Zoltar: A Spectrum-based Fault Localization Tool

Tom Janssen Rui Abreu

Arjan J.C. van Gemund

Embedded Software Lab
Delft University of Technology
The Netherlands
{t.p.m.janssen, r.f.abreu, a.j.c.vangemund}@tudelft.nl

ABSTRACT

Locating software components which are responsible for ob-
served failures is the most expensive, error-prone phase in
the software development life cycle. Automated diagnosis of
software faults can improve the efficiency of the debugging
process, and is therefore an important process for the de-
velopment of dependable software. In this paper we present
a toolset for automatic fault localization, dubbed Zoltar,
which adopts a spectrum-based fault localization technique.
The toolset provides the infrastructure to automatically in-
strument the source code of software programs to produce
runtime data, which is subsequently analyzed to return a
ranked list of likely faulty locations. Aimed at total au-
tomation (e.g., for runtime fault diagnosis), Zoltar has the
capability of instrumenting the program under analysis with
fault screeners, for automatic error detection. Using a small
thread-based example program as well as a large realistic
program, we show the applicability of the proposed toolset.

Categories and Subject Descriptors

D.2.5 [Software engineering]: testing and debugging—
debugging aids, diagnostics.

General Terms

Reliability, Experimentation.

Keywords

Zoltar, spectrum-based fault localization, automatic error
detection, runtime monitoring

1. INTRODUCTION

Debugging is an important, expensive phase of the soft-
ware development cycle. Several debugging tools exist which
are based on stepping through the execution of the program
(e.g., [9, 4, 11]). These traditional, manual fault localization
approaches have a number of important limitations. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SINTER’09, August 25, 2009, Amsterdam, The Netherlands.

Copyright 2009 ACM 978-1-60558-681-6/09/08 ...$10.00.

23

placement of print statements as well as the inspection of
their output are unstructured and ad-hoc, and are typically
based on the developer’s intuition. In addition, develop-
ers tend to use only test cases that reveal the failure, and
therefore do not use valuable information from (the typically
available) passing test cases.

Aimed at drastic cost reduction, much research has been
performed in developing automatic fault localization tech-
niques and tools. One of the predominant techniques are
those based on a black box statistics-based method which
takes a program and available test cases and returns the
most probable location (component) that explains the ob-
served failed test cases. In this paper a toolset is presented
that implements a technique called spectrum-based fault lo-
calization (SFL [2, 6]). SFL is based on instrumenting a
program to keep track of executed parts. This log, run-time
data is then analyzed to yield a list of source code locations
ordered by the likelihood of it containing the fault. Fur-
thermore, the tool set enables a program to be trained with
expected behavior and to automatically detect an error if
unexpected behavior is observed. The fact that no knowl-
edge is needed of the program to acquire possible fault loca-
tions makes this set of tools a useful extension to currently
applied methods of testing and debugging. Moreover, this
toolset could be very useful in the context of testing pro-
grams at runtime. As an example, our tool paves the way
to triggering automatic recovery mechanisms.

The toolset, dubbed Zoltar, is the result of research done
at the Delft University of Technology in the context of the
TRADER project [10]. The tool is available for download
from http://www.fdir.org/zoltar.

The remaining of this paper is organized as follows. In
the next section we give background information on the
spectrum-based fault localization technique which is adopted
by the Zoltar toolset. In section 3 the toolset is described
and an example program is used to demonstrate the tools.
Section 4 shows usage of the toolset on a realistically sized
program. Finally, section 5 concludes the paper.

2. SPECTRUM-BASED FAULT LOCALIZA-
TION

An important part of diagnosis and repair consists in lo-
calizing faults, and several tools for automated debugging
and systems diagnosis implement an approach to fault lo-
calization based on an analysis of the differences in program
spectra for passed and failed runs. Passed runs are execu-
tions of a program that completed correctly, whereas failed
runs are executions in which an error was detected. A pro-

gram spectrum is an execution profile that indicates which
parts of a program are active during a run. Fault local-
ization entails identifying the part of the program whose
activity correlates most with the detection of errors.

