul ities | ¢ otecting the core kernel and not just device drivers
can lead to exploitable vulnerabilities in system software many of the vulnerabilities are in core kernel compo-

In this work, we present a set of program analysis and,qns [19, 40, 41, 43, 46].
run-time instrumentation techniques that ensure that er- o

rors in these low-level operations do not violate the as- To counter these threats, there is a growing body

. ; of work on using language and compiler techniques to
sumptions made by a safety checking system. Our de- . . ;

N ; . enforcememory safetydefined in Section 2) for OS
sign introduces a small set of abstractions and interfaces

. . code. These include new OS designs based on safe
for manipulating processor state, kernel stacks, memor

mapped I/O objects, MMU mappings, and self modify_Yanguages [4, 18, 22, 33], comp_|ler tech_nlques to en-
: . . . . force memory safety for commodity OSs in unsafe lan-
ing code to achieve this goal, without moving resource . . : )
allocation and management decisions out of the kernel429°3 [10], and instrumentation techniques to isolate

. : a kernel from extensions such as device drivers [45,
We have added these techniques to a compiler-based vir- : .

. . 47, 51]. We use the ternsafe execution environmént

tual machine called Secure Virtual Architecture (SVA), (again defined in Section 2) to refer to the guarantees
to which the standard Linux kernel has been ported previ- 92l 9
ously. Our design changes to SVA required only an addi_prowdgd by a system that_ enforges memory safety for
tional 100 lines of code to be changed in this kernel. Ouroperatlng system code. Singularity, SPIN, JX, JavaOs,

; : SafeDrive, and SVA are examples of systems that en-
experimental results show that our techniques prevent re. . ;
o ) orce a safe execution environment.
ported memory safety violations due to low-level Linux

operations and thahese violations are not prevented by ~ Unfortunately, all these memory safety techniques
SVA without our techniquesMoreover, the new tech- (€ven implementations of safe programming languages)

niques in this paper introduce very little overhead over™ake assumptions that are routinely violated by low-

and above the existing overheads of SVA. Takentogethe}seveI interactions between an OS kernel and hardware.
these results indicate that it is clearly worthwhile to addSUCh assumptions include a static, one-to-one mapping

these techniques to an existing memory safety system. between virtual and physical memory, an idealized pro-
cessor whose state is modified only via visible program

instructions, 1/0 operations that cannot overwrite stan-
1 Introduction dard memory objects except input I/O targets, and a pro-

tected stack modifiable only via load/store operations
Most modern system software, including commodity op-to local variables. For example, when performing type
erating systems and virtual machine monitors, are vulchecking on a method, a safe language like Java or
nerable to a wide range of security attacks because theylodula-3 or compiler techniques like those in SVA as-
are written in unsafe languages like C and C++. Insume that pointer values are only defined via visible pro-



gram operations. In a kernel, howeverbaggykernel  sumptions used to enforce memory safety. In fact, a
operation might overwrite program state while it is off- VMM would not solve any of the reported real-world
processor and that state might later be swapped in bgroblems listed above.
tween the definition and the use of the pointer value, a In this paper, we present a set of novel techniques to
buggyMMU mapping might remap the underlying phys- prevent low-level kernel-hardware interactions from vi-
ical memory to a different virtual page holding data of a olating memory safety in an OS executing in a safe ex-
different type, or buggyl/O operation might bring cor-  ecution environment. There are two key aspects to our
rupt pointer values into memory. approach: (1) we define carefully a set of abstractions
In fact, as described in Section 7.1, we have injectedan API) between the kernel and the hardware that en-
bugs into the Linux kernel ported to SVA that are capa-ables a lightweight run-time checker to protect hardware
ble ofdisabling the safety checks that prevented 3 of the 4esources and their behaviors; and (2) we leverage the
exploitsin the experiments reported in the original SVA existing safety checking mechanisms of the safe execu-
work [10]: the bugs modify the metadata used to tracktion environment tooptimizethe extra checks that are
array bounds and thus allow buffer overruns to go un-needed for this monitoring. Some examples of the key
detected. Similar vulnerabilities can be introduced withresources that are protected by our APl include processor
other bugs in low-level operations. For example, therestate in CPU registers; processor state saved in memory
are reported MMU bugs [3, 39, 42] in previous versionson context-switches, interrupts, or system calls; kernel
of the Linux kernel that are logical errors in the MMU stacks; memory-mapped I/O locations; and MMU con-
configuration and could lead to kernel exploits. figurations. Our design also permits limited versions of
A particularly nasty and very recent example is an in-self-modifying code that should suffice for most kernel
sidious error in the Linug.6 kernel (not a device driver) uses of the feature. Most importantly, our design pro-
that led to severe (and sometimes permanent) corruptiowides these assurances while leaving essentially all the
of the e1000e network card [9]. The kernel was over-logical control over hardware behavior in the hands of
writing 1/0 device memory with the x86npxchg in-  the kernel, i.e., no policy decisions or complex mecha-
struction, which led to corrupting the hardware. This bughisms are taken out of the kernel. Although we focus
was caused by a write through a dangling pointer to 1/0on preserving memory safety for commodity operating
device memory. This bug took weeks of debugging bysystems, these principles would enable any OS to reduce
multiple teams to isolate. A strong memory safety sys-the likelihood and severity of failures due to bugs in low-
tem should prevent or constrain such behavior, either ofevel software-hardware interactions.
which would have prevented the bug. We have incorporated these techniques in the SVA
All these problems can, in theory, be prevented byprototype and correspondingly modified the Linux 2.4.22
moving some of the kernel-hardware interactions into akernel previously ported to SVA [10]. Our new tech-
virtual machine (VM) and providing a high-level inter- niques required a significant redesign of SVA-OS, which
face for the OS to invoke those operations safely. If an's the API provided by SVA to a kernel for control-
OS isco-designedvith a virtual machine implementing ling hardware and using privileged hardware operations.
the underlying language, e.g., as in JX [18], then elimi-The changes to the Linux kernel were generally simple
nating such operations from the kernel could be feasiblechanges to use the new SVA-OS API, even though the
For commodity operating systems such as Linux, Machew API provides much more powerful protection for the
OS X, and Windows, however, reorganizing the OS inentire kernel. We had to change only about 100 lines in
such a way may be difficult or impossible, requiring, at the SVA kernel to conform to the new SVA-OS API.
a minimum, substantial changes to the OS design. For We have evaluated the ability of our system to prevent
example, in the case of SVA, moving kernel-hardwarekernel bugs due to kernel-hardware interactions, both
interactions into the SVA VM would require extensive with real reported bugs and injected bugs. Our system
changes to any commaodity system ported to SVA. prevents two MMU bugs in Linux 2.4.22 for which ex-
Virtual machine monitors (VMMs) such as VMWare ploit code is available. Both bugs crash the kernel when
or Xen [16] do not solve this problem. They provide suf- run under the original SVA. Moreover, as explained in
ficiently strong guarantees to enforce isolation and fairSection 7.1, we would also prevent the e1000e bug in
resource sharing between different OS instances (i.eLinux 2.6 if that kernel is run on our system. Finally,
different “domains”) but do not enforce memory safety the system successfully prevents all the low-level kernel-
within a single instance of an OS. For example, a VMM hardware interaction errors we have tried to inject.
prevents one OS instance from modifying memory map- We also evaluated the performance overheads for two
pings for a different instance but does not protect an OServers and three desktop applications (two of which per-
instance from a bug that maps multiple pages of its owrform substantial I/O). Compared with the original SVA,
to the same physical page, thus violating necessary ashe new techniques in this paper add very low or negligi-



ble overheads. Combined with the ability to prevent real-SVA [10] enforce similar, but weaker, guarantees for C
world exploits that would be missed otherwise, it clearly code. Their guarantees are weaker in two ways: (a) they
seems worthwhile to add these techniques to an existingrovide type safety for only a subset of objects, and (b)
memory safety system. three of the four systems — SafeDrive, SAFECode and
To summarize, the key contributions of this work are: SVA — permit dangling pointer references (use-after-
free) to avoid the need for garbage collection. Unlike

* We have presented novel m_echams_ms to ensure th@afeDrive, however, SAFECode and SyAaranteghat
low-level kernel-hardware interactions (e.g., con-

o . dangling pointer references do not invalidate any of the
text switching, thread creation, MMU changes, and ging p S : y
. ; . other safety properties, i.e., partial type safety, memory
I/O operations) do not violate assumptions used to . :
. . safety, or a sound operational semantics [14, 15]. We re-
enforce a safe execution environment.
fer to all these systems — safe languages or safety check-
e We have prototyped these techniques and showing compilers — as providing safe execution environ-
that they can be used to enforce the assumptiongient
made by a memory safety checker for a commodity All of the above systems make some fundamental as-
kernel such as Linux. To our knowledge, no pre-sumptions regarding the run-time environmentin enforc-
vious safety enforcement technique provides suching their safety guarantees. In particular, these systems
guarantees to commodity system software. assume that the code segment is static; control flow can
) ) only be altered through explicit branch instructions, call
* We have evaluated this system experimentally andngryctions, and visible signal handling; and that data
shown that it is effective at preventing exploits in s sored either in a flat, unchanging address space or in
the above operations in Linux while incurring little qcessor registers. Furthermore, data can only be read

overhead over and above the overhead of the undefy g \yritten by direct loads and stores to memory or di-
lying safe execution environment of SVA. rect changes to processor registers.

