
An Early Real-Time Checker for Retargetable
Compile-Time Analysis

Emilio Wuerges, Luiz C. V. dos Santos, Olinto Furtado
Federal University of Santa Catarina

Computer Science Department
Florianopolis, SC, Brazil

+55-48-3721-7549
{emilio, santos, olinto}@inf.ufsc.br

Sandro Rigo
State University of Campinas

Institute of Computing
Campinas, SP, Brazil
+55-19-3521-5849

sandro@ic.unicamp.br

ABSTRACT

With the demand for energy-efficient embedded computing
and the rise of heterogeneous architectures, automatically
retargetable techniques are likely to grow in importance.
On the one hand, retargetable compilers do not handle real-
time constraints properly. On the other hand, conventional
worst-case execution time (WCET) approaches are not auto-
matically retargetable: measurement-based methods require
time-consuming dynamic characterization of target proces-
sors, whereas static program analysis and abstract inter-
pretation are performed in a post-compiling phase, being
therefore restricted to the set of supported targets. This
paper proposes a retargetable technique to grant early real-
time checking (ERTC) capabilities for design space explo-
ration. The technique provides a general (minimum, max-
imum and exact-delay) timing analysis at compile time. It
allows the early detection of inconsistent time-constraint
combinations prior to the generation of binary executables,
thereby promising higher design productivity. ERTC is a
complement to state-of-the-art design flows, which could
benefit from early infeasiblity detection and exploration of
alternative target processors, before the binary executables
are submitted to tight-bound BCET and WCET analyses
for the selected target processor.

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems
(J.7)]: Real-time and embedded systems

General Terms

Design, Languages, Verification

Keywords

Compile-time WCET analysis, Time-constraint feasibility
analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SBCCI ’09 - September 3rd, 2009, Natal, RN, Brazil
Copyright 2009 ACM 978-1-60558-705-9 $5.00.

1. INTRODUCTION
The huge research effort to obtain tight worst-case exe-

cution time (WCET) bounds for processors with dynamic
features (e.g. cache, out-of-order pipelines, branch predic-
tion) has led to the rise of efficient and provenly correct
techniques [12], which are currently available for industrial
usage, tailored to a portfolio of popular real-life processors.
Such an achievement has solved the important problem of
obtaining tight-bound WCET estimates for a given proces-
sor, while benefiting from the processor’s dynamic features
to maximize average performance. However, criteria other
than performance and predictability may come into play.
For instance, real-time constraints could be met by running
the application on a simpler, more energy-efficient processor
or even by using scratch-pad memories instead of caches. For
applications demanding multi-objective optimization, design
space exploration (DSE) is mandatory. The designer should
be allowed to try with several candidate processors in the
early design phases, before selecting a target processor to un-
dertake an elaborate tight-bound WCET analysis. If time-
constraint analysis is let as an afterthought, DSE could not
benefit from pruning inadequate alternatives and design pro-
ductivity is likely to be hampered by trial-and-error. There-
fore, a tradeoff between speed and estimate tightness should
make early real-time checking viable. However, no explo-
ration is practical without proper compiler support for the
candidate processors. Those reasons motivated us to develop
a retargetable time-constraint analysis technique that allows
the early detection of inconsistent time-constraint combina-
tions prior to the generation of binary executables, for the
sake of higher design productivity and broader design space
exploration.

The proposed technique automatically retargets the micro-
architecture-dependent aspects of a compiler’s backend so as
to grant it early real-time checking (ERTC) capabilities. It
handles multiple time constraints of distinct types (maxi-
mum, minimum, and exact-delay).

This paper is organized as follows. Section 2 reviews re-
targetable compilers and WCET analysis. Section 3 shows
an example of how our technique works. Sections 4 and
5 formalize program representation, timing modeling and
constraint specification. The main underlying algorithm is
shown in Section 6. Section 7 reports the experimental re-
sults. Our conclusions are drawn in Section 8.

