
Automatic Restructuring of

Linked Data Structures

H.L.A. van der Spek, C.W.M. Holm, H.A.G. Wijshoff

Leiden University, LIACS,
Niels Bohrweg 1, 2333 CA Leiden,

The Netherlands

Abstract. The memory subsystem is one of the major performance bot-
tlenecks in modern computer systems. While much effort is spent on the
optimization of codes which access data regularly, not all codes will do
so. Programs using pointer linked data structures are notorious for pro-
ducing such so called irregular memory access patterns. In this paper,
we present a compilation and run-time framework that enables fully au-
tomatic restructuring of pointer-linked data structures for type-unsafe
languages, such as C. The restructuring framework is based on run-time
restructuring using run-time trace information. The compiler transfor-
mation chain first identifies disjoint data structures that are stored in
type-homogeneous memory pools. Access to these pools is traced and
from these run-time traces, a permutation vector is derived. The mem-
ory pool is restructured at run-time using this permutation, after which
all pointers (both stack and heap) that refer to the restructured pool
must be updated. While the run-time tracing incurs a considerable over-
head, we show that restructuring pointer-linked data structures can yield
substantial speedups and that in general, the incurred overhead is com-
pensated for by the performance improvements.

Key words: Restructuring compilers, linked data structures

1 Introduction

Predictability in memory reference sequences is a key requirement to obtain high
performance on applications using pointer-linked data structures. This contra-
dicts the dynamic nature of such data structures, as pointer-linked data struc-
tures are often used to represent data that dynamically changes over time. Also,
different traversal orders of data structures cause radical differences in behavior.

Thus, having control on data layout is essential for getting high performance.
For example, architectures like the IBM Cell and GPU architectures each have
their own characteristics and if algorithms using pointer-structures are to be
executed on such architectures, the programmer must mold the data structure
in a suitable form. For each new architecture, this means rewriting code over and
over again. Another common pattern in code using pointer-linked data structures
is the use of custom memory allocators. Drawbacks of this approach are that

such allocators must be implemented for various problem domains and they
depend on the knowledge of the programmer, not on the actual behavior of the
program. Our restructuring framework is a first step in the direction to liberate
the programmer from having to deal with domain specific memory allocation
and rewriting of data structures.

In this paper, we present a compiler transformation chain that determines a
type-safe subset of the application and enables run-time restructuring of type-
safe pointer-linked data structures. This transformation chain consists of type-
safety analysis after which disjoint data structures can be allocated from separate
memory pools. At run-time, accesses to the memory pools are traced temporar-
ily, in order to gather actual memory access patterns. Next, from these access
patterns, a permutation is generated which enables the memory pool to be re-
ordered. Note that these traces are not fed back into a compiler, but are rather
used to restructure data layout at run-time without any modification of the
original application. Pointers in the heap and on the stack are rewritten if the
target they are pointing to has been relocated. After restructuring, the program
continues using a new data layout.

Restructuring of linked data structures cannot be performed unless a type-
safe subset of an application is determined. This information is provided by Lat-
tner and Adve’s Data Structure Analysis (DSA), a conservative whole-program
analysis reporting on the usage of data structures in applications [6, 8]. The anal-
ysis results of DSA can be used to segment disjoint data structures into different
memory regions, the memory pools. Often, many memory pools turn out to be
type-homogeneous, i.e. they store only data of a specific (structured) type. These
kind of pools are our starting point.

For type-homogeneous pools, we have implemented structure splitting, simi-
lar to MPADS, the memory-pooling-assisted data splitting framework by Curial
et al. This changes the physical layout of the structures, but logically they are
still addressed in the same way. Structure splitting is not a strict requirement
for restructuring, but it simplifies the implementation and results in higher per-
formance after restructuring.

Tracing does have a significant impact on performance, so we allow that trac-
ing can be disabled after optimizing access to a memory pool. The application
itself does not need to be aware of this process at all. While in principle such
a trace can also be used to modify the behavior of a memory allocator for the
next execution of an application, we have not done so at this moment. It is im-
portant to note that tracing and restructuring all happen within a single run of
an application.