Low-level system code routinely violates these as-
2 Breaking Memory Safety with Low-  sumptions. Operating system kernels, virtual machine
Level Kernel Operations monitors, language virtual machines such as a JVM or
CLR, and user-level thread libraries often perform op-
Informally, a program is type-safé all operations in  erations such as context switching, direct stack manip-
the program respect the types of their operands. Foulation, memory mapped /O, and MMU configuration,
the purposes of this work, we sayprogram is mem- that violate these assumptions. More importantly, as ex-
ory safeif every memory access uses a previously initial- plained in the rest of this section, perfedijpe-safeode
ized pointer variable; accesses the same object to whickan violate many of these assumptions (through logical
the pointer pointed initially; and the object has not been errors), i.e., such errors will not be prevented by the lan-
deallocated. Memory safety is necessary for type safetguage in the first place. This is unacceptable for safe lan-
(conversely, type safety implies memory safety) becausguage implementations and, at least, undesirable for sys-
dereferencing an uninitialized pointer, accessing the tartem software because these violations can compromise
get object out of bounds, or dereferencing a danglingsafety and soundness and thus permit the vulnerabilities
pointer to a freed object, can all cause accesses to urg safe language was designed to prevent, such as buffer
predictable values and hence allow illegal operations or®verflows or the creation of illegal pointer values.
those values. There are, in fact, a small number of root causes (or
A safe programming language guarantees type safetgategories of root causes) of all these violations. This
and memory safety for all legal programs [34]; thesesection enumerates these root causes, and the next sec-
guarantees also imply aound operational semantics tion describes the design principles by which these root
for programs in the language. Language implementacauses can be eliminated. We assume throughout this
tions enforce these guarantees through a combinatiofliscussion that a safety checker (through some com-
of compile-time type checking, automatic memory man-bination of static and run-time checking) enforces the
agement (e.g., garbage collection or region-based menianguage-level safety guarantees of a safe execution en-
ory management) to prevent dangling pointer references/ironment, described above, for the kerAdhis allows
and run-time checks such as array bounds checks ardgs to assume that the run-time checker itself is secure,
null pointer checks. and that static analysis can be used soundly on kernel
Four recent compiler-based systems for C, namelygode [15]. Our goal is to ensure the integrity of
CCured [30], SafeDrive [51], SAFECode [15], and —— ,
This work focuses on enforcing memory safety for the kerfibe

INote that we permit a pointer to “leave” its target object atdr same techniques could be applied to protect user-spacadthfeom
return, as long as it is not accessed while it is out of bouBg@§ [ these violations.




sumptionanade by this safety checker. We refer to the stack should only be used for stack frames created during
extensions that enforce these assumptionsvasitier. normal function calls and not directly modified via arbi-

Briefly, the fundamental categories of violations are: trary stores’ such stores could corrupt the stack frames

) ) ) and thus compromise safety. Second, the memory for the

e corrupting processor state when held in registers 0gtack must not be deallocated and reused for other mem-
memory, ory objects while the stack is still in use. Third, a context

switch must switch to a stack and its corresponding saved

processor state as a pair; a context switch should not load

corrupting stack values for kernel threads;

e corrupting memory mapped I/O locations; processor state with the wrong stack or with a stack that
_ _ has been deallocated. Fourth, after a stack is deallocated,
e corrupting code pages in memory; live pointers to local variables allocated on the stack must

not be dereferenced (the exiting thread may have stored
pointers to such objects into global variables or the heap
where they are accessible by other threads).

other violations that can corrupt arbitrary memory
locations, including those listed above.

Unlike the last category, the first four above are errors
that are specific to individual categories of memory. 2.3 Corrupting Memory-Mapped I/O

. Most systems today use memory-mapped 1/O for con-
2.1 Corrupting Processor State trolling 1/0 devices and either memory-mapped I/O or

Corrupting processor state can corrupt both data and corMA for performing data transfers. Many hardware ar-
trol flow. The verifier must first ensure that processorchitectures treat regular memory and memory-mapped
state cannot be corrupted while on the processor itself/O device memory (hereafter called 1/O memory) iden-
i.e., preventing arbitrary changes to processor registeré'ca”y! allowing a single set of hardware instructions to
In addition, however, standard kernels save processgiccess both. From a memory safety perspective, how-
state (i.e., data and control registers) in memory where {EVeT; it iS better to treat regular memory and I/O memory
is accessible by standard (even type-safe) load and stof$ disjoint types of memory that are accessed using dis-
instructions. Any (buggy) code that modifies this statetinct instructions. First, 1/0 memory is not semantically
before restoring the state to the processor can alter coil® Same as regular memory in that a load may not re-
trol flow (the program counter, stack pointer, return ao|_tur_n the va_LIue last stored into the Iocatlon;_pr_ogram anal-
dress register, or condition code registers) or data valySiS algorithms (used to enforce and optimize memory
ues. In safe systems that permit dangling pointer referSafety [15]) are not sound when applied to such mem-
ences, processor state can also be corrupted if the merfily- Second, /O memory creates side-effects that regu-
ory used to hold saved processor state (usually located d&" memory does not. While erroneously accessing 1/0
the heap [5]) is freed and reallocated for other purposesTemory instead of regular memory may not be a mem-

Note that there are cases where the kernel makes ef!Y safety violation per se, it is still an error with po-
plicit, legal, changes to the interrupted state of usecspa tentially dire consequences. For example, the e1000e
code. For example, during signal handler dispatch, th&ud [9] caused fatal damage to hardware when an in-
kernel modifies interrupted program state that has beefruction €npxchg) that was meant to write to mem-
saved to memory, including the interrupted program’s®"Y erroneously accessed memory-mapped I/O registers,
program counter and stack pointer [5]. Also returningWhiCh has undefined behavior. Therefore, for soundness
from a signal handler requires undoing the modificationsf regular memory safety and for protection against a se-
made by signal delivery. The verifier must be able to dis-110US class of programming errors, it is best to treat reg-
tinguish legal from illegal changes to saved state. ular memory and I/O memory as disjoint.

2.2 Corrupting Stack State 2.4 Corrupting Code

The kernel directly manages the stacks of both user an§€Sides the general memory corruption violations de-
kernel threads; it allocates and deallocates memory t§CfPed below, there are only two ways in which the con-
hold them, sets up initial stack frames for new threaddeNts of code pages can be (or appear to _be) corrupted.
and signal handlers, and switches between stacks durin%ne is through self-modifying code (SMC); the other is
a context switch or interrupt/system call return. through incorrect program loading operations (for new
Memory for the stack is obtained from some standardt0de or loadable kernel modules).
memory alllocation. Several safety violations are possible  3an exception is when Linux stores the process’s task stracati
through this allocated memory. First, the memory for thethe bottom of the stack.




Self-modifying code directly modifies the sequence ofcial language support is added to enable that, e.g., to
instructions executed by the program. This can modifyprevent such data being used as pointer values, as in the
program behavior in ways not predicted by the compilerSPIN system [21].
and hence bypass any of its safety checking techniques.

For these reasons, most type-safe languages prohibit se
modifying code (which is distinct from “self-extending”

behaviors like dynamic class loading). However, mod-
ern kernels use limited forms of self-modifying code
for operations like enabling and disabling instrumenta-
tion [9] or optimizing synchronization for a specific ma-

chine configuration [8]. To allow such optimizations, the execution environment: theerifier is the set of exten-

verifier must define limited forms of self-modifying code . .
. ) sions to the safety checker that enforces the underlying
that do not violate the assumptions of the safety checker, .
assumptions of the checker. Examples of safety checkers
loading operation is imolemented correctl For exnfhat could benefit directly from such extensions include
am Ieg ar|10 such o eraﬁon includin newy.code self SVA, SafeDrive, and XFI. We also assume that the kernel
p'e, any P L 9 ' source code is available for modification.
modifying code, or self-extending code (e.g., loadable _ _
kernel modules) requires flushing the instruction cacheProcessor State: Preventing the corruption of proces-
Otherwise, cached copies of the old instructions may b&or state involves solving several issues. First, the veri-
executed out of the I-cache (and processors with split infier must ensure that the kernel does not make arbitrary
struction/data caches may even execute old instructionghanges to C_PU registers. _M_OSt memory safe systems
with fresh data). This may lead to arbitrary memory already do this by not providing instructions for such
safety violations for the kernel or application code. low-level modifications. Second, the verifier must en-
sure that processor state saved by a context switch, in-
terrupt, trap, or system call is not accessed by mem-

