Increasing the scope and resolution of
Interprocedural Static Single Assignment

Silvian Calman and Jianwen Zhu

Department of Electrical and Computer Engineering
University of Toronto, Toronto, Ontario, Canada

{calman s jzhu} Q@eecg.toronto.edu

Abstract. While intraprocedural Static Single Assignment (SSA) is
ubiquitous in modern compilers, the use of interprocedural SSA, although
seemingly a natural extension, is limited. We find that part of the im-
pediment is due to the narrow scope of variables handled by previously
reported approaches, leading to limited benefits in optimization.

In this study, we increase the scope of Interprocedural SSA (ISSA) to
record elements and singleton heap variables. We show that ISSA scales
reasonably well (to all MediaBench and most of the SPEC2K), while re-
solving on average 1.72 times more loads to their definition. We propose
and evaluate an interprocedural copy propagation and an interprocedural
liveness analysis and demonstrate their effectiveness on reducing input
and output instructions by 44.5% and 23.3%, respectively. ISSA is then
leveraged for constant propagation and dead code removal, where 11.8%
additional expressions are folded.

Key words:SSA, interprocedural, dataflow, constant propagation

1 Introduction

When the Intermediate Representation (IR) is in Static Single Assignment (SSA)
form, each use of a variable is associated with the point where it is defined. To
convert the IR into SSA form an algorithm based on Cytron [1] can be used to
replace loads and stores for a set of program variables, which we refer to as SSA
variables and insert ¢ instructions at control flow merge points.

Not all program variables are SSA variables. Usually, they are limited to
scalar stack variables, whose address is never taken. This scope can be extended
to other stack variables, global variables, and variables allocated on the heap.
This extension is usually referred to as Interprocedural SSA (ISSA) as it is re-
quired to trace the dataflow for SSA variables across procedure boundaries.

SSA form can simplify analysis and optimization algorithms. Due to ¢ in-
structions, we can distinguish values associated with incoming edges, a property
utilized to apply constant propagation, dead code removal [2], and other trans-
formations [3,4]. Moreover, ¢ instructions can also be used to analyze cyclical
dataflow, such as in induction variable analysis [5]. Beyond this, SSA is also

used to simplify other client applications [6-8] by decoupling the dataflow anal-
ysis from the implementation. Naturally, it can be expected that ISSA form can
help extend these intraprocedural analysis and optimization algorithms to their
interprocedural counterparts.

We review two recent ISSA construction algorithms. Liao [9] applied a unifi-
cation based pointer analysis (Steensgaard’s [10]), and renamed memory accesses
to the corresponding alias set. Staiger et al. [11] used symbolic variables, called
locators, to represent program variables at each procedure. In this work, values
are passed interprocedurally by mapping locators to one another and SSA is
generated in a traditional way [1], after a pointer analysis step maps all loads
and stores to the corresponding locator. Staiger showed that an inclusion-based
pointer analysis (Andersen’s [12]) reduces memory consumption and consider-
ably speeds up the formation of ISSA, compared to the unification-based pointer
analysis (Steensgaard).

The ISSA construction described by Liao [9] and Staiger [11] has a num-
ber of shortfalls. First, their ISSA has limited resolution, as some SSA variables
represent more than one program variable, creating may def-use relations. More
specifically, full resolution was only available for scalar globals and as such, copy
propagation (and strong updates, etc.) could only be applied to scalar globals.
Furthermore, in contrast to traditional SSA form, client applications would have
to distinguish between must def-use and may def-use relations. Second, neither
Liao [9], nor Staiger [11] applied interprocedural copy propagation, which can
fold false merge points or liveness analysis to reduce unnecessary dataflow propa-
gation. The lack of a mechanism to remove redundant ¢ instructions and unused
expressions during ISSA construction results in a much greater code size and
less precise dataflow.

We propose and evaluate an ISSA form without may def-use relations, imple-
mented in the compiler IR by extending the instruction set. Our implementation
considers both scalars as well as scalar elements of records. We handle global and
stack variables, as well as variables corresponding to a single dynamic memory
location. Using this implementation, we contrast ourselves with previous work
and make the following contributions:

— We quantify why the previous approach, in which a flow-insensitive pointer
analysis is used and only strong updates to scalars globals are handled (sim-
ilar to Staiger [11]), is less effective. By handling record elements and sin-
gleton heap locations, we replace 1.72 times (on average) more load instruc-
tions with their definition. In addition, we observed that the field-insensitive
pointer analysis increases the input into procedures by a factor of 12.2; on
average.

— We define the value of an instruction in terms of its parent’s last invoca-
tion and we propose an interprocedural copy propagation algorithm, which
reduces input and output instructions by 44.5%, on average. To the best of
our knowledge, this is the first paper describing the challenges involved as
well as proposing a solution.

— We incorporate a revised interprocedural liveness analysis to limit the vari-
ables propagated into and out of procedures, which reduces the input and
output instructions by 23.3%, on average.

— We evaluate the benefit of ISSA by applying constant-folding and dead code
elimination on the IR (ISSA form) and fold on average 11.8% more instruc-
tions than what was provided by the LLVM infrastructure.

In Section 2, we describe the IR extensions for ISSA and the challenges
involved in copy propagation. In Section 3, we provide details regarding the
implementation and present the algorithms used to identify heap allocated SSA
variables, compute liveness analysis, and apply copy propagation. In Section 4,
we provide experimental data for the performance and precision of our ISSA
form and the improvement observed in constant propagation. Section 5 discusses
related work and Section 6 summarizes the major conclusions.