In order to illustrate the need for restructuring, it is interesting to have a
look at what could potentially be achieved by controlling data layout. For this,
we used SPARK00, a benchmark set in which the initial data layout can be
explicitly controlled. Figure 1 shows the potential speedups on an Intel Core 2
system (which is also used in the other experiments, together with its succes-
sor, the Core i7) if the data layout is such that the pointer traversals result in
a sequential traversal of the main memory, compared to a layout that results

in random memory references. This figure illustrates the potential for perfor-
mance improvements if data layout could be optimized. Our framework intends
to exploit this potential for performance improvements.

LF
10

im
pc

ol
_b

rw
13

6

ra
ja

t1
1

bc
ss

tm
09

os
ci

l_
tr

an
s_

01

66
2_

bu
s

rd
b4

50
l

st
r_

20
0

lu
ng

1

bc
ss

tm
34

ca
ge

9

rd
is

t3
a

cr
ys

tm
01

A
S

IC
_1

00
ks

he
ar

t3

Z
d_

Ja
c3

_d
b

P
re

s_
P

oi
ss

on

G
2_

ci
rc

ui
t

bc
ss

tk
36

nd
3k

Core 2 − Sequential vs. Random

0
2
4
6
8

10
12
14
16
18
20

SPMATVEC
SPMATMAT
PCG
JACIT
DSOLVE

Fig. 1. Speedup when using data layout with sequential memory access vs. layout with
random memory access.

In Section 2, our framework is discussed in detail. Section 3 contains the
experimental evaluation of our framework. Restructuring pointer-linked data
structures has great potential and in this paper considerable speedups are shown
on the SPARK00 benchmarks. The challenge of SPARK00 lies in closing the
performance gap between random access behavior and perfectly sequential access
behavior. As such, it illustrates the potential, but it does not guarantee that
such speedups will be obtained for any application. The overhead of tracing
mechanism, which of course does not come for free, is discussed in Section 3.2.
It is shown that the performance gains do compensate for this overhead within
relatively few consecutive uses of the restructured data structure. Related work
is discussed in Section 4. Future work and conclusions are given in Section 5.

2 Restructuring Pointer-linked Data Structures

In this section, the restructuring framework for pointer-linked data structures
is described. First, the type-safety analysis pass we use is described along with
pool allocation and structure splitting of data in such pools. We also describe
how pointers to memory pools that live on the stack are tracked, so they can be
rewritten at run-time. Next, the analysis of accesses to such pools is described.
Using this analysis, tracing code is generated which traces accesses to pools at
the field granularity, at run-time. Eventually, we describe how from these traces

a permutation vector is computed, which is used to reorder a pool and update
all references to such pools.

2.1 Data Structure Analysis and Pool Allocation

Lattner and Adve’s Data Structure Analysis (DSA) is an efficient, interproce-
dural, context- and field-sensitive pointer analysis [5, 6, 8]. It is able to identify
(conservatively) disjoint instances of data structures even if these data structures
show an overlap in the functions that operate on them. The analysis can proceed
even if information on the application is incomplete, which for example is the case
if external libraries are used. DSA has been implemented in the LLVM compiler
framework [7] which is especially designed to handle optimization throughout the
entire lifetime of the application. Our optimizations are performed after linking
the application, such that a full program view is available with the exception of
calls to the standard C library.

int main(int argc, char **argv)

{

...

MatrixPtr tmp = ReadMatrixPtrRow(matrixFile);

MatrixPtr Matrix = MatrixToFormat(tmp, format);

...

for(i = 0; i < iterations; i++)

MatrixMultiplyVec(Matrix, right, result);

...

}

Fig. 2. Code excerpt of main function of SPMATVEC.

DSA generates a data structure graph (DSGraph) for each function. This
DSGraph describes the data structures taking into account the effects of the as-
sociated function and all its callees. Figure 2 shows a part of the main function
of SPMATVEC, one of the benchmarks used in the evaluation of our method
(see Section 3). Figure 3 shows the associated DSGraph. Information about the
variables generated by the compilation to the LLVM bitcode (which uses an
SSA representation) are not shown. The graph shows the two stack variables
(specified by the S flag) %tmp and %Matrix, which both have their disjoint
storage space on the stack. Hence the separate nodes. The MatrixFrame struc-
ture they are both pointing to is one node, indicating that the analysis cannot
prove that they are pointing to disjoint structures. The MatrixFrame struc-
ture basically contains three pointers. These are the three arrays of pointers
that point to the start of a row, the start of a column and the diagonal elements.
The MatrixElement structure is the structure containing the matrix data. It
has two self references, which are the two pointers used to traverse the matrix
row- and column-wise.