2. RELATED WORK IN BRIEF
The packages built around architecture description lan-

guages (ADLs) [4] [8] [7] [1] provide retargetable compiling,
assembly, and linkage, as well as the automatic generation
of an instruction-set simulator (ISS) for the target proces-
sor. Therefore, ADL packages can provide instruments for
dynamic WCET analysis, but at the expense of running
the program on the generated ISS [14], which is unsafe and
rather time consuming. To efficiently check time constraints
at compile time, without the need of simulating the program,
latencies should be inferred from the processor and memory
subsystem ADL description and be annotated into the pro-
gram representation. However, some ADLs (like LISA) do
not describe instructions individually (but as a composion
of operations), which makes latencies difficult to infer from
the target’s ADL description.

There are two main approaches for execution time analy-
sis: static and dynamic [3] [12]. In the first, the execution
time is calculated from the analysis of the code, which does
not need to be executed or simulated. This approach in-
volves a (high-level) control flow analysis and a (low-level)
hardware-aware analysis. On the other hand, the dynamic
approach is based on measuring the time spent executing
the code (or a segment of it), for a set of judiciously-chosen
input stimuli, either by running it on the actual target or
by simulating its execution on a hardware model. Most of
the static tight-bound WCET analysis rely on two key foun-
dations: the integer linear programming (ILP) formulation
and the abstract interpretation (AI) theory [2]. Initially, it
was shown that ILP could be used to address path analy-
sis without the need to explicitly enumerate paths [10] and
could be extended to model caches and pipeline. Since such
extension was likely to lead to high analysis times, further
investigation has shown that AI is more adequate for value
and cache analysis, while ILP is more suitable for pipeline
and path analysis [13]. A combination of ILP and AI was
released in the form of a tool for industrial usage [12]. The
important problem of computing false paths prior to WCET
analysis is addressed in [6], for instance, where AI is em-
ployed to avoid visiting basic blocks that are not reached
under some execution condition.

For the above reasons, we developed a technique with the
following capabilities:

• Automatically retargetable inference of latencies from
an ADL description of a processor’s microarchitecture
and memory subsystem;

• Language-independent specification of different types
of real-time requirements (minimum, maximum, and
exact-delay constraints);

• Early checking of constraint feasiblity at compile time.

• Lightweight timing modeling (suitable for DSE) to pro-
vide preliminary real-time guarantees.

• Complementarity to state-of-the-art tight-bound post-
compiling BCET/WCET analysis.

3. AN ILLUSTRATIVE EXAMPLE
Assume an application where I/O operations require a

handshaking mechanism for the reading (writing) of memory-
mapped I/O registers that store input data from a sensor (or
output data for an actuator). Suppose that a process sends
a request by invoking the procedure in Figure 1 (where the

actual access to the I/O register is omitted for simplicity).
Assume that, after the program posts a request, the periph-
eral must respond with an acknowledgment not more than
12 cycles later (Constraint 1) and that the program must
poll the peripheral’s acknowledgement flag not earlier than
3 cycles after posting the request (Constraint 2).

Constraints 1 and 2 are specified by means of compiler
directives at lines 4, 7, 9, and 12. The first element within
a directive specifies whether a starting or an ending point
of a given constraint, whereas the second assigns a label to
it. A directive representing a starting point has two extra
elements: one states the type of constraint (maximum or
minimum), the other provides its value (expressed in cycles).

1 void block (unsigned char ∗ req ,
2 unsigned char ∗ ack)
3 {
4 asm volat i le (”begin , constr1 ,MAX, 1 2 ; ”) ;
5 /∗ r eque s t a c t i v a t i o n ∗/
6 ∗req = 0x01 ;
7 asm volat i le (”begin , constr2 ,MIN, 3 ; ”) ;
8 /∗ here l i e s some (omitted) code ∗/
9 asm volat i le (”end , cons t r2 ; ”) ;

10 while (! (∗ ack)) ;
11 /∗ acknowledgement a c t i v a t e d ∗/
12 asm volat i le (”end , cons t r1 ; ”) ;
13 }

Figure 1: The instrumented source code

The code is then compiled to an intermediate represen-
tation (IR), which is annotated with the instruction laten-
cies (inferred from an ADL description of a candidate mi-
croarchitecture). Each directive in the source code induces
a pseudo-instruction in the code’s IR for marking the begin-
ning or the ending of Constraints 1 and 2. Those pseudo-
instructions will serve as anchors: they will be the starting
and ending vertices of paths whose minimum or maximum
length will be measured. To check MIN (MAX) constraints,
we rely on shortest (longest) path algorithms (see Section 7).
Exact-delay checking is obtained by a combination of MIN
and MAX constraints (see Section 5.1). For every violated
contraint, a diagnosis report returns its type, its number of
specified cycles, and the actual number of cycles.