2 Interprocedural SSA

In this section, we present the IR extensions used to handle dereferences and in-
terprocedural value propagation and demonstrate ISSA form construction using
an example. In Section 2.1, we describe the difference between intraprocedural
and interprocedural copy propagation and outline our algorithm.

In ISSA, dereferences might correspond to multiple locations, including SSA
variables. Similar to previous work [6,13-15], we extend the IR with the con-
ditional load and store instructions (¢* and ¢°, respectively). Another issue is
value passing at call instructions; we introduce two new instructions, ¢" and
#©, to pass the value of a variable across procedure boundaries. These new
instructions are discussed in more detail below:

#°: pExpr.¢®(var, curr,val) is used to handle store instructions, where pExpr
is the pointer expression. If pExpr is equal to var, then the value of this
instruction becomes val, otherwise, the value is curr.

ol pExpr.g* ((vary,valy), . .., (var,,valy,)) is used to handle load instructions,
where pExpr is the pointer expression. If pExpr is equal to var;, then the
value of this instruction will be val;.

oV qbzfﬂmp) ({ciy,valy), {cia,vals),...) is used to pass the value of variable var to
the entry of procedure p, from a call instruction ci. When entering p from
ci;, the value of this instruction is val;.

¢ pExpr.qﬁ(C;ami) ({funecy,valy), (funca,vals), . ..) is used to pass the value of
variable var, at the exit from a call instruction ci, where pExpr is the pointer
expression for ci, if ¢i is an indirect call. If pExpr is equal to func;, then
the value of this instruction will be val;. For direct calls, we omit the pointer
expression.

In Example 1(d), we show the ISSA form of Example 1(a). The ISSA form is
derived by leveraging the pointer analysis result along with the new instructions
(o7, %, ¢V, ¢©). In Example 1(a), all four global variables g, z, y, and z are SSA

Ezample 1. Interprocedural SSA Example

int y =25, 2= 10, *z, **¢; 1 a
CBJ?j } grint(g;*g}),' } ? (b) Point-to o °
g = 6z
main() { 4 graph for e
g = Hu; 5 Example 1(a).
z = Ey; 6
S1: B(); 7
**g = 20; 8 int y =5 z=10, *z, **g; 1
52: C(); 9 c(){ 2
} 22 = ¢, oy (Clz,a1); 3
(a) Code before SSA is applied. ye = ¢‘<‘;,c>(0127y1)! 4
Point-to graph is shown in 22 = ¢, cy(Clz, z1); 5
Example 1(b). print(22.¢" (&y,y2), (&2, 22))); 6
7
), z
5 — _ main
o *;{ :*;: z =10, é CI: B(); 10
c(){ 3 ol = ¢0, o1y (B, &2) 11
print(20); 4 yl = z1.6°(&y, 5, 20); 12
. 5 21 = x1.¢° (&2, 10, 20); 13
main() { g Cly: C(); 14
' }
}

(d) Code after ¢°, ¢*, ¢V, and ¢ instructions are

(¢) Code after copy propagation.
inserted.

variables. A flow-insensitive pointer analysis indicates that = points to either y or
z, and g points to x. Since the dereference in Example 1(a) on Line 8 corresponds
to either y or z, we need to insert two ¢° instructions to handle the store, as
illustrated in Example 1(d) on Lines 12-13. Similarly, due to the dereference in
Example 1(a) on Line 2, we need to insert a ¢ instruction in Example 1(d)
on Line 6. Note that procedure B produces the variable z, whereas procedure
C' uses the variable z and possibly the variables y or z. Hence, we generate
the appropriate input and output mappings for procedure B on Line 11 and
procedure C'on Lines 3-5.

2.1 Copy Propagation

Copy propagation simplifies the IR, as we remove and fold ¢, ¢, ¢*, ¢V, and
¢ instructions. For instance, by applying copy propagation, we determine the
value of 21 (Line 11 in Example 1(d)) to be &z and by folding the ¢° and ¢
instructions, we produce the code in Example 1(c).

The scope of a value in our framework is the whole program, enabling us to
fold ¢V and ¢ instructions. The benefit of this approach is IR size reduction
and the simplification of the def-use relation, as values passed in and out of
procedures are masked by ¢V and ¢ instructions. To this end, we define the
value of instruction I in procedure P as the value of I in the last call frame of

P, or otherwise (P is not on the stack) as the value of I in the last invocation of
P. Under this definition, the value of I varies with its usage points, but at any
program point in P, it is identical in both SSA and ISSA, and as such, ISSA can
be constructed on IR in SSA form. Copy propagation is straight forward with
the exception of ¢" and ¢€ instructions, which we discuss in the rest of this
section.

Let us consider a ¢V instruction I' used in procedure P, merging a single
value V. Under our definition, replacing IV with V is legal as long as V is not
located in P. However, V cannot be located in P since V must dominate IV, and
IV dominates all instructions inside procedure P. Hence, under our definition,
¢V instructions merging a single value V, can always be substituted with V.

Ezample 2. Examples for invalid ¢© copy propagation

int Sum(1 StructPtr recursiveProc(1
int a, int b, int ¢) { 2 StructPtr a, StructPtr b) { 2
S1: return a + b + c¢; } 3 resA = recursiveProc(3
void main() { 4 a->right, b->right); 4
int e, f; 5 resB = recursiveProc(5
6 a->left, b->left); 6
e=Sum(1,2,3); 7 7
f=Sum(20,21,315); 8 if(resA == resB) 8
printf(”%d, %d\n”, f, e); 9 R 9
} }
(a) Interprocedural copy propagation. (b) Recursive procedure dataflow.