Function main

%struct.MatrixFrame*: SMR

%struct.MatrixFrame: HMRE

%struct.ElementPtrStruct array: HMR

%struct.ElementPtrStruct array: HMR

%struct.ElementPtrStruct array: HM

%struct.MatrixFrame*: SMR

%struct.MatrixElement: HMR

%tmp %Matrix

Fig. 3. DSGraph for main function of SPMATVEC benchmark.

Each of the nodes in the graph can utilize its own memory pool. If a node
is type-homogeneous, its structures can be split and the contents of such a pool
can be permuted at run-time. In this paper, restructuring will be done on the
pool containing the MatrixElement structures.

The layout of structure elements in type-homogeneous pools can be remapped,
as access to such pools can be described in terms of an object identifier and a
field number. An obvious way to remap structure layout is to store structures
grouped by field, which is called structure splitting. Conceptually, this converts
an array of structures into a structure of arrays. Our implementation of struc-
ture splitting is similar to the MPADS framework of Curial et al. [2]. In addition,
our implementation supports nested structures, by moving the fields from the
nested structure into the outer structure. Nested arrays of structures are not
supported. Any data access to a split pool can thus be viewed as access to an
object identifier/field pair, even for nested structures.

Structure splitting effectively is nothing more than identifying access to a
pool, and redefine the semantics of the computation of pointers into that spe-
cific pool. In LLVM, all address calculations are performed using the GetEle-
mentPtr instruction (further referred to as GEP instruction). As everything is
transformed into unnested structures, all field accesses to a data structure ele-
ment take the following form:

%reg = getelementptr %T* %p, i32 0, i32 fieldNr

Written in C, this is roughly equivalent to: &(p + 0).f ield. Note that in LLVM,
fieldNr must be a compile-time constant integer defining the field number. All

GetElementPtr instructions that compute pointers into pools are registered and
in a later pass, these instructions are transformed into explicit pointer compu-
tations according to the desired split layout.

2.2 Pool Access Analysis

The LLVM representation itself does not reason in terms of pools and fields.
Therefore a pool access analysis pass is needed which determines for each mem-
ory operation the following properties: the pool descriptor (a unique, per pool
pointer to a structure defining the properties of the pool), the object identifier
and the field. Consider the following LLVM code snippet:

; Load pElement->Real;

%tmp = load %struct.MatrixElement** %pElement, align 8

%tmp2 = getelementptr %struct.MatrixElement* %tmp, i32 0, i32 2

%tmp3 = load double* %tmp2, align 8 ; Pool access

tmp2 is a pointer to a field of some object in a pool. When considering a load, the
analysis first looks for the underlying object, which is defined by the first operand
of the defining GEP instruction. For this underlying object, a mapping to its
corresponding pool descriptor has been determined by the structure splitting
analysis pass. The field is given by the last operand of the GEP instruction.

2.3 Pointer Tracking

The fact that we actually permute the actual data layout of memory pools at
run-time implies that all references to such a pool must be kept track of. For
pointers stored in the heap connectivity information is provided by DSA. This
connectivity information is made available to the run-time environment, and
thus all references to a pool on the heap can be identified. For pointers stored
on the stack the location of these pointers in memory must be known in order
to update these pointers when their target has been relocated. This is done by
generating code at compile-time that registers all pointers to pools on the stack
to the run-time. After restructuring, all references on the stack are known and
can be updated.

2.4 GetElementPtr Instruction Rewriting

The regular LLVM code generation backend is not aware of any alternative data
layout mappings. Therefore, any address calculations must be transformed into
explicit pointer arithmetic. All GEP instructions that generate pointers to pools
are now remapped such that the split layout is used.

Pointers that reside on the heap and that point to objects (not to their
fields) in split pools are stored as object identifiers to make the representation
position independent. Object pointers that reside on the stack are stored as

regular pointers, and so are derived pointers (pointers to fields) on the stack.
Due to the properties of DSA, no derived pointers exist on the heap.