4. PROGRAM REPRESENTATION
A program consists of a set of procedures or functions

P = {p1, p2, . . . , pn}. Each procedure pi is modeled by a
control-flow graph CFG = (B, F), where each vertex b ∈ B
is a basic block (BB) and where each edge f ∈ F represents
the flow of execution between basic blocks. Every BB is
modeled by a data-flow graph DFG = (V, E), where each
vertex v ∈ V represents an instruction and where each edge
(u, v) ∈ E represents a data dependence.

As the code goes through different levels of optimization,
program representation is captured in distinct intermediate
forms. An intermediate representation (IR) is a valid rep-
resentation of the program where some of the original ele-
ments may be omitted since they were already taken into
account by previous optimizations. For instance, after in-
struction scheduling, an IR can represent the instructions
as an ordered set, since scheduling guarantees that this or-
der satisfies the precedence relation in the DFG.

Given a basic block bi ∈ B and its associated DFG =
(Vi, Ei), let Ii be a linearly ordered set obtained from the
set Vi such that the partial order Ei is satisfied. The adopted
IR on entry to the backend (from now on referred simply as
IR) consists of the CFGs representing each procedure and
the (ordered) instructions of each BB, as formalized below.

The intermediate representation of a program is the tuple
IR = (P, C, I), where:

• P = {pk : pk is a procedure or function};

• C = {∀pk ∈ P : (Bk, Fk)};

• I = {∀bi ∈ B ∧ ∀(B, F) ∈ C : Ii}.

5. MODELING OF TIMING AND CON-
STRAINTS

5.1 Capturing real-time requirements
Real-time constraints are captured by means of a pair of

scope delimiters, called source and sink. A delimiter points
to an instruction within a BB. Since constraints may be
imposed across BBs, a delimiter must identify not only the
instruction at which it is pointing, but also the BB owning
that instruction. This notion can be formalized as follows.

A real-time constraint can be represented as a tuple tc =
(bi, di, bj , dj , t, τ), where:

• bi ∈ B is the BB that contains the instruction pointed
by source;

• di ∈ Z+ is the position in Ii at which the source is
pointing;

• bj ∈ B is the BB that contains the instruction pointed
by sink;

• dj ∈ Z+ is the position in Ij at which the sink is
pointing;

• t ∈ Z+ is the specified number of cycles between source
and sink;

• τ ∈ {MIN, MAX} is the contraint type specifying t as
either a minimum or maximum value.

An exact-delay constraint of t cycles is specified by a pair
of time constraints tc1 = (bi, di, bj , dj , t, MIN) and tc2 =
(bi, di, bj , dj , t, MAX).

5.2 Capturing micro-architecture timing
The latency between instructions u and v, written λ(u, v),

is the number of intervening cycles necessary to guarantee
that the data produced by u is available before it can be con-
sumed by v. Both the pipeline and the memory subsystem
may contribute to the overall latency, as follows.

The pipeline latency between instructions u and v, written
λp(u, v), is the minimum number of intervening cycles be-
tween the time when a value is produced by u on exit from
a pipeline stage and the time when that value is available
on entry to the pipeline stage where it is consumed by v.

In order to model the contribution of the memory sub-
system to the latency, we need to distinguish instruction
classes and then quantify the impact of memory accesses.
Let τ : I → {store, load, reg} be the type function, which

maps every instruction u ∈ I to an instruction type τ(u),
where load and store denote instructions reading and writ-
ing operands in memory, respectively, and reg denotes in-
structions whose operands are always in registers.