Let us consider a ¢ instruction I¢ merging a single value V' located in pro-
cedure Py. Replacing I¢ with V is not always legal, as the invocation of Py
which V' corresponds to depends on the usage point of I¢. This is illustrated
in Example 2, where we present two cases in which the same value can corre-
spond to different instances of an instruction. In Example 2(a), both the first
and second return values from procedure Sum would correspond to S1. If we
propagate S1 through both ¢ instructions corresponding to it, then we would
lose the reference to S1 returned from the first call. To further emphasize this,
in Example 2(b), the values produced in two previous invocation of a recursive
procedure are compared. Without distinguishing between such instances, we will
erroneously conclude that the branch is always taken.

To discuss a solution for the substitution of ¢¢ instructions, let us assume
I€ is in procedure Pjc and defined at call instruction ci. First, if the value
I merged was a constant (i.e. not V), then it could be substituted at all usage
points of I¢. Otherwise, to prevent the propagation of values whose parent might
still be on the stack, we make sure that P;c and Py do not belong to the
same maximal Strongly Connected Component. Then, we can substitute
I¢ with V if no other call to Py is reachable between ci and the usage program
point (V' not redefined — thus it corresponds to value at c¢i). Note that our copy
propagation algorithm must be flow-sensitive, since we need to determine the
last instance of values substituted for ¢© instructions.

Field-Sensitive Steiger
Pointer
Andysis S L Vv c
ot | 070" [ree| 1070 0 ¢ | Copy
o] ey Placement Propagation
SSA

Variables
Liveness Andysis

Fig. 1. Overall procedure for ISSA generation.

3 Interprocedural SSA Generation

ISSA is generated in a stepwise procedure, as is illustrated in Figure 1. First,
in Section 3.1, we discuss the field-sensitive pointer analysis. In Section 3.2, we
describe the SSA variables handled and present the algorithm used to identify
singleton heap variables. Similar to Staiger [11], we convert load and store in-
structions as described in Section 3.3 and map input and output values at call
instructions, as detailed in Section 3.4. In Section 3.4, we also describe the in-
terprocedural liveness analysis used to constrain the variables propagated across
procedures. Next, we place ¢ instructions to merge values, both interprocedurally
and intraprocedurally. We treat the newly inserted ¢°, ¢, and ¢ as storage
instructions; ¢’ as a load instruction; and we use Cytron’s [1] algorithm, un-
modified. Lastly, we apply interprocedural copy propagation, as described in
Section 3.5.

3.1 Pointer Analysis

Pointer analysis is used to update the call graph and to resolve pointer deref-
erences into loads, stores, ¢°, and ¢ instructions (Section 3.3). From practical
experimentation on a large number of C benchmarks, we observed that field-
insensitivity results in a large number of spurious point-to edges and an increase
in the number of variables passed across procedures.

We observed that distinguishing between heap objects reduced the number
of spurious point-to edges and therefore, false loads and assignments. Moreover,
many benchmarks use memory managers, and distinguishing between heap loca-
tions, allocated using interface functions, reduced both the runtime of the pointer
analysis and spurious point-to edges (and hence, spurious memory accesses).

3.2 Choosing SSA Variables

Currently, we consider scalar variables and fields of aggregates as potential SSA
variables. We handle local variables in non-recursive procedures and in addition
to previous work on ISSA, we also handle SSA variables residing in allocation
sites, executed at most once in a program, which we refer to as singular. If an
allocation site A; is executed at most once, then each dereference resolved to

A; corresponds to the same memory location. Furthermore, since only a single
instance of this instruction exists, each variable v, allocated at A;, can be an
SSA variable.

Singular allocation sites are identified by using the mazimal Strongly Con-
nected Component (SCC) partitioned call graph and control flow graph. Singular
allocations can occur on mutually exclusive paths in the program. As such, we
propose an algorithm called Ezclusive Path Singular Allocation Site Identifier
(EPSASI). Initially, EPSASI excludes from consideration all procedures in a
SCC, or procedures called from a control flow graph SCC, as well as their de-
scendants. In EPSASI, the procedures reached from every call instruction in
non-excluded procedures are summed up (using bottom-up traversal). The rest
of the algorithm is formulated as an intraprocedural dataflow analysis, identi-
fying procedures invoked more than once on a given path. In the analysis, the
domain is a mapping between every procedure p and the maximum number of
times p can be invoked, at the entry to a basic block. Initially, at the entry block
for a procedure, we initialize the map to 0. When encountering a call instruction
ci, 1 is added to the number of possible invocations for each reachable procedure
from ci (transfer function). The number of times a procedure p can be invoked
at the entry to a basic block bb is the maximum number of invocations p can
have in the predecessors of bb (meet operator). We exclude all procedures which
have more than one path executing them, as well as their descendants.

When a fixed point is reached, all allocation sites in non-excluded procedures,
not located in control flow graph SCCs, are singular.

3.3 Dereference Conversion

We convert dereferences to load and store instructions, which can reference SSA
variables. If pExpr is the pointer expression for a load or store instruction and
it references a single memory location (according to pointer analysis) for SSA
variable var, then we replace pExpr with var.

Let us consider a store instruction, assigning value val, that references more
than one memory location, including at least one SSA variable. We will replace
this instruction with a series of ¢° instructions, with the form
pExpr.¢® (var, curr, val), for each SSA variable var, with current value curr. If
pExpr can also reference a non-SSA variable, we also insert a default ¢ instruc-
tion, which is executed if none of the other ¢° instructions have pExpr == var.