Spectrum-based fault localization (SFL) does not rely on
a model of the system under investigation. It can easily
be integrated with existing testing procedures, and because
of the relatively small overhead with respect to CPU time
and memory requirements, it lends itself well for application
within resource-constrained environments.

2.1 Failures, Errors, and Faults

A failure is an event that occurs when delivered service
deviates from correct service. An error is a system state
that may cause a failure. A fault is the cause of an error
in the system. Since we focus on computer programs, faults
are bugs in the program code, and failures occur when the
output for a given input deviates from the specified output
for that input.

void RationalSort (int n, int snum, int xden) {
/% block 1 x/
int i, j, temp;
for (i=n—1; i>=0; i—) {
/* block 2 x/
for (j=0; j<i; j++) {
/% block 3 x/

if (RationalGT (num[j], den[j],
num[§+1], denlj+1])) {

/* block 4 x/

temp = numl[j];

num[j] = num[j+1];

num[j+1] = temp; } } } }

Figure 1: A faulty C function for sorting rational
numbers.

To illustrate these concepts, consider the C function in
Figure 1. It is meant to sort, using the bubble sort algo-
rithm, a sequence of n rational numbers whose numerators
and denominators are stored in the parameters num and den,
respectively. There is a fault (bug) in the swapping code
within the body of the if statement: only the numerators of
the rational numbers are swapped while the denominators
are left in their original order. In this case, a failure occurs
when RationalSort changes the contents of its argument ar-
rays in such a way that the result is not a sorted version of
the original. An error occurs after the code inside the con-
ditional statement is executed, while den[j] # den[j+1].
Such errors can be temporary, and do not automatically
lead to failures. For example, if we apply RationalSort to
the sequence (%, %, %), an error occurs after the first two
numerators are swapped. However, this error is ”canceled”
by later swapping actions, and the sequence ends up being
sorted correctly.

Error detection is a prerequisite for SFL: we must know
that something is wrong before we can try to locate the re-
sponsible fault. Failures constitute a rudimentary form of
error detection, but many errors remain latent and never
lead to a failure. An example of a technique that increases
the number of errors that can be detected is array bounds
checking. Failure detection and array bounds checking are
both examples of generic error detection mechanisms, that
can be applied without detailed knowledge of a program.
Other examples are the detection of null pointer handling,

24

malloc problems, and deadlock detection in concurrent sys-
tems. Examples of program specific mechanisms are precon-
dition and postcondition checking, and the use of assertions.
The Zoltar toolset supports instrumenting fault screeners,
which are generic program invariants that are trained to be
application specific. This will be discussed in more detail in
Section 3.4.

2.2 Program Spectra

A program spectrum is a collection of data that provides a
specific view on the dynamic behavior of software. This data
is collected at run-time, and typically consist of a number of
counters or flags for the different parts of a program. Many
different forms of program spectra exist [5], some of which
are supported by the Zoltar toolset (such as spectra for basic
block hits, function hits, def-use pairs). In this this example
we work with so-called block hit spectra.

A block hit spectrum contains a flag for every block of
code in a program, that indicates whether or not that block
was executed in a particular run. With a block of code we
mean a C language statement, where we do not distinguish
between the individual statements of a compound statement,
but where we do distinguish between the cases of a switch
statement. As an illustration, we have identified the blocks
of code in Figure 1.

2.3 Fault Localization

The hit spectra of N runs constitute a binary N x M
matrix A, whose columns correspond to M different parts
(blocks in our case) of the program. The information in
which runs an error was detected constitutes another col-
umn vector e, the error vector. This vector can be thought
to represent a hypothetical part of the program that is re-
sponsible for all observed errors. The pair (A,e), which
serves as input for SFL, is visualized in Figure 2. Fault lo-
calization essentially consists in identifying the part whose
column vector resembles the error vector most.

error
M components detection
all ai2 aimMm €1
a1 a22 az M €2
N spectra
aN1 anN2 aNM eN