Memory access time may depend on the actual address
value and on the access type, which can be distinguished as
follows. Let εu denote the effective data address referenced
by instruction u such as τ(u) %= reg. Let R(ε) and W (ε)
denote the number of cycles spent in reading and writing,
respectively, at a given address ε. The latency between in-
structions u and v can be obtained as follows:

λ(u, v) =

8

<

:

λp(u,v) if τ(u) = reg
R(εu)+λp(u,v) if τ(u) = load
W (εu)+λp(u,v) if τ(u) = store

Whereas λp(u, v) is constant for a given pipeline, R(εu)
and W (εu) vary depending on whether the address εu is
mapped to a scratch-pad, a memory-mapped I/O register,
or a cache. Since in the last case, R(εu) and W (εu) vary dy-
namically, they can not always be inferred from the system
description and, therefore, require a model of cache dynamic
behavior. Since such a model is expected to return an ac-
curate estimate for the number of cycles spent in memory
access, it will be called a memory oracle.

Let ϕ : I → Z+ be the issue function, which maps every
instruction v ∈ I to an issue time step ϕ(v). The actual
number of intervening cycles between instructions u and v
as a result of dynamic issue, written ϕ(u,v), is obtained by
(ϕ(v) − ϕ(u)) − 1).

Each instruction may contribute to the execution time
with a number of stall cycles in the interval [0,λ(u, v)], as a
result of a data hazard, depending on how far apart instruc-
tions u and v were issued, as formalized below.

Given an instruction v that is data dependent on u, the
number of stall cycles between u and v, written σ(u, v), is
given by:

σ(u, v) =

0 if ϕ(u,v) ≥ λ(u, v)
λ(u, v) − ϕ(u,v) if ϕ(u,v) < λ(u, v)

To obtain fast estimates for BCET and WCET, we assume
that the control-flow structure is preserved at runtime. This
pessimistic assumption has two pragmatic consequences: 1)
WCETs can be bound without the need of enumerating ex-
ecution scenarios; 2) execution times can be measured rela-
tively to BB boundaries, as follows.

To compute the number of cycles spent by a sequence of
(overlapped) instructions within a BB, we need to take into
account the outcome of code scheduling. Let φ : V → Z+

be the schedule function that maps every instruction v ∈ V
to a single time step φ(v) within the scope of a BB, which
determines the cycle when instruction fetching is launched.
Let αv denote the address of instruction v and let R(αv)
denote its fetching delay.

The incremental contribution of a newly launched instruc-
tion v to the program’s execution time is the number of
non-overlapping instruction cycles, which comprises the cy-
cles spent fetching v and, possibly, the cycles spent waiting
for data produced by some preceding instruction u. This
notion can be formalized as follows.

Given a BB and its DFG (V, E), the relative latency up
to instruction x within that BB, written λx, is obtained as:

λx =
x

X

v=φ−1(0)

(R(αv) + max
(u,v)∈E

σ(u, v))

5.3 Combining with program timing
Up to this point our modeling casts processor and mem-

ory properties into the program representation. To perform
proper BCET/WCET analyses, we have to account for the
effect of loop iterations, as follows. We assume that the com-
pilation steps leading to the IR were constrained to enforce
a CFG topology exibiting a nesting structure, i.e., given two
loops li and lj , only one of the following conditions holds:
1) li and lj are entirely disjoint; 2) li is entirely contained
within lj ; 3) lj is entirely contained within li. As a re-
sult, loop behavior can be captured as follows. Given a BB
bi ∈ B, let Li be the set of nested loops containing bi. Let
nl be the number of iterations of a loop l ∈ Li. Thus the
number of invocations Ni of bi is given by:

Ni =

1 if Li = ∅
Q

l∈Li
nl if Li %= ∅

We can now combine processor and loop properties. The
overall time spent executing the instructions of a BB (pos-
sibly contained in a loop nesting) is the time spent in exe-
cuting the BB instructions once (taking latencies and stall
cycles into account as discussed in Section 5.2) multiplied
by its number of invocations, as formalized in the following.

