A High-Level Virtual Platform for Early MPSoC
Software Development

Jianjiang Ceng, Weihua Sheng, Jeronimo Castrillon, Anastasia Stulova,
Rainer Leupers, Gerd Ascheid and Heinrich Meyr
Institute for Integrated Signal Processing Systems
RWTH Aachen University, Germany
{ceng, sheng, castrill, stulova, leupers}@iss.rwth-aachen.de

ABSTRACT

Multiprocessor System-on-Chips (MPSoCs) are nowadays
widely used, but the problem of their software development
persists to be one of the biggest challenges for develop-
ers. Virtual Platforms (VPs) are introduced to the industry,
which allow MPSoC software development without a hard-
ware prototype. Nevertheless, for developers in early design
stage where no VP is available, the software programming
support is not satisfactory.

This paper introduces a High-level Virtual Platform (HVP)
which aims at early MPSoC software development. The
framework provides a set of tools for abstract MPSoC simu-
lation and the corresponding application programming sup-
port in order to enable the development of reusable C code
at a high level. The case study performed on several MP-
SoCs shows that the code developed on the HVP can be
easily reused on different target platforms. Moreover, the
high simulation speed achieved by the HVP also improves
the design efficiency of software developers.

Categories and Subject Descriptors

1.6.5 [Simulation and Modeling]:
Model Development - Modeling Methodologies

General Terms
Design

Keywords

Embedded, MPSoC, Software, Parallel Programming,
Simulation, Virtual Platform, System Level Design

1. INTRODUCTION

Multiprocessor System-on-Chips (MPSoCs) are nowadays
used in a wide variety of products ranging from automo-
biles to personal entertainment appliances due to their good

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+I1SSS°09, October 11-16, 2009, Grenoble, France.

Copyright 2009 ACM 978-1-60558-628-1/09/10 ...$10.00.

11

balance between performance and energy efficiency. Nev-
ertheless, although MPSoCs have been adopted as the de
facto standard architecture for years, the problem of their
software development still stubbornly persists to be one of
the biggest challenges for developers [18].

In the past few years, Virtual Platforms (VPs) have been
introduced by companies like Virtio [26] to enable software
development before a hardware prototype is available. To-
gether with high-level functional platforms and real hard-
ware platforms, today, developers can use three kinds of
platforms to do software development. Nonetheless, the
choice of which platform to use mostly depends on the de-
sign stage the developer is in. Figure 1 gives an overview of
them.

Early high-level design [Functional Platform]

Virtual Platform]
ﬁ

| Code fully reusable | ------

= =
Hardware Platform]

Architecture design [

Implementation or
production phase [

Figure 1: MPSoC Development Platforms

Hardware platforms are the most traditional platforms
for software development. However, their development is
typically very time consuming. Normally, software develop-
ers are able to get access to them only in the implementation
or the production phase, which could be too late for starting
software development.

Virtual platforms employ instruction-set simulators and
provide software developers a binary compatible environ-
ment in which executable files for the target platform can
be executed without modification. They are much easier to
be built than hardware prototypes; hence they are more and
more used today in order to let developers start software
development early. Nevertheless, since their development
requires the concrete specification of the target platform,
which could be available only in the late architecture design
phase, it is not possible for programmers to use them in
early design stage.

Functional platforms do high-level simulation without
much architecture information. They are often used by de-

velopers in early design stage, when architecture details are
not fully determined. Applications are typically executed
natively in a workstation, whose environment is largely dif-
ferent from a target MPSoC platform. Therefore, applica-
tions which are developed at high-level, can hardly be di-
rectly reused on target platforms. To close this gap, code
synthesis tools are proposed, which are supposed to gener-
ate target source code from high-level models automatically.
However, in the embedded domain, the acceptance of such
approach is until today not very high; most developers still
use the old C language for programming [8].

Besides, the software stack of an MPSoC platform has
several layers, which typically includes application, middle-
ware and OS, as depicted in figure 2. The development of
applications in the highest layer could heavily depend on
the target specific low-level softwares which need to be first
developed by firmware developers. As a result, it is difficult
for application programmers to start writing target software
right from the beginning of the project and keep the code
reusable.

Application E.g. Web Browser
Middleware E.g. TCP/IP Protocol Stack
Operating System E.g. Linux

Figure 2: Typical MPSoC Software Stack

In this paper, we propose a High-level Virtual Platform
(HVP) which aims at supporting MPSoC software devel-
opment in early design stage when both VP and hardware
prototype are not at hand. Developers are provided with:

e A generic high-level MPSoC simulator which does func-
tional simulation and abstracts away the hardware de-
tails and the OS of the target platform;

e A software toolchain for application programming and
the corresponding code generation; and

e The possibility of using instruction-set simulators with
functional simulation together and testing the code in
a target environment before a complete VP is available.

Figure 3 illustrates the HW /SW co-development flow which
involves the HVP. The contribution of the HVP is in the
early stage; it allows the software team to start the devel-
opment from the very beginning of the project without the
need of a VP or a HW prototype. Parallel applications can
be modeled in the HVP at the abstraction level of Com-
municating Processes [5], which is architecture independent
and reusable. The case study performed on several MPSoC
platforms shows that the code developed on the HVP can
be easily reused on different targets. In addition to that,
the design efficiency is also improved by the high simulation
speed achieved by the HVP.

The rest of this paper is organized as following: section 2
first discusses some works which are related to the HVP. An
overview on the framework is then given in section 3. The
HVP simulator, which is the simulation backbone, is intro-
duced in section 4. After that, the issue of how to develop
applications on top of the HVP is discussed with details in
section 5. Section 6 shows the efficiency of the proposed
approach through a case study performed on several MP-
SoC platforms. Finally, we conclude the paper and give an
outlook on the future work in section 7.