Figure 2: Input to SFL

In the field of data clustering, resemblances between vec-
tors of binary, nominally scaled data, such as the columns
in our matrix of program spectra, are quantified by means
of similarity coefficients. By default, Zoltar uses the Ochiai
coefficient sp, used in the molecular biology domain, since
this coefficient performed best in experiments [2]:

n11(J)
V(11 () +n01 () *(n11 () +n10 ()

so(j) =

where n,q(j) indicates the number of runs in which block
j has been touched during the execution, denoted by p €
{0, 1}, and where the runs are failed or passed, indicated by

q€{0,1}:

n | touched | run
n00 no passed
nio yes passed
no1 no failed
nii yes failed

Under the assumption that a high similarity to the error
vector indicates a high probability that the corresponding
parts of the software cause the detected errors, the calcu-
lated similarity coefficients rank the parts of the program
with respect to their likelihood of containing the faults.

To illustrate the approach, suppose that we apply the
RationalSort function to the input sequences I, ...,Is (see
below). The block hit spectra for these runs are as follows
('’ denotes a hit), where block 5 corresponds to the body
of the RationalGT function, which has not been shown in
Figure 1.

block
input 1 2 3 4 5 error
=) T 0 0 0 0 0
I = (%) 1 1 0 0 0 0
I3 = (1, i> 1 1 1 1 1 0
Iy = <§’ 3 %) 11 1 1 1 0
15—(??,?%) 1 1 1 1 1 1
Is=(7.3,2.1) | 1 1 1 0 1 0
50 40 44 50 .58 .50

I, Iz, and Is are already sorted, and lead to passed runs.
Is is not sorted, but the denominators in this sequence hap-
pen to be equal, hence no error occurs. I is the example
from Section 2.1: an error occurs during its execution, but
goes undetected. For I5 the program fails, since the calcu-
lated result is (1, 2, 3, 2) instead of (§,%,%,2) , which is a
clear indication that an error has occurred. For this data,
the calculated similarity coefficient so (correctly) identifies
block 4 as the most likely location of the fault. In gen-
eral, however, the faulty component(s) may be outranked
by other components, entailing non-zero search effort by the
users. Research has shown that for small programs (O(100)
lines) 5 — 20% of the code remains to be inspected by the
user [12]. However, for large programs this fraction drops to
less than a percent [3], making SFL an interesting debugging
aid.

3. TOOL ARCHITECTURE

The Zoltar toolset provides a blackbox method involving
three basic steps:

e instrumentation;
e data gathering;

e data analysis.

In the following, we discuss these three steps in more de-
tail.

3.1 Instrumentation

A program has to be instrumented in order to create ex-
ecution log data during the tests. When running the in-
strumented program, a counter corresponding to an instru-
mented piece of code is incremented each time that piece of
code is executed. This results in a spectrum of the execution
of the program under test.

25

The instrument tool of the Zoltar toolset is based on the
LLVM framework[7]. Instrumentation of a program is imple-
mented as different, customizable, passes of the LLVM op-
timizer. This enables multiple instrumentation passes to be
applied on a single program. A custom instrumentation can
be added with minimal effort. The instrumentation is per-
formed on the LLVM intermediate byte code. Using LLVM
tools the resulting instrumented byte code can be compiled
to a native executable having the same functionality as the
original plus functionality to generate spectrum information
of runtime behavior.

Different types of program points can be instrumented for
generating program spectra using the instrument tool. It
supports, for example, function level instrumentation and
instrumentation at the basic block level, but also supports
custom program point instrumentation. Multiple types of
program points can be instrumented within the same pro-
gram, resulting in different program spectra for each type.
This enables different types of analysis on the same set of
executions.

Next to the generation of program spectra, programs can
be instrumented with generic program invariants, which can
be trained to become application-specific. Program invari-
ants are predicates that retain the same value throughout
the execution of the program. For example, each loop in the
program can hold an invariant for the maximum number of
iterations.

The instrument tool is able to instrument different types
of invariants. It can keep track of values that are stored
to memory, values that are loaded from memory, the num-
ber of iterations of a loop and the amount of time that the
control flow remains in a function. Also, custom invariant
instrumentations can be added.