Pointers that need to be stored as object identifiers are converted to object

identifiers before they are stored to the heap as follows: objid = (objaddr−pool base)
sizeof(firstfield)

Whenever such a pointer is load from memory, it is directly converted back to a
regular pointer: objaddr = pool base + objid × sizeof(firstfield)

2.5 Memory Access Tracing

In order to restructure a memory pool a permutation must be supplied to the
restructuring run-time. The pool access analysis pass provides the information
about all memory references and these memory references can all be traced.
Traces are generated per pool, per field. For each pool/field combination, this
results in a trace of object identifiers. From any of these traces, a permutation
vector can be derived which can be used to permute a pool. The permutation
vector is currently computed by scanning the trace sequentially and appending
the object identifiers encountered to the vector, avoiding duplicates.

Tracing does not come for free and therefore tracing should be avoided if
it is not necessary. For the evaluation of our restructuring method we choose
to trace the first execution of a specified function (compiler option), restructure
using this trace and then disable tracing. In a future implementation, this will be
dynamic and tracing could be triggered if a decrease in performance is detected
(for example by using hardware counters).

2.6 Run-time Pool Restructuring

The memory tracing mechanism for which code is generated produces per pool,
per field traces at run-time, if tracing is enabled. Using these traces, a permu-
tation vector can be generated according which is used to remap all allocated
elements in a pool. This remapping consists of rewriting the pool that must be
restructured, updating all referring pools such that all fields containing pointers
to the restructured pool are updated, and updating all pointers (both to the
objects as well as fields of objects) to the restructured pool. There are no point-
ers from other pools to fields of a restructured object. This is a result of the
type-safety properties required by Data Structure Analysis.

During restructuring, each element of each field is copied to a newly allocated
memory space to the position indicated by the permutation vector. Next, all
pointer fields of all referring pools (including self references) are updated using
the permutation vector. In Figure 3, if the pool for MatrixElement would be
restructured, two self-referring fields have to be rewritten as well as three fields
from other pools. Finally, all pointers on the stack that have been registered by
the pointer tracking mechanism are updated as well.

3 Experiments

The challenge of a restructuring compiler is to generate code that will auto-
matically restructure data, either at compile- or run-time in order to achieve
performance that matches the performance when an optimal layout would be
used. In the introduction the potential of restructuring was shown by comparing
execution of the benchmarks using explicitly defined data layouts. In the exper-
iments here, we ideally want to obtain similar performance gains, but then by
automatic restructuring of data layout of the used pointer-linked data structures.

We use the benchmark set SPARK00 which contains pointer benchmarks
whose layout can be controlled precisely [13]. The pointer-based benchmarks
used are: SPMATVEC (sparse matrix times vector), SPMATMAT (sparse ma-
trix times matrix), DSOLVE (direct solver using forward and backward substitu-
tion), PCG (preconditioned conjugate gradient) and JACIT (Jacobi iteration).

These benchmarks store their matrix using orthogonal linked lists (elements
are linked row-wise and column-wise). All of them traverse the matrix row-wise,
except DSOLVE, which traverses the lower triangle row-wise and the upper
triangle column-wise.

For all benchmarks, one iteration of the kernel is traced, after which the
data layout is restructured. After this, tracing is disabled. This all happens at
run-time, without any hand-modification the application itself.

The experiments have been run on two platforms. The first is the Intel Core 2
platform, an Intel Xeon E5420 2.5 GHz processor with 32 GiB of main memory,
running Debian 4.0. The other system is an Intel Core i7 920 based system with
6 GiB of main memory.

3.1 The Effect of Restructuring

As shown in the introduction, being able to switch to an alternative data lay-
out can be very beneficial. We applied our restructuring transformations to the
SPARK00 benchmarks and show that in ideal cases, speedups exceeding 20 are
possible by regularizing memory reference streams in combination with structure
splitting. Of course, the run-time introduces a considerable amount of overhead
and is a constant component in our benchmarks. We will consider this overhead
separately in Section 3.2 to allow a better comparison between the different data
sets.

Figure 4(a) and 4(b) show the results of restructuring on the pointer-based
SPARK00 benchmarks (except DSOLVE, which is treated separately), if the ini-
tial data layout causes random memory access, on the Intel Core 2 and Core i7,
respectively. The data set size increases from left to right. As shown in previous
work [13], optimizing data layout of smaller data sets is not expected to improve
performance that much and this fact is reflected in the results. On both architec-
tures, restructuring had no significant effect for data sets fitting into L1 cache.
These sets have not been included in the figures. For sets fitting in the L2 and
L3 cache levels, speedups of 1 − 6× are observed. The Core i7 has a 8 MiB L3
cache, whereas the Core 2 only has two cache levels. This explains the difference

in behavior for the matrix Sandia/ASIC 100ks, which shows higher speedups for
the Core 2 for most benchmarks. However, it turns out that the Core i7 runs
almost 3× faster when no optimizations are applied on SPMATVEC for this
data set. Therefore, restructuring is certainly effective on this dataset, but the
greatest benefit is obtained when using data sets that do not fit in the caches.