12

Project Timing SW Team HW Team

.
Early i Early SW High-level

! 2 Development Specification

1e8

TS

I

[@ High-Level Architecture

! Simulation Exploration

[N ey gy

Code reuse
Middle Target SW VP
Development Development
HW
Development
Virtual HW/SW
Integration
HW/SW

Late Integration

Figure 3: HVP Supported Design Flow

2. RELATED WORK

In the past few years, System Level Design (SLD) has been
introduced to handle the HW/SW design complexity of MP-
SoCs. High-level simulation is often the first step in a SLD
flow. For this purpose, different languages are used to model
the application behavior. [11], [4] and [1] use SystemC to
drive the design. Simulink and UML are also used for high-
level modeling, e.g. in [22] and [2]. Some use C/C++, but
the application must be modeled with specific APIs as Kahn
Process Networks (KPNs) like in [25], [24] and [15]. The
idea behind these high-level models is mainly software syn-
thesis. Instead of using them directly in the target MPSoC,
synthesis tools are typically provided to generate target C
code from them. However, even with highly automated tool-
chains, embedded programmers are still reluctant to adopt
them because of different reasons, no new language or high-
level programming model has been widely adopted in this
area so far. For embedded software development, C is still
the first choice today, which is the programming language
supported by the HVP.

Abstract RTOS modeling works are also related to the
HVP. In [17], a simulation framework is introduced, which
uses an abstract RTOS model for task scheduling. How-
ever, since behavior is not included in its application model,
the framework is more suitable for the overall system design
than the software development. Other frameworks model
RTOS together with software behavior by using SystemC
([10], [12] and [23]) or SpecC ([7] and [10]) as their mod-
eling language. Such approaches normally require the user
to explicitly insert timing annotations into the source code,
which reduces the code reusability. Works have been done
in [13] and [19] to automate the annotation process. Their
focuses are on the performance estimation; and hence the
support for software development is limited. [6] and [9] use
native execution to simulate both OS and user application.
Since the software must be written based on the simulated
OS, the solutions are not generic and difficult to be used for
other platforms.

In [14], a work is introduced, which combines ISS and ab-
stract RTOS model together. Unlike the HVP, which allows
ISS and native simulation at the same time, the approach is
for target software only and does not support native execu-
tion.

The HVP differs from the above mentioned works mainly

in three aspects:

1. The HVP focuses solely on supporting software devel-
opment at high-level. The programmer can write ap-
plications directly in C and execute them in the HVP.

2. The HVP does not impose the use of any special pro-
gramming model such as KPN. The programmer has
the complete control on how the application shall be
implemented.

3. The HVP itself does not contain any target specific
component and is completely platform independent.
The developed C code can be easily reused on different
platforms.

3. FRAMEWORK OVERVIEW

In early design stage, it is typical that a lot of details of
the target platform are not determined. For example, the
choice of processing elements could be unknown, because the
system architect must first explore the design space; and
the decision of low-level software usage, like the choice of
OS, communication API etc., could be still in the hands of
the firmware developer. In order to support application de-
velopment in such a situation, the HVP provides a generic
abstract MPSoC simulator so that applications can be simu-
lated without much knowledge about the hardware and the
software architecture of the target platform. An overview of
the complete framework is given in figure 4. The structure
of the HVP simulator is shown in the lower half of the figure.

Native Task

HVP Native
Toolchain

ISS Task

Cross
Compile

.. CSource

HVP
Software

Development Target Binary

Shared libraries

Configuration File

I '
[o
Lo L

Taski

VPE-m Q

” Generic Shared Memories |

HVP
High-Level
Simulation

SystemC Simulation

Figure 4: HVP Overview

As can be seen from the figure, the HVP simulator is built
on top of SystemC [20]. In order to make the simulator
generic, details of the target platform are abstracted away
through the use of an abstract processor model called Vir-
tual Processing Element (VPE) and the abstract OS model
which is built into it. The communication between VPEs is
realized through the generic shared memories which can be
controlled and accessed in applications by using the HVP
programming API. The applications provided by the user
are completely decoupled from the simulator. They are com-
piled into shared libraries and loaded dynamically before the
simulation starts.

13

The configuration of the abstract MPSoC like the number
of VPEs to be instantiated, the VPE parameters and the
application-to-VPE mapping can be given in two ways, ei-
ther through the HVP GUI manually or by loading an XML
format configuration file. To setup an abstract MPSoC plat-
form using the GUI, only mouse-clicks and drag-and-drop
operations are required, which can be achieved within min-
utes. During the simulation, settings like task mapping or
VPE clock frequency, can be modified dynamically so that
different application scenarios can be easily explored with-
out restarting the simulation from the beginning. To use the
simulator, a programmer is not required to have deep MP-
SoC hardware knowledge or do any SystemC coding; there-
fore he can focus on the application itself which software
developers are more familiar with.

As mentioned earlier, applications are decoupled from the
simulator. Here, the meaning of the decoupling is twofold.
First, the applications are compiled into shared libraries
which are physically independent. Second, each application
is written as a standalone program in C, which has its own
main function and does not interfere with the one of the Sys-
temC kernel in the simulator. Due to this decoupling, the
HVP is able to flexibly simulate the application behavior in
two possible ways, namely native execution or instruction
set simulation.

The upper half of figure 4 shows the development flows of
both approaches. The former approach is supported through
the use of an HVP specific software toolchain. The software
is executed natively, and therefore the approach is fast, com-
pletely processor independent and can be used at the very
beginning of the MPSoC design. The later requires that the
choice of processing element (PE) is known and an instruc-
tion set simulator (ISS) must be available. This could be
possible in a later design stage or the PE is reused from an
earlier generation of platform or provided by a 3rd party
IP vendor. From the HVP’s perspective, no restriction is
imposed on how the software behavior should be simulated;
and the developer can freely choose the approach which is
more appropriate depending on his situation. Mixing the
use of both is also allowed, which could be used when part
of the platform is determined or developed.

In summary, the whole HVP framework is mainly com-
posed of two parts:

e A generic abstract MPSoC simulator which al-
lows the programmer to easily create high-level models
for MPSoCs and do functional simulation.

o A set of software tools which provide the program-
mer with the possibility of simulating the application
flexibly in different manners and keeping the source
code reusable for both the functional platform and the
target MPSoC.

In the following sections, the above mentioned parts as
well as their usage will be discussed in detail.

