
AN INTERNAL REPRESENTATION FOR ADAPTIVE ONLINE

PARALLELIZATION

by

Koy D. Rehme

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

Brigham Young University

August 2009

Copyright c© 2009 Koy D. Rehme

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Koy D. Rehme

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date David A. Penry, Chair

Date Michael J. Wirthlin

Date James K. Archibald

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Koy D.
Rehme in its final form and have found that (1) its format, citations, and biblio-
graphical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date David A. Penry
Chair, Graduate Committee

Accepted for the Department

Michael J. Wirthlin
Graduate Coordinator

Accepted for the College

Alan R. Parkinson
Dean, Ira A. Fulton College of
Engineering and Technology

ABSTRACT

AN INTERNAL REPRESENTATION FOR ADAPTIVE ONLINE

PARALLELIZATION

Koy D. Rehme

Department of Electrical and Computer Engineering

Master of Science

Future computer processors may have tens or hundreds of cores, increasing

the need for efficient parallel programming models. The nature of multicore pro-

cessors will present applications with the challenge of diversity: a variety of op-

erating environments, architectures, and data will be available and the compiler

will have no foreknowledge of the environment until run time. Adaptive Online

Parallelization (ADOPAR) is a unifying framework that attempts to overcome diver-

sity by separating discovery and packaging of parallelism. Scheduling for execution

may then occur at run time when diversity may best be resolved.

This work presents a compact representation of parallelism based on the task

graph programming model, tailored especially for ADOPAR and for regular and irreg-

ular parallel computations. Task graphs can be unmanageably large for fine-grained

parallelism. Rather than representing each task individually, similar tasks are grouped

into task descriptors. From these, a task descriptor graph, with relationship descrip-

tors forming the edges of the graph, may be represented. While even highly irregular

computations often have structure, previous representations have chosen to restrict

what can be easily represented, thus limiting full exploitation by the back end. There-

fore, in this work, task and relationship descriptors have been endowed with instan-

tiation functions (methods of descriptors that act as factories) so the front end may

have a full range of expression when describing the task graph. The representation

uses descriptors to express a full range of regular and irregular computations in a very

flexible and compact manner.

The representation also allows for dynamic optimization and transformation,

which assists ADOPAR in its goal of overcoming various forms of diversity. We

have successfully implemented this representation using new compiler intrinsics, allow

ADOPAR schedulers to operate on the described task graph for parallel execution,

and demonstrate the low code size overhead and the necessity for native schedulers.

ACKNOWLEDGMENTS

Any work of sufficient size requires the help of many people. This thesis is

no different. Many hours have been spent researching, programming, and writing,

with each hour supported by someone else. My thanks go to all friends, family, and

coworkers for their assistance in getting this thesis done. My name may go under the

title, but each of theirs deserves to be there as well.

I transferred to BYU without knowing what the future would hold for me.

Without prior contacts with professors, I needed some way of starting up my research.

Dr. Penry, being a new professor here, made for a perfect match: he needed students

for his research, I needed a advisor for mine. I have expanded my knowledge under

his guidance, and I hope this thesis shows that.

I wondered if I would ever finish this thesis, especially after each of my four

computer failures. I am very thankful for backups ... and for the loaner from Dawn

and Gary Goldwasser that got me through to the end.

And most of all I want to thank my wife Becky. She made sure there was

always a carrot to motivate me and didn’t spare the whip when gentle reminders

failed. She even served as an editor, receiving but a peanut in return. Without her

encouragement I would still be working on the first chapter.

Table of Contents

Acknowledgements xiii

List of Tables xix

List of Figures xxii

1 Introduction 1

1.1 Motivation . 3

1.1.1 The Manycore Era . 3

1.1.2 Discovery of Parallelism . 4

1.1.3 Packaging of Parallelism . 5

1.1.4 The Run-time Advantage . 6

1.2 The ADOPAR Vision . 6

1.3 Parallelism Representation . 8

1.4 Contributions and Objectives . 9

1.5 Outline . 11

2 Background and Related Work 13

2.1 Scheduling and Execution . 13

2.2 Parallel Programming Paradigms . 15

2.2.1 Types of Parallelism . 16

2.3 Data-Parallel Representations . 17

xv

2.4 Loop-Parallel Representations . 20

2.5 Task-Parallel Representations . 21

2.6 Summary . 23

3 The ADOPAR Representation 25

3.1 Fine-Grained Task Model . 27

3.2 Static Task Graph . 28

3.2.1 Task Types . 30

3.2.2 Synchronization Primitives . 31

3.3 The ADOPAR Internal Representation 32

3.3.1 Task and Relationship Descriptors 33

3.3.2 IR Creation Process . 36

3.4 Examples . 36

3.4.1 Linear Algebra . 37

3.4.2 Iterative Linear System Solvers 42

3.5 Future Transformations on the TDG 46

3.5.1 Inlining and Extraction . 48

3.5.2 Descriptor Splitting . 48

3.5.3 Flattening . 49

3.6 Granularity Adjustments . 50

3.6.1 Discrete Task Combining . 51

3.6.2 Task Descriptor Combining 52

3.6.3 Hierarchy Combining . 53

3.7 Summary . 53

4 Implementation 55

4.1 Environment . 55

xvi

4.1.1 LLVM . 56

4.1.2 Scheduler . 57

4.2 ADOPAR Intrinsics . 57

4.2.1 Parameters and Types . 58

4.2.2 TDG Creation Intrinsics . 60

4.2.3 Instantiation Function Intrinsics 63

4.2.4 Querying and Execution Intrinsics 65

4.3 TDG Creation . 65

4.4 Code Transformations . 69

4.5 Examples . 71

4.5.1 Sparse Linear Systems . 71

4.6 Summary . 76

5 Evaluation 79

5.1 Methodology . 79

5.1.1 Criteria . 80

5.1.2 Metrics . 81

5.1.3 Benchmarks . 82

5.2 Measurements . 82

5.2.1 Code Size Overhead . 82

5.2.2 Compilation Time Overhead 84

5.2.3 Task Instantiation Overhead 85

5.2.4 Scheduling Results . 88

5.3 Summary . 89

6 Conclusion 91

6.1 Summary of Results . 91

xvii

6.2 Future Work . 91

6.2.1 Representation . 92

6.2.2 Front Ends . 94

6.2.3 Analysis and Optimization . 95

6.3 Summary . 96

6.4 A Final Word . 96

Bibliography 97

xviii

List of Tables

4.1 Relationship Values . 59

4.2 Task Creation Intrinsics . 61

4.3 Instantiation Intrinsics . 64

4.4 Querying and Execution Intrinsics . 66

xix

xx

List of Figures

3.1 Task Descriptors . 29

3.2 Hierarchical Tasks . 29

3.3 Barrier Implementation . 32

3.4 Pseudocode: Dense Matrix-Vector Multiply 37

3.5 Dense Matrix-Vector Multiply TDG 38

3.6 Matrix-Vector TIG (Exclusive) . 38

3.7 Dense Matrix-Vector Multiply TDG (Summing Tree) 39

3.8 Matrix-Vector TIG (Summing Tree) 40

3.9 Dense Matrix-Vector Multiply TDG (Blocked) 41

3.10 Matrix-Vector TIG (Blocked) . 41

3.11 Dense Matrix-Vector Multiply TDG (Granularity Change) 41

3.12 Matrix-Vector TIG (Granularity Change) 42

3.13 Pseudocode: Dense Jacobi Linear Solver 43

3.14 Jacobi LU TDG . 44

3.15 Jacobi LU TIG . 45

3.16 Pseudocode: Dense Gauss-Seidel Linear Solver 45

3.17 Gauss Seidel LU TDG . 46

3.18 Gauss-Seidel LU TIG . 47

3.19 Flattening the Hierarchy . 50

4.1 Root Task Creation . 62

xxi

4.2 Example Serial Algorithm . 67

4.3 Task Body . 67

4.4 Instantiation Functions . 68

4.5 Example TDG . 69

4.6 Annotated Jacobi Linear System Algorithm 72

4.7 Sparse Linear System Task Hierarchy 73

4.8 Sparse Linear System Instantiation Functions 74

4.9 Sparse Linear System Task Bodies . 75

4.10 Sparse Linear System Relationship Instantiation Functions 77

4.11 Gauss-Seidel Modification . 78

5.1 Code Size Overhead . 83

5.2 Compilation Time Overhead . 84

5.3 Absolute Instantiation Overhead . 86

5.4 Relative Instantiation Time . 87

5.5 ADOPAR Scheduler Results . 89

xxii

Chapter 1

Introduction

Advances in the fields of processor architecture, compiler research, and pro-

cess development have contributed to exponential performance improvements of the

microprocessor. The resulting performance improvements strive to satisfy the ever-

growing processing requirements of consumers, industry, and researchers. Although

one cannot reasonably expect advances to continue indefinitely, we have yet to see

the end of Moore’s Law [1]. Transistor manufacturing improvements will continue to

provide more raw processing capabilities in the future.

Both research and commercial products have transitioned from using addi-

tional transistors to improve performance of a single processor to a “step and re-

peat” replication of many processors on a single die. These Chip Multi-Processors

(CMPs) [2] give a significant potential improvement for software. Unfortunately, soft-

ware cannot necessarily take advantage of the extra processing power without being

rewritten or at least recompiled. Even then, new techniques need to be developed to

utilize all cores to full potential.

Irregular computations, such as those found in sparse linear algebra and molec-

ular dynamics, are especially difficult for software. The irregularity of these compu-

tations impede the static compiler analyses normally used to optimize parallelization;

however, optimizations are possible once the dynamic nature of the system is resolved

and communication patterns are determined. Current compiler research is develop-

ing dynamic frameworks which can optimize at run time as long as the parallelism is

represented appropriately.

Compilers and optimizers rely on an Internal Representation (IR), or the spe-

cific method for representing the structure of a program. The representation deter-

1

mines how optimizations and analyses are performed and impacts the performance

of the compiler and final executable. Many IRs are possible, depending on the goal

of the system: Chapter 2 describes several that are currently used. The task graph

representation for parallelism provides a mechanism for describing irregular parallel

computations and communications. As the task size decreases and the number of

tasks increases, more parallelism can be found in the graph; however, smaller task

sizes also dramatically increase the amount of computation needed to operate on the

graph and increase the final run-time overhead (given the larger number of tasks).

While algorithm researchers are trying to reduce the complexity of scheduling algo-

rithms, it is not uncommon to see algorithms from O(n log n) in the best case to

O(2n) and worse.

Working within a dynamic environment may relieve the difficulties of creating

parallel code while providing specialized optimization opportunities for the applica-

tion. Dynamic optimization of serial programs may use information only available

during execution; the hope is that parallel programs may receive the same benefit.

Since the operating environment may only be known when executing the program,

these same optimizations may be specialized for the immediate situation. As such it

is important to include as much information as possible into the parallelism represen-

tation so it can be accessed at run time.

This work presents two modifications of the task graph representation specific

to a dynamic environment. The first is the addition of highly generic task descrip-

tors, a conceptual “factory” for tasks. Task relationships are formed with relationship

descriptors, which form the edges of the task graph. The second modification is the

concept of instantiation functions, where control of task and relationship descriptors

is governed by a section of code which describes the tasks procedurally. Instantiation

functions provide flexibility to represent irregular computations with arbitrary pat-

terns while also providing a mechanism to reduce the complexity of compiler analysis

and scheduling. Embedding the algorithmic descriptions of tasks and relationships

into instantiation functions can improve performance by increasing the effectiveness of

task scheduling. Combined, descriptors and instantiation functions provide a mech-

2

anism to concisely represent the structure and communication patterns of tasks of

varying granularity while still operating with overhead appropriate to a dynamic

framework.

1.1 Motivation

1.1.1 The Manycore Era

Trends in microprocessor design and production point to a new era where

processors have increasing numbers of cores rather than improved single-core designs.

This trend has been prompted by the ever-increasing transistor budgets available

for additional logic and the matching challenges to fully profit from it. Practical

limits have been reached for clock speeds and exploitable instruction-level parallelism.

Signal propagation time around the die creates timing limitations. The density of

transistors increases the power use and heat dissipation required. CMPs offer the

possibility of significantly improving performance potential, as long as the software

can adapt to this new era.

Indeed, software presents the greatest challenge of the manycore era: how to

fulfill user expectations for performance improvements while managing the variety of

architectures and environments that are sure to exist. We already see great variations

in current consumer architectures, from low-speed single-core computers to high-

performance servers with 32 processing cores immediately available to a program,

with various core designs. Current x86 processors are being shipped with support

for up to 8 threads per die, and the SPARC T2 can handle up to 64 threads on a

single chip. Eventually industry may even produce CMPs with hundreds (some would

speculate thousands) of processors.

This variety is sure to increase as the range of cores widens, the design of cores

improves, and the possibility of heterogeneity becomes a reality [3]. Every design

choice, from the memory hierarchy to the chip layout to the types of processing

elements in any particular machine has impacts on parallel performance, and it will

be important for programs to adapt to this diversity in order to have full performance.

3

Optimizing for the wrong architecture will either under-utilize the available resources

or over-estimate the machine’s capabilities.

Architectural diversity is not the only variable that can affect parallel pro-

gram optimization. In fact, any number of environmental factors, even on the same

machine but between separate executions of the same program, may also affect per-

formance. For example, desktop computers see a variety of applications attempting

to run concurrently, each with different requirements and capabilities for parallel exe-

cution. The program itself may present run-time dependencies that affect parallelism,

such as an input data set which places constraints on parallel work and communi-

cation. Thus, the resources that may be available to a program may vary between

executions or even change on the fly. An application must adapt to these constantly

changing conditions.

In many cases, proper parallelization is dependent on the data used by the

program, creating computation patterns that cannot be determined until run time.

The difficulty for a parallelizing system is to account for the many different situations

and environments: it may be possible to optimize for a couple specific situations, but

the general case is another matter. All of these factors contribute to the difficulty of

effectively parallelizing the program, the main consequence of failure being reduced

performance in the final executable.

1.1.2 Discovery of Parallelism

The most difficult problem for parallelizing compilers – and, for that mat-

ter, programmers – is finding the parallelism inherent in an application. Parallelizing

compilers are an active area of research, and there have been many research compilers

working on discovering parallelism in a program, e.g. [4, 5, 6, 7]. Parallelizing com-

pilers have better success with data-parallel programs and coarse-grain parallelism

through inter-procedural analysis than with other types of parallelism.

Parallelism is a property of the code and data of a program. Code regions

might execute on different sections of data and therefore run in parallel. The same

code may execute on separate data regions for data-parallel and loop-parallel pro-

4

grams. Separate code regions working on potentially the same data form task-parallel

programs. The compiler attempts to prove that code or data can be parallelized and

transforms the program appropriately. An important observation is that parallelism

is not a property of the architecture or execution environment.

It is not always possible to discover all parallelism at compile time, which may

be dependent on the data set or other run-time factors. The compiler can, however,

compute the necessary runtime conditions for code to be parallel. Parallelism can be

finalized by the run-time system when the conditions can be resolved.

1.1.3 Packaging of Parallelism

Once the parallel properties of an application have been established, the com-

piler or run-time system must associate data, loop iterations, or tasks with appropri-

ate threads. The result of association is the packaging of the parallelism. Packaging

of parallelism is highly dependent on the architecture and operating environment:

accounting for these differences is key to extracting the full performance from the

execution of a program. The process of packaging consists of mapping and scheduling

work to the available resources, organizing and optimizing for the architecture and

environment.

Discovery and packaging of parallelism are not orthogonal processes: extract-

ing more parallelism has a direct impact on the packaging/scheduling process, and

transforming code to find additional parallelism may alter the dependencies that need

to be considered when scheduling. In other cases, the relationship is more direct: for

example, each iteration of a Monte Carlo [8] algorithm is easily proved to be inde-

pendent during the discovery process. The packaging is generally simple, but may be

complicated by load balancing.

Even algorithms where discovery is simple may have complications at the

packaging stage. In general, the task execution time is not known a priori and may

vary greatly at run time, creating classic problems with load balance. Dynamic load

balancing techniques [9] may help in many situations but may be limited by high

overhead, especially for fine-grained parallelism. Static packaging systems must rely

5

on an estimate of the execution time, an estimate which is assumed to be sufficiently

accurate for the application in question.

Task dependencies create both communication problems and load balancing

issues: not all schedules of tasks are valid, and different schedules have very differ-

ent effects on the execution time and load balancing. Communication costs make

packaging decisions especially important.

1.1.4 The Run-time Advantage

The discovery of parallelism tends to be an expensive process and must be done

at compile time to reduce overhead. However, diversity cannot be managed at compile

time. Serial programs have dealt with diversity by deferring some optimization to run

time through hardware techniques such as out of order execution. Parallel programs

require similar run-time techniques to deal with diversity as run-time dependencies

preclude full compile-time analysis. We have proposed [10] a solution similar to the

out-of-order technique described above: perform general static optimizations and

create a dynamic optimization scheme to account for diversity.

Separating discovery and packaging in the parallelism process allows the high

overhead of discovery to be managed offline. The run-time system, freed from this

overhead, is free to optimize the parallelism using the wide variety of information

available.

1.2 The ADOPAR Vision

The technique of separating the packaging of parallelism from its discov-

ery to overcome manycore diversity is what we call Adaptive Online Parallelization

(ADOPAR) [10, 11]. As its name implies, ADOPAR adapts the parallelism of an

application to diversity through online (run-time) techniques. The BYU Architec-

ture Research, Design, and Description (BARDD) research group is creating a re-

search infrastructure to implement its principles of diversity-independent discovery

and diversity-dependent packaging. BARDD is currently researching the techniques

required to create effective packaging.

6

ADOPAR stands in stark contrast to previous methods for parallelizing soft-

ware. Its process may best be illustrated by examining a program’s life cycle.

1. Software is developed by a programmer. The focus at this stage is software

behavior and description of parallelism, not the packaging or optimization for a

particular system. This simplifies the work of a software developer, whose job

is to describe the parallelism, not package and optimize it.

2. The compiler extracts information about parallelism from the programming

model and discovers new implicit parallelism.

3. At run time, schedulers present in the run-time system use the results of dis-

covery to package parallelism for best performance in the current operating

environment. Generally, this consists of assigning work to processors and ac-

counting for the capabilities and limitations of the available resources. Any

program information not available at compile-time (such as the operating data)

is also available for packaging optimization.