Speedups using restructuring, initially random memory access − Intel Core 2

S
pe

ed
up

lu
ng

1

bc
ss

tm
34

ca
ge

9

rd
is

t3
a

ja
n9

9j
ac

04
0

cr
ys

tm
01

A
S

IC
_1

00
ks

he
ar

t3

Z
d_

Ja
c3

_d
b

P
re

s_
P

oi
ss

on

G
2_

ci
rc

ui
t

bc
ss

tk
36

nd
3k

0
2
4
6
8

10
12
14
16
18
20
22

SPMATVEC
SPMATMAT
PCG
JACIT

(a) Intel Core 2

Speedups using restructuring, initially random memory access − Intel Core i7

S
pe

ed
up

lu
ng

1

bc
ss

tm
34

ca
ge

9

rd
is

t3
a

ja
n9

9j
ac

04
0

cr
ys

tm
01

A
S

IC
_1

00
ks

he
ar

t3

Z
d_

Ja
c3

_d
b

P
re

s_
P

oi
ss

on

G
2_

ci
rc

ui
t

bc
ss

tk
36

nd
3k

0
2
4
6
8

10
12
14
16
18
20
22

SPMATVEC
SPMATMAT
PCG
JACIT

(b) Intel Core i7

Fig. 4. Speedups obtained using restructuring on the SPARK00 benchmarks. The ini-
tial data layout is random.

An interesting case is DSOLVE, in which the lower triangle of the matrix is
traversed row-wise, but the upper triangle is traversed column-wise. As the avail-
able data layouts of the matrices are row-wise sequential (CSR), column-wise
sequential (CSC) or random (RND), none of these orders matches the traversal
order used by DSOLVE. Figure 5(a) and 5(b) shows the results for DSOLVE
using the different memory layouts on the Core 2 and Core i7, respectively.

DSOLVE using restructuring

S
pe

ed
up

lu
ng

1

bc
ss

tm
34

ja
n9

9j
ac

04
0

cr
ys

tm
01

ca
ge

9

he
ar

t3

rd
is

t3
a

P
re

s_
P

oi
ss

on

0

2

4

6

8

10
CSC
CSR
RND

(a) Intel Core 2

DSOLVE using restructuring

S
pe

ed
up

lu
ng

1

bc
ss

tm
34

ja
n9

9j
ac

04
0

cr
ys

tm
01

ca
ge

9

he
ar

t3

rd
is

t3
a

P
re

s_
P

oi
ss

on

0

2

4

6

8

10
CSC
CSR
RND

(b) Intel Core i7

Fig. 5. Speedups obtained using restructuring on DSOLVE for all different initial lay-
outs. Input data sets are ordered by size (after LU-factorization).

The matrices are ordered differently than in the other figures, as DSOLVE uses
LU-factorized matrices as its input, which have different sizes depending on the
number of fill-ins generated during factorization. The matrices have been ordered
from small to large.

For the lung1 dataset, a decrease in performance is observed, but for the
larger datasets, restructuring becomes beneficial again. Speedups of over 6×
are observed for the Core i7, using CSC (column-wise traversal would yield a
sequential memory access pattern) as initial data layout. In principle, the RND
(initial traversal yields a random memory reference sequence) data set could
achieve much higher speedups if after restructuring the best layout is chosen.
Currently, this is not the case for DSOLVE and we attribute this to the very
simple permutation vector generation algorithm that we use (see Section 2.5).
Generation of permutation vectors from traces will be improved in future versions
of the framework.

3.2 Tracing- and Restructuring Overhead

Our framework uses tracing to generate a permutation vector that is used to
rewrite the memory pool. Traces are kept for each field of a pool and one of
these traces is used for restructuring. Currently, the trace to be used is specified
as a compiler option, but this could potentially be extended to a system that au-
tonomously selects an appropriate trace. This will be addressed in a forthcoming
paper.

