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ABSTRACT

Data structures define how values being computed are stored and
accessed within programs. By recognizing what data structures are
being used in an application, tools can make applications more ro-
bust by enforcing data structure consistency properties, and devel-
opers can better understand and more easily modify applications to
suit the target architecture for a particular application.

This paper presents the design and application of DDT, a new
program analysis tool that automatically identifies data structures
within an application. An application binary is instrumented to dy-
namically monitor how the data is stored and organized for a set of
sample inputs. The instrumentation detects which functions inter-
act with the stored data, and creates a signature for these functions
using dynamic invariant detection. The invariants of these functions
are then matched against a library of known data structures, provid-
ing a probable identification. That is, DDT uses program consis-
tency properties to identify what data structures an application em-
ploys. The empirical evaluation shows that this technique is highly
accurate across several different implementations of standard data
structures, enabling aggressive optimizations in many situations.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Techniques; D.3.3
[Language Constructs and Features]: Data types and structures;
E.2 [Data]: Data Storage Representations

General Terms
Languages, Algorithms

Keywords

Data Structure Identification, Memory Graphs, Interface Functions

1. INTRODUCTION

Data orchestration is one of the most critical aspects of develop-
ing effective manycore applications. Several different trends drive
this movement. First, as technology advances, getting data onto
the chip will become increasingly challenging. The ITRS road map

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MICRO’09 December 12-16, 2009, New York, NY, USA.

Copyright 2009 ACM 978-1-60558-798-1/09/12 ...$10.00.

predicts that the number of pads will remain approximately constant
over the next several generations of processor integration [13]; the
implication is that while computational capabilities on-chip will in-
crease, the bandwidth will remain relatively stable. This trend puts
significant pressure on data delivery mechanisms to prevent the vast
computational resources from starving.

Application trends also point toward the importance of data or-
chestration. A recent IDC report estimates that the amount of data
in the world is increasing tenfold every five years [10]. That is, data
growth is outpacing the current growth rate of transistor density.
There are many compelling applications that make use of big data,
and if systems cannot keep pace with the data growth then they will
miss out on significant opportunities in the application space.

Lastly, a critical limitation of future applications will be their
ability to effectively leverage massively parallel compute resources.
Creating effective parallel applications requires generating many
independent tasks with relatively little communication and synchro-
nization. To a large extent, these properties are defined by how
data used in the computation is organized. As an example, previ-
ous work by Lee et al. found that effectively parallelizing a program
analysis tool required changing the critical data structure in the pro-
gram from a splay-tree to a simpler binary search tree [17]. While
a splay-tree is generally faster on a single core, splay accesses cre-
ate many serializations when accessed from multicore processors.
Proper choice of data structure can significantly impact the paral-
lelism in an application.

All of these trends point to the fact that proper use of data struc-
tures is becoming more and more important for effective manycore
software development.

Unfortunately, selecting the best data structure when developing
applications is a very difficult problem. Often times, programmers
are domain specialists, such as biologists, with no knowledge of
performance engineering, and they simply do not understand the
properties of data structures they are using. One can hardly blame
them; when last accessed, the Wikipedia list of data structures con-
tained 74 different types of trees! How is a developer, even a well
trained one, supposed to choose which tree is most appropriate for
their current situation?

Even if the programmer has perfect knowledge of data struc-
ture properties, it is still extraordinarily difficult to choose the best
data structures. Architectural complexity significantly complicates
traditional asymptotic analysis, e.g., how does a developer know
which data structures will best fit their cache lines or which struc-
tures will have the least false-sharing? Beyond architecture, the
proper choice of data structure can even depend on program in-
puts. For example, splay-trees are designed so that recently ac-
cessed items are quickly accessed, but elements without temporal
locality will take longer. In some applications it is impossible to
know a priori input data properties such as temporal locality. Data



structure selection is also a problem in legacy code. For example, if
a developer created a custom map that fit well into processor cache
lines in 2002, that map would likely have suboptimal performance
using the caches in modern processors.

Choosing data structures is very difficult, and poor data structure
selection can have a major impact on application performance. For
example, Liu and Rus recently reported a 17% performance im-
provement on one Google internal application just by changing a
single data structure [18]. We need better tools that can identify
when poor data structures are being used, and can provide sugges-
tions to developers on better alternatives.