Given a BB bi and its DFG (Vi, Ei), the latency of bi,
written λ(bi), is computed as:

λ(bi) = Ni ×
X

v∈Vi

(R(αv) + max
(u,v)∈Ei

σ(u, v))

Now we can generalize this notion to a path in the CFG.
Given a path π = (b0, b1, b2, ..., bk, ..., bn, bn+1) in a CFG,

the latency in-between b0 and bn+1 through π, is λ(π) =
Pn

k=1 λ(bk). (We deliberately excluded the starting and
ending vertices from path π in computing the latency for
reasons that will be made clear in Section 5.4).

5.4 Calculating actual delays
Assume that the source and sink delimiters of a time con-

straint point to instructions x and y, respectively. Figure
2 shows the possibilities when both instructions lie within
a same BB: (a) corresponds to a constraint inside a BB;
(b) captures a constraint across a self-loop. Figure 3 distin-
guishes two scenarios when instructions x and y belong to
different BBs bi and bj : (a) captures a constraint through a
forward path; (b) depicts a constraint across a cycle in the
CFG (i.e. across a loop body in the code). λ(bi, bj) denotes
the latency measured in-between bi and bj on some path
starting at bi and ending at bj .

With the help of Figures 2 and 3, let us now formalize
a crucial notion to our analysis. Let bi and bj be BBs for
which Ii and Ij denote their linearly ordered set of instruc-
tions. Given the instructions x ∈ Ii and y ∈ Ij , which are
respectively pointed by the source and sink delimiters of a
given time-constraint, the calculated delay between x and y,
written δ(x, y), is obtained as follows:

Figure 2: Delimiters point to the same BB

Figure 3: Delimiters point to distinct BBs

δ(x, y) =

8

<

:

λy−λx if bi = bj ∧ λx ≤ λy

λ(bi)+λy−λx if bi = bj ∧ λx > λy

λ(bi)−λx+λ(bi,bj)+λy if bi %= bj

Note that the first and second clauses hold, respectively,
in the scenarios of Figure 2a and 2b. Observe that the third
clause holds for both scenarios in Figure 3.

5.5 Bounding BCET and WCET
Before we can evaluate the minimum and maximum delays

between two instructions, we have to properly bound every
variable in δ(x, y). We first bound BB and path latencies
and then we discuss how to bound instruction latency.

Let nl
max (nl

min) be the maximum (minimum) number
of iterations of a loop l ∈ Li. Let Ni

max (Ni
min) be the

overall number of invocations when nl = nl
max (nl = nl

min)
for every loop l ∈ Li.

Then we can define the maximum and minimum latencies
of a given BB bi as follows:

λmax(bi) = λ(bi) | Ni = Ni
max

λmin(bi) = λ(bi) | Ni = Ni
min

Now we can generalize the bounding to a path in the CFG.
Let bi

π
→ bj denote that bi reaches bj through path π. Then

the maximum and minimum latencies in-between them are,
respectively:

λmax(bi, bj) = max{∀π | bi
π
→ bj : λ(π)}

λmin(bi, bj) = min{∀π | bi
π
→ bj : λ(π)}

We can define the minimum and maximum calculated de-
lays between x and y, respectively, as follows:

m(x, y) = δ(x,y)|((λ(bi)=λmin(bi))∧(λ(bi,bj)=λmin(bi,bj)))

M(x, y) = δ(x,y)|((λ(bi)=λmax(bi))∧(λ(bi,bj)=λmax(bi,bj)))

Finally, we discuss how instruction latencies can be bound
within BB and paths.

Note that, to obtain λx we must determine the value of
σ(u, v) for every pair of dependent instructions. However,
σ(u, v) depends on ϕ(u, v), which can not be tightly bounded
at compile-time without (explicitly or implicitly) enumer-
ating all distinct execution scenarios induced by dynamic
pipeline effects. Since DSE can not afford the computa-
tional effort of such enumeration, we have to rely on loose
bounds.

Given an arbitrary instruction u, to obtain upper and
lower bound estimates for R(αu), R(εu), and W (εu), we as-
sume the existence of a memory oracle implementing some
state-of-the-art tight-bound cache modeling based upon AI,
such as in [13].