4. HVP SIMULATOR

The HVP simulator provides application developers a high-
level abstraction of the underlying MPSoC platform. From
a high-level perspective, an MPSoC can be seen as a set of
processing elements, interconnections and peripherals. In
the HVP simulator, the processing elements are abstracted

by using VPEs instead, the interconnections used for inter-
processor communication are modeled using generic shared
memories, and a virtual peripheral is provided for convenient
output of graphical and text information.

The parallel operation of the components is simulated in
the SystemC environment. The implementation of the HVP
simulator is in line with the loosely-timed coding style and
the temporal decoupling technique which are suggested by
the TLM 2.0 standard for software application development
[21]. Details of the major components of the HVP simulator
will be elaborated in the rest of this section.

4.1 Virtual Processing Element

In the HVP simulator, a VPE is a high-level abstraction
of a processing element and the operating system running
on it. It is responsible for the control of the execution of
the software tasks mapped to it. This includes the decisions
of: which task should be executed (i.e. scheduling), how
long the selected task should run (i.e. time slicing), and
how many operations the task should perform in the given
time slot (i.e. execution speed). Conversely, tasks can also
request the VPE for OS services like sleep microseconds etc.
The interaction between a VPE and tasks can be roughly
illustrated as in figure 5, where the VPE sends out an event
TASK_RUN to let Taskl execute 200,000 operations for 1ms,
and the task requests to sleep for 50ms during its execution.

TASK REQ_SLEEP
TASK_RUN
1ms

200000 cps

Figure 5: VPE-Task Interaction Example

Technically, tasks and VPEs are implemented as SystemC
modules. Their interaction is realized by the events which
are communicated through the TLM channels between them.
The following paragraphs will introduce the semantics of the
VPE model and the task model.

4.1.1 VPE Model

A VPE can be described here as an event-driven finite
state automaton which is a 7-tuple V' = (S, so, U, O, I,w,)
with:

e S={RESET,RUN,SWITCH,IDLE} is the set of
explicit states;

e so = RESET is the initial state of the VPE;

e [is the set of internal variables which represent the
implicit states like TIME_SLICE_LENGTH, etc;

e O is the set of output events for task control, e.g.
TASK_RUN,

e [is the set of input events which could be sent by
tasks, e.g. TASK_REQ_SLEEP;

e w: S xI— O is the set of output functions in which
functionalities like scheduling are implemented; and

14

e v: S x I — S is the set of next-state functions, which
manage the OS state.

From a user’s perspective, a VPE simply appears as a pa-
rameterized abstract processor. The settings which can be
configured by the user are mainly clock frequency, sched-
uler and task mapping. Presently, three scheduling algo-
rithms are implemented in the VPE, which are round-robin,
earliest deadline first and priority based scheduling. These
parameters can be adjusted both before and during the sim-
ulation. This allows the programmer to change the platform
and check the application behavior in different scenario con-
veniently. Besides, the event history can be saved by the
simulator in form of Value Change Dump (VCD) files, which
can be used to check the VPE activity after the simulation
for debugging purposes.

4.1.2 Task Model

A task in the HVP simulator can be seen as an event-
driven nondeterministic finite state automaton, which is a
6-tuple T = (S, so, I, O,w, V) consisting of:

e S ={READY,RUN,SUSPEND} is the set of task
states;

so = READY is the initial state;

I is the input events, e.g. TASK_RUN, which are
sent by the VPE;

e O is the output events, e.g. TASK_REQ_SLEFEP;

w: 8 x I — P(O) is the output functions, the P(O)
here denotes the power set of O; and

o v: S x I — P(S) is the next-state functions, the P(S)
here denotes the power set of S.

It can be seen from the above definition that the task
model is nondeterministic in that, the next-state function
can return a set of possible states. In reality, this corre-
sponds to the case that the status of a task can be changed
from RUN to either READY or SUSPEND. The former
normally happens when the granted time slice is used up,
and the later can occur when the sleep function is invoked
in the code in order to suspend the task for a while.

In this model, the behaviors which are encapsulated in
the user provided shared library serve as the output and
the state transition functions. Since the programmer only
provides the C source code, i.e. the functionality of the
application, the control of the state machine needs to be
extra inserted. The HVP provides a toolchain which hides
this insertion procedure from the developer and keeps the
application C code intact so that it can be reused. Section
5 will give more details about this, when the programming
support is discussed.

4.2 Generic Shared Memory

Since the HVP is focused on the high-level functional
simulation, no complex interconnection is modeled in it.
Nonetheless, in order to enable the communication between
parallel tasks, the HVP provides so called Generic Shared
Memory (GSHM).

From a programmer’s view, the use of the GSHM is sim-
ilar to the dynamic memory management functions in the

C runtime library, except that an addition key is required
for each GSHM block so that the communicating tasks can
refer to the same block. An example is shown in figure 6.
The example shows two tasks which communicate through
a GSHM block which is identified through the key string
“SHM”. Inside the simulator, all the shared memory blocks
are centrally managed by the GSHM manager which keeps
a list of them.

J

4 N [

Task1 Task2

void main () {

char* p;

char in_char;

/** FindGSHM tries to get
the address of a GSHM block,
returns null if no block with
the given key is found. */

while (!(p = FindGSHM(“SHM"“))) ;

in_char = *p;

o}
VPE-2

GSHM
Blocks

void main () {

char* p;

char out_char = ‘a‘;

/** GSHMMalloc initializes
a GSHM block and returns
its address */

p = GSHMMalloc (“SHM",

*p = out_char;

-}

128);

-

- J \C
VPE-1
I
GSHM Manager
“SHM" 128bytes

Figure 6: Generic Shared Memory Example

The above example shows a scenario where the data is
passed by value, which mostly occurs in multi-processor sys-
tems where each parallel task has its own address space and
data must be copied between tasks explicitly. Nonetheless,
the use of the GSHM can be much more flexible. Since the
user provided application binaries are loaded into one sim-
ulation process, all tasks running in the HVP simulator im-
plicitly share one common address space. This implies that
pointers can also be transfered between tasks without being
invalidated, which gives an execution environment similar
to a SMP (Symmetric Multiprocessing) machine where the
processors share the same address space.