To make sure that the instrumented program does not
accidentally invalidate the data that is gathered during run-
time memory protection can optionally be instrumented.
This will instrument every store operation with a check if
the part of memory which contains the instrumentation data
is not overwritten.

Finally, the instrument tool will bypass the main func-
tion of the program to be able to initialize the instrumenta-
tion data and to handle exceptions while not losing recorded
data.

3.2 Data Gathering

Running the instrumented program on test inputs results
in the gathering of runtime data, which consists of the pro-
gram spectra of different runs. A run can either be the
complete execution of the program, or the result of a timed
transaction. The latter option creates multiple runs of a pre-
defined lenght of time, which can be useful for continuous
programs. In a future version of the toolset, there will be
support for transactions that will be triggered by the execu-
tion of instrumented program points. This data is extended
with the pass/fail status of each run, which can be either set
manually, or generated automatically using automatic error
detection. The gathered data is essentially the pair (A, e) to
be used as input for the SFL technique.

In most software projects tests are created along with
the software itself. During the implementation and test-
ing phases these tests are used to validate the functionality
of the software. Failing tests indicate which features of the
software are incomplete or faulty. Existing test suites can be

used with the instrumented program for the data gathering
phase to generate program spectra.

Some types of bugs are difficult to locate. For example,
multithreaded programs with thread related faults are hard
to debug, since a piece of code can contain a fault which did
cause an error in small tests but will lead to a failure when
integrated into a larger code base. The Zoltar toolset can
aid in locating various types of bugs using the same basic
steps.

To illustrate the data gathering process, consider the ex-
ample textVal program of which the pseudocode is given in
Figure 3. It calculates a value based on the number of oc-
currences of different types of characters within a text. For
demonstration purposes this program is deliberately created
using three separate threads, each scanning for a different
type of character and incrementing a shared value.

/* shared data */
int val;

/% function for updating val x/
void updateVal(int d) {

int tmp = val;

tmp += d;

val = tmp;

}

/* thread for reading letters x/
void *readLetters(void sxbuffer) {
// while not at end of buffer
// if current character is
// lock mutex
updateVal(1);
// unlock mutex

letter

/% thread for reading digits =/
void *readDigits (void xbuffer) {
// while not at end of buffer
// if current character is
updateVal(2);

digit
}

/* thread for reading other characters */
void #readOther(void sbuffer) {
// while not at end of buffer
// if current character is mnon alphanumeric
// lock mutex
updateVal(10);

Figure 3: Pseudo code for the textVal program.

Two bugs are introduced, which relate to mutual exclu-
sion. The critical section of this code is at the updateVal
function, which adds the value of its argument to the shared
value containing the result of the program. The thread that
is responsible for reading letters of the alphabet, running
the readLetters function, correctly locks and unlocks the
mutex. However, it is assumed that other threads honor the
same rules, which is not always the case and which in prac-
tice results in hard to find bugs. In this case, the thread that
scans for digits (readDigits) does not lock and unlock the
mutex, which results in a critical section that is not exclu-
sively executed by one thread at a time. If the first threads
reads the shared value and the second thread reads the same
value before the first thread has written a value back, then
information is lost and the resulting value would be lower
than expected.

26

The second introduced bug in this code is located in the
third thread, which scans for special characters. This thread
does lock the mutex, but does not release the exclusive right
to the critical section, resulting in a situation in which the
first thread waits forever for the mutex to become unlocked.

Data is gathered by running the instrumented program
on available test inputs. For the example program a num-
ber of tests were created. These include testing only letters
for input, only digits or special characters, or combinations
of character types. These are standard tests to verify the
functionality of the program. A problem in this case is that
some small tests will work as expected, but will fail if they
are scaled up. The mutex problem is the cause of this irreg-
ular behavior, since task switching between the threads will
unlikely occur during the scanning of small input.

expected | textVal
test file | input output | output
testl.in | "abcdefghij" 10 10
test2.in | "0123456789" 20 20
test3.in | "AOB1C2D3E4" 15 15
testd.in | large text only 1040 1040
test5.in | large text and digits 920 784
test6.in | ".=+-#" 50 hangs

Table 1: Test suite for the textVal program with in-
formation on the number of letters, digits and other
characters.