4. The schedule is executed. For some programs, loops and other forms of reuse

allow the packaging overhead to be amortized.

5. The packagers may need to adapt when conditions change, such as an increase

or reduction in the number of threads. Information from profiling may yield

better performance through repackaging.

In this process, the ADOPAR infrastructure must interact with the operating

system. We envision a process where the run-time system and operating system

negotiate for resources. The run-time system requests resources according to its

needs while the operating system presents what is available. The traditional process

scheduling role of the operating system is transferred to the run-time system so it can

manage its own threads (as in [12] and [13]).

By splitting the discovery and packaging phases, ADOPAR achieves the full

benefits of parallelism discovery and run-time information. But to use run-time in-

formation, the ADOPAR infrastructure requires a dynamic compilation environment.

7

Using a Just-In-Time compiler (JIT) framework offers the opportunity to optimize

the code given the task schedule, the specific execution environment, and the run-

time data dependencies. Having an on-the-fly compiler also allows for the scheduler

to directly work with code primitives such as basic blocks, loops, and functions, as

well as run various code analyses as part of the scheduling process. This work uses the

Low Level Virtual Machine (LLVM) [14] infrastructure, a compiler framework that

includes the ability to add analyses and transformations, create new compiler intrin-

sics, and optimize and generate machine code for several instruction set architectures

at runtime.

1.3 Parallelism Representation

One key element in ADOPAR is a mechanism to communicate the results of

discovery to packagers. Since discovery occurs at compile time and packaging occurs

at run time, a persistent representation of parallelism is needed. This work describes

a representation suitable for an ADOPAR infrastructure that can act as a bridge

between discovery and packaging. The goal of the framework’s representation make

sufficiently detailed information available to the packagers and present it conveniently.

More detailed information allows the scheduler to provide a more efficient mapping of

tasks to processors; a convenient format reduces the analysis overhead of the program

while compiling, scheduling, and executing. ADOPAR requires the following from its

parallelism representation:

1. Irregularity

ADOPAR’s specific goal is to parallelize programs with irregular features; the

representation needs the ability to conveniently express many types of irregu-

larity. Some applications are completely irregular (random or nearly so) while

others may have a complex pattern. The representation must handle either case

conveniently and compactly.

8

2. Regularity

While ADOPAR attempts to optimize irregular applications, some programs

have a mixture of regular and irregular properties. A representation that can

handle irregular applications (possibly by enumerating each task) will be able to

work with regular applications as well, although the memory usage and process-

ing time may not be optimal. Instead, a direct means of representing regularity

in a program may reduce processing time significantly.

3. Communication

Almost every parallel application requires communication between processors

during the computation. Often, the communication time constitutes a signifi-

cant portion of the total execution time. One of ADOPAR’s goals is to consider

the communication costs and optimize the scheduling appropriately. The repre-

sentation should effectively represent communication regardless of whether the

application is regular or irregular.

4. Low Run-time Overhead

ADOPAR may be used with fine-grained task models, which leads to increased

interaction with the representation. Lowering the overhead of the representation

is critical when dealing with many tasks.

We refer to the parallelism representation as an Internal Representation (IR),

in analogy to the internal representations used by compiler frameworks, since the

representation is internal to the infrastructure, communicating between its separate

components. The IR presented in this work will be evaluated according to the re-

quirements of ADOPAR.

1.4 Contributions and Objectives

This work contributes a new way of viewing internal representations for paral-

lelism. While previous methods have been constrained by the programming model or

9

arbitrary schemes, this new representation is very flexible and expressive. This rep-

resentation forms the connective infrastructure to bridge the gap between the static

discovery and the dynamic packaging that comprise the ADOPAR infrastructure.

The exposed interface allows for a variety of programming models to integrate with

the system while still using their native format within ADOPAR IR.

The following mechanisms comprise the IR:

Task Descriptors Similar tasks are bundled together and represented as a single

task descriptor. Using descriptors potentially simplifies static analysis of par-

allelism and can represent both regular and irregular computations. On the

surface, task descriptors act as task “factories”, but might be more accurately

viewed as a description of a group of tasks.

Relationship Descriptors Because tasks are condensed in the representation, the

relationships between them must also be represented in a similar manner. Both

regular and irregular relationships may be represented.

Instantiation Functions The key contribution that makes task and relationship

descriptors possible is an algorithmic representation of parallelism and relation-

ships as a method of the descriptors. In other words, instead of specifying task

parameters directly, the front end provides the computation to specify these pa-

rameters. In the case of constant parameters, there is little difference; however,

irregular and complex properties may be expressed algorithmically. Having the

capability to express complex patterns algorithmically is especially important

for irregular computations: the computations may have a pattern that may not

be possible to define with any one regular system, but an arbitrary sequence

of code may describe it. Instantiation functions may be analyzed to find reg-

ular patterns at compile time or executed at run time to instantiate the tasks

themselves.

This IR presents flexible and descriptive information about parallelism to an

ADOPAR infrastructure. Instantiation functions allow flexibility that stands in stark

10

contrast with the strict constraints used by other representations. Overall, the rep-

resentation adds a significant amount of additional parallelism information while in-

creasing the code size by less than 20% for even fine-grained parallelism and negligible

additional compilation time. We will show that while it is possible to produce a tra-

ditional task graph for schedulers to use, it will be important that schedulers operate

on the native representation to minimize overhead.

1.5 Outline

The rest of this work is organized as follows:

Chapter 2 presents related work in the area of parallelism representations

and other background information. Various compilers and run-time environments for

parallel systems use an internal representation appropriate for the techniques used by

the same. These representations are compared to the requirements of ADOPAR.

Chapter 3 describes ADOPAR’s representation. The description includes sev-

eral examples of task graphs that a front end might create. Also, various optimizations

and operations that may be performed on that task graph are discussed.

Chapter 4 details the implementation of the representation, along with contin-

uations of the examples in Chapter 3. This chapter also describes the programming

API and the back-end programming model of the ADOPAR IR.

Chapter 5 evaluates the representation by the overhead that it incurs while

building and operating on the task graph. It also shows how well this new represen-

tation integrates with various front ends.

Finally, Chapter 6 presents future work that can be performed in this area of

research and some final thoughts on this thesis.

11

12

Chapter 2

Background and Related Work

The proliferation of multicore processors has stimulated continuing and ex-

tensive research in optimizing compilers and other methods of increasing parallelism.

Much of this research has required development of a method to express parallelism. In

some cases, parallelism is presented as part of the programming paradigm; in others

it is defined as the compiler’s or tool’s internal representation for the parallelism.

This chapter summarizes the various paradigms that have been developed and

the internal representations used and presented in literature. The remainder of this

chapter is organized as follows: first, scheduling and execution is examined in context

of parallel programming. Next, an overview of relevant programming paradigms is

presented, followed by a discussion on how data-parallel, loop-parallel, and task-

parallel programs are represented in other systems.

2.1 Scheduling and Execution

There are several methods for scheduling and executing the parallelism of a

program. Static scheduling is the process of taking tasks, loop iterations, or data

(depending on the type of parallelism) and assigning them to a processing element

all at once. While generally performed at compile time, static scheduling may also

be a single step before execution, introducing a one-time execution overhead. Static

scheduling is especially effective for regular programs but can be inefficient if the

parallelism has a dynamic or irregular nature.

Other applications simply cannot be scheduled statically. For example, some

irregular applications delay task creation until after other tasks have been executed.

When tasks are created dynamically, a common solution is to have a “bin” of ready

13

tasks, from which work is assigned to available processors. Dynamic scheduling is

a mechanism which operates on the collection of tasks and makes task assignments

during the execution of a program. Dynamic and irregular programs tend to match

the paradigm of dynamic scheduling (where static scheduling would be inappropriate

or inefficient), but the run-time assignments introduce critical execution overhead

that must be avoided as much as possible.

A compromise for those cases where static scheduling may be appropriate if

the dynamic nature can be resolved is to schedule at run time but before the actual

execution. Being a form of static scheduling, it involves examining the parallelism first

and then making assignments. The Inspector-Executor (IE) model, first proposed by

Saltz [15], has been proposed as a method of dealing with irregular communication and

data layout in many applications, but has found support in many other research areas

as well. The CHAOS/PARTI compiler framework [5] contains an implementation of

the IE model.

The core concept is to separate execution into two phases: an inspector and

an executor. The inspector preprocesses the data to determine the necessary commu-

nication pattern, passing this information on to an executor which does the actual

computations. The preprocessing may also consist of optimizing the execution or-

der for cache effects, etc. Separating the inspection of the loops from the execution

gives opportunities for scheduling and optimization. Any overhead incurred may be

mitigated by repeatedly reusing the results of the inspector phase.

IE has been used for sparse linear algebra. Sparse matrix execution and other

similar computational problems are a case where the indexes to an array may be

expressed as functions (e.g. a[f()] = g(b[h()])). The basic task is defined by a

loop (or loop nest) that operates on the matrix, but the number of tasks and their

dependencies are not known until the indexes are calculated. Thus, the IE model

breaks execution into two phases: an inspector that calculates the loop indexes and

then an executor that then uses those indexes. The model usually operates as a loop,

the iterations of which are scheduled to threads in a simple fashion.

14

Although reusing the results of the inspection phase is helpful in amortizing

overhead costs, it is still important to reduce overhead as much as possible. To that

end, the original IE model uses a simple wavefront scheduling process, a scheme sim-

ilar to As Soon As Possible (ASAP) schedulers. In wavefront scheduling, the tasks

to schedule are represented as a Directed Acyclic Graph (DAG). All nodes without

predecessors are scheduled in parallel as the first wavefront. These nodes are removed

from the graph and the new set of nodes without predecessors is scheduled in parallel

as the second wavefront. This procedure continues until all nodes are scheduled. Com-

puting the wavefronts is a low-overhead task for the run-time environment. Creating

this schedule is simple and may itself be parallelized with low overhead; however, the

schedule produced is not optimal, especially for fine-grained tasks.

IE can be used for more than just parallel programming: the same concept can

be applied to serial programming where data access needs to be analyzed. The result

of the inspector is a sequence of memory references that could then be reorganized

to maximize cache efficiency. The abstract concept of inspecting the data access pat-

terns (as a preprocessing step) and determining a work schedule is a generic concept

that may be applied in many situations. Many of the programming representations

presented in the following sections use the IE concept by providing a mechanism for

partitioning parallelism and then reusing this partitioning repeatedly during the ac-

tual execution. This is also the paradigm used by ADOPAR; this work presents the

communication mechanism between ADOPAR’s inspector and executor concepts.

2.2 Parallel Programming Paradigms

There are many paradigms for programming parallel systems, with more be-

ing developed constantly. Each attempts to simplify the specification of parallelism,

increase the amount of parallel work, decrease overhead, or optimize for specific hard-

ware. These paradigms may be expressed as language constructs, library calls, or

compiler directives, often placed on the top of traditional, serial languages.

Some newer programming languages have the built-in ability to perform paral-

lel operations. Single-assignment languages, functional languages, and process-based

15

languages all fall under this category. Traditional languages, however, form the main-

stay of benchmarks and legacy code. Many developers would prefer to parallelize

existing code or at least use a language with similar constructs. For this reason, High

Performance Fortran (HPF), Fortran 95, and others were made as extensions of

Fortran. C and C++ (as well as Fortran) have been extended with OpenMP

and various libraries to transform them into parallel languages.

For the purposes of this work, we define parallelism as the properties of pro-

gram segments that allow them to run concurrently. Shared data between program

segments limit, prevent, or otherwise constrain parallel execution.

2.2.1 Types of Parallelism

Most parallel programming paradigms fall into the following categories:

Data-Parallel (Section 2.3) This type of parallelism is defined by the data being

operated on. In general, a thread “owns” a portion of the data and operates on

it. Irregular data divisions create imbalance in the load balance and communi-

cation in the system. Parallelism is intrinsically defined by the data division.

Loop-Parallel (Section 2.4) For many applications, loop iterations can be indepen-

dently executed in parallel. A compiler may have to transform the loop and

prove independence to parallelize programs. Loop-parallel programs may be

irregular if the amount of work in each iteration varies or if not all loop indexes

should be performed. Parallelism is defined by the division of loop iterations.

Task-Parallel (Section 2.5) A third class of parallel programs are defined by tasks:

portions of the program that may be executed simultaneously and, depending

on the model, atomically. There are generally more tasks than threads or pro-

cessors in a system: tasks must be scheduled or mapped to a thread or processor

at the appropriate times while not violating dependencies. Scheduling often in-

volves some sort of task graph or similar representation. Task graphs show

irregular tasks and communication directly, and can usually represent an equiv-

alent form of both the data-parallel and loop-parallel paradigms by defining

16

loop iterations and portions of the data to be the individual tasks. Parallelism

is defined by the task graph.

2.3 Data-Parallel Representations

Data-parallel programming recognizes that the same set of operations may be

applied to a block of data. The block can then be divided between processors for

parallel operation. Data-parallel programs may be specified by:

1. control-flow of operations on a data set,

2. partitioning of the data to processors, and

3. communication and synchronization.

Kernel Lattice Parallelism (KeLP) [16, 17] is a set of C++ libraries designed to

ease the specification of irregular block-wise data layouts, where sections of matrices

are segmented into individual blocks to be assigned to different processors. Blocks

are partitioned among processors through geometric operations. Communication is

specified as sequences of data motion between these blocks. The motion may be set

up and then reused throughout execution of the program. A simple example of KeLP

is a simple dimension-wise decomposition of the data into rectangular sections. Each

block then receives “ghost cells” around the border, representing the communicated

data between processors. The data motion for each iteration of the program copies

the data in these cells between processors.

KeLP succeeds in representing regular applications and some irregular applica-

tions, although irregularity must be described in blocks. Some very irregular programs

see a high overhead from the block-wise decomposition. In addition, KeLP is a strictly

runtime-only environment, eliminating compile-time analysis of the representation.

The ParaScope compiler tool suite has a special representation for inter-

procedural side-effect analysis using Regular Section Descriptors (RSDs) [6]. Large-

granularity parallelism can only be found by determining that code sections are in-

dependent of others, especially code that operates on an array. The compiler may

17

separate code sections for execution if the compiler can prove that different code

blocks or iterations of a loop operate on independent sections of an array. ParaScope

works on Fortran input and creates parallelism by transforming sequential do loops

into parallel do loops.

ParaScope approaches proving independence through regular sections: an

analysis of the access patterns across an array. A regular section is a commonly

used access pattern over a portion (section) of an array, such as a column or row.

A regular section defines a set of actual data accesses, including the operation per-

formed that data. Set intersection reveals dependencies between two code blocks; set

union combines regular sections. There are many possible ways of representing regu-

lar sections: some of these methods will be analyzed below as variations on the RSD.

The easiest regular section representation is a vector of indexes. This could contain

a single element, row, column, or diagonal. Triangular sections and discontinuities

have no representation in RSDs. While irregular patterns may require many RSDs,

regular patterns potentially have very low overhead. Working with RSDs is mainly a

compile-time process but might also be applied in a run-time system.

As a refinement of the RSD, the Data Access Descriptor (DAD) [18] defines

three properties for a task’s access to a portion of an n-dimensional array. The main

contribution is the simple section, a simple boundary around the accessed portion of

an array. By limiting the boundaries to 45◦ angles a maximum of 2n2 boundaries are

available to describe sections, sufficient for most standard applications. Constant-time

operations are also available to define the intersection and union of simple sections,

with the complication that the union may not result in a completely convex region. As

a solution, the conservative approach expands the region so it satisfies simple bound-

ary conditions. In addition, a traversal order and reference template (the definitions

for how the code accesses descriptors) are provided for each DAD as it is defined for

an array. DADs have many of the same benefits and drawbacks as RSDs, but also

have the ability to describe other shapes of regular sections and attach additional

access patterns for communication.

18

Processor Tagged Descriptors (PTDs) [19] further extend the RSD and the

DAD. The bounded area is more precisely defined, allowing for concave sections

and other complex shapes, while requiring more processing to perform arithmetic

on these sections. Instead of bounding an area by known lines, the boundaries are

parameterized by the processor number and a linear equation. These restrictions

still allow for simple mathematical operations to manipulate the descriptors. The

parameterizations automatically partition the data among processors, the number of

which may vary from run to run with the same binary and descriptors. As with

RSDs and DADs, PTDs are mainly used for analysis by the compiler, rather than

an inherent description of the parallelization. However, the results may be used later

as the descriptors reveal the end data partitioning. Of the three descriptors (RSD,

DAD, and PTD), the last has the greatest flexibility for describing irregular accesses.

A different approach is used in Pilar’s internal representation, Communication

Pattern Internal Representation (CPIR) [20, 21]. Many applications show a mixture

of regular and irregular communication patterns. Three basic constructions are used

by the Pilar compiler to represent data access patterns: intervals, enumerations and

cyclics. Intervals are similar to the descriptors previously described: a set of bounds

on the index ranges for data access. CPIR intervals are actually a collection of such

ranges. Enumerations allow for completely irregular access patterns and are a simple

list of all individual accesses. Cyclics provide a specific access pattern: for some

applications, access is regular but an interval is not sufficient. Instead, the list may

be strided like the diagonals of a matrix. Such a list may be inefficiently represented

as an enumerated list, but cyclics allow for a smaller memory footprint and faster set

operations. An access schedule (meaning, the ordering of element access within the

construct) is also created in addition to the data pattern. This schedule is then used to

better analyze the relationships between different patterns. Since CPIR is a message-

passing system, the schedule consists of the sequence of messages to communicate

CPIR primitives, which are then translated to the actual local addresses.

Pilar has the ability to describe very regular and irregular systems (a feature

important to ADOPAR) and some capability to describe simple patterns when nec-

19

essary. The pattern is limited to simple, strided array accesses, which results in lower

overhead for those applications that it describes well.

These various versions of regular sections are a useful concept for ADOPAR,

but are constrained to specific formats for these sections. They are also constrained

to array accesses, a limitation that ADOPAR must avoid. The ability to describe

various patterns, however, is a concept that is useful in a more advanced parallelism

representation.

2.4 Loop-Parallel Representations

Most automatic parallelizing compilers attempt to find coarse-grained loop

parallelism. Loop parallelism is easy to express: simply mark loops as being paral-

lel and map individual loop iterations to threads. Representations for loop-parallel

programs generally have attributes such as:

1. special parallel loops (such as doall or doacross),

2. mapping of iterations to processors, and

3. communication and synchronization.