In the HVP, programmers have the freedom of choosing
the most suitable communication mechanism for the appli-
cation. Moreover, this flexibility is also helpful for code par-
titioning, because the programmer does not have to com-
pletely convert the implicit communications to explicit ones
in order to test the functionality of the parallelized appli-
cation. The HVP provides a relaxed test environment, in
which partially partitioned prototypes can be simulated and
used as intermediate steps towards a cleanly parallelized ap-
plication.

Finally, it needs to be mentioned that the GSHM itself
just provides a primitive but easy-to-use way for sharing
data between tasks in the HVP. How to transfer the data
in target still depends on the implementation of the real
platform.

4.3 User Interface

A GUI is provided by the HVP simulator, which can be
used to configure the platform, control the execution of the
simulation, display runtime statistics for both VPEs and
tasks, and visualize the graphical and the text information
produced by the application.

Figure 7 shows a screen shot of the HVP GUI with a
parallel H.264 decoder application running in the simulator.

15

Platform Config Simulation Control
= d D M 3 & W

YPE-O
Clock

VPE
Configuration |

VPE-1
1000MHHz |2/ lc10ck

HVP
Task List

28dMain

1000MHz -

Scheduler Round-Robir 2| Scheduler Round-Robir 3|

= HZgaMain Er MBDecoder_0

21% 32%

= MBDecoder_5
) 5%
= MBDecoder_2
- 25%
= MBDecoder_3
-
Usage Usage

[= 1

5% 3

= MBDecoder_1

i 20%

- MED=coder_d4
-

15%

(,

§ X -
18 :
Virtual
ripheral

Figure 7: HVP User Interface

The configuration of the abstract MPSoC platform as well as
the task to VPE mapping can be done by just mouse clicks
and drag-and-drops. Alternatively, the configuration can
also be loaded from a simple XML file which can be easily
created. This makes it possible that the user can automate
the high-level software exploration procedure by preparing
all the configuration files according to the scenarios to be
explored in advance and executing the simulations in batch
mode. During the simulation, the GUI also displays statistic
information like the overall VPE usage and the VPE usage
of each individual task.

In the host machine, the GUI runs in a separate thread in
order to avoid interfering the SystemC thread directly. The
communication and the synchronization between them is re-
alized through mutexes and messages in the host machine.

S. PROGRAMMING SUPPORT

As a platform focused on supporting programmers, the
HVP comes with a software tool suite for application devel-
opment, which mainly includes:

e An API for application programming, which enables
inter-task communication/synchronization and the in-
teraction with the VPE; and

e A code generation toolchain for compiling the source
code of native tasks.

The programming language supported by the tool suite
is C. This is mainly due to the fact that C is until today
the most used programming language for embedded software
development.

5.1 HVP API

In early design stage, it is normal that the low-level soft-
ware, e.g. OS, is not determined or available. In order to
enable application programming, the HVP provides a small
number of API functions for developers, which enable the
communication and the synchronization between tasks, the
interaction with the VPE, and the access to the virtual pe-
ripherals. The interface is defined in C, and a short summary
of the available functions is given in table 1.

It can be seen that advanced features like message queue
are not available in the HVP, and the functions given are
primitive in terms of their functionality. This is intended
by the HVP for several reasons. First, the number of func-
tions is kept small so that the programmer does not need

Functions

Suspend, Yield,

GetTaskStatus, WakeTask
GSHMMalloc, FindGSHM, GSHMFree

GetTime, SleepMS, MakePeriodicTask,
WaitNextPeriod

DisplayRenderPixel, DisplayRenderText

Description

Synchronization

Shared memory support

Scheduling

Virtual peripheral support

Table 1: HVP API Functions

much effort to learn them, and thus can easily start pro-
gramming. Second, the functionality is generic and simple,
through which the application source code can be kept as
much HVP independent as possible. Once the target plat-
form is finished, the code developed on the HVP should be
able to be reused with a minimum amount of additional ef-
fort.

The virtual peripheral functions are provided to visual-
ize data in graphic and text format. For programmers, this
is not the only way supported by the HVP to get output
from the application running in the simulator. Host 1/0
like fread and printf, can be directly used by native tasks
without changing the code. However, tasks running in ISS
must rely on the underlying instruction-set simulator to per-
form I/O operations. The difference between both kinds of
tasks will be discussed in the next section.

5.2 Task Programming

Given the HVP API, writing softwares for running on the
HVP is mostly like normal C application development, ex-
cept that the code generation flow is different from that of
a host application. Instead of being compiled to native exe-
cutables, tasks must be given to the HVP as shared libraries,
because the simulator does not contain any software behav-
ior. Besides, as it is mentioned in section 3, tasks can be
simulated in two ways, either natively or using an ISS. The
differences in the tool requirement of the both approaches
are summarized in table 2.

Native Task | ISS Task
Code Instrumentation Required Not needed
Compiler Native Target
Extra ISS wrapper Not needed Required

Table 2: Difference Between Native and ISS Tasks

From the table, it can be seen that the code generation of
the native task requires an additional instrumentation pro-
cedure compared to that of the ISS task, whose reason will
be discussed later in section 5.2.1. Apart from that, extra
wrappers are needed by the ISS tasks in order to instantiate
ISS to execute the cross compiled target binaries as will be
explained in 5.2.2.

5.2.1 Native Task

The native task supported by the HVP provides develop-
ers a processor independent way to run their applications
which is helpful when the target platform is still undefined.
In order to allow user applications to run in the SystemC
based simulator, several issues need to be solved here.

C applications have their own main functions, which will
conflict not only with the one in the SystemC kernel but

16

also with each other, if they are directly linked together.
This problem is solved in the HVP by compiling the user
applications into shared libraries and using the task modules
in the simulator as loader to load them dynamically before
the simulation starts.