Let us denote the upper and lower bound estimates of an
arbitrary variable f by f̂ and f̆ , respectively. To obtain
an upper bound estimate for stall cycles, we pessimistically
assume that every pair of dependent instructions was issued
as close as possible (ϕ(u, v) = 0) so that the whole latency
between them is exposed. Under this assumption, we have:

σ̂(u, v) =

8

<

:

λp(u,v) if τ(u) = reg
R̂(εu)+λp(u,v) if τ(u) = load
Ŵ (εu)+λp(u,v) if τ(u) = store

To obtain a lower bound estimate for stall cycles, we
optimistically assume that dependent instructions were is-
sued sufficiently far apart so as to hide their latency, i.e.
σ̆(u, v) = 0.

Observe that, under those deliberately loose bounds, es-
timation speed depends essentially on the memory oracle,
which can rely on efficient AI, while pipeline scenario enu-
meration would require ILP (whose higher computational
effort would hamper DSE). By using tight-bound analysis
at the memory oracle only (and not for bounding pipeline
behavior), estimates are likely to be kept within the same
order of magnitude as full tight-bound estimates, which is
acceptable for DSE purposes.

6. THE PROPOSED REAL-TIME CHECK-
ER

Our checker makes the following assumptions: 1) An ADL
description of the target microarchitecture is available from
which the latencies can be inferred; 2) Prior compilation
steps enforced the CFG topology defined in Section 5.3; 3)
The number of invocations of each BB was pre-determined
through classical loop analysis; 4) False path analysis [6] was
performed beforehand so that latencies of BBs belonging to
false paths are not taken into account.

Given a model of the target processor and memory sub-
system, and the set of procedures P of a program, Algorithm
1 finds the set of infeasible time constraints (if any). At line
1, it invokes a function to extract, from the processor model,
the latencies of each pair of dependent instructions (func-
tion’s body omitted for simplicity). Then it checks whether
the delay between two instructions fulfils or not the specified
value and type for each time constraint within the scope of
every procedure. The resulting set of infeasible constraints
can then be used either to assert feasibility (if Infeasible
= ∅) or to pinpoint the pairs of instructions violating time
constraints (if Infeasible %= ∅).

Algorithm 1 ERTC(P, target)

1: annotate-Latencies(P, target)
2: Infeasible = ∅
3: for each p ∈ P do
4: let (B, F) be the CFG representing p
5: let TC be set of time constraints on procedure p
6: for each tc = (bi, di, bj , dj , t, τ) ∈ TC do
7: let x be the instruction at position di in BB bi ∈ B
8: let y be the instruction at position dj in BB bj ∈ B
9: if (τ= MIN ∧ m(x, y)< t)∨(τ = MAX ∧ M(x, y)> t)

then
10: Infeasible= Infeasible ∪ {tc}
11: end if
12: end for
13: end for

Table 1: Outcome of analysis
Program PowerPC SPARC
[5] ERTC ERTC

pi m(x,y) M(x,y) ISS m(x,y) M(x,y) ISS
bs p1 6 34 16 9 52 20
ns p1 6 53 11 8 89 15
crc p1 12 24 18 12 33 21
edn p1 11 14 13 13 16 15
edn p2 5 37 9 7 41 13
edn p3 5 88 9 7 92 13
edn p4 15 56 19 16 57 23
edn p5 11 249 14 15 270 20
edn p6 22 47 30 24 49 34
edn p7 12 33 20 14 35 24
edn p8 5 19 9 7 21 13
fir p1 27 91 33 28 106 37
fdct p1 17 483 31 19 493 24
adpcm p1 14 14 14 14 14 14
adpcm p2 19 36 26 19 36 29
adpcm p3 19 35 35 21 45 45
adpcm p4 88 159 90 97 168 100
prime p1 13 31 30 16 43 43
jfdctint p1 16 410 18 21 443 24
fibcall p1 11 26 23 13 29 26
insertsort p1 28 63 33 31 68 37
janne p1 5 32 10 7 46 14

7. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS

We reused the ISA retargeting of the llc compiler [9]. Our
ERTC was placed after instruction selection/scheduling and
immediatly before code emission. To describe the target
microarchitecture, we adopted the ArchC ADL [11].