The Polaris compiler’s Internal Representation (IR) [7] has a 1-1 relationship

with basic Fortran constructs using a high-level format. Expressions, statements,

and symbol tables are basic classes. Parallel loops, after appropriate analysis, become

doall loops, where each iteration may be executed in parallel. Variables may be

declared as private to the loop.

Polaris is similar to the OpenMP [22] standard. OpenMP is a set of compiler

directives for C and Fortran programs, including automatic partitioning of loops

and parallel sections to processors, synchronization through barriers, etc. The par-

allelism described by OpenMP is implicit, specifying which variables are private and

which loops may be executed in parallel. Some hints as to scheduling may also be

specified, but such control is limited.

In both cases, irregular applications are not well-supported: iterations that

do nothing are generally assigned to processors along with those that perform useful

20

work. Loop-based representations have few facilities to express communication and

dependencies beyond the use of barriers and other simple primitives. These repre-

sentations are often translated to a simple back end where loop iterations are simply

divided between processing elements, reducing the optimizations possible at the back

end.

The Stanford University Intermediate Format (SUIF) compiler [4, 23] is an

extensive project to increase the ability of compilers to automatically extract paral-

lelism from existing benchmarks. Internally, programs are represented on a relatively

high level: loops, conditional statements, and array accesses (as well as other helpful

information from the front end) are part of the IR, as well as the more common low-

level information used by a compiler. High-level information is in a canonical form for

the compiler passes to use. After the high-level passes have completed, the high-level

information is transformed into lower-level compare/branch instructions, etc.

The higher-level IR of SUIF allows for easy analysis, but is not strictly meant

for use by a unifying back end such as ADOPAR. Higher-level information is useful

(as little information is lost when lowering to machine instructions), but needs to be

in a form that can be scheduled and executed. In the end, SUIF has many of the

same limitations as other loop-parallel representations, which are all limited by the

implicit nature of loop parallelism.

2.5 Task-Parallel Representations

Task graphs are another way to represent parallelism. Individual units of work

(tasks) are separated and reconnected by their dependencies and ordering constraints.

The sequence of dependencies determine which tasks may be executed simultaneously;

therefore, the dependencies are critical to determining ordering, scheduling, and par-

titioning. Analyzing each dependency reveals the constraints to the available parallel

21

work. The requirements for task-parallel representations are different than those for

other types of parallelism. Task-parallel representations require:

1. code and data for task execution,

2. task dependencies, and

3. additional synchronization between tasks.

Johnson proposed a task graph specially designed for dynamic task schedul-

ing [24]. This task graph assigns specific states to each task: unexecuted, executing,

finished, and not ready. As tasks become available they are processed by threads.

A task structure handles dynamic creation and execution of tasks. Tasks are never

explicitly scheduled to reduce overhead or increase locality as some applications have

unpredictable and non-repetitive behavior. Use of this task graph requires good

heuristics appropriate to the problem in order to properly and efficiently execute

tasks.

The nature of this task graph makes both regular and irregular applications

easy to represent. Communication and dependencies are represented as well as part of

the task graph. The execution overhead, however, may be too large for fine-grained

applications: tasks are dynamically assigned, so the overhead is not amortized by

reusing information. In addition, little or no static analysis is possible.

The Hierarchical Task Graph (HTG) [25] was made as part of the autoschedul-

ing project headed by Polychronopoulos [26]. As its name implies, the HTG describes

a task graph in a hierarchical manner: loops in the control-flow graph are collapsed

into a single node (similar to a strongly-connected component). These nodes may

be further collapsed to change the granularity of the task graph. The edges in the

graph represent the communication and dependencies between tasks. The overall

preconditions necessary to execute a task are represented by a set of execution tags.

Redundant tags may be optimized for run-time efficiency.

The HTG satisfies many of ADOPAR’s requirements: it may express irregular

applications and communication with minimal task overhead. Indeed, this thesis

22

borrows several techniques from the HTG and may be considered an extension of it

in many ways: the basic task graph and the hierarchical structure being key examples.

However, the HTG makes no provisions for regularity as its focus is on dynamic, rather

than static, scheduling. ADOPAR, however, requires a more flexible representation

for the scheduler to work with and using the HTG with many fine-grained tasks will

exaggerate overhead issues; some method of condensing and summarizing tasks is a

step to mitigate this problem.

2.6 Summary

Various representations exist to represent parallelism, each with its own im-

plementation infrastructure. Many representations follow the general idea of the IE

model: perform some sort of analysis before running the program in some reusable

fashion. The needs of the infrastructure tend to determine the properties of its re-

spective representation. For example, the need to analyze dependencies specifies a

data-based representation with set operations, while iterating algorithms call for a

loop-based representation. Dynamic and irregular problems may require a task-based

representation.

ADOPAR’s representation has specific requirements: the representation must

handle irregular and regular tasks and communication patterns in both compile-time

and run-time environments, all with low overhead. Many of the representations used

in other parallelizing environments have been presented here, but none completely

fulfills the requirements of ADOPAR, especially the requirement that a representa-

tion can cross the boundary between a compile-time environment and a run-time

environment.

The following chapter describes a new IR for ADOPAR. The IR uses a task

graph described in the program’s code with compiler intrinsics. The IR handles

irregularity and regularity using executable code as part of the representation itself,

making a very flexible system within a compact representation that may be analyzed

within the compiler or run-time system.

23

24

Chapter 3

The ADOPAR Representation

ADOPAR is an execution framework designed to improve parallel performance

by overcoming environmental and architectural diversity and by increasing the effi-

ciency of parallelization. ADOPAR has a special focus on applications with irregular

communication and data access patterns. To this end, ADOPAR uses the following

concepts:

• Fine-Grained Task Model

Task parallelism is a flexible method to express both regular and irregular par-

allelism, but most research has been limited to coarse-grained tasks. Large

tasks generally have the advantage of fewer inter-task dependencies, simplify-

ing scheduling and reducing overhead. As the task granularity becomes more

fine, however, more parallelism may be extracted from the program. The ad-

ditional parallelism, in turn, increases potential for a better-balanced load and

tighter overall schedule. ADOPAR attempts to mitigate the overhead while still

extracting sufficient parallelism to justify the extra work of scheduling.

• Front-End Agnostic

ADOPAR does not rely on any one specific programming paradigm in the front

end but may be used as an optimizing back end to many different languages

and systems. Any model that can be represented as a set of tasks (which

include most data and loop parallel systems) may then use ADOPAR for an

optimization and execution environment. No front-end yet exists that produces

the ADOPAR Internal Representation (IR), a problem outside the scope of this

work.

25

• Dynamic Execution Environment

Dynamic code compilation offers many advantages for any system trying to

overcome diversity challenges (like the architecture differences and environment

changes described in Chapter 1). Run-time compilation may take the architec-

ture diversity into account automatically; changes in the number of available

processors or additional overhead in the communication on the system imply

that portions of the program may even need recompilation for optimal perfor-

mance.

• Run-time Optimization System

The ability to compile code dynamically allows for run-time optimizations. Dy-

namic optimization is especially important with irregular applications, but also

can be effective for serial applications as well [27]. In addition, hardware and

operating systems provide performance counters – useful for refining the com-

pilation and schedule of a parallel system. Lastly, run-time optimization can

potentially reduce the run-time overhead of fine-grained tasks significantly by

intelligently merging the tasks together.

ADOPAR requires an internal representation in order to take advantage of

each of these concepts. This representation must include the dependencies between

each task and the synchronization necessary to execute correctly. In addition, the

representation needs to be as compact as possible while still providing rapid querying

for scheduling and analysis.

Note that this representation is significantly different from many of those de-

scribed in Chapter 2. Rather than being used as a compiler analysis technique, storing

the data access patterns for the various function calls, the ADOPAR representation

is a way of integrating a scheduling and executing back end with arbitrary front-end

analyses to define a set of executable tasks. Integration is accomplished by includ-

ing code as a part of the representation, as will be described in Section 3.2. The

ADOPAR IR makes a bridge between the static discovery representations and the

run-time packaging systems.

26

3.1 Fine-Grained Task Model

The goal of all parallelizing compilers is to increase the amount of parallelism,

balance the load between processors, and reduce the amount of communication. Ide-

ally, this goal will be accomplished with as little overhead as possible. Diversity in

operating environments complicates each goal. ADOPAR’s solution is to separate the

process of parallelization into three phases:

Discovery Analyze the program for possible parallelism. ADOPAR allows the use

of very fine-grained tasks to maximize the parallelism available in the program.

Discovery might be done at compile time or at run time, but compile-time

analysis would reduce execution overhead. Discovery is partly the function of a

front end, but can also be done by analysis of the IR.

Packaging Map and schedule tasks to threads. Packaging is a well-studied problem

(see [28, 29, 30, 31]) but is still an active area of research. Packaging would

ideally be done at compile time to reduce overhead, but irregular problems may

not be scheduled until the task structure has been resolved at run time.

Execution Perform the scheduled tasks in the specified order. Execution must, of

course, be done at run time, and may be augmented by performance monitoring

for schedule tuning.

Notice that these phases are very similar to the Inspector-Executor (IE) model:

the discovery phase inspects the program for parallelism and the execution phase

performs the parallel calculations. An intermediate phase (packaging and schedul-

ing) optimizes the parallelism and reduces communication. Fine-grained tasks, while

allowing for additional parallelism, introduce more communication and overhead; the

scheduling phase offers a chance to reduce overhead. IE is limited by a very simplistic

packaging algorithm (wavefront scheduling) and has only limited static capabilities.

The extra overhead of fine-grained tasks requires that compile-time analysis

must be done when possible. Irregular communication patterns will usually prevent

scheduling at compile time, but discovery may still be done. Thus a mechanism must

27

exist to transfer the parallelism between the static environment and the dynamic

environment.

3.2 Static Task Graph

The main feature of the ADOPAR IR is a task graph, similar to those described

in Chapter 2. A task graph offers a simple, well-studied representation and is the

underlying data structure used by the ADOPAR scheduling system. A goal of the

IR is to work with a variety of programming paradigms; task graphs offer a universal

mechanism to represent many types of parallelism.

The underlying data structure is similar to the Hierarchical Task Graph (HTG)

but with the addition of highly generic task descriptors and relationship descriptors :

nodes and edges in the task graph that represent an unspecified number of tasks,

subtasks, and relationships. Nodes often take the place of loop iterations, where each

iteration may be considered a task. Using these nodes, a front end may represent

a large number of similar tasks in a very compact form. Figure 3.1 demonstrates

how this works in a trivial graph. The program defines a set of task descriptors (a),

where node B in fact represents a set of nodes. At run time, node B is instantiated

to create nodes B0, B1, and B2 (b). The instantiated nodes may be actually created

or just implied in the implementation. As will be seen in Chapter 4, it may be more

efficient to do one or the other, depending on the task graph structure and how the

instantiation is specified.

In addition to representing sets of instantiated tasks, task descriptors may be

a hierarchy of other task descriptors, similar to the hierarchy mechanism in the HTG.

A hierarchy is the grouping of task descriptors rather than of individual tasks and

serves a different purpose. Rather than containing loops, the hierarchy consists of

additional task descriptors, as seen in Figure 3.2. Of course, the hierarchy is not

strictly necessary as the inheritance of dependencies could be carried out manually.

A hierarchy provides the framework for a set of transformations to convert the rep-

resentation between these different forms: more will be given on these operations in

Section 3.5.

28

D B

C

A

(a) Task Descriptor Graph

D B0

C

B1 B2

A

(b) Task Instantiation Graph

Figure 3.1: A visualization of the tasks made by the task descriptors. Node B is a
task descriptor for three instantiated tasks. (a) shows the static TDG, (b) shows the
instantiated task graph represented by (a).

(D)

A

BE

CF

Figure 3.2: Example of a hierarchy of tasks. Nodes represent task descriptors, with
sequencing and conflict relationships represented by the edges in the graph. Nodes E
and F form a hierarchy within node D.

The basis of the representation is a graph of task descriptors, which we des-

ignate as the Task Descriptor Graph (TDG). The task descriptors may form loops

29

or may be hierarchical. The scheduling back end for ADOPAR, however, operates

on a simple Directed Acyclic Graph (DAG) of individual (instantiated) tasks, called

the Task Instantiation Graph (TIG). The TIG no longer contains this hierarchy and

cannot contain loops (which have no meaning to the scheduler). The TDG may be

converted to an TIG by instantiating out each task and relationship represented by

the descriptors.

The figures in this work distinguish between TDGs and TIGs by shading the

nodes of task descriptors. Because the IR is based on a graph, most of the figures will

use standard graph notation consisting of nodes (ovals) and edges (lines and arrows).

The nodes of the graphs represent the tasks while edges represent the relationships

between them. Relationships may be directed (arrows) or undirected (dotted lines).

Directed edges are used for sequencing relationships while undirected edges are more

appropriate for mutually exclusive and read sharing relationships where no direction is

implied by the relationship itself. Hierarchical nodes (only in TDGs) are represented

by including a sub-graph of the contained tasks within a separate box annotated with

the parent node’s name. The parent’s node is a rectangle instead of an oval to reflect

this hierarchy.

3.2.1 Task Types

To support the front-end programming model, the IR includes several task

types. Some task types are vital to the functioning of the TDG while others are

for convenience. The types of tasks may be expanded in the future; the currently

supported tasks are:

Root Task The root of the task structure. It contains no body (like an empty task)

and cannot be contained within another task (but see also Substitution Task

below).

Empty Task A task which has no body: its only purpose is to be a hierarchical

placeholder for task descriptors.

30

Block Task A set of basic blocks for the task body, where the control flow through

the blocks has a single entry and exit point; loops and branches may exist

between these two points.

Function Call Task A single function call, with subtasks defined within the func-

tion call itself.

Substitution Task A mechanism for creating dynamic task structures (an entire

task structure may be substituted in its place).

3.2.2 Synchronization Primitives

The ADOPAR representation does not have any specific synchronization prim-

itives beyond those implied by task relationships. The scheduler is required to insert

the appropriate synchronization between tasks to enforce serial or exclusive execution

where it is required. Of course, synchronization need not occur when two tasks have

been scheduled in the appropriate order on the same processor. The duty of a front

end is to describe relationships: synchronization is then a property extracted from

those relationships.

The relationships between tasks determine how they must be scheduled: de-

pendencies on shared variables may force two tasks to become serialized (task depen-

dencies) or simply prevent them from executing simultaneously (mutually exclusive

tasks). Relationships are described as edges on the graph. Serial relationships in the

graph are enforced at run time through binary semaphores; the latter of the related

tasks does not execute until the earlier task signals its completion. A semaphore is

signaled once the task ordering is satisfied. Synchronization is not necessary when

ordered tasks are scheduled onto the same thread, but they must be scheduled in the

correct order if the schedule is to be correct. Conflict relationships require that tasks

cannot execute simultaneously. The execution order of two tasks is not important as

long as they are not executed simultaneously on separate processors. In this case,

the scheduler must either schedule exclusive tasks to the same thread or to separate

threads with appropriate locking synchronization to prevent simultaneous execution.

31

Barriers, where a set of threads must wait until all have reached the same

point, exist but not as a specific function call or other primitive; rather, the TIG may

be organized so that a barrier is simulated. Figure 3.3 shows an example of such a

barrier. By forcing all control flow to go through a single empty task (node E in the

figure), all threads must wait on the completion of that task. Partial barriers consist

of only a portion of the graph passing through the controlling node. Shaping the

graph through a barrier allows the scheduler to control which threads must wait on

the barrier task.

A

C D

E

F G

B

Figure 3.3: The implementation of a barrier in the ADOPAR internal representation.
All tasks must go through node E, which acts as the barrier.

3.3 The ADOPAR Internal Representation

ADOPAR uses schedulers that operate on a well-defined task graph, but tries

to not be constrained by any single front-end programming paradigm. The ADOPAR

internal representation is formed by two major principles:

32

1. Tasks are defined in the program executable, but not instantiated until run time.

Delayed instantiation is accomplished through task descriptors and relationship

descriptors, parameterized task graph primitives defined in the executable.

2. Few restrictions should be placed on the tasks to provide compatibility for a

wide variety of front ends. ADOPAR runs within a Just-In-Time compiler

(JIT) environment, enabling executable code to be part of the representation.

Instantiation functions of descriptors contain this code and perform the task

and relationship instantiation.

3.3.1 Task and Relationship Descriptors

Task descriptors are a powerful concept that can represent a class of tasks.

However, descriptors need some mechanism for specifying how many tasks are to be

created, what the parameters are for each task, and how the tasks relate to each

other. Different paradigms force the representation to be very generic, especially

within applications that have irregular communication patterns. Previous work has

limited the user to a specific constraint system to simplify operations on the sets

(such as unions or intersections), with anything that does not fit these constraints

defaulting to singleton sets (an enumeration). ADOPAR takes a significantly different

approach by allowing instantiation functions of any form.

The instantiation functions are actual code provided by the front end, rather

than a predefined form, such as a linear equation, where the user only has control over

the constants that control the representation. The ADOPAR IR has the capability of

executing instantiation functions in a JIT compiler or at compile time if the necessary

parameters are available. In fact, there are normally no calls to the representation

functions outside of the representation implementation. In those cases when static

analysis is not possible, the representation function is not called until the tasks are

actually instantiated and the TIG built during execution.

An instantiation function for a task descriptor has access to the parameters of

the instantiated parent task in the task hierarchy. The instantiation function creates

a set of subtasks using the task parameters. In addition, the parameters of each

33

subtask are initialized with data specific to the task, such as array indexes to access

when executed. The ADOPAR schedulers have the capability to schedule based on

a task cost: the instantiation function may provide an estimate of execution cost as

part of instantiation. This estimation takes precedence over that provided by the

definition of the task descriptor.

Any number of schemes are possible due to the flexibility of instantiation func-

tions. For instance, a task descriptor may represent the contents of a doall loop by

instantiating a task for each iteration and assigning the loop index as the parameter

of each task. Tasks using sparse data may analyze the matrices and determine the

specific elements that need to be computed, either creating a task for each item or

storing information about the element as a task parameter. Examples will be seen in

Section 3.4. Regular access patterns may operate as a special case: analysis of con-

stants and partial evaluation [32] will provide the compiler with enough information

to perform static analysis.

Providing instantiation functions supplies the user with immense flexibility

in their programming model: any number of front-end representations may be used

and then easily integrated into the ADOPAR representation by providing a suitable

translation function. In a sense, instantiation functions work as the inspector of the

communication and tasks.