Moreover, pure C code is natively executed in a SystemC
simulation without advancing the clock, i.e. no time is spent
in the code, which does not reflect the real behavior of the
application. Normally, programmers are required to manu-
ally annotate the source code by inserting calls of the Sys-
temC wait function in order to let the software consume
simulation time. However, since such approaches introduce
extra constructs, which are irrelevant to the application, into
the source, the reusability of the code is reduced. Besides,
estimating the execution time of software requires deep ar-
chitecture knowledge; it is therefore difficult for average ap-
plication developers to do it without investigating big effort.
For these reasons, the HVP provides a user transparent and
target independent solution for the code generation of native
tasks. The complete flow is shown in figure 8.

void main () { LLVM Code
printf (“hello\n”) ; C-Frontend Opti.

Figure 8: Native Task Code Generation

HVP Code
Instrumentor;

Native
Backend

hello.so

The tools are developed based on the LLVM compiler
framework [16]. A code instrumentor is inserted after the
code optimization, which automatically inserts function calls
for consuming simulation time. The behavior of the inserted
function is very simple. It first consumes time and then
checks if the time slot granted by the VPE is used up. In
case of yes, it will switch the status of the task to READY,
send out an event to inform the VPE of the change and
start waiting for the next TASK_RUN event. Otherwise, the
execution of the task just continues.

For the computation of the elapsed simulation time, since
the HVP is focused on high-level functional simulation and
no specific processor information is available here, we sim-
plify the calculation by assuming that each VPE uses one
clock cycle to perform a C level operation like an addition.
The instrumentation is done per basic block so that a very
high simulation speed can be achieved.

Finally, it needs to be mentioned here that the whole flow
does not require any manual code annotation, the C source
code is kept intact and can thus be further reused. In the
simplest case, a sequential application can be brought to
the HVP through just replacing the native compiler with
the HVP toolchain.

5.2.2 ISS Task

The second alternative provided by the HVP to run an
application is using an ISS. This is supported mainly for
the early MPSoC design stage when the overall architecture
of the target platform is still under design, but the use of
certain processor is already determined. Besides, the com-
bination of the ISS tasks and the abstract OS model in the
VPE allows the developer to early evaluate the application
behavior as if an OS is available, even though the real OS
for the target processor would be finished much later in the
design. Of course, for both cases, an ISS is needed before-
hand.

The code generation procedure of the ISS tasks is the

same as a typical target-compilation flow, where a cross-
compiler is used. Since the target binary will be executed
by an instruction-set simulator, assembly code is also al-
lowed here, which gives the programmer more flexibility in
writing the application.

Nevertheless, in order to control the instantiation and the
execution of the ISS, an extra wrapper is required, which is
mainly responsible of instantiating the ISS, stepping the ISS
according to the event sent from the VPE and rerouting all
accesses to the shared memories to the corresponding GSHM
blocks.

Figure 9 depicts the concept how the ISS is embedded
into the HVP simulator. In the example, the accesses to the
shared memory region of the target processor is intercepted
by the wrapper and then rerouted through the VPE to the
corresponding GSHM block. In this way, the ISS task is able
to communicate with other tasks in the simulator.

Task Module

ISS_Wrapper.so

Local
MEM

GSHM Manager

Real Shared
MEM

GSHM Blocks

1SS
Instance

Shared
MEM

Key List

Figure 9: ISS Embedded in the HVP simulator

The ISS wrapper is natively compiled into a shared li-
brary. From the VPE’s point of view, an ISS task actually
looks the same as a native task, because they both use the
same TLM interface to interact with the VPE; and hence
running them in one simulation at the same time is also al-
lowed in the HVP. Currently, we have developed wrappers
for the ISS generated by the LISATek processor designer [3].
Other instruction set simulators can also be supported, as
long as they can be controlled by an ISS wrapper. Besides,
the wrapper is application independent; therefore its devel-
opment is a one time effort. Once a wrapper is developed
for an ISS, it can be reused for different applications.

5.3 Debug Method

One advantage of using the HVP for parallel application
development is that debugging is much simpler than that
is in a real multiprocessor machine. Since the simulation is
based on SystemC and executes in one thread, the behav-
ior of the application is independent from the host machine
and thus is fully deterministic. Besides, there is no need for
special debuggers in order to debug native tasks. The in-
strumentation process in their code generation flow does not
destroy the source level debug information. To debuggers,
they look just like normal host applications. Therefore, the
programmer can use any host debugger like GDB to connect
to the simulation thread and debug the code.

For ISS tasks, the problem is a little bit more compli-
cated. Their debugger support depends on the used ISS
and its wrapper. The ISS must first support the connec-
tion from a debugger; and the wrapper needs to be imple-
mented in a way that it can block the simulation and wait
for the connected debugger to finish the user interaction.
The LISATek generated simulator and the corresponding
wrapper we have implemented fulfill the above mentioned

17

ISS-Task Native-Task
] ﬂ
{.}

Native
Debugger
e.g. GDB

[vee1)

1SS
Debugger

[[Shared Memory | HVP Simulator

Figure 10: Debugger Usage with the HVP

requirements. Thus, tasks running in the ISS can also be
debugged in the HVP. In a mixed simulation, where ISS
tasks are executed together with native tasks, both the ISS
debugger and the host debugger can be used concurrently
as depicted in figure 10. The host debugger is directly con-
nected to the simulator for debugging native tasks; at the
same time, the debugger for the ISS is connected through a
channel which is instantiated by the wrapper.

In addition to the source-level debugging, the HVP also
provides facilities for monitoring system level events occurred
in the simulator. For example, the user can use the GUI to
enable the generation of VCD trace files which record the
time and the duration of the activation of all tasks. This
gives the developer an overview on the execution of the sim-
ulated applications.

6. CASE STUDY

In this section, the results from the case study performed
on several MPSoC platforms will be discussed. The target
application is an H.264 baseline decoder whose sequential
C implementation is given at the beginning. The goal is to
develop parallelized decoders for the target platforms.

6.1 Application Partitioning

The application parallelization is done at high-level, as it
is suggested by the design flow proposed in section 1. Since
the data communication between processors is normally ex-
pensive in MPSoCs, the granularity of the parallelism to be
explored in the target application is aimed at coarse-grained
task level.