2.5 General Memory Corruption ory load and store instructions. To do this, the verifier

Finally, there are three kinds of kernel functionality that €0 allocate the memory used to store processor state
can corrupt arbitrary memory pages: (1) MMU configu- within its own memory and allow the kernel to manipu-
ration; (2) page swapping; and (3) DMA. Note that errorslate that state via special instructions that take an opaque
in any of these actions are generally invisible to a safeyj’@ndle (€.g., a unique integer) to identify which saved

checking compiler and can violate the assumptions madgtete bufferto use. For checkers like SVA and SafeDrive,
by the compiler, as follows. the safety checker itself prevents the kernel from manu-

First, the kernel can violate memory safety with di- facturing and using pointers to these saved state buffers

rect operations on virtual memory. Fundamentally, mosl,(e'g" via checks on accesses that use pointers cast from

of these are caused by creating an incorrect virtual-to'ntegers). Additionally, the verifier should ensure that

physical page mapping. Such errors include modifyingthe interface for context switching leaves the system in a

mappings in the range of kernel stack memory. mappinémown state, meaning that a context switch should either
the same physical page into two virtual pages (uninten§’ucceed completely_or fa|!. L
There are operations in which interrupted program

tionally), and changing a virtual-to-physical mapping for » )
v) ging phy bpIng tate needs to be modified by the kernel (e.g., signal han-

a live virtual page. As before, any of these errors ca , . AN :
dler dispatch). The verifier must provide instructions

occur even with a type-safe language. ) . )
A second source of errors is in page swapping. Wheﬂor doing controlled modifications of interrupted pro-

a page of data is swapped in on a page fault memor?ram state; for example, it can provide an instruction
safety can be violated if the data swapped in is not iden© pu,Sh funﬁt"ﬂ Cag frahm_es on t_o an interrupted pr;)-
tical to the data swapped out from that virtual page. Fod"@M's stack [11]. Such instructions must ensure that

example, swapping in the wrong data can cause invali(?ither their modificatiqns cannot break memory safety
data to appear in pointers that are stored in memory. or that they only modify the saved state of interrupted

Finally, a third source of problems is DMA. DMA user-space programs (modifying user-space state cannot

introduces two problems. First, a DMA configuration violate the kemel's memory safety).

error, device driver error, or device firmware error canStack State: The memory for a kernel stack and for the
cause a DMA transfer to overwrite arbitrary physical processor state object (the in-memory representation of
memory, violating type-safety assumptions. Secondprocessor state) must be created in a single operation (in-
even a correct DMA transfer may bring in unknown datastead of by separate operations), and the verifier should
which cannot be used in a type-safe manner, unless spensure that the kernel stack and processor state object

Ef:." Design Principles

We now describe the general design principles that a
memory safe system can use to prevent the memory er-
rors described in Section 2. As described earlier, we as-
sume a safety checker already exists that creates a safe



are always used and deallocated together. To ease impl&eneral Memory Corruption:  The verifier must im-
mentation, it may be desirable to move some low-level plement several types of protection to handle the general
error-prone stack and processor state object initiabmati memory corruption errors in Section 2.5.
code into the verifier. The verifier must also ensure that VMU configuration To prevent MMU misconfigu-
memory loads and stores do not modify the kernel stackation errors, the verifier must be able to control ac-
(aside from accessing local variables) and that local varizess to hardware page tables or processor TLBs and vet
ables stored on the stack can no longer be accessed WhgRanges to the MMU configuration before they are ap-
the kernel stack is destroyed. plied. Implementations can use para-virtualization tech-
nigues [16] to control the MMU. The verifier must pre-
Memory-mapped I/O:  The verifier must require that yent pages containing kernel memory objects from be-
all 1/0 object allocations be identifiable in the kernel ing made accessible to non-privileged code and ensure
code, (e.g., declared via a pseudo-allocator). It shoulghat pages containing kernel stack frames are not mapped
also ensure that only special I/O read and write instructg multiple virtual addresses (i.e., double mapped) or
tions can access I/0 memory (these special instruction§nmapped before the kernel stack is destrdyederi-
can still be translated into regular memory loads andgrg optimizing memory access checks must also pro-
stores for memory-mapped I/0O machines) and that thesgipit double mappings of pages containitygpe known
special instructions cannot read or write regular memypjects: this will prevent data from being written into
ory objects. If the verifier uses type-safety analysis tothe page in a way that is not detected by compiler anal-
optimize run-time checks, it should consider 1/O objectsysiS techniques. Pages containing type-unknown mem-
(objects analogous to memory objects but that reside "&)ry objects can be mapped multiple times since run-time
memory-mapped I/O pages) to type-unsafas the de-  checks already ensure that the data within them does not
vice’s firmware may use the I/O memory in a type-unsafejp|ate any memory safety properties. The verifier must
fashion. Since it is possible for a pointer to point to both 5150 ensure that MMU mappings do not violate any other

I/O objects and memory objects, the verifier should plac&nalysis results upon which optimizations depend.
run-time checks on such pointers to ensure that they are

. . Page swappingFor page swapping, the kernel must
accessing the correct type of object (memory or I/O), de-_ .. e . .
pending upon the operation in which the pointer is used notify the verifier before swapping a page out (if not, the

verifier will detect the omission on a subsequent physical
page remapping operation). The verifier can then record

Kernel Code: The verifier must not permit the kernel
o . any metadata for the page as well as a checksum of the
to modify its code segment. However, it can support a

o ; o . . ntents an h when th iS sw kin
limited version of self-modifying code that is easy to im- contents and use these when the page is swapped bac

plement and able to support the uses of self-modifyingtO verify that the page contents have not changed.

code found in commodity kernels. In our design, the DMA:_Thev_e_rifiershouId prevent DMA transfers from
kernel can specify regions of code that can be enable§Verwriting critical memory such as the kernel's code
and disabled. The verifier will be responsible for replac-S€gment, the verifier's code and data, kernel stacks (aside
ing native code with no-op instructions when the ker-from Iocal_ varla}bles), _and processor state object_s;. Im-
nel requests that code be disabled and replacing the ng/eémentation will require the use of IOMMU techniques
ops with the original code when the kernel requests thd/ke those in previous work [17, 36]. Additionally, if the
code to be re-enabled. When analyzing code that can béeTifier uses type information to optimize memory safety
enabled and disabled, the verifier can use conservative€cks, itmust consider the memory accessible via DMA
analysis techniques to generate results that are corre@f yP€-unsafe. This solution s strictly stronger than pre
regardless of whether the code is enabled or disabled/i0US work (like thatin SPIN [21]): it allows pointer val-
For example, our pointer analysis algorithm, like mostU€S in input data whereas they do not (and they do not
other inter-procedural ones used in production compil-guarantee type safety for other input data).

ers, computes may-points-taesult [24], which can be

computed with the code enabled; it will still be correct, Entry Points:  To ensure control-flow integrity, the ker-
though perhaps conservative, if the code is disabled.  npe| should not be entered in the middle of a function.
To ensure that the instruction cache is properlyTherefore, the verifier must ensure that all interrupt, trap
flushed, our design calls for the safety checker to handlend system call handlers registered by the kernel are the
all translation to native code. The safety checker alreadynitial address of a valid function capable of servicing the
does this in JVMs, safe programming languages, and ifinterrupt, trap, or system call, respectively.
the SVA system [10]. By performing all translation to
native code, the verifier can ensure that all appropriate—;
CPU caches are flushed when new code is loaded intg,;
the system.

We assume the kernel does not swap stack pages to disk, but the
gn can be extended easily to allow this.