Beyond the actual instantiation of tasks, it is also necessary to provide a

generic means to represent the relationships between these instantiated tasks. Re-

lationship instantiation is similar to instantiating tasks, but edges in the TIG are

created rather than nodes. A relationship instantiation function takes an instanti-

ated task and produces a set of predecessors and successors to that task, as well as the

exact relationship and cost associated with any communication involved. The defini-

tion of a relationship descriptor also contains an estimate of the communication cost,

an estimation for the type of relationship, and even association with a variable (so

alias analysis results and other information may be encoded). There are five possible

relationships between tasks:

34

Read After Write (RAW) A “true dependency” – the second task will read the

results of the first. Ordering must be enforced between these two tasks.

Write After Read (WAR) An “anti-dependency” – the second task writes to a

data location read by the first. Renaming the data location for one or the other

can break this dependency; otherwise, ordering must still be enforced.

Write After Write (WAW) An “output dependency” – both tasks write to the

same data location. As with WAR, renaming the data location can break the

dependency.

Exclusive The ordering of the two tasks does not matter, but they cannot occur at

the same time.

Read Share The tasks read the same data, but no ordering needs to be enforced

between them.

None No relationship exists, meaning that the scheduler has full control over the

execution order of the tasks and no edge exists between instantiated tasks in

the TIG. This is the default relationship if none is specified.

The first three relationships specify directed edges between nodes in the TIG,

forcing execution orderings. In some cases, the scheduling system might break WAR

and WAW edges by copying data, removing the dependency at the expense of ad-

ditional memory usage. The fourth relationship type adds a conflict(an undirected

edge). The scheduler must then add a lock to maintain mutual exclusivity, but only

if the tasks are scheduled to different threads. The scheduler may eliminate or avoid

locks if the task and communication costs are accurately known [33, 34]. Read shar-

ing relationships are not strictly for correctness and the scheduler may even ignore

them. However, the scheduler may use the knowledge about read sharing to improve

the cache locality. Specifying more than one relationship between tasks is allowed as

long as they are not contradictory.

35

Care must be taken that relationships do not form loops in the TIG. Loops

may exist between task descriptors in the TDG, but loops must be resolved when

instantiated to form a DAG1.

3.3.2 IR Creation Process

Any front end to ADOPAR, whether it be a parallelizing compiler, program-

ming model, or manually-supplied by the programmer, must include the following

elements of the IR as part of the IR building process:

Task Descriptors The basic element of the IR is the task descriptor, which consists

of a task body, instantiation function, and an estimation of the task cost.

Task Hierarchy The hierarchical structure of the task descriptors is specified in-

line where the code should be executed. OpenMP uses a similar “fork-and-join”

concept.

Relationship Descriptors Relationship descriptors are specified between two task

descriptors, associating two tasks and the appropriate relationship instantia-

tion function. Relationship descriptors reference two task descriptors, have an

instantiation function, and an estimate of the relationship type and communi-

cation cost.

Execution Directives Calls to schedule, execute, and control the task graph must

be placed in appropriate locations of the code.

3.4 Examples

Some simple examples illustrate how standard algorithms translate into the

ADOPAR internal representation. These examples will be expressed in pseudocode

and graphs to avoid the implementation details that will be discussed in Chapter 4.

1It may be possible to support loops that have WAR and WAW relationships if these loops can
be broken as described. Future work may look at using dependency elimination for optimization
and additional parallelization opportunities.

36

The IR does not attempt to regulate the programming model or granularity

used. The examples in this section show only a small variety of possibilities, but the

IR can mold to whatever style the front end supplies. Read sharing relationships

will not be shown in these examples for simplicity and because they are an optional

component of the task graph. In practice, the addition of read sharing is a simple

process in the IR.

3.4.1 Linear Algebra

While ADOPAR attempts to target irregular applications, it is informative

to show how regular algorithms may be expressed. Using regular applications also

simplifies the representation for the purposes of this section. A simple representative

algorithm with few data dependencies is matrix-vector multiplication. The basic

algorithm can be seen in Figure 3.4.

for (i = 1 to m)
for (j = 1 to n)

r e s u l t [i] += matrix [i] [j] ∗ vec to r [j] ;

Figure 3.4: Pseudocode for a dense matrix-vector multiply.

There are several ways of representing the matrix-vector multiply algorithm

with various trade-offs in simplicity and effectiveness. The most straightforward is to

start with a base task descriptor that corresponds to the outermost loop. Contained

within the outer descriptor is another task descriptor representing the inner loop and

its body (see Figure 3.5). The leaf tasks have a simple body: multiply two items

together and add the product to the result. These leaf tasks may execute in any

order, but any two tasks that would store in the same result location must maintain

mutual exclusivity. If the tasks are scheduled appropriately, the tasks may be able to

execute with minimal blocking on the necessary synchronization, but only if iterations

37

are scheduled and distributed correctly. The resulting fine-grained TIG can be seen

in Figure 3.6.

(A)

A
B

+= *

Task A: I n s t a n t i a t e m task s
Task B: I n s t a n t i a t e n ta sk s
Rel (B,B) : Exc lus ive ope ra t i on s on r e s u l t [i] i f in same row

Figure 3.5: Representation for a dense matrix-vector multiply algorithm. Each inner
loop body accesses the same element as those on the same row, making an exclusive
relationship.

+=(0,0) +=(0,1)

+=(0,2)

+=(1,0) +=(1,1)

+=(1,2)

Figure 3.6: The TIG created when multiplying a 2x3 matrix by a 3x1 vector where the
sum is reduced using tasks that are exclusive to each other. See Figure 3.5. Dotted lines
in this figure represent the exclusivity relationship between nodes accessing elements
(i, j).

Alternatively, a summing tree could be used instead of mutual exclusivity, as

illustrated in Figure 3.7. In this case, the task body of the inner loop only performs

the multiplication. The product is then used in a sequence of summations that reduce

38

the result to a single value to be stored in the proper location. Using a reduction

privatizes the summation to each processor and increases the amount of parallel work

available, but requires that the scheduler reduces the amount of communication. The

TDG is represented in Figure 3.8.

(A)

A
B
*

C
+

Task A: I n s t a n t i a t e m task s
Task B: I n s t a n t i a t e n ta sk s
Task C: I n s t a n t i a t e n−1 ta sk s
Rel (B,C) : RAW in a t r e e
Rel (C,C) : RAW in a t r e e

Figure 3.7: An alternative TDG for matrix-vector multiply, but using a summing task
instead of mutual exclusivity.

The third method is a compromise between the two: the summing tree is con-

densed into a single task for each row, an overall coarser granularity. The resulting

TDG of Figure 3.9 is nearly the same as Figure 3.7, but with different instantiation

functions, making the TIG as seen in Figure 3.10. In reality, there are a near-infinite

number of combinations between a single summation and a full summation tree to

modify the task granularity and improve performance: using summing tasks with

more than one input and then placing these tasks in a tree is an effective solution.

However, the instantiation functions must be carefully designed to support this com-

39

(0,0)

+

(0,1) (0,2)

+

(1,0)

+

(1,1) (1,2)

+

Figure 3.8: An equivalent TIG to Figure 3.6 but using a summing task instead of
conflicts.

plex structure. A similar result can also be achieved by merging tasks to adjust the

granularity. The chosen solution must consider the number of tasks that must be

scheduled, the communication cost between each of these tasks, and increasing the

amount of parallelism available for the scheduler to use.

Lastly, we can increase the task size by combining the hierarchy (see Sec-

tion 3.6) into the parent row task. The granularity modification forces each row to

be computed as a single task (Figure 3.11) so that no synchronization is needed. The

load will be well-balanced in this case as there are many rows in the matrix, there are

no locks to deal with, and the task granularity is larger (further reducing overhead).

See Figure 3.12 for the TIG created by the granularity reduction method. Granular-

ity adjustments (as presented in Section 3.5) provide a mechanism for manually or

automatically improving the performance by reducing the per-task overhead.

A transformation compiler pass may convert between these different but equiv-

alent representations. The details behind this procedure are largely beyond the scope

of this work, but task combining and descriptor splitting (as described in Section 3.5)

are specific TDG transformations supported to assist in the transformation process.

One goal of ADOPAR is to work with irregular access patterns like those

produced with sparse matrices. Interestingly, the TDGs (Figures 3.5, 3.7, and 3.9) for

40

(A)

A
B
*

C
+

Task A: I n s t a n t i a t e m task s
Task B: I n s t a n t i a t e n ta sk s
Task C: I n s t a n t i a t e n−1 ta sk s
Rel (B,C) : RAW within the same row

Figure 3.9: Using a single summation task for each row rather than a summing tree.

(0,0)

+

(0,1) (0,2) (1,0)

+

(1,1) (1,2)

Figure 3.10: An equivalent TIG to Figure 3.8 but reducing the summation into a
single step rather than using a tree.

A

Task A: I n s t a n t i a t e m task s

Figure 3.11: Flattening the hierarchy to change the granularity of computation.

41

(0,0)+(0,1)+(0,2) (1,0)+(1,1)+(1,2)

Figure 3.12: An equivalent TIG to Figure 3.6 but with the granularity changed by
merging the hierarchy so that each row is computed in a single step.

sparse matrix access are generally equivalent: the only differences are the instantiation

functions. Instead of simply creating a regular pattern of tasks, the sparse versions

of the instantiation functions are implemented as an inspection of the sparse matrix

and an enumeration of the tasks necessary to access it. The TDG, however, remains

unchanged.

3.4.2 Iterative Linear System Solvers

Both the Jacobi and Gauss-Seidel methods for solving linear systems have

more interesting properties to demonstrate with the IR. It is also interesting to

examine the differences in the representations for each and compare with the simple

matrix-vector multiplication algorithm.

The Jacobi method is very simple and easy to parallelize in general. The

basic pseudocode for these solvers is outlined in Figure 3.13. The calculations in each

iteration are dependent on the results of the previous iteration, and not on any results

obtained in the current iteration. After the current iteration has finished, the new

results must become the old results for the next iteration.

The entire process resembles that of matrix-vector multiplication, but with

additional steps involved (compare the Jacobi TDG of Figure 3.14, which creates a

resulting TIG in Figure 3.15). First, the summation for each row is used in calculating

the new estimate for X in that iteration. Also, after all the rows have completed, the

new and old X vectors must be swapped. Other than the swap task, the Jacobi

algorithm creates a task graph with an overall tree-like structure. Lastly, the Jacobi

algorithm is iterative, so the algorithm checks for convergence – the algorithm has

42

while (notdone)
for (i = 1 to m)

for (j = 1 to n)
i f (i != j)

sum += A[i] [j] ∗ X old [j] ;
X new [i] = (b [i] − sum) / A[i] [i] ;
notdone | |= chk (X new [i] , X old [i]) ;

swap (X new , X old) ;

Figure 3.13: Pseudocode for a dense iterative linear system solver using the Jacobi
method.

not converged if any row has not converged. For visualization purposes, the TIG can

be seen in Figure 3.15.

Instantiation functions must be created for all relationship and task descriptors

to form the TIG. Chapter 4 describes the creation process with each instantiation

function implemented with the appropriate API calls. Briefly, the functions must cre-

ate the trees for the summation and convergence checks. In addition, sparse matrices

have the same underlying task structure, but with modified instantiation functions

to create only those tasks which are necessary.

Notice that the outermost control loop is not part of the task structure. In

fact, the task structure is not dependent on this loop, allowing the schedule results

to be reused on each iteration. The performance of the loop may be improved by

partially unrolling the while loop (potentially increasing the amount of parallel work

or allowing for task combining opportunities), but these techniques are outside the

scope of this work.

The Gauss-Seidel method is different from the Jacobi method in that calcu-

lations may depend on the results of the current iteration (Figure 3.16). The intra-

iteration dependencies create complex relationships, but the convergence is much

quicker. Unfortunately, it is harder to parallelize due to these additional dependen-

cies. The representation for the Gauss-Seidel method is nearly the same as the Jacobi

method, but with an additional relationship descriptor. The following discussion re-

lies on Figures 3.14 and 3.17.

43

(A)

A

D E

B

C

A: i n s t a n t i a t e m task s −− (b−sum)/ diagonal , chk
B: i n s t a n t i a t e n ta sk s −− s c a l a r mu l t i p l i c a t i o n
C: i n s t a n t i a t e n−1 ta sk s −− summation reduct i on
D: i n s t a n t i a t e m−1 ta sk s −− l o g i c a l or r educt i on
E: i n s t a n t i a t e one task −− swap X vec to r s
Rel (A,D) : RAW (t r e e)
Rel (A,E) : RAW
Rel (B,C) : RAW (t r e e)
Rel (C,C) : RAW (t r e e)
Rel (C,A) : RAW
Rel (D,D) : RAW (t r e e)

Figure 3.14: The TDG for the Jacobi algorithm presented in Figure 3.13. Generally,
each step in the algorithm becomes a task or task descriptor. Using a reduction tree to
determine convergence eliminates a WAR dependence.

The first difference to note is the lack of a swap step, an obvious change given

how the algorithm works. The second difference is an additional dependence function

between the multiplication step and the result calculation for each row. While the

additional dependence appears to create a loop in the task graph, it only exists in

the TDG; relationship instantiation functions prevent a loop in the TIG. Figure 3.18

shows that the additional dependencies do not create any loops, but they do make the

graph a general DAG rather than a simple tree (which the Jacobi algorithm produces,

with the exception of the swap task).

Resolving the apparent loops in a TDG relies on appropriately implemented

relationship instantiation functions that correctly describe the algorithm without in-

44

+

(b-sum)/diag,chk

+

(b-sum)/diag,chk

+

(b-sum)/diag,chk

* (0,1) * (0,2)

| | swap

* (1,0) * (1,2) * (2,0) * (2,1)

| |

Figure 3.15: The instantiated task graph for a dense 3x3 Jacobi iterative solver using
the TDG in Figure 3.14.

while (notdone)
for (i = 1 to m)

for (j = 1 to n)
i f (i != j)

sum += A[i] [j] ∗ X[j] ;
o ld = X[i] ;
X[i] = (b [i] − sum) / A[i] [i] ;
notdone | |= chk (X[i] , o ld) ;

Figure 3.16: Pseudocode for a dense system solver algorithm using the Gauss-Seidel
method.

troducing loops into the TIG. The proper implementation for the instantiation func-

tions will be described in Chapter 4.

45

(A)

A B

D C

A: i n s t a n t i a t e m task s −− (b−sum)/ diagonal , chk
B: i n s t a n t i a t e n ta sk s −− s c a l a r mu l t i p l i c a t i o n
C: i n s t a n t i a t e n−1 ta sk s −− summation reduct i on
D: i n s t a n t i a t e m−1 ta sk s −− l o g i c a l or r educt i on
Rel (A,D) : RAW (t r e e)
Rel (A,B) : RAW
Rel (B,C) : RAW (t r e e)
Rel (C,C) : RAW (t r e e)
Rel (C,A) : RAW
Rel (D,D) : RAW (t r e e)

Figure 3.17: The TDG for the Gauss-Seidel algorithm presented in Figure 3.16. The
TDG differs from Figure 3.14 by removing the swap task and inserting the additional
intra-iteration edge.

As stated previously, the examples shown here are only one way of transform-

ing the Gauss-Seidel and Jacobi algorithms into TDGs. It is also possible to use

coarser granularities (by splitting along each row or separating the upper and lower

triangular portions of the matrix). The goal of this representation is not to designate

what granularity is appropriate, but rather to support whatever granularity that the

front end chooses.

3.5 Future Transformations on the TDG

A task graph offers a convenient representation for task manipulation, allowing

for optimizations at both the front and back ends. Likewise, the ADOPAR internal

46

+

(b-sum)/diag,chk

+

(b-sum)/diag,chk

+

(b-sum)/diag,chk

* (0,1) * (0,2)

* (1,0)

* (2,0) ||

* (1,2)

* (2,1)

||

Figure 3.18: The instantiated task graph for a dense 3x3 Gauss-Seidel iterative solver
using the TDG in Figure 3.17.

representation, being a task graph, is capable of supporting a wide variety of trans-

formations and analyses. The purpose of this section is to describe some possible

future transformations that may be performed on the ADOPAR IR. Hierarchical

nodes, task and relationship descriptors, and the variety of task types offer additional

manipulations that may be useful for optimization. Improved performance can come

through better parallel scheduling, increased parallelism, reduced dependencies, or

47

lower task overhead. The transformations described here may be used to simplify the

task graph, adjust the granularity, or modify it to fit a scheduling model.

The representation’s task graph has hierarchical nodes, simplifying analysis as

they can be treated as a single node. Task descriptors complicate standard analyses,

but other transformations (as presented below) are possible. In addition, it may be

possible to improve the run-time performance of the resulting schedule by providing

hints that can improve the schedule itself.

This section describes the various transformations that could be performed on

the task graph, including splitting task descriptors, flattening the task graph, and

more.

3.5.1 Inlining and Extraction

Function call tasks and block tasks have a relationship analogous to the same

relationship in code: functions may be inlined into the control flow graph where they

are called. It is possible that a compiler will want to inline a function that is a

function call task. When inlining occurs to the task graph, a function call task will

become a block task with the body of the function being the body of the task. All

task relationships remain the same. Also, all subtasks of the function task become

subtasks of the block task.

The inverse of inlining is the extraction of a set of basic blocks to create a

function. The opposite transformation of the inlining process must occur: first, the

blocks must be extracted to form a new function (for the task body); second, an

appropriate function call task must be created in the place of the block task; finally,

all contained subtasks and relationships must use the new function task. This is a

necessary operation so that the task body may be extracted for later execution.

3.5.2 Descriptor Splitting

Task descriptors represent a similar class of tasks, where each has the same

code to execute but different inputs. At compile time, we may not know in general

the number of tasks that will be instantiated, nor do we know the inputs of each.

48

However, in those situations that the number of tasks is known or the instantiation

function is simple enough to analyze the task descriptor may be replaced with multiple

descriptors, each representing a portion of the instantiation space.

Descriptor splitting is analogous to loop unrolling, where individual iterations

of a loop are explicitly stated rather than implied within the loop iteration space.

Just as a loop may be partially or completely unrolled, a descriptor may be split

into “singleton descriptors” (where only one task is instantiated) or a few descriptors

which cover a specific portion of the original instantiations.