Table 1 shows the test suite that is available for this pro-
gram. The input, or a description of the input, is given
together with the expected output and the actual output of
the program.

First, test 1 to 5 are run, since test 6 clearly shows dif-
ferent behavior than giving incorrect output. Most likely,
one will see the correct output for the first four tests, but
an output that differs from the expected output at test 5.
In our case the output turned out to be 784 instead of 920.
Note that, in practice, we have no real clue what the cause
would be. We see that a text with mixed letters and digits
works as expected, given that the size of the text is limited,
but the same test fails if the text size is large. In conven-
tional debugging one could be mislead by these results and
would start looking at the text buffer or the reading of the
input. In this case we use a black box method. A program is
instrumented and run in the same way the original program
would have been run.

A script running these tests can compare the output of
the instrumented program with the expected output and
save this information of passed and failed runs. The result
of this data gathering process is a program spectrum and
a vector of pass/fail information of each run. To convert
the program spectrum, which consists of counters for each
program point, to a hit spectrum, as discussed in Section 2.2,
every entry is substituted with 1 if the count is greater than
zero. For the example program, instrumented to generate a
program spectrum on the basic block level, this results in the
pair (A, e) of which a simplified" version is shown in Figure 4.
Block 1 corresponds to the basic block within the updateVal
function, Block 2 to 4 correspond to the basic blocks within
the if statements of the three thread functions.

Lother basic blocks are either never executed or always ex-
ecuted or are not represented in the pseudo code given in
Figure 3.

block
test file
testl.in

1 error
1
test2.in | 1
1
1
1

test3.in
test4.in
testh.in

=== O N
= O R~ OoOlw
O OO OOk
O 000

Figure 4: Simplified (A4,e) for the textVal program.

3.3 Data Analysis

The resulting run-time data of the test runs is stored in
a separate file. This file is created after the first run and is
incrementally updated at every next run. This is illustrated
in Figure 5. The data file contains program spectrum infor-
mation, among other things.

Read data

Imvariant

Write data

Figure 5: Zoltar data gathering workflow.

Two tools are provided for the data analysis. The zoltar
tool is created to work in a console environment. This en-
ables it to be used in many environments, including a remote
shell. The zoltar tool provides an interface for the data file,
can give a summary of the instrumentation of the program,
is able to show spectrum data for each instrumented spec-
trum and can alter the pass/fail status of each run, among
other things. By default the zoltar tool is started with a
menu based interface.

By selecting an instrumented spectrum the SFL technique
using the Ochiai coefficient (see Section 2.3) can be ap-
plied to return a ranked list of program locations ordered
by the likelihood of containing the fault. These locations
are mapped from points within the executable to lines in
the source files.

Running the zoltar tool on the data acquired of the ex-
ample program textVal results in the ranked list shown in
Figure 6. It shows that line 43 in the textVal.c source file
has the highest SFL score. In other words, since instrumen-
tation is done on the basic block level, the execution of the
basic block starting at line 43 correlates most with the failing
run. This ranking gives a good starting point for debugging,
since the most likely candidates for containing the bug are
given.

A more intuitive visualization is achieved with the xzoltar

27

Zoltar v@.3.1
Delft University of Technology

Operating Mode
Runs

-Spectra
Invariants
Exit

SFL analysis

spectrum name Basic_Blocks
number of components 35
SFL coefficient Ochiai

rank—score
® 0.577358

1 0.5000080

2 0.447214

3 0.447214

4 0.447214

5 0.447214

6

7

3

9

-Comp t info
textVal.c:43 -
textval.c:29 -
textval.c:17 -
textval.c:19 -
textVal.c:19 -
textVal.c:20 -
textval.c:22 -
textval.c:26 -
textval.c:28 -
textVal.c:33 -