4 Background: Secure Virtual
Architecture

Anplications
The Secure Virtual Architecture (SVA) system (Figure a5 ] EE:E%;:S
places a compiler-based virtual machine between Kemel
processor and the traditional software stack [10, 11]. Drivers | v Virtual ISA
virtual machine (VM) presents a virtual instruction ¢ o o —
to the software stack and translates virtual instructi Conrg) SvAAPH
to the processor’s native instruction set either static Tronsiator | Securitypoiicy!  SVA Sy virtual
(the default) or dynamically. The virtual instruction ¢ oy R )
is based on the LLVM code representation [23], whicl > Native [SA
designed to be low-level and language-independent Processor

still enables sophisticated compiler analysis and tran:

mation techniques. This instruction set can be usec ) o )

both user-space and kernel code [11]. Figure 1: System Organization with SVA [10]
SVA optionally provides strong safety guarantees for

C/C++ programs compiled to its virtual instruction set,

close to that of a safe language. The key guarantees ar@tnd function po_lnters loadedut of TK partltlo_ns are
type safe. SVA simply has to ensure that dangling pointer

1. Partial type safety Operations on a subset of data references to TK metapools cannot create a type vio-
are type safe. lation by enforcing two constraints: (a) objects in TK
metapools are aligned identically; and (b) freed mem-
ory from such a metapool is never used for a different
metapool until the former is destroyed. These constraints
are enforced by modifying the kernel allocators manu-

3. Control flow integrity The kernel code only follows  ally during the process of porting the kernel to SVA; this
execution paths predicted by the compiler; this ap-means that the allocators are effectively trusted and not
plies to both branches and function calls. checked. To enforce these constraints for stack objects

_ _ _ belonging to TK metapools, SVA automatically modifies

4. Tolerating dangling pointersSVA does not detect e kernel code to allocate such objects on the heap. To-
uses of dangling pointers bguarantees that they gether these guarantee that a pointer to a freed object and
are harmless either via static analysis (for type- 5 new object (including array elements) access values of
safe data) or by detecting violations through run-;yantical type [15].
time checks (for non-type safe data). At run-time, the SVA VM (thereafter called VM) per-

5. Sound operational semanticSVA defines avirtual  forms a number of additional checks and operations.
instruction set with an operational semantics that isAll globals and allocated objects are registered in the
guaranteed not to be violated by the kernel codemetapool to which they belong (derived from the target
sound program analysis or verification tools can bepartition of the return pointer). Loads and stores that use
built on this semantics. pointers loaded from TU metapools are checked by look-

_ . ing up the target address in the metapool lookup table.
Briefly, SVA provides these safety guarantees as folyte that this works whether or not the pointer value

lows. First,.it uses a pointer an_a_lysis called I?ata Str.uc-IS a dangling pointer, and even for pointers “manufac-
ture Ang!y5|s (“DS_A) [24] to eartltlon memory m_to Iogl-. tured” by casting arbitrary integers. Similarly, it checks
cal partitions (“points to sets”) and to check which parti- ¢, ion pointers obtained from TU metapools to ensure
tions are always accessed or indexed with a single tyPgp 4t they only access one of the target functions of that
These partitions are called *type-known” (TK); the rest ,inser hredicted by DSA. Run-time checks also ensure
are “type-unknown” (TU). SVA then creates a run-time i, yointers to TK objects that are loaded from TU mem-
repre.senfcanon called a mgtapool for each partltlon.Ory objects are checked since a TU object may have an
It maintains a lookup table in each metapool of mem-j,yajiq value for the TK pointer. All array indexing oper-
ory objects and their bounds to support various run-timeyions for TK or TU metapools are checked in the lookup

checks. Maintaining a table per metapool instead of 516 \hich records the bounds for each objecti14]
single global table greatly improves the performance of Note that the VM relies on the safe execution environ-
the run-time checks [14].

Compi.le'time analysis with DSA guarantees that all” sote that we permit a pointer to “leave” its target object ater
TK partitions are type-safe. Moreover, all uses of datareturn, as long as it is not accessed while it is out of bouBd [

2. Memory safety Loads and stores only access the
object to which the dereferenced pointer initially
pointed, and within the bounds of that object.




ment to protect the VM code and data memory instead othe kernel deallocator. Our new design calls a single in-
using the MMU and incurring the cost of switching page struction namedva_swap_i nt eger (see Table 1) that
tables on every VM invocation. Since the environmentsaves the old processor state and loads the new state in a
prevents access to unregistered data objects or outsidgngle operation.
the bounds of legal objects, we can simply monitor all This design has all of the necessary features to pre-
run-time kernel object registrations and ensure that thegerve memory safety when context switching. The
do not reside in VM code or data pages. sva_swap_i nt eger instruction allocates the memory

A subset of the SVA instruction set, SVA-OS, provides buffer to hold processor state within the VM’s memaory
instructions designed to support an operating system’'and returns an opaque integer identifier which can be
special interaction with the hardware [10, 11]. These in-used to re-load the state in a subsequent cadivta_-
clude instructions for loading from/storing to I/O mem- swap_i nt eger. Combined with SVA's original pro-
ory, configuring the MMU, and manipulating program tections against manufactured pointers, this prevents the
state. An important property is that a kernel ported tokernel from modifying or deallocating the saved proces-
SVA using the SVA-OS instructionsontains no assem- sor state buffer. The design also ensures correct deal-
bly code this simplifies the compiler’s task of safety location of the memory buffer used to hold processor
checking within SVA. Nevertheless, these instructionsstate. The VM tracks which identifiers are mapped to al-
provide low-level hardware interactions that can gener{ocated state buffers created bya_swap_i nt eger ;
ate all the problems described in Section 2 if used incorthese memory buffer/identifier pairs are kept alive until
rectly; it is very difficult for the compiler to check their the state is placed back on the processor by another call
correct use in the original design. In particular, the VM to sva_swap_i nt eger . Once state is placed back on
does not perform any special checks for processor statde processor, the memory buffer is deallocated, and the
objects, direct stack manipulation, memory mapped I/Qidentifier invalidated to prevent the kernel from trying to
locations, MMU configuration changes, or DMA opera- restore state from a deallocated state buffer.
tions. Also, it disallows self-modifying code. Finally, sva_swap_i nt eger will either succeed to

For example, we tested two [39, 42] of the three re-context switch and return an identifier for the saved pro-
ported low-level errors we found for Linux 2.4.22, the cessor state, or it will fail, save no processor state, and
kernel version ported to SVA (we could not try the continue execution of the currently running thread. This
third [3] for reasons explained in Section 7.1). Although ensures that the kernel stack and the saved processor state
both are memory safety violationsgither of them was are always synchronized.
detected or prevented by the original SVA

) 5.2 Thread Management
5 Design
A thread of execution consists of a stack and a saved

Our design is an extension of the original Secure Virtualprocessor state that can be used to either initiate or con-
Architecture (SVA) described in Section 4. SVA pro- tinue execution of the thread. Thread creation is there-
vides strong memory safety guarantees for kernel codére comprised of three operations: allocating memory
and an abstraction of the hardware that is both low-levefor the new thread’s stack, initializing the new stack, and
(e.g., context switching, 1/0, and MMU configuration creating an initial state that can be loaded on to the pro-
policies are still implemented in the kernel), yet easy tocessor usingva_swap_i nt eger .

analyze (because the SVA-OS instructions for interact- The VM needs to know where kernel stacks are lo-
ing with hardware are slightly higher level than typical cated in order to prevent them from being written by
processor instructions). Below, we describe our extentoad and store instructions. We introduce a new SVA in-
sions to provide memory safety in the face of errors instruction,sva.decl ar e_st ack, which a kernel uses

kernel-hardware interactions. to declare that a memory object will be used as a
stack. During pointer analysis, any pointers passed
5.1 Context Switching to sva_decl ar e_st ack and pointers that alias with

such pointers are marked with a spedidclaredStack
Previously, the SVA system performed context switch-flag; this flag indicates that run-time checks are needed
ing using thesva_l oad.i nt eger andsva_save.- on stores via such pointers to ensure that they are not
i nt eger instructions [10], which saved from and writing into a kernel stack. The compiler, on seeing
loaded into the processor the processor state (hamed lansva_decl ar e_st ack instruction, will also verify,
teger State). These instructions stored processor state gtatically (via pointer analysis) if possible but at rumé
a kernel allocated memory buffer which could be laterif necessary, that the memory object used for the new
modified by memory-safe store instructions or freed bystack is either a global or heap object; this will prevent



Name Description
sva.swap.i nt eger Saves the current processor state into an internal memdigr,bloads previously saved
state referenced by its ID, and returns the ID of the new saizaid.
sva.decl ar e_st ack Declares that a memory object is to be used as a new stack.
sva.rel ease_st ack Declares that a memory object is no longer used as a stack.
sva.i ni t _stack Initializes a new stack.