Splitting task descriptors potentially saves run-time processing at the expense

of memory overhead, in much the same way that the run-time system may instan-

tiate tasks or simply analyze the task descriptors with many of the same trade-offs.

Splitting may be necessary to permit other cross-iteration task optimizations. This

process is not always possible as it relies heavily on the implementation of the instan-

tiation functions for both task descriptors and relationship descriptors. When a task

descriptor is split, the task instantiation functions must be rewritten and appropriate

relationship descriptors must be inserted to preserve semantics.

3.5.3 Flattening

The task graph is hierarchical in nature, with a subgraph of nodes possibly

contained within each node. A hierarchy is not strictly necessary, but makes gran-

ularity adjustments rather easy since only the parent node needs to be considered

in many cases. On the other hand, some task descriptors can only be split if there

is no hierarchy involved, making it necessary to flatten child nodes (removing the

hierarchy) in some situations.

Figure 3.19 shows how the simple TDG in Figure 3.2 may be flattened. Task D

implicitly has all the dependencies of its child tasks; it retains its edge. Nodes E

and F are no longer contained as subtasks within node D. Note that we cannot

simply remove node D: it still may have a task body to execute. Of course, a “dead

node elimination” transformation could remove node D if it is no longer needed.

49

In addition, the instantiation functions for nodes E and F need to be extended to

complete the flattening process.

A

D E B

F C

Figure 3.19: A flattened version of Figure 3.2. Nodes E and F have been removed as
subnodes of D, which gains the edge to node E.

Flattening may be done statically for certain instantiation functions. A single-

ton parent task descriptor is the simplest case, so splitting the parent task descriptor

simplifies the flattening process. Each of the new descriptors can then be flattened

individually.

3.6 Granularity Adjustments

The main disadvantage of fine-grained tasks is the extra overhead and commu-

nication involved. The overhead expresses itself at run time as each task is executed

and at scheduling time as additional nodes are considered. The latter is especially

problematic with higher complexity scheduling and analysis algorithms which may

have a complexity of O(n2) or worse.

It is possible to reduce the number of tasks by changing the granularity: make

tasks larger at the expense of parallelism, load balancing, and scheduling options.

Adjustments should be programmable: the user and scheduling system must decide

50

the appropriate level of granularity. Reducing the task size is generally more diffi-

cult, but is closely related to compiler-performed parallelism discovery. There are

three methods for adjusting the granularity: discrete task combining, task descriptor

combining, and hierarchy combining.

3.6.1 Discrete Task Combining

The simplest way of increasing task size is to combine individual tasks. Com-

bined tasks are then considered as a single unit by the scheduling algorithm and will

be scheduled sequentially to the same processor as if they were a single task. Exe-

cution overhead is also reduced by combining the actual task bodies into the same

unit.

Not all tasks may be combined; the following conditions must hold in order to

combine a task:

• The transformation may not form loops when combining two tasks. Standard

graph algorithms can enforce this rule on the instantiated task graph.

• The tasks must be the same type (block with block, function with function,

etc.).

• The tasks must share the same parent task: combining tasks at different levels

of the hierarchy is not possible.

In order the combine two tasks, the transformation must:

1. create a single node for both tasks;

2. combine task bodies in an order that satisfies internal dependencies;

3. perform a union on the predecessors, successors, and conflicts;

4. combine the hierarchical subtasks for each task; and

5. calculate cost of combined node by summing the cost of the individual tasks.

51

Performing these transformations is convenient in the representation. Joining

the contained basic blocks combines block tasks. Creating a new function that calls

each other task body combines function tasks (the old functions might be inlined

for efficiency). The most difficult part of combining tasks lies in modifying the in-

stantiation and representation functions. Chapter 4 shows how these functions are

formed.

3.6.2 Task Descriptor Combining

All of the instantiated tasks from a single descriptor satisfy the conditions for

discrete task combining. Therefore, it is possible to perform a simple combination of

all instantiated tasks from a descriptor into a single task body so that the instantiation

function only produces a single task. It is not even necessary to have these tasks

enumerated statically in many situations.

As long as there are no subtasks nor circular dependencies that would be

created, it is always possible to simply combine the instantiated tasks together: the

body of the task must be duplicated the same number of times as the number of

tasks instantiated. A transformation may accomplish the combination by joining

the instantiation function with the task body (the inverse of what an automatically

parallelizing compiler would do). To merge the instantiated tasks of a simple task

descriptor with no subtasks, the transformation must create a software loop wrapping

the task body. The cost of the resulting node is nc, where n is the number of tasks

that were created and c is the cost of any one task. Combining dependencies slightly

more difficult: if any of the instantiated tasks use the dependency, the combined

task uses the same dependency. The new representation functions must be modified

appropriately with a loop (or other appropriate control structures) to combine the

resulting dependencies.

Dependencies shared between combined tasks require special consideration.

The transformation must combine task bodies in a way that satisfies the dependencies

as any scheduling algorithm would be required to do. Following the dependencies

resolves loops in the TDG when combining task bodies. In general, however, it is

52

sufficient to completely split the task descriptor and then iteratively combine tasks

in the order necessary to prevent loops in the final TIG.

Hierarchical subtasks also have special requirements: a task descriptor that

creates n tasks would also create n copies of the subtask graph. If it is possible to

analyze the number of tasks and their parameters, it is also possible to statically

replicate the subtasks as well. Flattening the hierarchy aids in task descriptor com-

bining.

3.6.3 Hierarchy Combining

The simplest method to increase task size is to only consider tasks at a certain

level of the hierarchy, with any child tasks being part of its parent. Polychronopolous’

HTG uses this same idea but is simplified by its nature [25]. Dependencies reaching

child nodes complicate the process, as these are implicit dependencies to the parent

as well.

Combining tasks hierarchically is not a transformation in itself; rather, it is

a property of the representation. The implicit dependencies given by child tasks

must be found when examining a parent task. Combining the hierarchy folds these

dependencies in so the edges become explicit.

3.7 Summary

This section has described ADOPAR’s internal representation. This repre-

sentation is both flexible and compact: classes of tasks may be represented by task

descriptors, capable of describing irregular quantities of tasks in any manner required

by the front end. In addition, communication is described by relationship descriptors

that can describe data dependencies as the front end chooses.

There are also many transformations that may be performed on the task graph:

nodes may be combined, task descriptors may be split, hierarchies may be flattened,

and more. These transformations allow for optimizations to occur, reducing the over-

head by adjusting granularity. Static hints may be supplied to improve the scheduling

abilities of the representation. The next chapter describes the implementation and

53

API that the front end and scheduling system may use to build and access the rep-

resentation, including several examples.

54

Chapter 4

Implementation

Chapter 3 showed how a task graph can be condensed into a graph of task and

relationship descriptors. This chapter presents a method of implementing descriptors

in software. Once the Task Descriptor Graph (TDG) can be represented, the com-

piler, scheduler, and run-time environment have access to the information that can

overcome the diversity inherent in manycore environments. Analyses and transfor-

mations have the advantage of working with a compressed data set (and the smaller

memory footprint that accompanies it). The end goal, shown by several examples of

descriptors and TDGs, is to provide support for as much information as possible in a

convenient format for the ADOPAR environment.

This chapter is organized as follows: first, we will present the representation’s

operating environment, including the compiler framework (LLVM) and the scheduler.

Next, this chapter describes the API that implements the Internal Representation (IR)

along with examples. The method for creating TDGs using the API will be discussed,

as well as the code transformations that have been implemented to use the IR. Last,

this chapter implements the examples from Chapter 3 based on algorithms for solving

linear systems of equations.

4.1 Environment

ADOPAR must have access to all the details of a program to fully adjust for

diversity. Thus, ADOPAR needs hooks into a compiler framework to access the code

structure, a dynamic execution framework to access variable values, a task represen-

tation framework to access task relationships, and a scheduling framework to execute

the program given all the available information.

55

This chapter presents the representation framework that serves as a connect-

ing link between the code and scheduler. To assist integration with the code, we have

elected to define the representation implementation within a compiler framework.

Using an existing compiler framework has several advantages: reduced development

time, access to static code information, and optimization of the representation itself.

In addition, we can integrate with the execution environment, making dynamic task

structures available within the representation. The goal is to define a common in-

terface for run-time systems and static analyses while building on the backbone of a

compiler IR which provides similar capabilities.

ADOPAR is currently being augmented with a variety of schedulers. The IR

must cleanly integrate with the scheduling framework as well, providing a translation

of the Task Instantiation Graph (TIG).

4.1.1 LLVM

The ADOPAR representation uses the LLVM compiler framework to inte-

grate with both front ends and schedulers. LLVM provides an expressive, flexible,

and extensible code representation and has several features to assist with the imple-

mentation.

• Compiler intrinsics (a custom bitcode instruction in the LLVM IR) extend the

compiler’s capability to represent parallelism.

• Custom compiler passes provide analyses and transformations.

• A Just-In-Time compiler (JIT) compiler to generate code and run instantiation

functions.

This work uses a set of compiler intrinsics as a TDG-creating interface for an

arbitrary front end. These intrinsics will be described in detail later. Some basic

passes currently exist to serve as a basic front end to the representation, promote

block tasks to function tasks, and prepare the code for execution. Passes may also be

written to perform optimizations on the TDG. The JIT compiler is used to compile

56

and execute the final schedule and also allows instantiation functions to be compiled

and executed as part of the IR.

4.1.2 Scheduler

The representation must provide an interface to the ADOPAR schedulers. The

task graph representation must provide these schedulers with:

• the number of tasks,

• the directed relationships of each task,

• the undirected relationships of each task, and

• the priority and cost of tasks and communication.

The current implementation of the representation explicitly instantiates the

full task graph. Iterators over the instantiated tasks and relationships are then pro-

vided to the scheduler. Iterators are generally seen as an abstract way of accessing a

collection of data; this abstract nature works well with representation functions which

can be seen as such a collection. Instead of actually instantiating relationships, iter-

ators may be provided that call the relationship instantiation functions intelligently

and only as needed. Using abstracted iterators cuts out the instantiation step and

reduces memory usage at the expense of additional computation for each use.

4.2 ADOPAR Intrinsics

The core of the ADOPAR IR is a set of compiler intrinsics that allow the front

end to specify the TDG. A compiler intrinsic is a built-in function, instruction, or

operation of a compiler (although LLVM models intrinsics as special function calls),

used by the compiler to provide additional functionality and to aid analysis.

The intrinsics presented in this section allow the front end to specify task and

relationship descriptors. A later section will examine how these intrinsics are used to

create descriptors.

57

A user will not generally see the API presented here; rather it is the interface

generated by an ADOPAR front end. However, a set of C functions and type defini-

tions have been created that translate directly into LLVM intrinsics and types. The

examples will use these functions to clarify the implementation of the IR.

The ADOPAR intrinsics provide three functions to the program:

1. bounds and specifications for tasks and their hierarchical structure,

2. functionality to instantiate tasks and relationships, and

3. querying of task information.

Providing a specific API in the form of intrinsics gives the compiler a standard

tool for analyzing the program. How each intrinsic is lowered (transformed from an

intrinsic to a set of known instructions) depends on the use of the intrinsic. Most of

the task specification intrinsics are simply removed when the TIG is created and serve

only for analysis and specification purposes. Others are translated into some LLVM

instructions to implement functionality. The remaining intrinsics are translated into

calls within the compiler itself to be executed inside the JIT environment. The follow-

ing sections describe the various intrinsics and their purposes, uses, and semantics.

The names for intrinsics and types follow the pattern established by LLVM.

4.2.1 Parameters and Types

One focus of the implementation is to take the abstract components of the IR

and assign concrete definitions. Task IDs, relationships, and task descriptor variables

all fall under this focus.

Task ID A unique signed integer assigned to each instantiated task. Negative inte-

gers represent invalid tasks. Root tasks (as they are not a “true” task and are

not instantiated) are not assigned an ID. Task IDs are also called global IDs to

distinguish from local IDs.

Task Group ID Task descriptors instantiate groups of tasks. Each grouping is as-

signed an unsigned integer identifier. This identifier is not necessarily unique

58

except within the set of task groups of a task descriptor, where they are con-

secutive by the order created.

Local Task ID Within the task group, each instantiated task is assigned a unique

identifier. Together with the task descriptor and group ID, the local ID uniquely

specifies a task within the hierarchy and is mapped to the appropriate global

ID. The pair of task group and local ID create a scoped identification that is

consistent regardless of the overall task structure.

Relationships An enumeration value that describes the relationship between two

tasks. The relationship can be any of those described in Section 3.3. The

implementation defines the values in Table 4.1 for each of these relationships.

Directed and undirected relationships also have an unknown state signifying

that the relationship cannot yet be determined (due to run-time constraints).

Read sharing is represented by a Read After Read (RAR) relationship.

Table 4.1: Possible relationships for relationship instantiation functions.

Edge Type Relationship Value
None 0

Predecessor Read After Write 1
Predecessor Write After Write 2
Predecessor Write After Read 3
Predecessor Unknown 4
Successor Read After Write 5
Successor Write After Write 6
Successor Write After Read 7
Successor Unknown 8

Undirected Read After Read 9
Undirected Exclusive 10
Undirected Unknown 11

Task Descriptors A global variable for each task descriptor. The task descriptor

variable allows the front end to define the TDG hierarchy and relationships. It

59

also associates various properties with the task descriptor (such as the instan-

tiation function and execution cost).

4.2.2 TDG Creation Intrinsics

A large portion of the ADOPAR intrinsics are devoted to designating the hi-

erarchical structure of task descriptors and associating each with their task bodies.

Table 4.2 lists the intrinsics involved in creating the TDG. For examples, see Sec-

tion 4.5. We chose to have instantiation functions create groups of tasks rather than

single instances. Creation of task groups is an optimization that recognizes the com-

monality between the instantiations from a single descriptor. As an added benefit,

tasks receive a natural internal naming which can aid in the instantiation functions

and task bodies in lieu of a nonstandard task parameter.

To start the ADOPAR-scheduled parallel work, a program simply inserts a

TDG inline where execution should take place. In a dynamic environment, the inline

definition guarantees that all variables are defined before the TIG needs to be created

and before the run-time environment performs the parallel computations. The start

of the TDG is the root task descriptor, which then has a hierarchy of subtasks.

Figure 4.1 shows how the TDG is embedded in the general function f(), which may

be called wherever appropriate in the executing program. The example uses the C

functions that are directly translated to intrinsics. Note, however, that a user will

rarely, if ever, deal with either the intrinsics or equivalent C function calls, which are

tools that a front end will use to interface with ADOPAR.

The current implementation does not perform much static analysis (beyond

the simple passes described in Section 4.4). To dynamically execute the TIG, the

back end does the following:

1. instantiates the TIG,

2. schedules the TDG for the number of available cores (or as specified), and

3. executes the schedule a single time.

60

Table 4.2: Intrinsics to create the TDG, defining task and relationship generators and their properties.

Intrinsic Description

void task.root(task.type* task,

void* data)

Starts a task tree with the designated descriptor given a pointer to
arbitrary data. There is no explicit parent, but one may be specified
via task.sub. The data argument will be provided to the instantiation
functions.

void task.rootend(task.type*

task)

Ends the task tree. For the top root of the TDG, the TIG is created,
scheduled (if necessary), and executed.

void task.empty(task.type* task,

task.type* parent, gen.type()*

inst)

Begins an empty task descriptor. There is no task body (and therefore,
no cost for execution).

void task.block(task.type* task,

task.type* parent, i32 cost,

gen.type()* inst)

Begins a block task descriptor, with a task body designated by the code
between this intrinsic and the corresponding task.blockend.

void task.blockend(task.type*

task)

Ends a block task, matching to the last task.block. All control flow
must encounter a task.blockend before any other task is created.

void task.func(task.type*

task, task.type* parent, i32

cost, gen.type genfunc()* inst,

(function), ...)

Begins a function call task descriptor. The function and any arguments
are given. The arguments are passed to every instantiation of this task
descriptor when executed.

void task.sub(task.type* task,

(function), ...)

Placeholder for a portion of the TDG. The function is called with each
of the arguments specified on each execution of the TIG, and any root
task is “spliced” into the current TDG.

void rel.basic(task.type* t1,

task.type* t2, i32 cost, i32 rel,

relfunc.type* inst)

Defines a relationship descriptor between two tasks. The communi-
cation cost and relationship type are estimated, and the instantiation
function is given. No knowledge of shared memory is known.

void rel.var(i8* mem, task.type*

t1, task.type* t2, i32 cost, i32

rel, relfunc.type* inst)

Defines the shared variable of a relationship. Otherwise, acts the same
as rel.basic.

61

ta sk type root ;
void f (int ∗array , int s i z e) {

t a s k r o o t (&root) ;
/∗ Task Generator Hierarchy ∗/
/∗ Re l a t i on s i p Generators ∗/
ta sk rootend (&root) ;

}

Figure 4.1: Example of the creation of the root task for a hierarchy and the appropriate
task descriptor.

Instantiation and scheduling only occur once. However, if the TDG is em-

bedded within a loop, the schedule can be reused each time (although the user may

explicitly invalidate a schedule, causing these steps to be performed again). Instan-

tiation and scheduling may also occur statically with some programs. Analysis may

determine the task structure at compile time, and the schedule may be inserted

directly, rather than allow the run-time environment to perform these (generally dif-

ficult) steps.

Task descriptors, the basic building blocks of the TDG, are defined by a few

basic properties:

• the task descriptor,

• the parent task,

• a execution cost estimate, and

• its instantiation function.

Function tasks may also be given an additional set of parameters that will

be passed to every created task and updated for each reuse of the schedule. These

automatic parameters allow communication of state outside of the parallelized code.

Automatic parameters also exist for block tasks and are implied by the variables that

are accessed by the task body.

Relationship descriptors (edges in the TDG) are created in a similar fashion.

Basic properties of relationships include:

62

• two task descriptors,

• a communication cost estimate,

• the relationship type, and

• its instantiation function.

If the relationship type is not known statically, it may be defined programmat-

ically in its instantiation function. In this case, one of the “unknown” relationship

types would be used. Variable relationships may also specify the memory location that

created the relationship. The front end provides a base address for the memory (such

as the start of an array) and then the combination of relationship and task descrip-

tors describe the access pattern. Task and relationship descriptors are significantly

different than Regular Section Descriptors (RSDs), Data Access Descriptors (DADs),

and Processor Tagged Descriptors (PTDs), where the description is limited to a dense

matrix and a prescribed pattern of access.