0.447214
0.447214
0.447214
0.447214

backspace’ |-

pgup, pgdn—"v

Figure 6: SFL results of the textVal tests.

tool, which shows a graphical representation of the same
ranked list, where each line is color coded. A red line speci-
fies a large SFL score and thus will be more likely to be the
location of the fault. A green line will have little correlation
with the failure. Next to the tab for the ranked list there is a
separate tab for each instrumented source file. In these files
the lines which are present in the ranking have the same col-
oring. This simplifies the process of locating areas of interest
in each file and to view the surrounding code, which gives
some context of why the specified location would possibly
be at fault.

xzoltar

Ranked List | textVal.c

Line Code

Rank Score

v 0w Gl
s
5 0w G

o o I

Figure 7: Visualization of SFL in the textVal source
code.

In Figure 7 the xzoltar tool shows the highest ranking
location in the code. It turns out that the call to updateVal
without locking the mutex correlates most with the failing
test runs. Even without having been part of the implemen-
tation process, a person debugging this program could use
this tool, get these results, and notice that another thread
function does lock the mutex when calling the same function.

It is important to realize that this tool will not explain
why an error occurred. It statistically determines the most
probable location a fault could reside. However, it gives a
very useful starting point for inspecting the code. A debug
strategy can be created using this ranking to reduce the
wasted effort of inspecting code.

3.4 Automatic Error Detection

During the design phase of a program test oracles are usu-
ally available. However, this is not the case during the op-
erational stage of a program. To facilitate debugging of a
program in this stage we would like to have a test oracle
as in the design state, however this would require automatic
generation of invariants based on the program specifications,
which is hard and currently not done in practice. Also, the
detailed program specifications needed to achieve this are
usually unavailable.

Secondly, some program faults cause a crash of the pro-
gram, or cause the program to hang at a certain point. Next
to that, determining correct execution is often more difficult
than simply comparing outputs. Examples of these pro-
grams are programs with buggy user interfaces, continuous
programs with sparse buffer overflow events, etc. Imple-
menting application-specific invariants to detect these bugs
is an expensive task and very error-prone and often incom-
plete, as it is done manually. Rather, we would like sim-
ple, generic program invariants, often dubbed fault screen-
ers [1], which can be automatically trained to become ap-
plication specific. In combination with the fault localization
techniques, this automatic error detection could ultimately
evolve into a fully automated fault localization, given that a
program is trained for normal behavior using the test oracle
during the design phase.

To monitor programs for errors the Zoltar tool set is able
to instrument programs to automatically detect errors using
fault screeners and stop the running program, while record-
ing a failed run. In the textVal example (Section 3.2), the
first five test inputs result in an output which can easily be
verified. However, the sixth test input causes the program
to hang. No output is returned, so it can not be verified,
although the behavior is such that we know that this run
fails expected execution. The erratic behavior of the sixth
test input can be caught by instrumenting the program to
generate an error if the program remains within a function
for too long (i.e., a function timer invariant). A timer with
a 1 ms interval signals a counter increment of each function
that is active, i.e., which is still in the process of being ex-
ecuted. At the start of a function execution the associated
counter is set to zero.

After having trained the generic function timer invariant
using the first five test inputs (in general, a large test suite is
required for training to represent normal program behavior),
the program can be configured to generate an error if an
instrumented invariant is violated during execution. The
trained values are usually very strict. In the case of the
example, the time spent in a function is related to the size
of the input, which may vary. To be able to support a wider
range of inputs, these trained values can be stretched using
the zoltar tool. Only if an unexpected large amount of time
is spent within a function an error will be generated.

When running the trained example program on the sixth
test input, an error is generated while threads are blocked
forever waiting for the mutex to become unlocked. The pro-
gram is shut down while recording a failed run for this last
test. Running the xzoltar tool at this point shows that the
execution of the basic block within the if-statement of the
third thread (reading the other character types) corresponds
most with the failing run and is the candidate most likely to
be inspected first. This is indeed the block of code in which
unlocking the mutex is neglected.