Table 1: SVA Instructions for Context Switching and Threaeddation.

stacks from being embedded within other stacks. Afterallocations [15, 10] to make dangling pointer dereferenc-
this check is donesva_decl ar e_st ack will unregis-  ing to type-known stack allocated objects safe [15].
ter the memory object from the set of valid memory ob-
jects that can_be accessed_via Io_ad_s and stores _and reco:;qs Memory Mapped 1/O
the stack’s size and location within the VM'’s internal
data structures as a valid kernel stack. To ensure safe use of /O memory, our system must be
To initialize a stack and the initial processor stateable to identify where I/O memory is located and when
that will use the memory as a stack, we introducethe kernel is legitimately accessing it.
sva. ni t _st ack; this instruction will initialize the Identifying the location of I/O memory is straightfor-
stack and create a new saved Integer State which camard. In most systems, I/O memory is located at (or
be used insva_swap_i nt eger to start executing mapped into) known, constant locations within the sys-
the new thread. Theva.i nit _stack instruction tem’s address space, similar to global variables. In some
verifies (either statically or at run-time) that its argu- systems, a memory-allocator-like function may remap
ment has previously been declared as a stack usinghysical page frames corresponding to /O memory to
sva_decl ar e_st ack. When the new thread wakes a virtual memory address [5]. The insight is that 1/O
up, it will find itself running within the function specified memory is grouped into objects just like regular mem-
by the call tosva_i ni t _st ack; when this functionre- ory; in some systems, such I/O objects are even allocated
turns, it will return to user-space at the same location agnd freed like heap objects (e.g., Linux'sr emap()
the original thread entered. function [5]). To let the VM know where 1/O memory
Deleting a thread is composed of two operations. Firstjs located, we must modify the kernel to use a pseudo-
the memory object containing the stack must be dealallocator that informs the VM of global I/0 objects; we
located. Second, any Integer State associated with thean also modify the VM to recognize 1/O “allocators”
stack that was saved on a context switch must be inlike i or emap() just like it recognizes heap allocators
validated. When the kernel wishes to destroy a threadjke Linux’s krmal | oc() [5].
it must call thesva_r el ease_st ack instruction; this Given this information, the VM needs to determine
will mark the stack memory as a regular memory objectwhich pointers may point to I/O memory. To do so,
so that it can be freed and invalidates any saved Integere modified the SVA points-to analysis algorithm [24]
State associated with the stack. to mark the target (i.e., the “points-to set”) of a pointer
When a kernel stack is deallocated, there may béolding the return address of the I/O allocator with a spe-
pointers in global or heap objects that point to mem-cial /O flag. This also flags other pointers aliased to
ory (i.e., local variables) allocated on that stack. SVAsuch a pointer because any two aliased pointers point to
must ensure that dereferencing such pointers does netcommon target [24].
violate memory safety. Type-unsafe stack allocated ob- We also modified the points-to analysis to mark 1/0
jects are subject to load/store checks and are registeredemory astype-unknown Even if the kernel accesses
with the SVA virtual machine [10]. In order for the 1/O memory in a type-consistent fashion, the firmware
sva.rel ease_st ack instruction to invalidate such on the I/O device may notType-unknowmemory in-
objects when stack memory is reclaimed, the VM recordgurs additional run-time checks but allows kernel code
information on stack object allocations and associateso safely use pointer values in such memory as pointers.
this information with the metadata about the stack in We also extended SVA to record the size and virtual
which the object is allocated. In this way, when a stack isaddress location of every 1/O object allocation and deal-
deallocated, any live objects still registered with the vir location by instrumenting every call to the I/O allocator
tual machine are automatically invalidated as well; run-and deallocator functions. At run-time, the VM records
time checks will no longer consider these stack allocatedhese 1/0 objects in a per-metapool data structure that
objects to be valid objects. Type-known stack allocateds disjoint from the structure used to record the bounds
objects can never be pointed to by global or heap objectxf regular memory objects. The VM also uses new run-
SVA already transforms such stack allocations into heagime checks for checking 1/0 load and store instructions.



Since /0O pointers can be indexed like memory point-appear in the table); the VM then takes control of these
ers (an 1/0 device may have an array of control regisppages by zeroing them (to prevent stale mappings from
ters), the bounds checking code must check both regueing used) and marking them read-only to prevent the
lar memory objects and I/O memory objects. Load andOS from accessing them directly. The OS must then
store checks on regular memory pointeithout the I/O  use special SVA instructions to update the translations
flag remain unchanged; they only consider memory ob-stored in these page table pages; these instructions al-
jects. New run-time checks are needed on both memlow SVA to first inspect and modify translations before
ory and /O loads and stores for pointers that have bottaccepting them and placing them into the page table.
the 1/0 flag and one or more of the memory flags (heapThesva_l oad_paget abl e instruction selects which
stack, global) to ensure that they only access regular gpage table is in active use and ensures that only page

I/O memory objects, respectively. tables controlled by SVA are ever used by the proces-
sor. This interface, combined with SVA's control-flow
54 Safe DMA integrity guarantees [10], ensure that SVA maintains con-

trol of all page mappings on the system.
We assume the use of an IOMMU for preventing DMA
operations from overflowing object bounds or writing tp 5.2 Memory Safe MMU Configuration
the wrong memory address altogether [13]. The SVA vir-
tual machine simply has to ensure that the /O MMU isFor preventing memory safety violations involving the
configured so that DMA operations cannot write to theMMU, the VM needs to track two pieces of information.
virtual machine’s internal memory, kernel code pagesFirst, the VM must know the purpose of various ranges
pages which contain type-safe objects, and stack objectsf the virtual address space; the kernel must provide the

We mark all memory objects that may be used forvirtual address ranges of user-space memory, kernel data
DMA operations as type-unsafe, similar to /O memory memory, and I/O object memory. This information will
that is accessed directly. We assume that any pointer thade used to prevent physical pages from being mapped
is stored intol/O memory is a potential memory buffer into the wrong virtual addresses (e.g., a memory mapped
for DMA operations. We require alias analysis to iden-1/O device being mapped into a virtual address used by a
tify such stores; it simply has to check that the target adkernel memory object). A special instruction permits the
dress is in I/O memory and the store value is of pointerkernel to communicate this information to the VM.
type. We then mark the points-to set of the store value Second, the VM must know how physical pages are
pointer agype-unknown used, how many times they are mapped into the virtual
address space, and whether any MMU mapping makes
them accessible to unprivileged (i.e., user-space) code.
To track this information, the VM associates with each
Our system must control the MMU and vet changes to itsphysical page a set of flags and counters. The first set
configuration to prevent safety violations and preserveof flags are mutually exclusive and indicate the purpose
compiler-inferred analysis results. Below, we describeof the page; a page can be markedlas:(Level-1 page
the mechanism by which our system monitors and contable page)L2 (Level-2 page table page).3 (Level-
trols MMU configuration and then discuss how we use3 page table pageRW (a standard kernel page hold-
this mechanism to enforce several safety properties.  ing memory objects), O (a memory mapped I/O page),
st ack (kernel stack)code (kernel or SVA code), or
svamem (SVA data memory). A second flag, thi&
flag, specifies whether a physical page contaygse-
SVA provides different MMU interfaces for hardware knowndata. The VM also keeps a count of the number
TLB processors and software TLB processors [11]. Forof virtual pages mapped to the physical page and a count
brevity, we describe only the hardware TLB interface andof the number of mappings that make the page accessible
how our design uses it to control MMU configuration.  to user-space code.

The SVA interface for hardware TLB systems (given The flags are checked and updated by the VM when-
in Table 2) is similar to those used in VMMs like ever the kernel requests a change to the page tables
Xen [16] and is based off thear avi rt ops inter-  or performs relevant memory or /O object allocation.
face [50] found in Linux 2.6. The page table is a 3- Calls to the memory allocator are instrumented to set
level page table, and there are instructions for changthe RW and, if appropriate, the TK flag on pages
ing mappings at each level. In this design, the OS firstbacking the newly allocated memory object. On sys-
tells the VM which memory pages will be used for the tem boot, the VM sets theéO flag on physical pages
page table (it must specify at what level the page willknown to be memory-mapped I/O locations. ®teack

5.5 Virtual Memory

5.5.1 Controlling MMU Configuration



Name

Description

sva_end_nemi ni t

End of the virtual memory boot initialization. Flags all gagble pages, and mark them read-only.

sva_decl ar e 1_page

Zeroes the page and flags it read-only and L1.

sva_decl ar e | 2_page

Zeroes the page and flags it read-only and L2.

sva_decl ar el 3_page

Puts the default mappings in the page and flags it read-only-an

sva.renove. 1_page

Unflags the page read-only and L1.

sva.renove.l 2_page

Unflags the page read-only and L2.

sva.r enove.l 3_page

Unflags the page read-only and L3.

sva-updat e_l 1_nappi ng

Updates the mapping if the mapping belongs to an L1 page @&npkthe is not already mapped for|
type known pool, sva page, code page, or stack page.

sva_updat e_| 2_nappi ng

Updates the mapping if the mapping belongs to an L2 page @&aetiv mapping is for an L1 page

sva_updat e_| 3_nappi ng

Updates the mapping if the mapping belongs to an L3 page @&aetiv mapping is for an L2 page

sva.l oad_paget abl e Check that the physical page is an L3 page and loads it in the fadble register.