4.2.3 Instantiation Function Intrinsics

The representation provides a specific set of intrinsics available to task and re-

lationship instantiation functions. These intrinsics are detailed in Table 4.3. The run-

time environment will prevent the representation from attempting to call an intrinsic

inappropriately (such as calling gen.maketasks from an instantiation function). All

instantiation function intrinsics work with local IDs to enforce proper scoping. Rela-

tionship instantiation functions cannot designate communication between arbitrary

tasks, but only those involved in the relationship.

Instantiation functions instruct the representation to create sets of tasks and

edges. They also supply the actual cost associated with these instantiations. The

method chosen to supply data to the intrinsic call is determined by the front end,

and may range from a simple constant to a more complex algorithmic expression, or

even a table lookup. In this sense, the instantiation function intrinsics represent the

output of the algorithm, while the parameters of the instantiation function represent

the inputs.

63

Table 4.3: Intrinsics used to instantiate tasks and relationships.

Intrinsic Description

i32 gen.maketasks(i32 size, i32

count)

Performs task instantiation given the number of tasks. A storage area
for parameters is also created for each task. The task group index for
the newly created tasks is returned. This intrinsic must only be called
once per call to the task instantiation function. Must be called in a
task instantiation function.

void gen.setcost(i32 ID, i32

cost)

Sets the execution cost associated with the given task. Using a negative
local ID assigns every task in the task group the same cost. If a task is
not given a cost, the task descriptor’s estimated cost is assumed. Must
be called in a task instantiation function.

void gen.makerel(i32 TG, i32 ID ,

i32 cost, i32 rel)

Creates a predecessor, successor, or conflict edge with a task specified
by the task group and local ID. The relationship is specified along with
the actual cost of communication. Must be called in a relationship
instantiation function.

64

4.2.4 Querying and Execution Intrinsics

This section describes some utility intrinsics that give access to task informa-

tion and perform scheduling on the TIG. Some of these intrinsics are available to

instantiation functions; a few are used in the examples that follow. The complete set

of querying and execution intrinsics are described in detail in Table 4.4. This table

is divided into three sections: the first section shows the querying intrinsics available

to instantiation functions. The second shows parameter access intrinsics available to

task bodies. The last section lists intrinsics that control the TDG and TIG.

The equivalence of global and local IDs suggests a set of intrinsics that convert

between the two task identifications. One intrinsic provides the parameters for any

task. All of the querying intrinsics may be called from any instantiation function.

Task bodies have access to the exe intrinsics, providing the parameters of the

running task and the parameters of its predecessors and successors. These intrinsics

may be called from any task body (such as a function call task or block task). While

most intrinsics are implemented as callbacks to the run-time environment, these in-

trinsics require special performance considerations and are lowered to instructions

that directly access the necessary memory locations.

The sch intrinsics modify how the TIG is scheduled. They may be used at any

point in the program outside of the task bodies and take effect when task.endroot

is called. The sch.join intrinsic is an exception as it terminates the already running

threads.

4.3 TDG Creation

Section 4.2 described the intrinsics that create task descriptors, link them

together to form the TDG, define task bodies, and then schedule and execute the re-

sulting TIG. This section describes the use of the ADOPAR intrinsics and the process

to create a trivial TDG. The front end that creates the TDG may be a parallelizing

compiler, a specialized input language, an ADOPAR transformation pass, or even a

manual process using the LLVM assembly and ADOPAR intrinsics (although this is

rare).

65

Table 4.4: Intrinsics related to querying the task structure and for scheduling the TIG.

Intrinsic Description

i32 query.localid(i32 ID)
Returns the local ID of a task given its global ID, or a negative integer
if an invalid global ID is provided.

i32 query.taskgroup(i32 ID) Returns the task group of a task given its global ID.
i32 query.globalid(task.type*

task, i32 TG, i32 ID)
Converts a local ID into a global ID.

i32 query.numtasks(task.type*

task, i32 TG)

Returns the number of tasks created in the specified task group of a
task descriptor.

i8* query.data(i32 ID)
Returns the parameters associated with a task, NULL if the global ID
is invalid. No bounds or type checking is provided for the parameters.

i8* exe.mydata()
Provides the parameters of the current task to the task body. As such,
it may only be called within the body of a task.

i8* exe.mylocalid()
Provides the local id of a task to the task body. As such, it may only
be called within the body of a task.

i32 exe.numsucc() Returns the number of successors to the currently executing task.

i8* exe.succdata(i32 num)
Returns the parameters of the specified successor to the currently exe-
cuting task. No bounds checking is provided.

i32 exe.numpred() Returns the number of predecessors to the currently executing task.

i8* exe.preddata(i32 num)
Returns the parameters of the specified predecessor to the currently
executing task. No bounds checking is provided.

void sch.numthreads(task.type*

root, i32 num)

Sets the number of threads to schedule on the specified TDG. The
default value is the number of available cores.

void sch.usepolicy(task.type*

root, i32 policy)
Specifies the policy that should be used when scheduling the TIG.

void sch.join(task.type* root)
Signals a return to serial execution, invalidates the schedule, and ter-
minates all threads.

66

All task descriptors are created within the root task, and follow the same basic

form. Figure 4.1 shows the beginnings of our example: a function f() that will be

called at some point in the program to perform some operation on an array. Let us

define this operation to be the serial algorithm in Figure 4.2.

void f (int ∗array , int s i z e)
{

for (int i =2; i < s i z e ; i++)
array [i] = array [i −2] + 1 ;

}

Figure 4.2: The serial algorithm used for the examples in this section. Note that
there is an inter-iteration dependency that will need to be considered.

The first step is to determine the task body; we’ll use the loop body for this

example. Figure 4.3 shows how the body may be transformed into a function task

body. The task has a single shared array between all tasks. The local ID of the

task determines its loop index. The same result could also have been accomplished

through a parameter accessed through the exe.mydata intrinsic, a more likely option

if the data were sparse. The array itself may change on each execution of the TIG,

allowing reuse of the schedule as long as the size of the array does not change.

void task (int ∗ array)
{

int i = exe my loca l id () + 2 ;
array [i] = array [i −2] + 1 ;

}

Figure 4.3: The task body extracted from the loop body of Figure 4.2.

The instantiation functions for the task and relationship descriptors are pre-

sented in Figure 4.4. The task instantiation function is quite simple: there are size-2

67

tasks to be instantiated (the number of loop iterations). The size variable must be

given to the root task descriptor so it may be passed in to the task instantiation

function. The relationship instantiation function is only slightly more complex: the

results of each iteration will be used in the second iteration afterwords (0 → 2 → 4

and 1 → 3 → 5). Using this dependency sequence, two chains of even-numbered and

odd-numbered iterations are formed. There is no bounds checking in the instantiation

function as it is unnecessary (invalid task IDs are simply ignored) and leaving out the

additional logic makes the function simpler to analyze.

void gen (int , void ∗ s i z e , t a sk type ∗)
{

int num = ∗(int ∗) s i z e − 2 ;
gen maketasks (0 , num) ;

}

void r e l (int ID , void ∗ , t a sk type ∗ ,
t a sk type ∗)

{
int l o ca l ID = qu e r y l o c a l i d (ID) ;
gen makere l (0 , l o ca l ID + 2 , 0 , succRAW) ;

}

Figure 4.4: The instantiation functions inferred by the algorithm in Figure 4.2.

Finally, the task and relationship descriptors need to be inserted into the TDG.

Figure 4.5 shows how descriptors are inserted as part of the root task descriptor

presented previously. Admittedly, the total amount of code is larger than the original

algorithm. However, the IR captures a considerable amount of information that was

only implied in the original serial algorithm. This information will generally come

from either compiler analysis or through the programming model; a programmer will

68

not have to deal directly with the IR’s API. The additional information made available

includes:

• the task body (task()),

• number of tasks (gen() and size),

• the exact relationship between tasks (RAW, rel()),

• task-independent data (array and size), and

• shared variables (array).

t a sk type root , func ;
void f (int ∗array , int s i z e)
{

t a s k r o o t (&root , &s i z e) ;
t a sk func (&func , &root , 1 , &gen , &task , array) ;
r e l v a r (array , &func , &func , 0 , succRAW, &r e l) ;
t a sk roo tend (&root) ;

}

Figure 4.5: Inserting the task and relationship descriptors for the parallel version of
Figure 4.2.

Each piece of information is presented separately and algorithmically. The

algorithms may be executed to perform the computations or analyzed for additional

processing.

4.4 Code Transformations

Using LLVM as a framework for ADOPAR gives the implementation an op-

portunity to perform code transformations. These transformations serve several func-

tions:

• lower intrinsics to create more efficient code,

• bring the code to a canonical form,

69

• improve the execution speed,

• bundle data and arguments for efficiency, and

• manipulate the TDG.

We have implemented several of these transformations. Since no front end is

currently available for the LLVM IR as it has only recently been implemented, the

first transformation of the preceding list allows for a basic C/C++ program to use

the intrinsics directly as C function calls. These functions are defined in a special

header, along with some useful type definitions. The examples in this chapter use

this manual front end for convenience.

Block tasks and function tasks are essentially equivalent in function, if not

in form. Internally, a task body is represented as a function call, which means that

block tasks should be converted to function tasks, bringing the code to a canonical

form. LLVM makes this process simple through a short sequence of steps.

1. Split LLVM basic blocks at the block task begin and task end intrinsics.

2. Find all the LLVM basic blocks of a block task by walking the dominator tree

(the control flow within the block task).

3. Use the ExtractCodeRegion functionality of LLVM to turn the basic blocks

into a function call.

4. Transform the function call and block task intrinsics into a function task intrin-

sic.

The dynamic instantiation of the TIG also transforms task bodies. Tasks have

two sets of parameters. The first is the local parameters which provide essential task-

specific information such as the variables on which the task operates. The second set

is the automatic parameters which are part of the task descriptor and shared between

all instantiated tasks. These parameters are provided as the arguments to the task

body. In the case of block tasks, the parameters are inferred (and are automatically

translated into function arguments by the LLVM code extractor).

70

The IR presents a variable-argument intrinsic to support automatic parame-

ters. These parameters are then bundled together and stored in a location specified

by the run-time environment; the task body is modified to use the bundle rather than

discrete arguments.

Each of the ADOPAR intrinsics is lowered to an internal function call that

performs the necessary operations to create the task graph and provide querying

information. However, a few exceptions do apply. First, as was already discussed,

the block task descriptors are translated into the equivalent function task descriptors,

so no internal function is necessary in this case. More significant are the execution

intrinsics. Rather than implement these intrinsics as a function call, the intrinsics are

translated into arguments of the task body.

4.5 Examples

Chapter 3 presented several examples of TDGs for the use of the ADOPAR

IR. The actual implementation of the task graph is presented in this section, using

appropriate intrinsics to create tasks and define their relationships.

4.5.1 Sparse Linear Systems

We will first examine the case of the Jacobi algorithm for solving linear sys-

tems, showing how the IR describes both sparse and dense matrices. Afterwords, we

will present the modifications for the Gauss-Seidel algorithm. We will start from a

pseudocode language similar to OpenMP (since no front end has been implemented

as of yet) and assuming a dense matrix for simplicity. The algorithm in Figure 3.13

could be annotated as in Figure 4.6 to describe the parallelism. The annotations

instruct which tasks to create through the ADOPAR IR and how they are related.

Although relationships have been explicitly annotated, it should be trivial for a front

end to produce them automatically. Combining the annotations, a front end would

produce the TDG in Figure 3.14.

The next step is to encode the TDG, including the nested for loops, reduction

trees, and synchronization. The code for this task structure is listed in Figure 4.7.

71

while (notdone)
// ADOPAR: roo t

// ADOPAR: ta s k (loop1)
for (i = 1 to m)

// ADOPAR: ta s k (loop2)
for (j = 1 to n)

i f (i != j)

// ADOPAR: reduc t i on (sums)
sum += A[i] [j] ∗ X old [j] ;

// ADOPAR: r e l (RAW, sums , i)
X new [i] = (b [i] − sum) / A[i] [i] ;

// ADOPAR: reduc t i on (ors)
notdone | |= chk (X new [i] , X old [i]) ;

// ADOPAR: ta s k (swap) r e l (RAW, loop1 , ∗)
swap (X new , X old) ;

// ADOPAR: end

Figure 4.6: A pseudocode annotation for the dense Jacobi linear system solver showing
how the original version may be parallelized.

Notice that the hierarchy is enclosed in the main iterative loop of the algorithm. An

additional task (final) has been added to extract the value produced by the or task

and store it in the variable notdone. This value can then be used to control the main

loop. Edges are also created as part of the task structure. The TDG for a sparse

matrix is the same, but an additional edge is required for the (probably rare) case

that only one non-diagonal element exists in a row. In this case, no summing tree

is required: the relationship from the inner loop to the outer loop (loop2TOloop1)

provides the necessary communication. If the matrix is dense, this extra edge is

simply never used.

The task instantiation functions are listed in Figure 4.8. The simplest function

is for regular accesses, as in the outer loop (loop1). This task creates one instantiation

72

sch numthreads (&root , 16) ;
do {

t a s k r o o t (&root , &matrix) ;
t a sk func (&loop1 , &root , t cos t , &gen1 , &loop1 body ,

&vector , X new , X old , t o l) ;
t a sk func (&loop2 , &loop1 , t cos t , &gen2 , &loop2 body ,

X old) ;
t a sk func (&sums , &loop1 , t cos t , &genSums , &sum body) ;

t a sk b l o ck (&swap , &root , t cos t , NULL) ;
std : : swap (X new , X old) ;

ta sk b lockend () ;

t a sk b l o ck (&ors , &root , t cos t , &genOrs) ;
∗(bool ∗) exe mydata () = ∗(bool ∗) exe preddata (0) | |
∗(bool ∗) exe preddata (1) ;

ta sk b lockend () ;

t a sk b l o ck (&f i n a l , &root , t cos t , NULL) ;
notdone = ∗(bool ∗) exe preddata (0) ;

ta sk b lockend () ;

r e l b a s i c (&loop2 , &sums , ccost , succRAW, &se ed t r e e) ;
r e l b a s i c (&loop1 , &ors , ccost , succRAW, &se ed t r e e) ;
r e l b a s i c (&sums , &sums , ccost , succRAW, &formtree) ;
r e l b a s i c (&ors , &ors , ccost , succRAW, &formtree) ;
r e l b a s i c (&sums , &loop1 , ccost , succRAW, &sumsTOloop1) ;
r e l b a s i c (&loop2 , &loop1 , ccost , succRAW, &loop2TOloop1) ;
r e l b a s i c (&loop1 , &swap , ccost , succRAW, &loop1TOswap) ;
r e l b a s i c (&ors , &f i n a l , ccost , succRAW, &orsTOf ina l) ;

t a sk roo tend (&root) ;
} while (notdone) ;
s c h j o i n (&root) ;

Figure 4.7: The code to produce a fine-grained TDG for the Jacobi iterative system
solver in both the sparse and dense cases.

for each row of the linear system. If all rows exist in the matrix (which we will assume

for this example), the task is regular and the code in Figure 4.8 is sufficient. The

inner loop (loop2) is more complex if the matrix is sparse. The number of tasks (as

long as the matrix representation allows it) is known by simply examining the matrix,

73

but the data for the tasks must be filled in by iterating through the structure. The

run-time environment uses this data when executing the tasks, when determining

relationships, and when instantiating subtasks. The reduction trees are instantiated

as well, and are equally simple. Both the summing tree (genSums) and the or tree

(genOrs) instantiate tasks based on the data given to the root task descriptor.

void gen1 (int parentID , void ∗data , ta sk type ∗) {
SparseMatrix ∗matrix=(SparseMatrix ∗) data ;
gen maketasks (/∗ s i z e ∗/ , /∗ rows ∗/) ;

}
void gen2 (int parentID , void ∗data ,

ta sk type ∗ loop2) {
SparseMatrix ∗matrix = (SparseMatrix ∗) data ;
int row = qu e r y l o c a l i d (parentID) ;
unsigned tg = gen maketasks (/∗ s i z e ∗/ , /∗ c o l s ∗/) ;

for (/∗ each co l ∗/)
i f (/∗ d iagona l e lement ∗/) {

l o op1 t ∗ data =
(l oop1 t ∗) query data (parentID) ;

// Store d iagona l in ’ data ’
} else {

int id = que ry g l oba l i d (loop2 , tg , i++) ;
l o op2 t ∗data = (l oop2 t ∗) query data (id) ;
// Store t a s k in format ion in ’ data ’

}
}
void genSums (int parentID , void ∗data ,

ta sk type ∗) {
SparseMatrix ∗matrix = (SparseMatrix ∗) data ;
int row = qu e r y l o c a l i d (parentID) ;
i f (/∗ need sum t r e e ∗/)

gen maketasks (/∗ s i z e ∗/ , /∗ co l s−1 ∗/) ;
}
void genOrs (int parentID , void ∗data ,

ta sk type ∗) {
SparseMatrix ∗matrix = (SparseMatrix ∗) data ;
gen maketasks (/∗ s i z e ∗/ , /∗ rows−1 ∗/) ;

}

Figure 4.8: Instantiation functions for the tasks shown in Figure 4.7.

74

The task bodies for the Jacobi solver are shown in Figure 4.9. These tasks

are extremely fine-grained with very few instructions in each, making them prime

candidates for optimization via the transformations given in Section 3.5.

void loop1 body (double∗ vector , double∗ X new ,
double∗ X old , double t o l)

{
l o op1 t ∗ task = (l oop1 t ∗) exe mydata () ;
s i z e t row = exe myloca l id () ;

double sum = exe numpred () > 0 ?
∗(double ∗) (exe preddata (0)) : 0 . 0 ;

X new [row] = (vec to r [row] − sum) / ∗ task−>diag ;
task−>notdone = fabs (X new [row] − X old [row]) > t o l ;

}
void loop2 body (double ∗X old)
{

l o op2 t ∗ task = (l oop2 t ∗) exe mydata () ;
task−>r e s u l t = ∗ task−>va l ∗ X old [task−>index] ;

}
void sumbody ()
{
∗(double∗) exe mydata () =
∗(double∗) exe preddata (0) + ∗(double∗) exe preddata (1) ;

}

Figure 4.9: Task bodies for the tasks show in Figure 4.7.