In an ideal situation, an automated tool would recognize what
data structures are utilized in an application, use sample execu-
tions of the program to determine whether alternative data struc-
tures would be better suited, and then automatically replace poor
data structure choices.

In this work we attempt to solve the first step of this vision:
data structure identification. The Data-structure Detection Tool,
or DDT, takes an application binary and a set of representative
inputs and produces a listing of the probable data structure types
corresponding to program variables. DDT works by instrumenting
memory allocations, stores, and function calls in the target program.
Data structures are predominantly stored in memory, and so in-
strumentation tracks how the memory layout of a program evolves.
Memory layout is modeled as a graph: allocations create nodes, and
stores to memory create edges between graph nodes. DDT makes
the assumption that access to memory comprising a data structure
is encapsulated by interface functions, that is, a small set of func-
tions that can insert or access data stored in the graph, or otherwise
modify nodes and edges in the graph.

Once the interface functions are identified, DDT uses an invari-
ant detection tool to determine the properties of the functions with
respect to the graph. For example, an insertion into a linked list
will always increase the number of nodes in the memory graph by
one and the new node will always be connected to other nodes in
the list. A data value being inserted into a splay-tree will always be
located at the root of the tree. We claim that together, the memory
graph, the set of interface functions, and their invariants uniquely
define a data structure. Once identified in the target application,
the graph, interface, and invariants are compared against a prede-
fined library of known data structures for a match, and the result is
output to the user. This information can help developers quickly un-
derstand their code, particularly if the they are working on a large
legacy application, or using shared libraries which may unknow-
ingly be designed poorly. DDT also informs developers of dynamic
program properties, such as how effective a hash-function is, and
how ’bushy’ a tree is, which can be used to optimize the applica-
tion. DDT could also be as input to performance models that can
suggest when alternative data structures may be better suited for an
application/architecture.

We have implemented DDT as part of the LLVM toolset [16] and
tested it on several real-world data structure libraries: the GNOME
C Library (GLib) [25], the Apache C++ Standard Library (STD-
CXX) [24], Borland C++ Builder’s Standard Library implementa-
tion (STLport) [23], and a set of data structures used in the Trimaran
research compiler [27]. We also demonstrate that DDT works for
several real-world applications, enabling the compiler/developer to
more easily identify powerful optimizations. This work demon-
strates that DDT is quite accurate in detecting data structures no
matter what the implementation.

2. RELATED WORK

There is a long history of work on detecting how data is orga-
nized in programs. Shape analysis (e.g., [11, 21, 28]) is among the
most well known of these efforts. The goal of shape analysis is
to statically prove externally provided properties of data structures,
e.g., that a list is always sorted or that a graph is acyclic. Despite
significant recent advances in the area [15, 29], shape analysis is
provably undecidable and thus necessarily conservative.

Related to shape analysis are dynamic techniques that observe
running applications in an attempt to identify properties of data
structures [8]. These properties can then be used to automatically
detect bugs, optimize applications [4, 20], repair data structures on-
line, or improve many software engineering tasks [7]. While this
type of analysis is not sound, it can detect properties outside the
scope of static analysis and has proven very useful in practice.

This previous work statically proved or dynamically enforced
data structure consistency properties in order to find bugs or opti-
mize applications. The work here takes a different approach, where
we assume the data structure is consistent (or mostly consistent),
and use the consistency properties to identify how the data struc-
ture operates. We are leveraging consistency properties to synthe-
size high-level semantics about data structures in the program.

The reverse-engineering community has also done work similar
to this effort [2, 19]. These prior works use a variety of static, dy-
namic, and hybrid techniques to detect interaction between objects
in order to reconstruct high-level design patterns in the software
architecture. In this paper we are interested not just in the design
patterns, but also in identifying the function of the structures iden-
tified.