Tracing and the subsequent restructuring step have an impact on the perfor-
mance. One cannot simply trace everything all the time as the system will run
out of memory very quickly. In the benchmarks, we choose to only trace the first

iteration of the execution of the kernel. In order to minimize the overhead of the
tracing, the trace will only contain object identifiers, as described in Section 2.5.
So for instance, if a linked list contains a floating point field and this list is
summed using a list traversal, then both the pointer field and the floating point
field are traced, there is an overhead of 2 trace entries per node visited. In our
experiments, the structure operated on is 32 bytes and tracing above mentioned
traversal would add 16 bytes per node extra storage requirements when using
64-bit object identifiers. Using 32-bit objects identifiers, this would be reduced
to 8 bytes. Subsequently, the memory pool is restructured using the information
of the trace which relates to the field that contains the floating point values of
the linked list nodes.

The overhead of the tracing and restructuring has been estimated by run-
ning a single iteration of each kernel with and without tracing and restructuring
enabled, using a data layout causing random memory access. Figure 6 shows

0 10 20 30 40

0.
00

0
0.

01
0

0.
02

0

Total Execution Time − PCG
vanHeukelum/cage9

Iterations

T
im

e
[s

]

No opt. − C2
Restruct. − C2
No opt. − Ci7
Restruct. − Ci7

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Total Execution Time − PCG
Sandia/ASIC_100ks

Iterations

T
im

e
[s

]

No opt. − C2
Restruct. − C2
No opt. − Ci7
Restruct. − Ci7

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

Total Execution Time − PCG
ACUSIM/Pres_Poisson

Iterations

T
im

e
[s

]

No opt. − C2
Restruct. − C2
No opt. − Ci7
Restruct. − Ci7

0 1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

Total Execution Time − PCG
ND/nd3k

Iterations

T
im

e
[s

]

No opt. − C2
Restruct. − C2
No opt. − Ci7
Restruct. − Ci7

Fig. 6. Execution times with and without restructuring. The break-even points are
marked with a dot.

the interpolated execution times of the benchmark PCG, both with and without
restructuring for the Core 2 and Core i7 architectures. The initial data layout
produces random memory access behavior of the application, which is eliminated
after the first iteration when tracing and restructuring is used. After the first it-

spmatvec spmatmat pcg jacit dsolve

Matrix C2 Ci7 C2 Ci7 C2 Ci7 C2 Ci7 C2 Ci7

lung1 42.1 51.8 113.9 58.3 388.5 31.5 98.8 55.4 N/A N/A
bcsstm34 24.3 6.2 53.6 29.5 22.7 5.6 27.2 6.7 19.8 4.0
cage9 21.0 8.1 44.3 26.1 22.1 8.1 28.6 10.3 2.9 2.0
rdist3a 17.9 5.6 39.5 21.1 17.7 5.2 - - 3.2 2.1
jan99jac040 16.0 8.0 16.3 15.3 17.8 8.2 - - 1.1 1.3
crystm01 8.3 4.9 17.1 17.0 9.1 4.9 10.8 5.8 2.2 1.8

ASIC 100ks 2.3 3.9 4.4 5.0 4.0 4.1 2.4 4.4 - -
heart3 2.4 1.7 4.6 4.8 2.4 1.5 - - 3.1 2.2
Zd Jac3 db 2.5 1.6 4.6 4.8 2.6 1.7 2.6 1.9 - -
Pres Poisson 2.6 1.7 4.7 5.0 2.6 1.7 2.7 2.0 3.8 3.0
G2 circuit 2.6 4.7 4.6 4.7 5.0 5.1 2.6 5.7 - -
bcsstk36 3.0 1.7 5.1 5.0 3.1 1.8 3.1 2.0 - -
nd3k 3.5 1.9 5.4 5.2 3.5 1.9 3.6 2.1 - -

Table 1. Number of iterations for the break-even points when tracing and re-
structuring is enabled, when using an initial random data layout. The matrices
are ordered by increasing size. The lower part of the table contains the larger
data sets, which do not fit in the caches. DSOLVE performs worse using lung1
therefore a break-even point is not applicable. The missing entries for JACIT
are due to zero elements on the diagonal. For DSOLVE the missing entries are
due to matrices that take too long to factorize.

eration, the applications switches automatically to the non-traced version, which
uses the restructured data. Four different matrices have been used which are rep-
resentative in terms of performance characteristics (see Figure 4(a) and 4(b)).
The break-even points for for all matrices are included in Table 1.