The final piece to the ADOPAR representation for the Jacobi algorithm is

shown in Figure 4.10, which lists the relationship instantiation functions for each

edge in the TDG. In two cases (seedTree and formTree), the functions may be

shared between two relationship descriptors (loop2 to sums and loop1 to ors, for

example). These two instantiation functions create a binary reduction tree. The

operation being performed is irrelevant, so other tasks may reuse the code. For

75

the Jacobi algorithm, the actual task instantiations themselves are not needed to

determine any relationship; only the number of instantiations is relevant.

The Gauss-Seidel algorithm strongly resembles the Jacobi algorithm, so the

graph is largely the same. Three changes must occur:

1. Add an edge from loop1 to loop2 to enforce ordering.

2. Modify the loop1 task body to use the correct ordering.

3. Remove the swap task and associated edge as it is not part of the algorithm.

The additional edge is specified in Figure 4.11. The instantiation function

for the addition differs from those previously shown in that it specifies the prede-

cessors of a task, rather than the successors, providing efficiency and convenience

when operating with sparse matrices. Specifying successors involves iterating over all

possible tasks and selecting the appropriate tasks, which is less efficient than speci-

fying predecessor relationships. Using predecessors is more convenient because of the

hybrid regularity/irregularity between the task descriptors. The task body is very

similar to the Jacobi algorithm, but operates on a single matrix. The modified TDG

construction code is not provided, as it only involves trivial changes.

The Gauss-Seidel algorithm reuses calculated values within the same iteration.

A serial algorithm may be written so that the new values are calculated before they

are used, and the main loop will look only slightly different than the Jacobi, where

this restriction does not exist (compare Figure 3.13 and Figure 3.16). The extra edge

within the TDG simply enforces this execution order based on the coordinates within

the matrix. The relationship instantiation function in Figure 4.11 simply determines

whether the outer loop is in a previous iteration and creates an appropriate edge.

4.6 Summary

The ADOPAR IR has been successfully implemented in the LLVM compiler

framework. This implementation retains the flexibility of the task graph through a

variety of intrinsics and provides a set of passes to aid in analysis and manipulation

76

void s e ed t r e e (int ID , void ∗ , t a sk type ∗ ,
t a sk type ∗) {

int l o ca l ID = qu e r y l o c a l i d (ID) ;
unsigned tg = query taskgroup (ID) ;
gen makere l (tg , l o ca l ID / 2 , ccost , succRAW) ;

}
void f o rmtree (int ID , void ∗ , t a sk type ∗ t ree ,

ta sk type ∗) {
int l o ca l ID = qu e r y l o c a l i d (ID) ;
unsigned tg = query taskgroup (ID) ;
int numtasks = query numtasks (t ree , tg) ;
gen makere l (tg , (l o ca l ID + numtasks + 1) / 2 ,

ccost , succRAW) ;
}
void sumsTOloop1 (int ID , void ∗ , t a sk type ∗sums ,

ta sk type ∗) {
int l o ca l ID = qu e r y l o c a l i d (ID) ;
unsigned tg = query taskgroup (ID) ;
i f (/∗ f i n a l sum ta s k ∗/)

gen makere l (0 , tg , ccost , succRAW) ;
}
void loop2TOloop1 (int ID , void ∗data , ta sk type ∗ ,

t a sk type ∗) {
SparseMatrix ∗matrix = (SparseMatrix ∗) data ;
int row = query taskgroup (ID) ;
i f (/∗ no sum ta s k s ∗/)

gen makere l (0 , row , ccost , succRAW) ;
}
void loop1TOswap (int , void ∗ , t a sk type ∗ ,

t a sk type ∗) {
gen makere l (0 , 0 , ccost , succRAW) ;

}
void orsTOf ina l (int ID , void ∗ , t a sk type ∗ors ,

t a sk type ∗) {
int l o ca l ID = qu e r y l o c a l i d (ID) ;
unsigned tg = query taskgroup (ID) ;
i f (/∗ f i n a l or t a s k ∗/)

gen makere l (0 , 0 , ccost , succRAW) ;
}

Figure 4.10: Relationship instantiation functions for the tasks shown in Figure 4.7.

77

void loop1TOloop2 (int ID , void ∗ , t a sk type ∗ ,
t a sk type ∗) {

l o op2 t ∗data = (l oop2 t ∗) query data (ID) ;
unsigned tg = query taskgroup (ID) ;
i f (tg > data−>c o l)

gen makere l (0 , data−>co l , ccost , predRAW) ;
}

Figure 4.11: An additional relationship is needed to synchronize the Gauss-Seidel
calculations. A predecessor relationship is convenient to represent a sparse matrix
calculation. The task body also receives some minor adjustments to work with the
Gauss-Seidel algorithm.

of the TDG. The following chapter evaluates the ADOPAR representation, how well

it works with various programming models, and the overhead of the implementation

presented here.

78

Chapter 5

Evaluation

This work has presented a method for representing a task graph through task

and relationship descriptors and their instantiation functions. The Task Descriptor

Graph (TDG) is a powerful concept that allows for creation of task graphs using

information only available at run time while also providing a framework for static

analysis. The TDG is a modification of the well-studied task graph, but the graph is

compressed to aid analysis, reduce code size, and minimize execution overhead.

The purpose of this chapter is to examine this new representation and evaluate

it against the requirements of ADOPAR as presented in Chapter 1. The overhead is

measured for compilation time, code size, and the Task Instantiation Graph (TIG)

instantiation time.

This chapter will first explain the experimental methodology, including the

criteria, metrics, and benchmarks used in the experiments. The results from these

experiments follow, including an analysis of each.

5.1 Methodology

In the absence of a complete toolchain geared toward the ADOPAR represen-

tation and a mature back end to schedule and execute the TIG it represents, this work

must rely on less direct methods for evaluating the representation. There are several

preliminary ADOPAR schedulers. These schedulers will be used to demonstrate that

the Internal Representation (IR) functions correctly, although demonstrating over-

head relating to the schedulers will not be possible. Also, we must hand-code the

representation (as in Chapter 4). We can then evaluate the results. First, we show

that the representation fulfills the presented requirements of ADOPAR. Second, we

79

examine the compiled code size, showing space used by the additional information

that is available. Third, we measure the execution overhead involved in instantiat-

ing the TDG. Finally, we show the performance of various schedulers that operate

directly on the TIG.

5.1.1 Criteria

The internal representation presented in this work has attempted to satisfy

the needs of ADOPAR, namely:

• support for irregular structures,

• support for regular structures,

• simple communication description, and

• low overhead.

The IR fully supports regular and irregular structures using task and rela-

tionship descriptors. In either case, the number of tasks, their parameters, and their

relationships are expressed algorithmically and in whatever way is best suited to the

application.

Communication is described through the relationship descriptors as edges in

the TDG. Relationship descriptors support regular and irregular communication

patterns through the same algorithmic means. Various types of relationships are

supported to express more than just the mere presence of a relationship.

The overhead of this representation (compared to a serial version where par-

allelism is just implied) comes in many forms: additional code to express the TDG

structure and instantiation functions, extra compilation time to prepare the IR for

execution, and extra time to execute the program. The code size and compilation

time overheads are mostly a concern at compile time, but the effects do spill over

at run time due to the Just-In-Time compiler (JIT) environment. Chapter 6 will

describe several ways of reducing the run-time overhead.

80

Running within a JIT environment allows the representation to pass dynamic

information to ADOPAR. More importantly, any information that is only available

at run time (especially the relationships between tasks) may reveal optimizations to

the TDG, reducing the overhead of the representation and improving the schedule.

5.1.2 Metrics

This work uses four main metrics to quantify the overhead of the IR. These

metrics are:

Code Size LLVM stores a program in a bitcode format. The ADOPAR IR describes

tasks through additional intrinsics and information overlaid on the bitcode.

Using this representation increases the size of the bitcode file. This overhead is

measured for each benchmark by comparing the total executable file size to the

equivalent serial version.

Compilation Time The IR requires extra time to transform the ADOPAR intrin-

sics into a form the compiler can use directly. Furthermore, the IR also requires

extra time to compile and optimize the extra bitcode. The compilation time is

measured with the standard optimizations turned on (-O2). As with code size,

the extra compilation time is compared to the equivalent serial version.

Absolute Instantiation Time Fully instantiating a task graph can become an ex-

pensive process, especially for fine-grained task models (where there may be

hundreds of thousands of task relationships). This metric quantifies the effects

of the size of the task graph on the instantiation time.

Relative TIG instantiation time The cost of instantiating the task graph must

be considered against the execution time of the program. Measuring this ratio

shows the speedup and reuse required to overcome the overhead of the repre-

sentation.

81

5.1.3 Benchmarks

Since the representation must currently be hand-coded, all measurements are

performed on the Jacobi iterative linear system solver described in Chapter 4. This

benchmark is a simple kernel with excessively fine-grained tasks. The overheads

presented here show a high estimate with a large number of very small tasks and

no optimizations. Applications with much coarser task granularities will create fewer

tasks and relationships and will spend more time in task bodies (doing real work) while

executing. This chapter also uses a more sensible (and therefore, more realistic) coarse

granularity version of the Jacobi benchmark for a more complete picture. Future

optimizations should be able to make the transformation to the coarse version.

One of the goals of ADOPAR is to support those applications that have regular

patterns as well as those that are more irregular, with the scheduler acting appropri-

ately in each case. The fine and coarse solvers have a sparse and a dense version to

show how the IR deals with both scenarios. The dense versions allow for more com-

pact representations and faster instantiation time; sparse versions show a partially

irregular application that requires more processing to instantiate.

5.2 Measurements

This section presents the experimental data collected to quantify the overhead

in the ADOPAR IR.

5.2.1 Code Size Overhead

Using the ADOPAR IR involves inserting additional code into the program.

The additional code increases the executable size and has implications on the compi-

lation, analysis, and execution of the program. Figure 5.1 shows the measurements

of the additional overhead introduced by the representation.

Two major factors are at work here: the effect of a sparse versus dense matrix

representation and the effect of a coarse-grained versus fine-grained computation.

Neither of these factors makes much difference in the code size of the serial exe-

cutable, but the difference is significant for the ADOPAR representation. First, a

82

 0

 5

 10

 15

 20

 25

Sparse/Coarse Dense/Coarse Sparse/Fine Dense/Fine

S
iz

e
(k

B
)

Benchmark

Representation Overhead (Bitcode File Size)

12% 8%

19% 16%

Overhead
Base

Figure 5.1: The extra code size (as LLVM bitcode) introduced by the ADOPAR IR
compared to the equivalent serial implementation.

sparse matrix requires additional logic to instantiate the appropriate TIG. Second,

the granularity affects the number of descriptors in the TDG and the complexity of

the instantiation functions. Figure 5.1 demonstrates both of these effects clearly, and

shows that the effect is cumulative: the overhead for a sparse, fine-grained computa-

tion model requires an additional 19% overhead in size.

However, we cannot consider the additional code size as pure overhead. In

fact, the representation encodes information either not available or only implicitly

found (after extensive analysis) in a serial application. It would be better to compare

with a serial version that includes this information, a feature not available.

83

5.2.2 Compilation Time Overhead

Compiling the extra code and processing the IR takes extra time. As with the

code size, processing the IR is mainly a one-time static cost. Figure 5.2 shows the

compilation time overhead for the same benchmarks.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Sparse/Coarse Dense/Coarse Sparse/Fine Dense/Fine

T
im

e
(s

ec
)

Benchmark

Representation Overhead (Compilation Time)

1.9% 1.4% 3.5% 3.0%

Overhead
Base

Figure 5.2: The extra compilation time introduced by the ADOPAR IR compared to
the equivalent serial implementation.

In addition to the additional code size, the representation also requires some

analysis and transformation. Figure 5.2 also indicates the time to perform these

transformations. While some of the transformations are not strictly necessary (more

specifically, lowering the intrinsics so that TIG instantiation is part of the execution),

84

we have included them to place an upper bound on the overhead. The three additional

steps (implemented as LLVM passes) are:

1. conversion from C function calls to intrinsics,

2. promotion of block tasks to function tasks, and

3. lowering of intrinsics to instantiate the TIG at run time.

For the most part, the IR overhead does not add a significant amount of com-

pilation time. For the coarse-grained model, the extra time is especially minimal. In

addition, using sparse matrices does not affect the compile time significantly because

the outer task descriptor is the same; only the task body changes significantly. The

fine-grained model adds more overhead to the compilation time, especially the sparse

version which has more complicated relationships and instantiation functions. In the

worse case (fine grained and sparse), the total overhead is a 3.5% increase.

5.2.3 Task Instantiation Overhead

Having both instantiated task graphs and task descriptors imposes a run-time

overhead on applications that use the IR. While it may not be necessary to fully

instantiate the task graph in the future, the current implementation does so, leaving

schedule descriptors and other overhead-reducing options for later work.

The amount of overhead incurred when translating the TDG to a TIG is

notable. Figure 5.3 shows how the number of tasks affects the instantiation time.

The nature of brute-force TIG instantiation requires at least one examination of each

task group, with each task reviewed if any task-specific parameters are required.

The instantiation process must also examine all instantiated relationships, which is

also a linear process, leading to the O(n) behavior in Figure 5.3. Each benchmark,

regardless of the granularity and matrix density, presents this same overall behavior;

however, there is a significant additional cost for using a fine granularity or sparse

matrix for small problem sizes where the task instantiation, rather than relationship

instantiation, has more influence.

85

Notice that the graph is based on the number of tasks, not the overall problem

size: sparse matrices have an inherent algorithmic optimization that varies based on

the density. This factor is reduced by comparing equal numbers of tasks. The model

used for each benchmark restricts the range of tasks used to produce these figures;

the Dense/Coarse model can compute a large problem size with few tasks while the

Dense/Fine model requires many more tasks to operate.

 0.001

 0.01

 0.1

 1

101 102 103 104 105 106

A
bs

ol
ut

e
T

im
e

(s
ec

)

Tasks

Absolute TIG Instantiation Time

Coarse/Sparse
Coarse/Dense

Fine/Sparse
Fine/Dense

Figure 5.3: The absolute instantiation time for various problem sizes.

We must also examine the cost of instantiating the graph relative to the exe-

cution time of the program. Such comparison presents a rough idea of the speedup

necessary to overcome the representation overhead. Figure 5.4 shows the instantiation

overhead relative to the average execution of a single iteration from the equivalent

serial algorithm. The iteration time was averaged over many iteration times to re-

duce caching effects. Increasing the parallel speedup (through advanced scheduling

86

techniques and TDG manipulation, for example) and reusing the schedule over many

iterations will mitigate this overhead. In fact, we anticipate that many applications

will reuse the schedules thousands of times, even for different data sets.

 0.01

 0.1

 1

 10

 100

 1000

 10000

101 102 103 104 105 106

In
st

an
tia

tio
n

O
ve

rh
ea

d

Tasks

TIG Instantiation Overhead (Per Serial Iteration Time)

Coarse/Sparse
Coarse/Dense

Fine/Sparse
Fine/Dense

Figure 5.4: The instantiation time relative to the average serial iteration time.

We have already established the instantiation time behavior. The average

serial iteration time for the equivalent problem size actually grows at a faster rate

as the amount of work increases as well. This is easiest to see in the case of a

coarse-grained matrix. The model uses a single task for each row, but each task must

compute a matrix-vector multiply for that entire row. As a result, the instantiation

time is less significant compared to the amount of work done in each iteration. In the

end, less speedup and fewer iterations are required to overcome the full instantiation

overhead of the Jacobi algorithm as the problem size increases.

87

For fine-grained task models, the cost of instantiating the task graph can be

quite high relative to the execution time. However, it is expected that ADOPAR will

not need to fully instantiate the task graph in the future.

5.2.4 Scheduling Results

ADOPAR currently lacks a front end to create its IR. Current schedulers must

use a fully instantiated TIG. However, the hand-coded benchmarks presented here

are compatible with this limited setup. Figure 5.5 shows the results of running the

sparse, coarse-grained Jacobi solver with various schedulers currently in development.

The schedulers were run on a system with eight 2.2 GHz AMD Opteron 8354

quad-core processors (for a total of 32 cores) with a 512 KByte L2 cache and a 2 MByte

L3 cache per processor. The experiment measured the relative speedup of task graph

execution time compared to a single-threaded run. The benchmark used is the sparse,

coarse-grained Jacobi linear system solver on a 4000x4000 random sparse matrix at

2% density. We can see the improvement that various schedulers can provide to the

execution time.

Each scheduler has the same basic properties: as more threads are available,

more work can be done in parallel. Speedup can actually be superlinear as the number

of processing cores and the available amount of cache increases. Additional cache re-

duces the number of capacity misses compared to the single-threaded version. As the

number of threads increases to very large numbers, the additional inter-thread com-

munication costs outweigh the improved cache behavior and additional threads harm

performance. Some schedulers are more able to overcome the effects, but locality and

proper scheduling remain critical to parallel performance. Ongoing development work

seeks to reduce the number of threads when additional threads harm performance [35].

A discussion of the properties and behaviors of these schedulers is beyond the

scope of this work. However, it should be noted that the ADOPAR schedulers use

information from the IR to optimize threading. The success of the scheduler depends

on many factors. In general, the more information that is available, the better the

88

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 8 16 32

R
el

at
iv

e
S

pe
ed

up

Threads

ADOPAR Scheduler Results

simple
dsc

density-v
cass-II-v

Figure 5.5: The results from preliminary ADOPAR schedulers, demonstrating that
the representation may interface with the schedulers to perform parallel calculations.

schedule can be. Specifically, the representation makes the following available to the

schedulers:

• task cost (which varies based on the density of the matrix row),

• communication cost between tasks on different processors,

• cost of sharing data, and

• ordering dependencies.

5.3 Summary

Task and relationship descriptors allow a front end to describe task graphs

in a complex form with analyses and graph structures summarized in an arbitrary

algorithm. While future schedulers may operate directly on the TDG, current sched-

ulers require an explicit TIG. Thus, using a TIG can be an expensive process when

89

large numbers of fine-grained tasks are represented, it still allows creation of simple

schedulers.

The representation also adds additional overhead in terms of code size and

compilation time. The amount of additional overhead varies depending on the amount

of detail encoded in the representation (such as task granularity and relationships),

but is generally low compared to a serial application. Much of this overhead is

not only acceptable but is desired: additional information is being provided in the

representation that was not available previously.

These data indicate that the IR fills the basic needs of ADOPAR, including

support for regular and irregular structures so that even complex fine-grained task

graphs may be represented compactly, with information only available at run time

made visible to ADOPAR.