First, the standard itself is analyzed. An H.264 video
frame is composed of a number of small pixel blocks called
Macro-Blocks (MBs), and the codec exploits both temporal
and spatial redundancy of the video input and compresses
the data MB by MB. According to this, we parallelize the de-
coder by creating multiple MB decoder tasks which work on
different MBs at the same time during the decoding process.
Figure 11 shows the structure of the parallelized decoder and
the data transfer between the tasks.

The implementation of the parallel decoder follows the
master-slave parallel programming paradigm. There is a
Main Task which is the master and responsible for parsing
the encoded stream and preparing the data for decoding each
MB. Once the MB data is ready, the MB Decoder slave tasks
are activated. Each MB Decoder works on the input data
passed by the master and decode one MB a time. Beside
the MB data which is passed from the master to the slave
tasks, a Frame Store is also shared between the tasks for
storing the decoded frames. Since it is read/written by the
tasks through out the decoding process, it must be allocated

q) =)
[[M8 Data | [e Data | Frame

Store
i 1
[MB Decoderoj [MB Decodernj

1 f

E Shared data
D Task

Figure 11: Parallelized H.264 Baseline Decoder

in a memory region which is visible for all. Therefore, the
parallelized decoder explicitly put the frame store in a big
block of GSHM in the HVP simulator.

After the parallelization, the modified decoder is natively
simulated in the HVP simulator. To test its functionality,
a QCIF format (176 x 144 resolution) H.264 video file en-
coded with the baseline profile is used as input. The result
is checked both subjectively through the video directly dis-
played in the virtual peripheral window as it is shown in
figure 7, and objectively against the output produced by the
sequential version decoder. Both indicate that the result is
correct.

The effect of the parallelization can also be seen from the
VCD traces dumped by the simulator. Figure 12 shows two
task traces generated by the execution of the parallelized
decoder in a 1-VPE and a 7-VPE platform. It can be clearly
seen that MBs are decoded one after another in the 1-VPE
platform; but in the 7-VPE platform, 6 MBs can be decoded
at the same time (e.g. at 20ms).

Signals Waves

Time T T T T T T T T s T T T T T T T T T o T T T

H264Maln = 111 I I | 1 [[l 1 |
mBDecoder_o= Il [TLI1
MBDecoder_l=1 | nnnamnn 1 L NN J1] LI
MBDecoder_3=
meDecocer_4= | Decode of one M| o nn
MeDecoder_5= | macro-block | 1 I il 1

Task trace from a 1-VPE Platform
signals Waves
Time 20ms
T T T T T T T T

Hesamain= [[T T L 111 | [
MBDecoder_6 = [T [T 1T [] [TL
MBDecader_1 =i | |
MBDecoder_2 = I 11 [TT1
MBDecader_3 =i | | [
MBDecoder_4 = 6 macro-blocks | I |

being decoded — T

Task trace from a 7-VPE Platform

MBDecoder 5 =

Figure 12: Task Trace Comparison

Compared to host based multiprocessor programming meth-

ods such as POSIX threads, writing parallel applications on
the HVP is easier in several aspects. First, the code needed
for synchronization and communication is much simpler, due
to the simplicity of the API and the fact that the SystemC
based simulator does not require complex memory protec-
tion mechanisms to be implemented in the application. Sec-
ond, since the behavior of the simulator is deterministic, it is
easier to find a problem than in a host workstation where the
parallel application behaves differently in each execution.

6.2 Speedup Estimation

At a high abstraction level, it is difficult for the HVP
to give an estimation of the absolute execution time of the
application without the knowledge of the target platform.
However, since the simulation time is calculated based on the
number of the C level operations analyzed from the source

18

3
Quantum Size
25 (ns)
g 2 —+— 1000000
= —=— 100000
g1 —+— 10000
& 1 —— 1000
05 ——100
0 : : : : : :
1 2 3 4 5 6 7 No.VPEs

Figure 13: Estimated Speedup

code, a speed comparison between the sequential and the
parallelized decoder is still possible, which gives a relative
measure of the parallelization result.

To estimate the speedup, the parallelized decoder is sim-
ulated on the HVP with different VPE numbers. Since no
target platform information is considered at this level, the
VPEs are all configured with the same parameter, which re-
sembles a symmetric multiprocessor platform. Besides, as
it was mentioned earlier, that the HVP’s implementation
follows the TLM2.0 temporal decoupling coding style. Dif-
ferent values of the time quantum are used so as to find the
best compromise between the simulation speed and the reli-
ability of the estimation result. Figure 13 shows the results
of the speedup estimation.

It can be seen from the curves that the size of the time
quantum has a big influence on the result. In most cases,
the use of multiple VPEs shows a speedup which saturates
at the use of 4 VPEs and has a maximum between 2.2 and
2.5. However, when the time quantum is 1M, there is only
slow down measured by using multiple VPEs. This can ex-
plained by the unnecessary synchronization overhead intro-
duced by the temporal decoupling. For instance, if a task
fails to acquire a spinlock, it has no chance to acquire the
lock within the current time quantum because of the tem-
poral decoupling, but, in a real platform, the lock can be
acquired anytime in the execution. In such case, the rest of
the time quantum is wasted in synchronization. ' Theoret-
ically, the smaller the quantum size is, the more reliable the
simulation result is. Unfortunately, it cannot be decreased
infinitively; figure 14 depicts its influence on the simulation
speed which is measured in the unit of Million Operations
Per Second (MOPS). ? All the measurements are done in a
workstation with 8GB RAM and four CPUs each clocked at
2.67GHz.

The trend is clear that the simulation speed decreases
when the time quantum is reduced. But, with the size of
10 000, the HVP gives an estimation result which is close
to those with the smaller ones, and sacrifices only a little
speed. Therefore, this value is used for the experiments in
the following sections.

6.3 Target Platforms

In the case study, we use several in-house MPSoC plat-
forms as targets, which include both homogeneous and het-
erogeneous platforms. Table 3 gives a summary of their
architecture:

!The details of the temporal decoupling is out of the scope
of this paper; a complete introduction of it can be found in
the TLM2.0 user manual [21].