Table 2: MMU Interface for a Hardware TLB Processor.

flag is set and cleared byva_decl ar e_st ack and With this approach, SVA can support most uses of
sva_r el ease_st ack, respectively. Changes to the self-modifying code in operating systems. For instance,
page table via the instructions in Table 2 update the counit supports theal t er nat i ves® framework in Linux
ters and thé 1, L2, and_3 flags. 2.6 [8] and Linux'sf t r ace tracing support [9] which

The VM uses all of the above information to detect, disables calls to logging functions at run-time.
at run-time, violations of the safety requirements in Sec-
tion 3. Before inserting a new page mapping, the VMg 7
can detect whether the new mapping will create multi-
ple mappings to physical memory containtgge-known On an interrupt, trap, or system call, the original SVA
objects, map a page into the virtual address space of thgystem saves processor state within the VM'’s internal
VM or kernel code segment, unmap or double map anemory and permits the kernel to use specialized in-
page that is part of a kernel stack, make a physical pagétructions to modify the state via an opaque handle called
containing kernel memory accessible to user-space cod#)e interrupt context [10, 11]. These instructions, which
or map memory-mapped 110 pages into a kernel memare Slightly higher-level than assembly code, are used by
ory object (or vice-versa). Note that SVA currently trusts the kernel to implement operations like signal handler
the kernel memory allocators to (i) return different vir- dispatch and starting execution of user programs. Since
tual addresses for every allocation, and (ii) not to movesystems such as Linux can be interrupted while running
virtual pages from one metapool to another until the orig-kernel code [5], these instructions can violate the ker-
inal metapool is destroyed. nel’'s memory safety if used incorrectly on interrupted
kernel state. To address these issues, we introduce sev-
eral changes to the original SVA design.

First, we noticed that all of the instructions that manip-

5.6 Self-modifying Code
The new SVA system supports the restricted version of’late mter_rupted program sta_te are either memory safe
(e.g., the instruction that unwinds stack frames for ker-

self-modifying code described in Section 3: OS kernels . . .
can disable and re-enable pre-declared pieces of cod .8| exception handling [11]) or only need to modify the

SVA will use compile-time analysis carefully to ensure mterrl_thed state of User-space programs. Hence_, allin-
that replacing the code with no-op instructions will not structions that are not intrinsically memory safe will ver-
invalidate the analysis results ify that they are modifying interrupted user-space pro-

We define four new instructions to support self- gram state. Second, the opaque handle to the interrupt
modifying code. The first two instructiongva.- context will be made implicit so that no run-time checks
begi z a?t anci svaend.alt enclose the code_ re. are needed to validate it when it is used. We have ob-

gions that may be modified at runtime. They mustserved that the Linux kernel only operates upon the most

b . . . recently created interrupt context; we do not see a need
e properly nested and must be given a unique iden;

tifier. The instructions are not emitted in the native for othe_roperatlng systems of S|m|lar(_je3|gnto do so, (,a"
: . . ther. Without an explicit handle to the interrupt context’s
code. The two other instructionsya_di sabl e_code

. location in memory, no validation code is needed, and
andsva_enabl e_code execute at runtime. They take :
. L . the kernel cannot create a pointer to the saved program
the identifier given to theva_begi n_al t andsva_-

: . : state (except for explicit integer to pointer casts, uses of
end_al t instructions.sva_di sabl e_code saves the which will be caught by SVA's existing checks) [10]
previous code and inserts no-ops in the code,saral - ghtby 9 '

enabl e_code restores the previous code.

Interrupted State

6Linux 2.6, file include/asm-x86/alternative.h



5.8 Miscellaneous that the only difference between our baseline SVA sys-
Iflow i . , h tem and our SVA system with the low-level safety protec-
To ensure control-flow integrity requirements, the VM .\« the addition of the run-time checks necessary

assumes control of the hardware interrupt descriptor tary ensure safety for context switching, thread manage-
ble; the OS kernel must use special instructions to assQiant. MMU. and 1/O memory safety

ciate a function with a particular interrupt, trap, or sys-

tem call [11, 29]. Similar to indirect function call checks,

SVA can use static analysis and run-time checks to en6.2 Context Switching/Thread Creation

sure that only valid functions are registered as interrupt,

trap, or system call handlers. The modifications needed for context switching were
SVA provides two sets of atomic memory instructions: Straightforward. We simply modified thewi t ch_t o

sva_f et ch_and_phi where phi is one of several in- Macro in Linux [5] to use theva_swap_i nt eger in-

teger operations (e.g., add), asida_conpar e_and_- struction to perform context switching.

swap which performs an atomic compare and swap. The Some minor kernel modifications were needed to use

static and run-time checks that protect regu|ar memorﬁhe new thread creation instructions. The original i386

loads and stores also protect these operations. Linux kernel allocates a single memory object which
holds both a thread’s task structure and the kernel stack

L . for the thread [5], but this cannot be done on our system

6 Modifications to the Linux Kernel becausesva_decl ar e_st ack requires that a stack
) _ _ ) consumes an entire memory object. For our prototype,
We implemented our design by improving and extend-ye simply modified the Linux kernel to perform separate

ing the original SVA prototype and the SVA port of gjiocations for the kernel stack and the task structure.
the Linux 2.4.22 kernel [10]. The previous section de-

scribed how we modified the SVA-OS instructions. Be-

low, we describe how we modified the Linux kernel 6.3 1/O

to use these new instructions accordingly. We modi- ) ) )

fied less than 100 lines from the original SVA kernel AS noted earlier, our implementation enhances the
to port our kernel to the new SVA-OS API; the origi- Pointer analysis algorithm in SVA (DSA [24]) to mark
nal port of the i386 Linux kernel to SVA modified 300 Pointers that may point to I/O objects. It does this by

lines of architecture-independent code and 4,800 lines dfinding calls to the Linux_i oremap() function. To
architecture-dependent code [10]. make implementation easier, we modifiedr emap()

andi or emap_nocache() in the Linux source to be
) macros that call.i or emap() .
6.1 Changes to Baseline SVA Our test system’s devices do not use global I/O mem-

The baseline SVA system in our evaluation (Section 7) is]?ry .gbje(.:fts_, SO r‘?’e did TOI mplzr_rgjent a pszydoDaéllecator
an improved version of the original SVA system [10] that or |kent| ying t em.dA_ SO, I\/NOe q ! _not modify to
is suitable for determining the extra overhead incurred b)}nar memory stored into evice memory as type-

the run-time checks necessitated by the design in Sed,gnknown. The diffi(_:l_JIty is that_Linux casts pointers into
tion 5. First, we fixed several bugs in the optimization of INtegers before writing them into I/O device memory.

run-time checks. Second, while the original SVA systemThe DSA implementation does not have solid support for

does not analyze and protect the whole kernel, there is ng_acklng pointers through Integers €., it does not con-
fundamental reason why it cannot. Therefore, we choséIder the case vyhere an mtege_r may, in fact, be pointing
to disable optimizations which apply only to incomplete t(_) amemory Objept' I_mplementmg these changes to pro-
kernel code for the experiments in Section 7. Third, thevIde DMA protection is left as future work.
new baseline SVA system recogniZes emap() as an
allocator function even though it does not add run-timeg 4 V/irtual Memory
checks for 1/O loads and stores. Fourth, we replaced
most uses of the.get _f r ee_pages() page allocator We implemented the new MMU instructions and run-
with kmal | oc() in code which uses the page alloca- time checks described in Section 5.5 and ported the SVA
tor like a standard memory allocator; this ensures that.inux kernel to use the new instructions. Linux already
most kernel allocations are performed in kernel poolscontains macros to allocate, modify and free page table
(i.e., kmemcache_t s) which fulfill the requirements pages. We modified these macros to use our new API
for allocators as described in the original SVA work [10]. (which is based on thpar avi r t ops interface from

We also modified the SVA Linux kernel to use the new Linux 2.6). We implemented all of the run-time checks
SVA-OS instruction set as described below. This ensure@xcept for those that ensure that /0 device memory isn’t



mapped into kernel memory objects. These checks repage with page entries that contain executable memory.
quire that the kernel allocate all I/O memory objectsThen, on anexec system call, the linker, which exe-
within a predefined range of the virtual address spacegutes with root privileges, allocates a page table page,
which our Linux kernel does not currently do. which happens to be the previously released page. The
end result is that the linker jumps to the exploit’s exe-
cutable memory and executes the exploit code with root
privileges. The SVA VM prevents this exploit by always
zeroing page table pages when they are placed in a page

tOu:j ?valu_atmn hh?;' two ggals_. fFlrslt, V‘Ile V;"”‘mfetddirectory so that no new, unintended, memory mappings
0 determine whether our design for low-level SOft- o ceated for existing objects.

ware/hardware interaction was effective at stopping se-
curity vulnerabilities in commodity OS kernels. Second, The e1000e bug. The fundamental cause of the e1000e
we wanted to determine how much overhead our desigibug is a memory load/store (the x8@pxchg instruc-
would add to an already existing memory-safety systemtion) on a dangling pointer, which happens to point
to an 1/O object. Thenpxchg instruction has non-
deterministic behavior on 1/O device memory and may
corrupt the hardware. The instruction was executed by
We performed three experiments to verify that our sys-thef t r ace subsystem, which uses self-modifying code
tem catches low-level hardware/software errors: Firstfo trace the kernel execution. It took many weeks for
we tried two different exploits on our system that were skilled engineers to track the problem. With our new
reported on Linux 2.4.22, the Linux version that is portedsafety checks, SVA would have detected the bug at its
to SVA. The exploits occur in the MMU subsystem; both first occurrence. The self-modifying code interface of
give an attacker root privileges. Second, we studied th&VA-OS only allows enabling and disabling of code;
e1000e bug [9]. We could not duplicate the bug becaus#rites to what the kernel (incorrectly) thought was its
it occurs in Linux 2.6, but we explain why our design code is not possible. SVA actually has a second line of
would have caught the bug if Linux 2.6 had been porteddefense if (hypothetically) the self-modifying code inter
to SVA. Third, we inserted many low-level operation er- face did not detect it: SVA would have prevented the 1/0
rors inside the kernel to evaluate whether our design prememory from being mapped into code pages, and thus
vents the safety violations identified in Section 2. prevented this corruption. (And, hypothetically again, if
a dangling pointer to a data object had caused the bug,