90

Chapter 6

Conclusion

This work has presented a new method for representing parallelism using

graphs of task and relationship descriptors. Instantiation functions provide a generic

mechanism to arbitrarily specify tasks and their relationships. We have not fully ex-

plored the full potential of the ADOPAR Internal Representation (IR). This chapter

looks to the future of ADOPAR and the improvements and applications of its IR.

6.1 Summary of Results

The previous chapters have shown the parallelism information that may be

represented by ADOPAR’s IR. This information is available in the form or a com-

pressed task graph using task and relationship descriptors, enhanced by the flexibility

and expressiveness of instantiation functions. Preliminary schedulers have the ability

to work with this information to create parallelized code.

The program does see an increase in file size, mainly due to the additional

parallelism information that is included in the representation. Compiling the program

sees a negligible time increase. However, because current schedulers cannot work with

this representation natively there is a significant overhead involved to translate the

Task Descriptor Graph (TDG) into a Task Instantiation Graph (TIG). While future

work will hopefully eliminate this step, it will be necessary until native schedulers

have been written.

6.2 Future Work

This research presents only a portion of how front ends, back ends, schedulers,

programmers, and architectures may use task and relationship descriptors. Future

91

work may investigate the many improvements and extensions that build on to the

ADOPAR IR or use its features. Some features are currently under investigation,

while others are currently only theoretical. Each is a natural extension made possible

by the challenges and features made available by the new IR.

6.2.1 Representation

The representation itself offers several possibilities for future investigation on

the use of task descriptors and various extensions:

Additional Task Types This work only presents the basic set of tasks that are

useful in the situations we have encountered: empty tasks, block tasks, and

function call tasks. We have also added root tasks and substitution tasks for

their utility in building the TDG. Some applications may benefit from tasks

that represent explicit threads (a task which executes on its own processor

without any other tasks and provides its own synchronization) and message

tasks (providing a back end to Message Passing Interface (MPI) and similar

libraries). New task types may provide for special-case situations that ease

construction of the ADOPAR IR for various programming models.

Parallel Instantiation While explicit TIG instantiation is not required in the gen-

eral case, it may still be prudent to perform this step for highly irregular compu-

tations. Multithreading the instantiation function will dramatically reduce the

overhead of explicit instantiation. While the TDG may be cyclic, the hierarchy

is not. The hierarchy graph can be scheduled for parallel execution using the

same ADOPAR schedulers used on the TIG.

Additional Locality Information Current ADOPAR research [10] suggests that

locality (especially temporal locality) effects have a critical influence on per-

formance. Incorporating additional information into the representation is vital

when optimizing the schedule. The current concept for representing most lo-

cality information is through relationship edges in the TDG; however, other

schemes may better describe various types of locality information. Data Access

92

Descriptors (DADs), Regular Section Descriptors (RSDs), and Processor Tagged

Descriptors (PTDs) may provide such a mechanism, although it is possible to

incorporate them into the relationship descriptor instantiation functions.

Iterative Scheduling The current implementation of the IR assumes a separate

scheduling and iteration model: the scheduler runs once while the schedule

is reused many times. However, the initial schedule may not be optimal and

the run-time environment may find additional parallelism and speedup with

continued work. The scheduler may run on an unused processor, if available.

Future work may examine adaptations to the representation to support iterative

scheduling.

Non-Static Task Graphs The ability of a program to modify its task graph is

closely related to iterative scheduling, partly due to the related execution model

and the necessary representation extensions. For example, a molecular dynam-

ics simulator might model a chemical reaction that changes the bonds, simu-

lated as a change in the relationships between tasks and possibly the creation

of additional tasks. Changes to the task graph are currently supported by com-

pletely rescheduling the task graph, a highly inefficient operation considering

the potentially small change. Iterative scheduling mechanisms may also improve

performance for non-static graphs. The extent of modification could be limited

to the TIG rather than the TDG, further simplifying the process.

Schedule Descriptors The nature of task and relationship descriptors implies that

other descriptors may help in the scheduling process. Schedule descriptors would

create specialized scheduling determined by static analysis but parameterized

with run-time information. As with task and relationship descriptors, schedule

descriptors provide specific information to the run-time environment. In this

case, the exact task ordering and partitioning is provided, rather than instanti-

ations of tasks.

93

Native Schedulers Schedulers do not necessarily need the run-time environment

to create a full TIG, although all the current ADOPAR schedulers do. Future

research will create schedulers that can operate directly on the task and rela-

tionship descriptors, fully realizing the potential of the representation. Native

schedules might run at compile time – creating schedule descriptors – or directly

at run time.

6.2.2 Front Ends

There are currently no front ends that use ADOPAR as a back end. An exten-

sive amount of future work is possible in the implementation of various programming

models and translating this information to the appropriate internal representation.

Some interesting examples include:

OpenMP A simple, widely used programming model [22] that mainly uses loop-

based parallelism and simple synchronization. Translating between OpenMP

and the ADOPAR IR is relatively simple: the fork/join paradigm is very similar

for both, and OpenMP’s loop-based parallelism model maps to simple task

descriptors and sets of task trees.

High Performance Fortran (HPF) and Fortran 95 Many extensions have

been provided to parallelize Fortran. OpenMP is common and may specific

keywords exist to describe loop-based parallelism (such as forall). HPF [36]

also has directives to distribute array data, information that ADOPAR would

express as part of the instantiation functions.

C/C++ Many libraries and language extensions exist to parallelize C, C++, and

related languages. The ADOPAR IR could be used by various front ends, cre-

ating relationship descriptors to summarize the results of alias analysis or other

useful information. When analyzing code, the compiler must solve complex sets

of equations to determine the relationship between code segments. Run-time

dependencies might prevent successful analysis, but the front end can package

94

the remaining unsolved equations as relationship instantiation functions to be

executed to test for aliasing.

MPI Message passing programs will probably require extensions to the representa-

tion. A front end might represent MPI and similar paradigms [21] as message

task, with messages represented edges between them.

Spreadsheets Spreadsheet calculations translate cleanly into the ADOPAR IR. The

dependencies between cell formulas create a Directed Acyclic Graph (DAG) and

calculations are often repeated. A cell formula, then, becomes a task descriptor

when translating to the ADOPAR IR. The equivalent of duplicating the calcu-

lation is the instantiation function, and cell dependencies become relationship

descriptors.

6.2.3 Analysis and Optimization

This work presents an internal representation that ADOPAR can analyze and

optimize. Future work may examine the utility of the representation in the optimiza-

tion process. Several possible improvements for analysis and optimization include:

Descriptor Analysis In general, relationship and task descriptors contain a simple

algorithmic relationship between tasks. The compiler could analyze relation-

ships using techniques such as partial evaluation [32]. The result of the analysis

is a native understanding of the front end’s intent. Native schedulers and sched-

uler generators would require descriptor analysis.

Task Relationships While our research examined some of the properties of task

relationships, this work treated Read After Write (RAW), Write After Read

(WAR), and Write After Write (WAW) relationships as simple sequencing de-

pendencies and made no particular distinction between them. Exclusivity re-

lationships could likewise be split into read exclusivity and write exclusivity.

Future research should explore each relationship type in the process of creating

schedulers and optimizers.

95

Dynamic Optimization Run-time feedback of task execution times provide insight

into the actual properties of tasks. Some information is impossible to know

when scheduling, such as the actual task execution and data communication

costs. Iterative solvers may make use of measured task execution times and

communication costs to improve the schedule, updating the estimates already

contained in the IR.

6.3 Summary

There are many opportunities for future study of the representation presented

in this work. More features will become necessary as ADOPAR continues to develop.

These features will provide true front ends, real applications, lower overhead, and

tighter integration into the scheduling environment. We expect the representation to

grow alongside ADOPAR’s scheduling environment.

6.4 A Final Word

The realities of manycore computing create opportunities for many different

fields of research, from the design of processors and memory to the creation of pro-

gramming strategies that use them. The naturally occurring diversity of architectures,

programming models, and operating environments should not impede these opportu-

nities. Instead, each difference brings an advantage that improves performance and

simplifies the creation of hardware and software.

ADOPAR improves performance and simplifies diversity management through

adaptive run-time optimization of software parallelism, but requires more information

than is traditionally available. The IR implemented here aids ADOPAR through a

flexible and descriptive design. The flexibility supports a wide variety of program-

ming models and applications. A diverse set of operating environments requires that

it provide sufficiently detailed information to the ADOPAR schedulers. We have

successfully implemented this representation using compiler intrinsics, providing the

described task graph to various schedulers and then performing computations in mul-

tiple threads.

96

Bibliography

[1] Semiconductor Industry Association (SIA), “International technology roadmap
for semiconductors,” 2007. [Online]. Available: http://www.itrs.net/

[2] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang, “The
case for a single-chip multiprocessor,” in Proceedings of the 7th International
Symposium on Architectural Support for Programming Languages and Operating
Systems, 1996, pp. 2–11.

[3] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” Computer,
vol. 41, no. 7, pp. 33–38, 2008.

[4] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson,
S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S. Lam, and J. L.
Hennessy, “SUIF: an infrastructure for research on parallelizing and optimizing
compilers,” SIGPLAN Not., vol. 29, no. 12, pp. 31–37, 1994.

[5] J. Saltz, R. Ponnusamy, S. D. Sharma, B. Moon, Y.-S. Hwang, M. Uysal, and
R. Das, “A manual for the CHAOS runtime library,” College Park, MD, USA,
Tech. Rep., 1995.

[6] D. Callahan and K. Kennedy, “Analysis of interprocedural side effects in a paral-
lel programming environment,” Journal of Parallel and Distributed Computing,
vol. 5, no. 5, pp. 517–550, 1988.

[7] K. A. Faigin, S. A. Weatherford, J. P. Hoeflinger, D. A. Padua, and P. M.
Petersen, “The Polaris internal representation,” International Journal of Parallel
Programing, vol. 22, no. 5, pp. 553–586, 1994.

[8] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, “The
landscape of parallel computing research: A view from Berkeley,” University of
California, Berkeley, Tech. Rep. UCB/EECS-2006-183, 2006.

[9] M. H. Willebeek-LeMair and A. P. Reeves, “Strategies for dynamic load balanc-
ing on highly parallel computers,” IEEE Transactions on Parallel and Distributed
Systems, vol. 4, no. 9, pp. 979–993, September 1993.

[10] D. A. Penry, “Multicore diversity: A software developer’s nightmare,” Operating
Systems Review, vol. 43, no. 2, pp. 100–101, Apr 2009.

97

http://www.itrs.net/

[11] D. A. Penry, “You can’t parallelize just once: Managing manycore diversity,” in
Manycore Computing Workshop, June 2007.

[12] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr., “Exokernel: An operating
system architecture for application-level resource management,” in Proceedings
of the 15th ACM Symposium on Operating System Principles, 1995, pp. 251–266.

[13] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang, “Corey: an
operating system for many cores,” in Proceedings of the 8th USENIX Sympo-
sium on Operating Systems Design and Implementation, 2008.

[14] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program
analysis and transformation,” in Proceedings of the International Symposium on
Code Generation and Optimization, 2004, pp. 75–86.

[15] J. H. Saltz, R. Mirchandaney, and K. Crowley, “Run-time parallelization and
scheduling of loops,” IEEE Transactions on Computers, vol. 40, no. 5, pp. 603–
612, May 1991.

[16] S. J. Fink, S. B. Baden, and S. R. Kohn, “Efficient run-time support for irreg-
ular block-structured applications,” Journal of Parallel Distributed Computing,
vol. 50, no. 1-2, pp. 61–82, 1998.

[17] J. H. Merlin, S. B. Baden, S. J. Fink, and B. M. Chapman, “Multiple data
parallelism with HPF and KeLP,” in HPCN Europe 1998: Proceedings of the
International Conference and Exhibition on High-Performance Computing and
Networking. London, UK: Springer-Verlag, 1998, pp. 828–839.

[18] V. Balasundaram and K. Kennedy, “A technique for summarizing data access and
its use in parallelism enhancing transformations,” Proceedings of the SIGPLAN
’87 symposium on Interpreters and interpretive techniques, vol. 24, no. 7, pp.
41–53, 1989.

[19] E. Su, D. J. Palermo, and P. Banerjee, “Processor tagged descriptors: A data
structure for compiling for distributed-memory multicomputers,” in Proceedings
of the 3rd International Conference on Parallel Architectures and Compilation
Techniques. Amsterdam, The Netherlands, The Netherlands: North-Holland
Publishing Co., 1994, pp. 123–132.

[20] A. Lain, “Compiler and run-time support for irregular computations,” Ph.D.
dissertation, University of Illinois at Urbana-Champaign, Champaign, IL, USA,
1996.

[21] D. R. Chakrabarti, P. Banerjee, and A. Lain, “Evaluation of compiler and
runtime library approaches for supporting parallel regular applications,” in
IPPS ’98: Proceedings of the 12th. International Parallel Processing Symposium.
Washington, DC, USA: IEEE Computer Society, 1998, p. 74.

98

[22] OpenMP Application Program Interface. OpenMP Architecture Review Board,
2005.

[23] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao,
E. Bugnion, and M. S. Lam, “Maximizing multiprocessor performance with the
SUIF compiler,” Computer, vol. 29, no. 12, pp. 84–89, 1996.

[24] T. Johnson, “A concurrent dynamic task graph,” in Proceedings of the 1993
International Conference on Parallel Processing. Washington, DC, USA: IEEE
Computer Society, 1993, pp. 223–230.

[25] C. D. Polychronopoulos, “The hierarchical task graph and its use in auto-
scheduling,” in Proceedings of the 5th International Conference on Supercom-
puting, 1991, pp. 252–263.

[26] C. D. Polychronopoulos, “Toward auto-scheduling compilers,” Journal of Super-
computing, vol. 2, pp. 297–330, 1988.

[27] D. R. Engler, W. C. Hsieh, and M. F. Kaashoek, “’C: A language for high-level,
efficient, and machine-independent dynamic code generation,” in Proceedings of
the 22nd Annual ACM Symposium on Principles of Programming Languages,
1995, pp. 131–144.

[28] J. Mellor-Crummey, D. Whalley, and K. Kennedy, “Improving memory hierarchy
performance for irregular applications,” in Proceedings of the 1999 International
Conference on Supercomputing, 1999, pp. 425–433.

[29] T. L. Adam, K. M. Chandy, and J. R. Dickson, “A comparison of list schedules
for parallel processing systems,” Communications of the ACM, vol. 17, no. 12,
pp. 685–690, December 1974.

[30] R. Anderson, P. Beame, and W. Ruzzo, “Low overhead parallel schedules for
task graphs,” in Proceedings of the 2nd Annual ACM Symposium on Parallel
Algorithms and Architectures, July 1990, pp. 66–75.

[31] H. El-Rewini and T. G. Lewis, “Scheduling parallel program tasks onto arbitrary
target machines,” Journal of Parallel and Distributed Computing, vol. 9, no. 2,
pp. 138–153, June 1990.

[32] M. Leone and P. Lee, “Dynamic specialization in the Fabius system,” in ACM
Computing Surveys Symposium on Partial Evaluation, vol. 30, no. 3es, Sep 1998.

[33] D. A. Penry, D. Fay, D. Hodgdon, R. Wells, G. Schelle, D. I. August, and D. Con-
nors, “Exploiting parallelism and structure to accelerate the simulation of chip
multi-processors,” in Proceedings of the 12th International Symposium on High-
Performance Computer Architecture, February 2006, pp. 29–40.

99

[34] D. A. Penry, “The acceleration of structural microarchitectural simulation via
scheduling,” Ph.D. dissertation, Princeton University, Princeton, NJ, November
2006.

[35] M. A. Suleman, M. K. Qureshi, and Y. N. Patt, “Feedback-driven threading:
Power-efficient and high-performance execution of multi-threaded workloads on
CMPs,” in Proceedings of the 13th International Symposium on Architectural
Support for Programming Languages and Operating Systems, 2008, pp. 277–286.

[36] High-Performance Fortran Specification, Version 2.0. High-Performance For-
tran Forum, 1997.

100

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.1.1 The Manycore Era
	1.1.2 Discovery of Parallelism
	1.1.3 Packaging of Parallelism
	1.1.4 The Run-time Advantage

	1.2 The ADOPAR Vision
	1.3 Parallelism Representation
	1.4 Contributions and Objectives
	1.5 Outline

	2 Background and Related Work
	2.1 Scheduling and Execution
	2.2 Parallel Programming Paradigms
	2.2.1 Types of Parallelism

	2.3 Data-Parallel Representations
	2.4 Loop-Parallel Representations
	2.5 Task-Parallel Representations
	2.6 Summary

	3 The ADOPAR Representation
	3.1 Fine-Grained Task Model
	3.2 Static Task Graph
	3.2.1 Task Types
	3.2.2 Synchronization Primitives

	3.3 The ADOPAR Internal Representation
	3.3.1 Task and Relationship Descriptors
	3.3.2 IR Creation Process

	3.4 Examples
	3.4.1 Linear Algebra
	3.4.2 Iterative Linear System Solvers

	3.5 Future Transformations on the TDG
	3.5.1 Inlining and Extraction
	3.5.2 Descriptor Splitting
	3.5.3 Flattening

	3.6 Granularity Adjustments
	3.6.1 Discrete Task Combining
	3.6.2 Task Descriptor Combining
	3.6.3 Hierarchy Combining

	3.7 Summary

	4 Implementation
	4.1 Environment
	4.1.1 LLVM
	4.1.2 Scheduler

	4.2 ADOPAR Intrinsics
	4.2.1 Parameters and Types
	4.2.2 TDG Creation Intrinsics
	4.2.3 Instantiation Function Intrinsics
	4.2.4 Querying and Execution Intrinsics

	4.3 TDG Creation
	4.4 Code Transformations
	4.5 Examples
	4.5.1 Sparse Linear Systems

	4.6 Summary

	5 Evaluation
	5.1 Methodology
	5.1.1 Criteria
	5.1.2 Metrics
	5.1.3 Benchmarks

	5.2 Measurements
	5.2.1 Code Size Overhead
	5.2.2 Compilation Time Overhead
	5.2.3 Task Instantiation Overhead
	5.2.4 Scheduling Results

	5.3 Summary

	6 Conclusion
	6.1 Summary of Results
	6.2 Future Work
	6.2.1 Representation
	6.2.2 Front Ends
	6.2.3 Analysis and Optimization

	6.3 Summary
	6.4 A Final Word

	Bibliography