In the case of a load instruction that can reference SSA variables varg . . . var,,
and non-SSA variables var, 1 ...var,+1+m, where n +m > 1, we insert a or
instruction. If m == 0, then the load is replaced with
pExpr.¢t ((varg,valp), ... (var,,val,)). If m # 0, then we also add a default
value to the ¢¥ instruction, which is taken if none of the other addresses match.

The effect of external call instructions is captured by replacing the call using
the load, store, ¢¥, and ¢° instructions. In cases where this can’t be done, we
commit the value of the variable prior to the call and assign it afterwards.

Note that during copy propagation and constant folding, the pointer expres-
sion, pExpr, for various ¢* or ¢° instructions, is resolved. We can then fold
these instructions to their corresponding value.

3.4 Procedure Input and Output Mapping
In the rest of this section (and in Section 3.5), we use the following terms:

— PR C [0,00) is the set of procedures in the program.

— BB C [0,00) is the set of basic blocks in the program.

INS C [0,00) is the set of instructions in the program.

VR C [0,00) is the set of SSA variables in the program.

RV : PR — 2YR is a mapping between a given procedure p € PR and the
set of variables V' C VR possibly read in p or its descendants.

WYV : PR — 2YR is a mapping between a given procedure p € PR and the
set of variables V' C VR possibly written in p or its descendants.

We use the load, store, ¢°, and ¢* instructions to determine the initial values
of RV and WYV, for each procedure. We then partition the call graph into SCCs
and traverse the partitioned call graph using a postorder traversal (bottom-up
pass), adding up the read and write sets in the program. The computation of RV
and WYV using this approach is very coarse and we refine it by using a revised
liveness analysis. For every procedure p € PR, we compute ARV(p), which is
the set of variables read after p exits. In addition, we compute the set of variables
written before p is first invoked, BWY(p). Then, we constrain the set of variables
passed in and out of procedure p using BWV(p) and ARV (p), respectively.

We compute these two sets by using the SCC partitioned call graph to
derive a topological visitation order, TopCG : Z + 2FPR. Likewise, for each
procedure p € PR, we derive a topological control flow graph visitation order
TopCFG : Z — 2BB. Next, we apply procedure deriveLimitSets, presented in
Algorithm 1, which visits the call graph in topological order. When TopCG (i) is
a SCC, then RV and WYV are added to ARV and BWYV, respectively, since each
procedure in TopCG(i) might be executed multiple times (Lines 9-15). Oth-
erwise, a topological traversal over the SCC partitioned control flow graph of
TopCG(i) is applied, using TopCFG. During the pass, the set of variables writ-
ten so far, WritesSoFar (Line 28), and the set of procedures invoked so far,
ProcsSoFar (Line 29), are maintained. Conceptually, when visiting a call in-
struction where the callee is ¢p € PR, WritesSoFar are added to BWV(cp),
and when encountering a read to variable var, then var is added to ARV for each
procedure in ProcsSoFar. In Algorithm 1, on Line 30, the routine Summarize is
used to retrieve the set of procedures called in TopCFG (i), along with the set of
variables read and written. If TopC' FG(i) is not a SCC, then Summarize excludes
variables written in procedures called from TopCFG(i) and their descendants.
In our algorithm BWYV is updated for each called procedure c¢p € Callees with
WritesSoFar, and ARV is updated for each procedure psf € ProcsSoFar with
the current reads (currR). Lastly, if TopCFG(i) is a SCC, then we also update
ARV for psf (Line 35).

Algorithm 1. Top-down computation of BWY and ARV

updateComp = func(1 deriveLimitSetsNormal = func(i : Z) { 24
Uset : PR +— 2YR, 2 ProcsSoFar : 2FR = @ 25
update : 2YR | callee : PR) { 3 WritesSoFar : 2¥™ = BWV(TopCG(i)) 26
if(34, callee € TopCG (i)) 4 for(j =055 < \TopCFG\ i++){ 27

forall(p € TopCG(i)) 5 CurrW, CurrR : 2V 28
Uset(p) = Uset(p) Uupdate; 6 Callees : 2FT; 29

7 (CurrW, CurTR Callees) =
deriveLimitSetsSCC = func(i: Z) { 8 Summarzze(TopCFG(3)); 30

forall(p € TopCG(i)) { WritesSoFar =

forall(q € TopCG(i)) { 10 WritesSoFar U CurrW; 31
BWYVY(p) = BWV(q) UWV(q); 11 forall(cp € Callees) { 32
ARV(p) = ARV (q) URV(q);} 12 update Comp(BWYV, WritesSoFar, cp);33
forall(callee of p, cp) { 13 if(TopCFG(i) recursive) 34
updateComp(BWY, BWY(p), cp);14 updateComp(ARYV, CurrR,psf); 35
update Comp(ARV, ARV (p),cp); 15 36
I 16 forall(psf € ProcsSoFar) 37
17 updateComp(ARYV, CurrR, psf); 38

deriveLimitSets = func() { 18 ProcsSoFar |J= Callees; 39

for(i = 0;i1 < |TopCG|;i+ +) { 19 WritesSoFar U= U,pccaiices YWV(cP)i40

if([TopCG(i)| > 1V } 41

TopCG(i) recursive) 20 forall(psf € ProcsSoFar) 42
deriweLimitSetsSCC(i); 21 update Comp/(

else 22 ARV, ARV (TopCG(i)),psf); 48

. }deriveLimitSetsNormal(i); 23 1 44

After WV and RV are computed, we insert ¢" and ¢© instructions. Let
us assume that ¢i € ZN'S is the call instruction, p € PR is the caller, and
ProcCallees € 2P is the set of callees. First, we compute the set of variables
propagated to cle € ProcCallees, which we refer to as PropTo = RV(cle) U
WV(cle). Then, for each variable var € PropTo, we add the tuple {(ci,val)
to qﬁ(wT cley where val is the value of var prior to ci. Next, we compute the
set of variables written in ProcCallees, which we refer to as PropFrom =
Lloice Proccatices YWV (cle). Afterwards, for each variable var € PropFrom, and
each cle € ProcCallees, we add the tuple (cle, val) to (b(vm ciy> Where val is the
value of var at the exit from cle.