28

4. CASE STUDY

To test the toolset on a more realistically sized program,
we have instrumented mplayer® [8]. We investigated two
cases of unexpected behavior using this version (1.0rc2) of
mplayer:

1. When using a GUI and changing the position of the
volume slider while the balance slider is not at center,
the position of the balance slider changes as well.

2. Using a particular .avi video file as input, changing the
position in the file beyond some point causes the video
to end immediately.

Instrumenting a complete program is not always practi-
cal or can become inefficient. Instrumented code could slow
down execution, depending on the program and the kind
of instrumentation. For example, a program that writes
to memory intensively could suffer slowdown when instru-
mented with store invariants and memory protection. To
overcome this problem and to be able to investigate cer-
tain parts of the program (as a result of previous tests), the
Zoltar toolset enables partial instrumentation of a program.

In the case of mplayer the core of the program together
with the gui and demux libraries were instrumented on the
basic block level together with memory protection and store
invariants. This resulted in an instrumented movie player
executable of which a slowdown of performance was barely
noticeable, i.e., playing videos on the instrumented version
showed little difference compared to the original version.

The code responsible for the first behavior was located by
testing the instrumented executable with six different user
inputs. Two test inputs caused the peculiar behavior and
thus resulted in a failing run. The remaining four tests in-
volved changing one or both of the sliders without the be-
havior appearing to the user, or not changing the sliders at
all. Running the xzoltar tool afterwards resulted in one
basic block at the top of the ranking. This part of the code
handles the event of a changing value for the balance. In
the following statements, also executed for a volume change
event, the values for volume of the left and right channel are
calculated from the values of the volume and balance. The
next ranked basic block, located in another file, involves the
reverse calculation, where the value for the balance is calcu-
lated from the volume values of the left and right channel.
This value is then represented by the balance slider in the
user interface. A fault in this part of the code results in
the strange behavior of the balance slider. The top rank-
ing locations are all related to changing the balance. The
Zoltar toolset allows users without detailed information of
the source code of mplayer to localize the cause of certain
behavior. This can be very useful in the testing process of
large software projects.

The second issue of mplayer is caused by a particular in-
put. During the tests only one of the available test input
videos resulted in the inability to jump to a location further
in the file. By training the instrumented program with nor-
mal behavior (jumping to various locations in other input
files that cause no abrupt ending) we were able to create
program-specific invariants. During the operational phase
we used the problematic file as input, which caused an in-
variant violation and resulted in a recorded failed run. In

2mplayer is a free and open source movie player able to run
from command line but also supporting optional GUIs

total there were six passed runs during training and two
failed runs in the operational stage. This resulted in a lim-
ited number of source files to investigate, since 7 files of the
132 instrumented source files, were represented in the basic
blocks with a top 3 score in the ranking. Different basic
blocks can get the same score in the SFL calculation, for
example, when they are executed consecutively in all tests.
This can be improved upon if more tests are run, collecting
more data for the SFL technique. Extending the test pro-
cedure with seven more inputs, four of which resulting in a
passed run and three resulting in a failed run, resulted in
only 3 files that were represented by the basic blocks with
a top 3 score. The basic blocks are distributed in three
separate functions all related to seeking within a video file.
One of these functions skips frames until a video keyframe is
found. This is the part causing the perceived behavior, since
it turns out that the input file partially lacks video keyframe
information causing mplayer to keep skipping frames until
the end of the file.

The described mplayer cases show that the Zoltar toolset
is also suitable for analyzing behavior of large programs
(mplayer totals around 650,000 LOC of which approximately
100,000 were instrumented). Furthermore, it shows that the
toolset could be useful for localizing the type of bugs that
show up as user interface inconsistencies as well as localizing
pieces of code contributing to certain behavior when the bug
is actually in the input data itself.

The examples also show that the lines of code most rel-
evant to the user are not at the absolute top in the rank-
ing. This is caused partially by the (limited) tests that are
performed, but also by the nature of the fault localization
technique. It will not return the exact location of the fault,
but rather help in reducing the locations to investigate.