The figures show that tracing does come with an additional cost, but for most
(larger) data sets the break-even point is reached within only a few iterations.
For instance, for all data sets shown in Figure 6, the break-even point is reached
within 4 iterations, except for cage9, which is the smallest data set depicted. In-
terestingly, on the Core i7, the break-even point is reached even quicker, making
restructuring more attractive on this architecture.

4 Related Work

Optimization of data access in order to improve performance of data-intensive
applications has been applied extensively, either by automatic transformations
or by hand tuning applications for efficient access. In some cases, memory access
patterns can be determined symbolically at compile-time and in such cases, the
traditional transformations such as loop unrolling, loop fusion or -fission and
loop tiling can be applied. For applications using pointer-linked data structures,
such techniques can in general not be applied.

The methods above change the order of instruction execution such that data
is accessed in a different way, without affecting the result. One might as well

change the underlying data layout, without affecting the computations. This is
exactly what has been done on pointer-linked data structures in this paper.

In order to be able to automatically control the layout within type-unsafe
languages such as C, a type-safe subset must be determined. The Data Struc-
ture Analysis (DSA) developed by Lattner and Adve does exactly that [6, 8]. It
determines how data structures are used within an application. This has been
discussed in Section 2.1.

DSA should not be confused with shape analysis. Shape analysis concerns the
shape (e.g. tree, DAG or cyclic graph) of pointer-linked data structures. Ghiya
and Hendren proposed a pointer analysis that classifies heap directed pointers
as a tree, a DAG or a cyclic graph. Hwang and Saltz realized that it is of more
importance how data structures are actually traversed instead of knowing the
exact layout of a data structure. They integrated this idea in what they call
traversal-pattern-sensitive shape analysis [4]. Integrating such an approach in
our compiler could help in reducing the overhead introduced by the pool access
tracing by traversing data structures autonomously in the run-time.

Type-safety is essential for data restructuring techniques. Two other trans-
formations that use information provided by the DSA are structure splitting and
pointer compression. Curial et al. implemented structure splitting in the IBM
XL compiler, based on the analysis information provided by the DSA. Hagog and
Tice have implemented a similar method in GCC [3]. The GCC based implemen-
tation does not seem to provide the same information as DSA. Strictly taken,
structure splitting is not necessary for dynamic remapping of pointer structures,
but it simplifies tasks like restructuring and relocation considerably. Moreover,
splitting simply has performance benefits as data from unused fields will not
pollute the cache.

Data layout optimization can also be provided by libraries. Bender and Hu
proposed an adaptive packed-memory array, which is a sparse array that allows
for efficient insertion and deletion of elements while preserving locality [1]. Rubin
et al. take a similar approach by grouping adjacent linked list nodes such that
they are colocated in the same cache line. They call this approach virtual cache
lines (VCL) [10]. In their abstract, they state that they believe that compil-
ers will be able to generate VCL-based code. We believe our pool restructuring
does achieve this automatic remapping on cache lines. In addition, as our im-
plementation employs full structure splitting, cache usage is very efficient after
restructuring a memory pool.

Rus et al. implemented their Hybrid Analysis which integrates static and run-
time analysis of memory references [11]. Eventually, such an approach might be
useful in conjunction with our restructuring framework to describe access pat-
terns of pointer traversals. Saltz et al. describe the run-time parallelization and
scheduling of loops, which is an inspector/executor approach [12]. Our tracing
mechanism is similar to this approach, as it inspects and then restructures. The
future challenge will be to extend the system such that it inspects, restructures
and parallelizes.

5 Conclusions and Future Work

In this paper, we presented and evaluated our restructuring compiler transfor-
mation chain for pointer-linked data structures in type-unsafe languages. Our
transformation chain relies on run-time restructuring using run-time trace infor-
mation, and we have shown that the potential gains of restructuring access to
pointer-based data structures can be substantial.

Curial et al. mention that relying on traces for analysis is not acceptable
for commercial compilers [2]. For static analysis, this may often be true. For
dynamic analysis, relying on tracing is not necessarily undesirable and we have
shown that the overhead incurred by the tracing and restructuring of pointer-
linked data structures is usually compensated for within a reasonable amount of
time, if data structures are used repetitively.