3.5 Interprocedural Copy Propagation

During ¢-placement, the ¢" instructions merging a single value are substituted
and we follow up by applying copy propagation to ¢© instructions. As described
in Section 2.1, we substitute a qb(vm ci) (cle,val) instruction merging a single
value val € ZN S defined in procedure pval € PR, as long as pval cannot be
called on any path from the ¢ instruction, up to the respective use. In basic
cases, where wval is either a constant or if pval is equal to cle and is called from
only one call instruction (not in a SCC), we replace ¢¢ with val.

Otherwise, in order to determine where a ¢© can be replaced by wval, we
identify the call instruction corresponding to the last instance of pval, for each
procedure at every basic block. To this end, in our implementation, described in
Algorithm 2 (and illustrated, using an example in Appendix A), we construct
a virtual SSA form, using a quasi variable p, for each procedure p € PR, in

the program. The value of p, will be the call instruction corresponding to the
last invocation of p, or @ otherwise. Prior to calling procedure interCopyProp,
we use a bottom-up pass over the SCC partitioned call graph to summarize the
set of procedures reached (in ReachedProcedures) from every call instruction,
c¢i € IN'S. When visiting a procedure, we compute the iterated dominance
frontier, IDF C BB, for each call instruction, ci. We then add to the VID
relation a mapping from each basic block bb € IDF’, to each procedure reached
from ci (ReachedProcedures(ct)).

Algorithm 2. Interprocedural Copy Propagation

SCC : PR w— Z; 1 . o
ReachedProcedg?;gs cINS — 2FR; 2 de;ot‘hg';gst;)/;s‘ztg_B fune (2?
VID : BB 277, 3 currV : PR — INS) { 22
Vals : Z — BB x (PR — INS); 4 forall(pdef € VID(bb)) 23
SP : Z; g currV(pdef) = @; 24
replOuts = fune(6 forall(ins € bb.IN'S) 25
p: PR, ci : INS, 7 replOuts(p, ci, currV); 26
currV : ZR = INS){ 8 forall(succ € getSuccs(bb)) 27
forall(¢<ua7‘,ci)(<pval’ val))) { 9 Vals(SP 4+ +) = (succ, currV); 28
if(IsAConstant(val)) 10 } 29
T'EPZWithV@l(¢<C;,1T,Ci>,’Ulll); 11 interCopyProp = func () { 30
else if(SCC(pval) # SCC(p)) { 12 forall(p € PR) { 31
if(IsCalledOnce(pval)) 13 SP':]?%D() §§

) . c . erive ;
TG?ZW'LthV‘Zl(‘b(vanci) ,va'l), 14 Vals(SP +4) = (p.entry,®) 94
else if(Cu’!"l‘V(p’Léal) ==ci) 15 while(SPI =0) { 35
replWithVal($(,q,. iy, val); 16 (bb, currV) = Vals(— — SP); 36
1} 17 depthFirstVisit (p, bb, currV); 37
forall(rp € ReachedProcedures(ci)) 18 } 38
currV (rp) = ci; 19 } 39

¥

After VID is computed, we begin a depth-first traversal of the control flow
graph for p, to perform copy propagation for the quasi variables. We treat
a call instruction c¢i as an assignment to each reachable procedure’s (pv €
ReachedProcedures(ci)) quasi variable, indicating ci was the last call instruc-
tion to reach pv. We use VID to identify basic blocks where a procedure pv might
be reached through more than one call instruction and we invalidate the value
stored in the quasi variable for pv (on Line 24). Through the copy propagation
of the quasi variables, we identify the call instruction associated with the last
invocation of each reachable procedure. We can substitute a reference to ¢€..,ci)
(passed out at call instruction c¢i), with its value val (derived in procedure p), if
Vals(p) == ci, at the site of the use (see procedure replOuts in Algorithm 2).

4 Experiment

In this study, we report on the performance of the interprocedural SSA con-
struction algorithm and we contrast the design choices to previous work. Aside
from the runtime, we present and discuss the impact of increasing the scope
and resolution of ISSA, applying copy propagation and liveness analysis, pointer
analysis, and lastly, the impact on constant propagation.

4.1 Setup, Benchmarks, and Runtime

We implemented the interprocedural SSA in the LLVM [16] compiler infras-
tructure. The experiments were performed on an Intel CORE 2 Duo 1.66 GHz
processor, with 4 GB memory, and running 64-bit ubuntu. These results were
collected on IR in intraprocedural SSA form, with constant propagation and
dead code removal already applied.

We evaluated our work on a set of MediaBench [17] and SPEC2K [18] bench-
marks. In Table 1, we list the various benchmarks used and their lines of code,
along with the number of call sites present in the benchmarks.