S. CONCLUSION

In this paper the Zoltar toolset was discussed, which adopts
a technique to localize software faults based on statistical
information retrieved from an instrumented version of the
program under analysis. To demonstrate that the Zoltar
toolset can aid developers in identifying software faults we
have used two example. First, the example program used
to present the tool contains mutex locking bugs, which is a
type of bug that can result in a large debugging effort. To
demonstrate the applicability of the toolset, a realistic pro-
gram, mplayer, is also used as an example subject program.
Two rather difficult to analyze, but very realistic, program
behaviors are analyzed using the tools.

A great advantage of the Zoltar toolset is the variety of
types of bugs that can be located using the underlying tech-
nique. As shown in this paper, thread related bugs, un-
expected user interface behavior and input data faults, are
among the types the Zoltar toolset is able to aid in locating.

Given the large applicability, the transparent way of us-
ing it, and the fact that it involves a blackbox method, the
Zoltar toolset is of real added value to current testing prac-
tices. Supporting automatic error detection provides the
ability to test programs at runtime without the need for
manual invariant programming.

Finally, the Zoltar toolset can also be used to trigger au-
tomatic recovery mechanisms, paving the way for fully au-
tomatic, runtime system fault diagnosis and isolation.

29

6. ACKNOWLEDGMENTS

We gratefully acknowledge the fruitful discussions with
our TRADER project partners from Philips TASS, Philips
Consumer Electronics, NXP Semiconductors, NXP Research,
Design Technology Institute, Embedded Systems Institute,
IMEC, Leiden University, and Twente University.

7. REFERENCES

[1] R. Abreu, A. Gonzilez, P. Zoeteweij, and A. J. C. van
Gemund. On the performance of fault screeners in
software development and deployment. In Proceedings
of the 3rd International Conference on FEvaluation of
Nowel Approaches to Software Engineering
(ENASE’08), pages 123-130. INSTICC Press, May
2008.
R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On
the accuracy of spectrum-based fault localization. In
Proceedings of the Testing: Academia and Industry
Conference - Practice And Research Techniques
(TAIC PART’07), pages 89-98, Windsor, United
Kingdom, September 2007. IEEE Computer Society.
R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. A
new Bayesian approach to multiple intermittent fault
diagnosis. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI’09),
Pasadena, California, USA, 11 — 17 July 2009. AAAT
Press.
DBX. Debugging tools — DBX, SunOS 4.1.1 ed.,
March 1990. SUN MICROSYSTEMS, INC.
M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and
L. Yi. An empirical investigation of the relationship
between spectra differences and regression faults.
Software Testing, Verifation and Reliability,
10(3):171-194, 2000.
J. A. Jones and M. J. Harrold. Empirical evaluation of
the tarantula automatic fault-localization technique.
In Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering
(ASE’05), pages 273-282, Long Beach, California,
USA, 7 — 11 November 2005. IEEE Computer Society.
C. Lattner and V. S. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In Proceedings of the 2nd IEEE /
ACM International Symposium on Code Generation
and Optimization (CGO’04),, pages 75-88, San Jose,
California, USA, 20 — 24 March 2004. IEEE Computer
Society.
MPlayer. Mplayer project website.
http://www.mplayerhq.hu/.
R. Stallman. Debugging with GDB — The GNU source
level debugger, January 1994. Free Software
Foundation.
Trader. Trader project website, Embedded Systems
Institute. http://www.esi.nl/trader/, 2005 — 2009.
A. Zeller and D. Liitkehaus. DDD — A free graphical
front-end for UNIX debuggers. ACM SIGPLAN
Notices, 31(1):22-27, 1996.
P. Zoeteweij, J. Pietersma, R. Abreu, A. Feldman, and
A. J. van Gemund. Automated fault diagnosis in
embedded software. In Proceedings of the the ESI /
Bits € Chips Embedded Systems Conference, October
17 — 18 2007. Eindhoven, the Netherlands.

(10]

(11]

(12]