Linux 2.4.22 exploit.s. We have identified three re- gy would have detected any ordinary reads and writes
ported errors for Linux 2.4.22 caused by low-level trying to write to /O memory locations.)

kernel-hardware interactions [3, 39, 42]. Our experi-
ment is limited to these errors because we needed hardkernel error injection.  To inject errors, we added new
ware/software interaction bugs that were in Linux 2.4.22.system calls into the kernel; each system call triggers a
Of these, we could not reproduce one bug due to a lackpecific kind of kernel/hardware interaction error that ei-
of information in the bug report [3]. The other two errors ther corrupts memory or alters control flow. We inserted
occur in thent emap system call but are distinct errors. four different errors. The first error modifies the saved

The first exploit [42] is due to an overflow in a count Integer State of a process so that an invalid Integer State
of the number of times a page is mapped. The exploiis loaded when the process is scheduled. The second
code overflows the counter by callifgr k, nmmap, and  error creates a new MMU mapping of a page contain-
nT emap a large number of times. It then releases theing type-known kernel memory objects and modifies the
page, giving it back to the kernel. However, the exploitcontents of the page. The third error modifies the MMU
code still has a reference to the page; therefore, if thenappings of pages in the stack range. The fourth error
page is reallocated for kernel use, the exploit code camodifies the internal metadata of SVA to set incorrect
read and modify kernel data. Our system catches thi®ounds for all objects. This last error shows that with the
error because it disallows allocating kernel objects in aoriginal design, we cadisable the SVA memory safety
physical page mapped in user space. checks that prevent Linux explqiis fact, it would not

The second exploit [39] occurs because of a missingpe difficult to do so with this bug alone for three of the
error check imr emap which causes the kernel to place four kernel exploits otherwise prevented by SVA [10].
page table pages with valid page table entries into the All of the injected errors were caught by the new
page table cache. However, the kernel assumes that pa§&/A implementation. With the previous implementation,
table pages in the page table cache do not contain arthese errors either crash the kernel or create undefined
entries. The exploit uses this vulnerability by calling behavior. This gives us confidence about the correctness
nmap, nrenmap andnunnap to release a page table of our new design and implementation of SVA. Note that

7 Evaluation and Analysis

7.1 Exploit Detection



we only injected errors that our design addresses becausg
we believe that our design is “complete” in terms of the:'r- 1
possible errors due to kernel-hardware interactions. Neved
ertheless, the injection experiments are useful becaus§ ”
they validate that the design and implementation actu-= 28 \ N7
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To determine the impact of the additional run-time £
checks on system performance, we ran several experig A A
ments with applications typically used on server and end'~t§s 02t [N A A A
user systems. We ran tests on the original Linux 2.4.225 TR A A G
kernel (marked i386 in the figures and tables), the samé& S A7 NI ¢ R N N N R S N
kernel with the original SVA safety checks [10] (marked 1 2 4 8 16 32 64 128 256 5121024
SVA), and the SVA kernel with our safety checks for low- File Size (KB)
Ievel_so_ftware/hardware interactions (mark_ed SVA-0S). Figure 2: Web Server Bandwidth (Linux/i386 = 1.0)
It is important to note that an underlying memory
safety system like SVA can incur significant run-time
overhead for C code, especially for a commodity ker—§ 12
nel like Linux that was not designed for enforcement of <
memory safety. Such a system is not the focus of thisy 1}
paper. Although we present our results relative to the2
original (unmodified) Linux/i386 system for clarity, we

SVA Checkstzzzz  SVA-OS Checksimmmm
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focus the discussion on the excess overheads introduced
by SVA-OS beyond those of SVA since the new tech-ﬁ -
niques in SVA-OS are the subject of the currentwork. & ™[ 1

We ran these experiments on a dual-processor AMDE
Athlon 2100+ at 1,733 MHz with 1 GBof RAMandal < °4r
Gb/s network card. We configured the kernel as an SMP5
kernel but ran it in on a single processor since the SVAZ o2}
implementation is not yet SMP safe. Network experi-g
ments used a dedicated 1 Gb/s switch. We ran our exper- \ \
iments in single-user mode to prevent standard system 8 32
services from adding noise to our performance numbers. File Size (MB)

We used several benchmarks in our experiments: the Figyre 3: SSH Server Bandwidth (Linux/i386 = 1.0)
thttpd Web server, the OpenSSH sshd encrypted file
transfer service, and three local applications — bzip2 for
file compression, the lame MP3 encoder, and a perl ingriginal i386 Linux kernel. For small files (1 KB - 32
terpreter. These programs have a range of different dex) in which the original SVA system adds significant
mands on kernel operations. Finally, to understand whyyyerhead, our new run-time checks incur a small amount
some programs incur overhead while others do not, wf additional overhead (roughly a 9% decrease in
used a set of microbenchmarks including the HBenchhandwidth relative to the SVA kernel). However, for
OS microbenchmark suite [6] and two new tests wejarger file sizes (64 KB or more), the SVA-OS checks
wrote for the poll and select system callls. add negligible overhead to the original SVA system.

Application Performance First, we used We also measured the performancesshd, a login
ApacheBench to measure the file-transfer bandserver offering encrypted file transfer. For this test, we
width of the thttpd web server [31] serving static HTML measured the bandwidth of transferring several large files
pages. We configured ApacheBench to make 500@rom the server to our test client; the results are shown in
requests using 25 simultaneous connections. Figure Bigure 3. For each file size, we first did a priming run
shows the results of both the original SVA kernel andto bring file system data into the kernel's buffer cache;
the SVA kernel with the new run-time checks describedsubsequently, we transfered the file three times. Figure 3
in Section 5. Each bar is the average bandwidth of 3shows the mean of the receive bandwidth of the three
runs of the experiment; the results are normalized to theuns normalized to the mean receive bandwidth mea-




Benchmark | 1386 (s) SVA (s) SVA-OS (s) | % Increase from| Description
i386 to SVA-OS

bzip2 18.7 (0.47) | 18.3(0.47) | 18.0(0.00) | 0.0% Compressing 64 MB file

lame 133.3(3.3) | 132(0.82) 126.0 (0.82) | -0.1% Converting 206 MB WAV file to MP3

perl 22.3(0.47) | 22.3(0.47) | 22.3(0.47) | 0.0% Interpreting scrabbl.pl from SPEC 2000

Table 3: Latency of Applications. Standard Deviation ShawRarentheses.
450 T percent overhead that the applications experienced exe-
o SVA Checksmmmm cuting on the SVA-OS kernel relative to the original i386

40F n [ N SVA-OS Checkszzzza |

AT I o Linux kernel. The results show that our system adds vir-
g . tually no overhead for these applications, even though
some of the programs (bzip2 and lame) perform substan-
tial amounts of 1/0. Table 4 shows the latency of the ap-
. plications during their priming runs; our kernel shows no
overhead even when the kernel must initiate 1/0 to re-
trieve data off the physical disk.

350

300
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200

150

Bandwidth (MB/s)

Microbenchmark Performance To better understand
g the different performance behaviors of the applications,
NI we used microbenchmarks to measure the overhead our
| system introduces for primitive kernel operations. For
these experiments, we configured HBench-OS to run
each test 50 times.

Our results for basic system calls (Table 5) indicate
that the original SVA system adds significant overhead

4 8 16 32 64 128 256 512102420484096
File Size (KB)

Figure 4: File System Bandwidth

Benchmark | 1386 (5) | SVA (S) | SVA-OS (5) (on the order of tens of microseconds) to individual sys-
bzip2 41 40 40 tem calls. However, the results also show that our new
'amle 222 2% 2% safety checks only add a small amount of additional over-
per|

head (25% or less) to the original SVA system.