To check for MIN constraints, we relied on Djikstra’s short-
est-path algorithm. For verifying MAX constraints, a depth-
first search algorithm was used in such a way that backward
edges were ignored when calculating longest paths (this al-
lows separate handling of loop iteration and forward execu-
tion, reflecting the modeling in Section 5.3).

Since the integration of the memory oracle was not com-
plete by the time of writing, we chose an experimental set-up
that assumes constant access time to memory, as if both in-
struction and data were allocated in scratch-pad memories
(i. e., ∀u ∈ I : R(εu) = W (εu) = R(αu) = 1).

Table 1 shows the analysis outcome for targets PowerPC
and SPARC. For each program, we selected at least one
procedure pi and simultaneously imposed a pair of MAX
and MIN constraints delimiting the whole procedure body.
Our ERTC detected infeasibility in all expected cases. We
also executed all programs in the ISS of each target. Observe
that the values obtained from the ISS always fell in-between
the values calculated by the ERTC. This is an evidence of

the technique’s correctness for both targets. Runtimes were
measured on a Core2 Duo T5250 processor (1.5GHz, 2MB
L2) with 2GB (667 MHz DDR2) of main memory. They
varied from 0.09s for insertsort (93 lines of code) to 0.65s
for adpcm (910 lines of code).

8. CONCLUSION AND FUTURE WORK
The experiments have shown the consistency of our anal-

ysis. Despite current prototype limitations, the low baseline
runtimes indicate that the technique is viable for DSE. Al-
though we could not experiment with more targets so far, we
can conclude that any ADL capable of describing instruction
timing would allow retargetability as far as it allows efficient
inference of latencies. We intend to compare our results to
tight-bound BCET/WCET estimates so as to quantify the
confidence intervals on which DSE can rely.

9. REFERENCES
[1] A. Halambi et al. EXPRESSION: A language for

architecture exploration through compiler/simulator
retargetability. In Proc. Design, Automation and Test
in Europe Conference (DATE), 1999.

[2] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proc.
ACM Symp. on Principles of Programming Languages,
pages 238–252, 1977.

[3] J. Engblom. Processor Pipelines and Static
Worst-Case Execution Time Analysis. PhD thesis,
Uppsala University, Department of Information
Technology, 2002.

[4] A. Fauth, J. V. Praet, and M. Freericks. Describing
Instruction Set Processors using nML. In Proc.
European Design and Test Conference (EDTC), pages
503–507, 1995.

[5] J. Gustafsson. The Mälardalen WCET benchmarks.

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html,
2007.

[6] J. Gustafsson, A. Ermedahl, and B. Lisper. Algorithms
for Infeasible Path Calculation. In Proc. Workshop on
Worst-Case Execution Time Analysis (WCET), 2006.

[7] S. Hanono and S. Devadas. Instruction Selection,
Resource Allocation, and Scheduling in the AVIV
Retargetable Code Generator. In Proc. Design
Automation Conference (DAC), pages 510–515, 1998.

[8] J. Ceng et al. C Compiler Retargeting Based on
Instruction Semantics Models. In Proc. Design,
Automation and Test in Europe Conference (DATE),
2005.

[9] C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In Proc. Symp. on Code Generation
and Optimization (CGO), 2004.

[10] Y. Li, S. Malik, and M. Inc. Performance Analysis of
Embedded Software using Implicit Path Enumeration.
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 16(12):1477–1487, 1997.

[11] R. Azevedo et al. The ArchC Architecture Description
Language. International Journal of Parallel
Programming, 33(5):453–484, October 2005.

[12] R. Wilhelm et al. The worst-case execution-time
problem—overview of methods and survey of tools.
ACM Trans. on Embedded Computing Systems,
7(3):1–53, 2008.

[13] H. Theiling and C. Ferdinand. Combining Abstract
Interpretation and ILP for Microarchitecture
Modelling and Program Path Analysis. In Proc. IEEE
Real-Time Systems Symposium (RTSS), pages
144–153, 1998.

[14] X. Li, et al. A Retargetable Software Timing Analyzer
Using Architecture Description Language. In Proc.
Asian and South Pacific Design Automation
Conference, pages 396–401, 2007.