2The operations here are native C operations (see 5.2.1).

2 10000
@ @1
g m2
£ 1000 ¢ o3
5 o4
3 100 ms5
g o6
u7
% 10 No.
=1 VPEs
3
& 1
1,000,000 100,000 10,000 1,000 100
Quantum Size (ns)
Figure 14: Native Simulation Speed
MP-ARM MP-RISC MP-RISC/VLIW
PE nxARM9 nxRISC IXRISC+ nxVLIW
Mem | Shared Local+Shared Local+Shared
Bus AMBA SimpleBus SimpleBus
oS Available Not available Not available

Table 3: Target Platform Summary

Except for the ARM9 processor which is a third party PE
and has an instruction-accurate ISS provided, the RISC and
the VLIW processors are both developed in-house. A com-
mon base instruction-set is shared by them, but the VLIW
processor is capable of issuing 4 instructions per cycle. Their
cycle accurate processor models are both developed by the
LISATek processor designer. Since no hardware prototype is
built, VPs are developed in order to simulate the platforms
and execute the application.

6.4 Target Software Development

Since the application has already been functionally parti-
tioned, the focus of the target software development is on the
utilization of the communication and the synchronization
services of the target platforms. The effort is very limited
compared to the whole decoder. The parallelized decoder
has a total of &~ 6500LOC (Lines of Code). The numbers of
the LOC changed for the target platforms are summarized
in table 4. The reuse factor is calculated by the following
formula:

ReuseFactor = ((LOCrota1—LOCchanged)+LOCTota1) x100%.

MP-ARM
~200
97%

MP-RISC
~30
99%

MP-RISC/VLIW
~30
99%

Loc Changed
ReuseFactor

Table 4: Code Reuse Factor

The table shows a high reuse factor of the code early de-
veloped with the HVP. The MP-ARM platform has a light-
weight OS running on top of it. Most of the changes done for
its parallel decoder are added lines for the initialization and
the configuration of the OS. The rest is needed for chang-
ing the communication and the synchronization mechanism.
Semaphores are instantiated for synchronizing the tasks. Be-
sides, since the platform has a shared memory architecture,
the use of the explicitly shared memory (i.e. the GSHM in
the HVP), is no more necessary. The malloc/free functions
of the C library are used instead, which requires only a few
lines of changes.

19

The MP-RISC and the MP-RISC/VLIW platforms have
a non-uniform memory architecture. Each processor has its
own local memory; and one platform has a block of mem-
ory shared by all processors. In this case, the modifications
are done mainly for relocating the data objects which origi-
nally reside in the GSHM blocks of the HVP to the shared
address region of the target platforms. Besides, spinlocks
are used for the synchronization of the tasks. Overall, much
less code modifications are required compared to that of the
MP-ARM platform, because no OS needs to be configured
here.

The functional test of the developed parallel decoders on
the virtual platforms is rather problem-free. Since the de-
coding behavior has already been tested on the HVP, there
is no need to look at the codec itself. The problems oc-
curred in this stage are mostly related to the code changed
for the communication and the synchronization. Once the
tasks correctly work together, the whole decoder produces
the correct result.

For the MP-RISC/VLIW platform, the task-to-PE map-
ping is done as follows: the Main Task is assigned to the
RISC PE, and the MB Decoders are executed on the VLIW
PEs. Since the RISC PE is developed first, the target soft-
ware development of the heterogeneous platform is first done
partially in the HVP before the complete VP is ready. An
ISS was used to run the RISC target binary, and the MB
Decoders are executed natively.

6.5 HVP/VP Result Comparison

Figure 15 shows the speedup curves measured from the
HVP and the VPs. The curve HVP-SMP is the predicted
speedup on homogeneous platforms. Compared to the result
from the MP-RISC platform, the speedup results are very
close. Nonetheless, the measurements from the MP-ARM
platform are lower than estimated, because there is an OS
running, which requires extra processor cycles.

35
3]

=25 ——HVP-SMP

=S —=—MP-ARM

3 2] —+—MP-RISC

@ 15 1 —x—HVP-AMP
; —x—MP-RISCVLIW

05

1 2 3 4 5 6 7 No.PEs

Figure 15: Speedup Result Comparison

In the other HVP configuration, the VPEs running MB
Decoders are set to run at a higher speed so as to simulate
the use of the VLIW PEs. Here, we assume that the 4-
issue processor is able to achieve an average IPC (Instruction
Per Cycle) number of 1.7, which is based on the a-priori
knowledge of the developer of the compiler. The results are
shown in curve HVP-AMP. It can be seen that the HVP has
well estimated the speedup achieved by the heterogeneous
platform.

Moreover, the simulation speed of the HVP is much faster
than that of the VPs. A comparison between them is given
in figure 16. The simulation time used to decode the same
amount of video frames is compared here. Since more than
97% of the code is identical, the comparison shows the speed

10000

\
)

No PEs
1000 + o1

m2
o3
o4
HVP-Native vs. HVP-Native vs. HVP-Native vs. HVP-Mixvs.
MP-ARM MP-RISC MP-RISCVLIW MP-RISCNLIW

100 +

m5
o6
m7

Logarithmic Scale

Simulation Speedup (x;
5
+

Figure 16: Simulation Speed Comparison

difference between the platforms given the same high-level
behavior is simulated.

The VP of the MP-ARM platform is built with instruc-
tion accurate (IA) simulators; the MP-RISC and the MP-
RISC/VLIW platforms are simulated with cycle accurate
(CA) ones. From the figure, it can be seen that the na-
tive HVP simulation is in general one to two orders of mag-
nitude faster (35x-110x) than the IA platform and two to
three orders of magnitude faster (690x-1338x) than the CA
platforms.