MediaBench SPEC2K SPEC2K
. Call . Call . Call
Name |Lines Sites T(s)] Name |Lines Sites T(s)| Name |Lines Sites T(s)

GSM | 4626 | 258 | 1.4 | 164.gzip | 8218 | 306 [0.95|197.parser |10932|1691|21.52
JPEG |26173] 942 |10.8| 175.vpr |16984|1902|5.88| 254.gap |59493|9773|91.17
MPEG2 °| 7283 [654 | 2.3 | 181.mcf | 1913 | 81 [1.02]256.bzip2 | 4665 | 299 | 0.74
G721 1476 | 53 | 0.3 | 186.crafty [19478|2252|8.32| 300.twolf |19756|1883|38.63

Table 1. Benchmark characteristics and the runtime (column labeled T(s)), in seconds.

In Table 1, we also present the runtime for ISSA generation (does not in-
clude pointer analysis runtime). All the MediaBench [17] benchmarks complete
within a few seconds and we handle a very large number of variables in them. In
comparison, the runtime takes longer for the SPEC2K [18] benchmarks, which is
understandable as the benchmarks have more lines of code and more call sites.
Furthermore, SPEC2K benchmarks use a greater set of the C language features,
including recursion, indirect calls, and cast accesses, which increase the number
of inputs and output across call sites.

4.2 Impact of Increasing Scope and Resolution

We evaluate the impact of increasing the scope and resolution of ISSA using
the number of SSA variables and the number of load instructions resolved to
the corresponding definition. A greater number can provide a higher benefit to
clients of ISSA.

In Table 2 we compare our ISSA construction algorithm (columns labeled
All) to an algorithm which is similar to Staiger [11] as it only considers scalar
globals (columns labeled Globals), and provide the ratio between them (columns
labeled X).

We first present the number of SSA variables (heading) for the two algorithm
in Table 2. As indicated, we are handling on average 5.17 times more variables
than an ISSA formation similar to Staiger [11]. Second, this shows a precise

0 decoder

Benchmark SSA Variables Loads Replaced ||Allocation Sites
All |Globals| X All |Globals| X |[|Singular| %
GSM 73 20 3.650191| 164 |1.16 0 0.0
JPEG 249 7 |35.57|[1564| 588 |2.66 33 55.0
MPEG2 186 | 133 1.4 || 814 | 650 [1.25 1 7.1
G721 14 5 2.8 || 43 15 |2.87 0 0.0
164.gzip || 151 | 100 |1.51 || 575 | 530 |1.08 1 20.0
175.vpr 280 96 2.92 (12471 2008 |[1.23 31 30.4
181.mcf 39 6 6.5 || 140 15 19.33 3 100.0
186.crafty || 403 | 266 | 1.52 |[3406| 1501 |2.27 5 41.7
197.parser || 229 82 2.79 || 570 | 520 |[1.10 2 1.8
254.gap 222 | 207 1.07 {1412 1409 |1.00 1 50.0
256.bzip2 || 41 41 1 478 | 478 |1.00 5 50.0
300.twolf || 378 | 293 | 1.29 ||6808| 6669 |1.02 0 0.0

| Average || | 5.17 | | 1.72 ||
Table 2. Number of variables handled, load instructions replaced, and singular allo-

cation sites identified.

field-sensitive analysis is useful in increasing the scope of ISSA, making it more
useful for structure intensive benchmarks.

Furthermore, in Table 2, we also illustrate the impact of increasing the scope
and resolution of ISSA construction on the number of load instructions substi-
tuted with their definition (columns underneath Loads Replaced). On average,
we substituted 1.72 times more load instructions with their definition, than
Staiger [11], increasing the scope of the dataflow analysis and its potential ben-
efit.

Lastly, we present the number of singular allocation sites and their percentage
(of total allocation sites), in the last two columns (Allocation Sites heading).
While a large percentage of singular allocation sites were identified in a number
of benchmarks, only in JPEG this translated to a substantial increase in SSA
variables. In other benchmarks, such memory was primarily used for arrays,
which we currently do not handle.

4.3 Impact of Copy Propagation and Liveness Analysis

To evaluate the impact of copy propagation and liveness analysis we compute the
the sum of ¢V and ¢ instructions. A lower number indicates both performance
(less instructions) and precision improvement, as a lower number results from
folding various instructions (i.e. propagation through ¢' or ¢¢ instructions),
associating additional uses with the corresponding definition.

We apply copy propagation as described in Section 3.5, and fold ¢V and ¢¢
instructions. As shown in Table 3, copy propagation reduced the number of ¢V
and ¢© instructions at call sites, and procedure entries, by 44.5% on average. In
addition, during copy propagation we folded 30% of the ¢" instructions merging
values from multiple call sites, as well as a number of ¢* and ¢ instructions. This

demonstrates a significant improvement over previous work, as copy propagation
reduced both the size of the IR as well as the number of spurious merge points.

Liveness Analysis || Copy Propagation || Constant Propagation

Benchmark Total Total Extra Extra
oV ¢ A oV ¢ A ||Folded| A | Dead
Before | After Before| After Blocks

GSM 494 319 354 %|| 319 136 |57.4% 9 2.23 % 1

JPEG 10261 | 9115 |11.2 %|| 9115 | 4600 [49.5%]|| 35 |[13.01 %| 15
MPEG2 6279 | 5408 |13.9 %|| 5408 | 3418 |36.8% 9 359 % | 11
G721 133 | 100 |24.8 %|| 100 66 |34.0% 0 0 % 1

164.gzip 2606 | 2074 |20.4 %|| 2074 | 1037 [50.0%]|| 105 |23.6 % 4
175.vpr 5702 | 4457 |21.8 %|| 4457 | 2412 145.9%]|| 15 |1.81 % | 10
181.mcf 262 | 181 [30.9 %|| 181 12 193.4% 3 7.32 % 2
186.crafty || 20935 [16373|21.8 %|| 16373 |13276(18.9%|| 119 |2.13 % 3
197.parser || 23037 |22015| 4.4 % || 22015 |17109|22.3%|| 133 [19.97 %| O

5

7

254.gap ||100678|61684(38.7 %|| 61684 |48332|21.6%|| 29 |0.55 %
256.bzip2 942 | 614 |34.8 %|| 614 | 269 [56.2%| 115 [59.28 %
300.twolf || 5211 | 4106 |21.2 %|| 4106 | 2130 |48.1%|| 113 |8.67 % | 10

| Average || 123.3 %]| [44.5%]] [11.8 % |
Table 3. Impact of liveness analysis and copy propagation measured by the reduction
of the read and write sets, along with the effectiveness of constant propagation.