We also tested the file system bandwidth, shown in
Figure 4. The results show that the original SVA system
reduces file system bandwidth by about 5-20% for small
sured on the original i386 kernel; note that the units onfiles but that the overhead for larger files is negligible.
the X-axis are MB. Our results indicate that there is noAgain, however, the additional checks for low-level ker-
significant decrease in bandwidth due to the extra runhel operations add no overhead.
time checks added by the original SVA system or the new The microbenchmark results provide a partial explana-
run-time checks presented in this paper. This outcome iion for the application performance results. The appli-
far better than thttpd, most likely due to the large file cations in Table 3 experience no overhead because they
sizes we transfered viecp. For large file sizes, the net- perform most of their processing in user-space; the over-
work becomes the bottleneck: transferring an 8 MB filehead of the kernel does not affect them much. In contrast,
takes 62.5 ms on a Gigabit network, but the overheads fothesshd and thttpd servers spend most of their time ex-
basic system calls (shown in Table 5) show overheads oécuting in the kernel (primarily in the poll(), select(),can
only tens of microseconds. write() system calls). For the system calls that we tested,

To see what effect our system would have on end-our new safety checks add less than several microseconds
user application performance, we ran experiments on thef overhead (as shown in Table 5). For a small network
client-side programs listed in Table 3. We tested bzip2transfer of 1 KB (which takes less than.8 on a Giga-
compressing a 64 MB file, the LAME MP3 encoder con- bit network), such an overhead can affect performance.
verting a 206 MB file from WAV to MP3 format, and the However, for larger files sizes (e.g., an 8 MB transfer that
perl interpreter running the training input from the SPECtakes 62.5 ms), this overhead becomes negligible. This
2000 benchmark suite. For each test, we ran the programffect shows up in our results for networked applications
once to prime any caches within the operating system an@thttpd and sshd): smaller file transfers see significant
then ran each program three times. Table 3 shows the awverhead, but past a certain file size, the overhead from
erage of the execution times of the three runs and théhe run-time safety checks becomes negligible.

Table 4: Latency of Applications During Priming Run.



Benchmark i386 (us) SVA (us) SVA-0OS % Increase from| Description
(us) SVA to SVA-OS

getpid 0.16 (0.001) | 0.37 (0.000) | 0.37 (0.006) | 0.0% Latency of getpid() syscall

openclose 1.10(0.009) | 11.1(0.027) | 12.1(0.076)| 9.0% Latency of opening and closing a file

write 0.25(0.001) | 1.87(0.012)| 1.86 (0.010) | -0.4% Latency of writing a single byte to /dev/null

signal handler | 1.59 (0.006) | 6.88 (0.044) | 8.49 (0.074) | 23% Latency of calling a signal handler

signal install 0.34(0.001) | 1.56 (0.019)| 1.95(0.007) | 25% Latency of installing a signal handler

pipe latency 2.74(0.014) | 30.5(0.188) | 35.9(0.267)| 18% Latency of ping-ponging one byte message be-
tween two processes

poll 1.16 (0.043) | 6.47 (0.080) | 7.03(0.014)| 8.7% Latency of polling both ends of a pipe for readirjg
and writing. Data is always available for reading.

select 1.00 (0.019) | 8.18(0.133) | 8.81(0.020)| 7.7% Latency of testing both ends of a pipe for reading
and writing. Data is always available for readingT.

Table 5: Latency of Kernel Operations. Standard Deviatibov® in Parentheses.

8 Related Work antees of our work is to add annotations to the C lan-
guage. For example, SafeDrive’s annotation system [51]
Previous work has explored several approaches to prazould be extended to provide our I/0O memory protections
viding greater safety and reliability for operating sys- and perhaps some of our other safety guarantees. Such
tem kernels. Some require complete OS re-design, e.gan approach, however, would likely require changes to
capability-based operating systems [37, 38] and microevery driver and kernel module, whereas our approach
kernels [1, 25]. Others use isolation (or “sandboxing”) only requires a one-time port to the SVA instruction set
techniques, including device driver isolation within the and very minor changes to machine-independent parts of
OS [35, 44, 45, 51] or the hypervisor [17]. While ef- the kernel.
fective at increasing system reliability, none of these ap-
proaches provide the memory safety guarantees provid
by our system, e.g., none of these prevent corruption jf
memory mapped I/O devices, unsafe context switchingC
or improper configuration of the MMU by either kernel
or device driver code. In fact, none of these approache
could protect against the Linux exploits or device cor-
ruption cases described in Section 7. In contrast, ou
system offers protection from all of these problems for
both driver code and core kernel code. Mondrix [49] provides isolation between memory
The EROS [38] and Coyotos [37] systems provide aSPaces vyithin a kern_el using a qud-granularity mem-
form of safe (dynamic) typing for abstractions, e.g., ca-OrY isolation scheme implemented in hardware [48]. Be-
pabilities, at their higher-level OS (“node and page”) cause Mondrix enables much more fine-grained isolation
layer. This type safety is preserved throughout the de_(W'th _acceptable ov_erhead) than_the_ software supported
sign, even across I/O operations. The lower-level |ayer!solat|on schemes discussed earlier, it may be_able to pre-
which implements these abstractions, is written in C/C++V€nt some or all of the memory-related exploits we dis-
and is theoretically vulnerable to memory safety errorscUss. Nevertheless, it cannot protect against other errors
but is designed carefully to minimize them. The designSUCh as control flow violations or stack manipulation.
techniques used here are extremely valuable but difficult A number of systems provide Dynamic Information
to retrofit to commodity systems. Flow Tracking or “taint tracking” to enforce a wide range
Some OSs written in type-safe languages, includingof security policies, including memory safety, but most
JX[18], SPIN [21], Singularity [22], and others [20] pro- of these have only reported results for user-space appli-
vide abstractions that guarantee that loads and stores tmtions. Raksha [12] employed fine-grain information
I/0 devices do not access main memory, and main memfow policies, supported by special hardware, to prevent
ory accesses do not access I/O device memory. Howevebuffer overflow attacks on the Linux kernel by ensur-
these systems either place context switching and MMUng that injected values weren't dereferenced as point-
management within the virtual machine run-time (JX) orers. Unlike our work, it does not protect against attacks
provide no guarantee that errors in these operations carthat inject non-pointer data nor does it prevent use-after-
not compromise the safety guarantees of the language ifnee errors of kernel stacks and other state buffers used in
which they are written. low-level kernel/hardware interaction. Furthermoresthi
Another approach that could provide some of the guarsystem does not work on commodity hardware.

The Devil project [27] defines a safe interface to hard-

are devices that enforces safety properties. Devil could
nsure that writes to the device’s memory did not ac-
ess kernel memory, but not vice versa. Our SVA ex-

tensions also protect /O memory from kernel memory

and provide comprehensive protection for other low-

level hardware interactions, such as MMU changes, con-
fext switching, and thread management.



The CacheKernel [7] partitions its functionality into an provided by the original SVA system. Taken together,
application-specific OS layer and a common “cache kerthese results indicate that it is clearly worthwhile to add
nel” that handles context-switching, memory mappingsthese techniques to an existing memory safety system.

etc. The CacheKernel does not aim to provide memory
safety, but its two layers are conceptually similar to the
commodity OS and the virtual machine in our approach.
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no longer an arbitrary set of loads/stores to memory but
a single instruction with a semantic meaning.

Our system employs techniques from VMMs. The
API provided by SVA for configuring the MMU securely  [1]
is similar to that presented by para-virtualized hypervi-
sors [16, 50]. However, unlike VMMs, our use of these
mechanisms is to provide fine-grain protection internal
to a single domain, including isolation between user and 2
kernel space and protection of type-safe main memory,
saved processor state, and the kernel stack. For exam-
ple, hypervisors would not be able to guard against [42], [3]
which our system does prevent, even though it is an
MMU error. Also, a hypervisor that uses binary rewrit-
ing internally, e.g., for instrumenting itself, could bevu (4]
nerable to [9], just as the Linux kernel was. We believe
VMMs could be a usefuiargetfor our work.

SecVisor [36] is a hypervisor that ensures that only
approved code is executed in the processor’s privileged
mode. In contrast, our system does not ensure that kernel!
code meets a set of requirements other than being mem-
ory safe. Unlike SVA, SecVisor does not ensure that the (6]

approved kernel code is memory safe. -

9 Conclusion

In this paper, we have presented new mechanisms to enl8l
sure that low-level kernel operations such as processor
state manipulation, stack management, memory mappe
I/0, MMU updates, and self-modifying code do not vio-
late the assumptions made by memory safety checkergl.ol
We implemented our design in the Secure Virtual Ar-
chitecture (SVA) system, a safe execution environment
for commodity operating systems, and its corresponding
port of Linux 2.4.22. Only around 100 lines of code were [11]
added or changed to the SVA-ported Linux kernel for the
new techniques. To our knowledge, this is the first paper
that (i) describes a design to prevent bugs in Iow-level[12]
kernel operations from compromising memory safe op-
erating systems, including operating systems written in
safe or unsafe languages; and (ii) implements and evalu-
ates a system that guards against such errors. (13]
Our experiments show that the additional runtime
checks add little overhead to the original SVA prototype[14]
and were able to catch multiple real-world exploits that
would otherwise bypass the memory safety guarantees
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