It is mentioned in the previous section, that the RISC code
of the heterogeneous platform is first tested in the HVP by
mixing the use of ISS and native simulation. The speed
comparison of this scenario is shown by the HVP-Mix vs.
MP-RISC/VLIW columns. Here, when more PEs are involved,
the portion of the natively simulated behavior increases, and
hence more speedup can be observed. Since the ISS is the
bottleneck, the overall speedup is around one order of mag-
nitude (2x-27x) in this mode, not as much as that of the
pure native simulation. Nonetheless, the involvement of the
ISS means for the programmer that the target software de-
velopment can be started earlier, which is sometimes more
important than the simulation speed.

7. CONCLUSION & OUTLOOK

In this paper, a high-level virtual platform is presented,
which aims to support the MPSoC software development
in a very early stage. The goal is achieved by providing
a set of tools for the abstract simulation of MPSoCs and
the corresponding software development. With the HVP,
programmers can start developing C code without details
of the final target platform. The results show that the code
developed on the HVP is highly reusable, and the simulation
speed is much faster compared to VPs.

In future, we plan to improve the estimation of the sim-
ulation time so that programmers can better examine the
application performance with the HVP. In the meantime, we
also plan to use the HVP to develop software for platforms
with HW accelerators and/or fully distributed memories.

8. REFERENCES

[1] Y. Ahn, K. Han, G. Lee, H. Song, J. Yoo, K. Choi, and
X. Feng. SoCDAL: System-on-Chip Design AcceLerator.
ACM Trans. Des. Autom. Electron. Syst., 13(1):1-38, 2008.

[2] L. B. Brisolara, M. F. S. Oliveira, R. Redin, L. C. Lamb,
L. Carro, and F. Wagner. Using UML as Front-end for
Heterogeneous Software Code Generation Strategies. In
DATE 08, New York, NY, USA, 2008. ACM.

[3] CoWare. Processor Designer.
http://www.coware.com/products.

20

[4] P. Destro, F. Fummi, and G. Pravadelli. A Smooth
Refinement Flow for Co-designing HW and SW Threads. In
DATE 07, 2007.

(5] A. Donlin. Transaction Level Modeling: Flows and Use
Models. In CODES/ISSS 2004, pages 75-80, Sept. 2004.

[6] T. Furukawa, S. Honda, H. Tomiyama, and H. Takada. A
Hardware/Software Cosimulator with RTOS Supports for
Multiprocessor Embedded Systems. In ICESS ’07, pages
283-294, Berlin, Heidelberg, 2007. Springer-Verlag.

[7] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and
S. Zhao. SpecC': Specification Language and Methodology.
Springer-Verlag New York, Inc., 2000.

(8] J. Ganssle. 500 Embedded Engineers Have Their Say
About Jobs, Tools. EETimes Europe, January 2009.
http://www.eetimes.eu/design,/213000236;.

9] P. Gerin, X. Guérin, and F. Pétrot. Efficient

Implementation of Native Software Simulation for MPSoC.

In DATE 08, 2008.

A. Gerstlauer, H. Yu, and D. D. Gajski. RTOS Modeling

for System Level Design. In DATE 08, 2003.

C. Haubelt, T. Schlichter, J. Keinert, and M. Meredith.

SystemCoDesigner: Automatic Design Space Exploration

and Rapid Prototyping from Behavioral Models. In DAC

08, pages 580-585, New York, NY, USA, 2008. ACM.

T. Kempf, M. Doerper, R. Leupers, G. Ascheid, H. Meyr,

T. Kogel, and B. Vanthournout. A Modular Simulation

Framework for Spatial and Temporal Task Mapping onto

Multi-processor SoC Platforms. Date ’05, 2005.

T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid,

R. Leupers, and H. Meyr. A SW Performance Estimation

Framework for Early System-Level-Design Using

Fine-Grained Instrumentation. In DATE ’06, 2006.

M. Krause, D. Englert, O. Bringmann, and W. Rosenstiel.

Combination of Instruction Set Simulation and Abstract

RTOS Model Execution for Fast and Accurate Target

Software Evaluation. In CODES/ISSS ’08, 2008.

S. Kwon, Y. Kim, W.-C. Jeun, S. Ha, and Y. Paek. A

Retargetable Parallel-Programming Framework for MPSoC.

ACM Trans. Des. Autom. Electron. Syst., 13(3):1-18, 2008.

C. Lattner and V. Adve. LLVM: A Compilation Framework

for Lifelong Program Analysis & Transformation. In CGO

’04, 2004.

S. Mahadevan, K. Virk, and J. Madsen. ARTS: A

SystemC-Based Framework for Multiprocessor

Systems-on-Chip Modelling. Design Automation for

Embedded Systems, 11(4):285-311, December 2007.

G. Martin. Overview of the MPSoC Design Challenge. In

DAC 06, pages 274-279, 2006.

T. Meyerowitz, A. Sangiovanni-Vincentelli, M. Sauermann,

and D. Langen. Source-Level Timing Annotation and

Simulation for a Heterogeneous Multiprocessor. In DATE

’08, March 2008.

OSCI. Open SystemC Initiative. http://www.systemc.org.

OSCI. TLM-2.0 User Manual.

http://www.systemc.org/downloads/standards.

K. Popovici, X. Guerin, F. Rousseau, P. S. Paolucci, and

A. A. Jerraya. Platform-Based Software Design Flow for

Heterogeneous MPSoC. Trans. on Embedded Computing

Sys., 7(4):1-23, 2008.

H. Posadas, J. Adamez, P. Sanchez, E. Villar, and

F. Blasco. POSIX modeling in SystemC. In ASP-DAC 06,

pages 485-490. IEEE Press, 2006.

M. Thompson, H. Nikolov, T. Stefanov, A. D. Pimentel,

C. Erbas, S. Polstra, and E. F. Deprettere. A Framework

for Rapid System-Level Exploration, Synthesis, and

Programming of Multimedia MP-SoCs. In CODES+1SS5S

’07, pages 9-14, 2007.

W. Tibboel, V. Reyes, M. Klompstra, and D. Alders.

System-Level Design Flow Based on a Functional Reference

for HW and SW. In DAC °07. 44th ACM/IEEE, June 2007.

[26] Virtio. Virtual Platforms. http://www.virtio.com.

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]
(21]

(22]

23]

[24]

[25]