In Table 3, we detail the impact of the liveness analysis, presented in Sec-
tion 3.4, on reducing the read and write sets into various procedures. The second
and third columns contain the sum of ¥ and ¢ instructions before and after
liveness analysis, respectively. The average number of ¢V and ¢ instructions
removed was 23.3%, demonstrating the benefit of liveness analysis in reducing
the size of the IR, thus making ISSA construction more efficient.

4.4 Impact of Pointer Analysis

In Table 4, we illustrate the difference between the input sets derived using the
field-insensitive pointer analysis available in LLVM and our field-sensitive pointer
analysis. The size of the input sets is on average 12.2 times higher in the field-
insensitive version, mainly because of the greater point-to set size. Furthermore,
since the pointer analysis is used to resolve indirect calls, the field-insensitive
version usually contains spurious paths in the call graph. This increases the size
of the input sets, as data must be propagated to various unreachable destinations.
Larger sets result in increased code size and runtime and hence, by using the
field-sensitive pointer analysis, we are able to reduce code size and runtime, in
addition to handling more variables.

Benchmark|Field-Sensitive |Field-Insensitive| X
GSM 214 818 3.82
JPEG 330 2480 7.52
MPEG2 1256 12185 9.7
G721 10 83 8.3
164.gzip 1024 4348 4.25
175.vpr 2265 18341 8.1
181.mecf 49 136 2.78
186.crafty 2660 11236 4.22
197.vpr 8239 21398 2.6
300.twolf 581 40806 70.23

| Average | | |12.15|

Table 4. Size of input and output sets for a field-insensitive and field-sensitive pointer
analysis.

4.5 Impact on Constant Propagation

We implemented a pass that performs constant propagation and dead code re-
moval using ISSA, based on the Wegman and Zadeck algorithm [19]. In Ta-
ble 3 we show the effectiveness of ISSA based constant propagation in com-
parison to the LLVM [16] constant propagation and dead code removal passes
(-instcombine, -adce, -ipconstprop). In the last three columns, we present the
number of additional constant folded expressions (and their percentage in rela-
tion to LLVM), along with the number of dead basic blocks in the benchmarks.
On average, excluding all expressions folded during dereference conversion and
copy propagation, we fold an additional 11.8% of instructions, on top of the
LLVM passes.

5 Related Work

The challenge in handling pointers in SSA form is that pointer dereferences are
not always resolved to a singular memory location and as such, merge points
have to sometimes be inserted for pointer dereferences. One way to handle this
challenge is to use an aliasing query, as was done by Cytron [13] and others
[14,15].

For interprocedural SSA, dereferences must be handled. In Liao’s [20] ISSA
form, SSA variables are alias sets (equivalence classes) computed by applying
Steensgaard’s unification-based pointer analysis [10]. Such derivation creates
more merge points than an inclusion-based pointer analysis [11], due to the
relatively lower precision which impacts the construction in two ways. First,
more spurious assignments are inserted due to a greater point-to set size, and
second, the call graph which is used to propagate definitions and uses is less
precise as well (in programs with indirect calls). Staiger [11] considered each
variable individually, in a manner similar to Horwitz [21]. When encountering

unresolvable dereferences, Staiger merged dataflow by assigning a common allo-
cator to aliased objects. Staiger showed that using more precise pointer analysis
would result in a drastically lower number of ¢ instructions; Andersen’s pointer
analysis had 20x less ¢ instructions than Steensgaard’s in some benchmarks.
However, Staiger does not apply copy propagation and the analysis outputs its
results in graph form — making it harder to directly apply traditional clients
of SSA. Along the same lines, the representation is may def-use (e.g. locators
correspond to recursive data structures), where only accesses to scalar globals
are marked with must use edges. Lastly, Staiger did not evaluate ISSA using a
target application.

As shown in Section 4, our approach reduces input and output instructions,
while we handle more SSA Variables and replace more load instructions than
Staiger [11]. In addition, we demonstrate the benefit of ISSA to constant prop-
agation.

6 Conclusion

SSA can be used for various analysis and optimization algorithms and this paper
presents an extension of SSA to the scope of a whole program. We have shown
that while handling a large number of variables, we are still able to construct
ISSA in seconds. ISSA improves precision by handling a large percentage of load
instructions, and by resolving a few pointer dereferences. We have also demon-
strated the benefit of liveness analysis and interprocedural copy propagation on
ISSA, as well as an improvement in constant propagation and dead code removal,
due to ISSA.

From our experiment, ISSA usually performed better in the MediaBench [17]
benchmarks, in terms of runtime and precision improvement. This occurred be-
cause there was little use of recursive data structures, recursive procedures, and
hashtables in MediaBench. Such features make it difficult to resolve dereferences
to singular objects and propagate values interprocedurally.

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments.