The restructuring framework as described in this paper opens up more opti-
mization opportunities that we have not explored yet. For example, after data
restructuring extra information on the data layout is available which could be ex-
ploited in order to apply techniques such as vectorization on code using pointer-
linked data structures. This is a subject of future research.

Data structures that are stored on the heap contain object identifiers in-
stead of full pointers. This makes the representation position independent, which
provides new means to distribute data structures over disjoint memory spaces.
Translation to full pointers would then be dependent on the memory pool lo-
cation and the architecture. This position independence using object identifiers
has been mentioned before by Lattner and Adve in the context of pointer com-
pression [9]. However, with the pool restructuring presented in this paper, a
more detailed segmentation of the pools can be made and restructuring could
be extended to a distributed pool restructuring framework.

The implementation presented in this paper uses some run-time support
functions to remap access to the proper locations for split pools. The use of
object identifiers implies a translation step upon each load and store to the heap.
These run-time functions are efficiently inlined by the LLVM compiler and have
a negligible effect when applications are bound by the memory system. The
run-time support could in principle be implemented in hardware and this would
reduce the run-time overhead considerably. We envision an implementation in
which pools and their layout are exposed to the processor, such that address
calculations can be performed transparently. Memory pools could then be treated
similarly to virtual memory in which the processors also takes care of address
calculations.

We believe the restructuring transformations for pointer-linked data restruc-
tures that have been described in this paper do not only enable data layout
remapping, but also provide the basis for new techniques to enable parallelizing
transformations on such data structures.

References

1. Michael A. Bender and Haodong Hu. An adaptive packed-memory array. In PODS
’06: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 20–29, New York, NY, USA, 2006. ACM
Press.

2. Stephen Curial, Peng Zhao, Jose Nelson Amaral, Yaoqing Gao, Shimin Cui, Raul
Silvera, and Roch Archambault. Mpads: memory-pooling-assisted data splitting.
In ISMM ’08: Proceedings of the 7th international symposium on Memory man-
agement, pages 101–110, New York, NY, USA, 2008. ACM.

3. Mostafa Hagog and Caroline Tice. Cache aware data layout reorganization opti-
mization in GCC. In Proceedings of the GCC Developers’ Summit, pages 69–92,
2005.

4. Yuan-Shin Hwang and Joel H. Saltz. Identifying def/use information of statements
that construct and traverse dynamic recursive data structures. In LCPC ’97:
Proceedings of the 10th International Workshop on Languages and Compilers for
Parallel Computing, pages 131–145, London, UK, 1998. Springer-Verlag.

5. Chris Lattner. Macroscopic Data Structure Analysis and Optimization. PhD thesis,
May 2005. See http://llvm.cs.uiuc.edu.

6. Chris Lattner and Vikram Adve. Automatic pool allocation for disjoint data struc-
tures. SIGPLAN Not., 38(2 supplement):13–24, 2003.

7. Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04), Palo Alto, Califor-
nia, Mar 2004.

8. Chris Lattner and Vikram Adve. Automatic pool allocation: improving perfor-
mance by controlling data structure layout in the heap. SIGPLAN Not., 40(6):129–
142, 2005.

9. Chris Lattner and Vikram S. Adve. Transparent pointer compression for linked
data structures. In MSP ’05: Proceedings of the 2005 workshop on Memory system
performance, pages 24–35, New York, NY, USA, 2005. ACM.

10. Shai Rubin, David Bernstein, and Michael Rodeh. Virtual cache line: A new
technique to improve cache exploitation for recursive data structures. In CC ’99:
Proceedings of the 8th International Conference on Compiler Construction, Held
as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’99, pages 259–273, London, UK, 1999. Springer-Verlag.

11. Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. Hybrid analysis: static
& dynamic memory reference analysis. Int. J. Parallel Program., 31(4):251–283,
2003.

12. Joel H. Saltz, Ravi Mirchandaney, and Kay Crowley. Run-time parallelization and
scheduling of loops. IEEE Trans. Comput., 40(5):603–612, 1991.

13. Harmen L.A. van der Spek, Erwin M. Bakker, and Harry A.G. Wijshoff. Character-
izing the performance penalties induced by irregular code using pointer structures
and indirection arrays on the Intel Core 2 architecture. In CF ’09: Proceedings of
the 6th ACM conference on Computing frontiers, pages 221–224, New York, NY,
USA, 2009. ACM.