References

[1] Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems 13(4) (Oct 1991) 451-490

[2] Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
ACM Transactions on Programming Languages and Systems 13(2) (Apr 1991)
181-210

8]

[4]

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
18]
[19]

[20]

Gal, A., Probst, C.W., Franz, M.: HotpathVM: an effective JIT compiler for
resource-constrained devices. In: VEE ’06: Proceedings of the 2nd international
conference on Virtual execution environments, New York, NY, USA, ACM (2006)
144-153

Stoutchinin, A., Gao, G.: If-conversion in SSA form. In: Euro-Par 2004 Parallel
Processing. Volume 3149. (August 2004) 336-345

Wolfe, M.: Beyond induction variables. In: Proceedings of the Conference on
Programming Language Design and Implementation (PLDI). Number 7 in 27,
New York, NY, ACM Press (1992) 162-174

Hasti, R., Horwitz, S.: Using static single assignment form to improve flow-
insensitive pointer analysis. In: Proceedings of SIGPLAN Conference on Pro-
gramming Language Design and Implementation. (1998) 97-105

Kennedy, R., Chan, S., Liu, S.M., Lo, R., Tu, P., Chow, F.: Partial redundancy
elimination in SSA form. ACM Trans. Program. Lang. Syst. 21(3) (1999) 627-676
Brisk, P., Verma, A.K., Ienne, P.: Optimal polynomial-time interprocedural regis-
ter allocation for high-level synthesis and asip design. In: ICCAD ’07: Proceedings
of the 2007 IEEE/ACM international conference on Computer-aided design, Pis-
cataway, NJ, USA, IEEE Press (2007) 172-179

Liao, S.W.: SUIF Explorer: An interactive and interprocedural parallelizer. PhD
thesis, Stanford University, CA, USA (2000) Adviser-Monica S. Lam.
Steensgaard, B.: Efficient context-sensitive pointer analysis for C programs.
In: Proceedings of the 1996 International Conference on Compiler Construction.
(April 1996) 136-150

Staiger, S., Vogel, G., Keul, S., Wiebe, E.: Interprocedural Static Single As-
signment Form. In: Proceedings of the 14th Working Conference on Reverse
Engineering. (2007) 1-10

Andersen, O.: Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, Computer Science Department, University of Copenhagen
(1994)

Cytron, R., Gershbein, R.: Efficient accommodation of may-alias information in
SSA form. In: Proceedings of the ACM SIGPLAN 1993 Conference on Program-
ming Language Design and Implementation. (1993) 36-45

Chow, F.C., Chan, S., Liu, S.M., Lo, R., Streich, M.: Effective representation
of aliases and indirect memory operations in SSA form. In: CC ’96: Proceed-
ings of the 6th International Conference on Compiler Construction, London, UK,
Springer-Verlag (1996) 253-267

Choi, J.D., Cytron, R., Ferrante, J.: On the efficient engineering of ambitious
program analysis. IEEE Trans. Softw. Eng. 20(2) (1994) 105-114

Lattner, C.: LLVM : An infrastructure for multi-stage optimization. Master’s
thesis, Computer Science Dept., University of Illinois at Urbana-Champaign (De-
cember 2002)

Lee, C., Potkonjak, M., Mangione-Smith, W.H.: Mediabench: A tool for evaluating
and synthesizing multimedia and communications systems. In: Micro 30. (1997)
Standard Performance Evaluation Corporation: SPEC CPU2000 benchmarks.
http://www.specbench.org/cpu2000/

Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
ACM Trans. Program. Lang. Syst. 13(2) (1991) 181-210

Liao, S.W., Diwan, A., Bosch, Jr., R.P., Ghuloum, A., Lam, M.S.: SUIF Explorer:
An interactive and interprocedural parallelizer. In: Proceedings of the 7th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. (1999)
37-48

[21] Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence
graphs. In: PLDI ’88: Proceedings of the ACM SIGPLAN 1988 conference on
Programming Language design and Implementation, New York, NY, USA, ACM
(1988) 35-46

A Example for Copy Propagation Algorithm

In this section, we illustrate the solution process for Algorithm 2, shown in
Section 3.5. Let us consider the example shown in Figure 2 (a). First, we assign
identifiers for functions starting at 0 and call sites, starting at 1. For each call site
C1, we compute its reachable functions, shown in Figure 2 (b), in the fifth column
and add it to VID(bb), where bb is a basic block in CT’s iterated dominance
frontier (eighth column).

The reference solution for Figure 2 (a) is shown in the sixth and ninth columns
of Figure 2 (b), where the vector index corresponds to the function. After C'I;
the latest call to X and Z is CT; and to Y is undefined (similar reasoning applies
to CIy,C1I5 with different functions). Since functions Y and Z are in VID(BBs),
their value gets invalidated when entering BBs. The actual replacement of ¢¢
instructions occurs during the traversal, as we query the table to determine
whether substitution is possible at various program points.

BBo
C1:X()
\ BB:
c2:Y() Function |ID||Call|ID |Reachable|Values|| Basic Values
. . VID
c3: 20 Site Functions Block
X o|lC1]1 X,Z 1,0,1]|| BBy | @ 1[0,0,0
‘/J Y 11C2]2 Y,Z 1,2,2]||BB1| @ [[1,0,1
BB, 7 211C3|3 7 1,2,3]|| BB2 |Y, Z|[1,0,0

(b) Table with data computed prior and during the algo-
rithm. It shows the identifiers for call sites and procedures,
as well as the values of quasi variables.

(a) Structure for cur-
rently analyzed pro-
cedure.

Fig. 2. Example illustrating Algorithm 2, from Section 3.5