The three works most similar to ours are by Raman et al. [20],
Dekker et al. [6], and Cozzie et al. [5S]. Raman’s work introduced
the notion of using a graph to represent how data structures are dy-
namically arranged in memory, and utilized that graph to perform
optimizations beyond what is possible with conservative points-to
or shape analysis. Raman’s work differs from this work in that
it was not concerned with identifying interface functions or deter-
mining exactly what data structure corresponds to the graph. Ad-
ditionally, we extend their definition of a memory graph to better
facilitate data structure identification.

Dekker’s work on data structure identification is exactly in line
with what we attempt to accomplish in this paper. The idea in
Dekker’s work was to use the program parse tree to identify patterns
that represent equivalent implementations of data structures. Our
work is more general, though, because (1) the DDT analysis is dy-
namic and thus less conservative, (2) DDT does not require source
code access, and (3) DDT does not rely on the ability to prove that
two implementations are equivalent at the parse tree level. DDT
uses program invariants of interface functions to identify equiva-
lent implementations, instead of a parse tree. This is a fundamen-
tally new approach to identifying what data structures are used in
applications.

Cozzie’s work presented a different approach to recognizing data
structures: using machine learning to analyze raw data in mem-
ory with the goal of matching groups of similar data. Essentially,
Cozzie’s approach is to reconstruct the memory graph during exe-
cution and match graphs that look similar, grouping them into types
without necessarily delineating the functionality. Instead this paper
proactively constructs the memory graph during allocations, com-
bines that with information about interface functions, and matches
the result against a predefined library. Given the same application as
input, Cozzie’s work may output “two data structures of type A, and
one of type B,” whereas DDT would output “two red-black trees
and one doubly-linked list.” The take away is that DDT collects
more information to provide a more informative result, but requires



The Dynamic Compiler

Off-line Analysis

Program i Memory |: { (Data Structure RB Tree
Binary — Instrumentation Graph i o oeure Splay Tree
Building |t P Deque
+ : ﬂ / : ﬂﬂ : Vector
: - : S e List
: . race : ‘[ Invariant |
= i Execution —> Generation || = i Detection |
\ Annotated — Interface
Call Graph Detection
: Building : :

Figure 1: DDT Organization.

a predefined library to match against and more time to analyze the
application. Cozzie’s approach is clearly better suited for applica-
tions such as malware detection, where analysis speed is important
and information on data structure similarity is enough to provide a
probable match against known malware. Our approach is more use-
ful for applications such as performance engineering where more
details on the implementation are needed to intelligently decide
when alternative data structures may be advantageous.

The following are the contributions of this paper, which is an
extension of our previously published workshop paper [14]:

e A new approach to identifying data structures: DDT dynam-
ically monitors the memory layout of an application, and de-
tects interface functions that access or modify the layout. In-
variant properties of the memory graph and interface func-
tions are matched against a library of known data structures,
providing a probabilistic identification. This approach signif-
icantly improves on previous work, as it is less conservative,
does not require source code access, and is not dependent on
data structure implementation.

e An empirical evaluation demonstrating DDT'’s effectiveness:
We test the effectiveness of DDT on several real-world data
structure libraries and show that, while unsound, this analy-
sis is both reasonably fast and highly accurate. DDT can be
used to help programmers understand performance maladies
in real programs, which ultimately helps them work with the
compiler and architecture to choose the most effective data
structures for their systems. We demonstrate this empirically
using six real-world applications.

3. DDT ALGORITHM DETAILS

The purpose of DDT is to provide a tool that can correctly iden-
tify what data structures are used in an application regardless of
how the data structures are implemented. The thesis of this work
is that data structure identification can be accomplished by the fol-
lowing: (1) Keeping track of how data is stored in and accessed
from memory; this is achieved by building the memory graph. (2)
Identifying what functions interact with the memory comprising a
data structure; this is achieved with the help of an annotated call
graph. (3) Understanding what those functions do; invariants on
the memory organization and interface functions are the basis for
characterizing how the data structure operates.

Figure 1 shows a high-level diagram of DDT. An application bi-
nary and sample input(s) are fed into a code instrumentation tool, in

this case a dynamic compiler. It is important to use sample execu-
tions to collect data, instead of static analysis, because static analy-
sis is far too conservative to effectively identify data structures. It is
also important for DDT to operate on binaries, because often times
data structure implementations are hidden in binary-only format be-
hind library interfaces. It is unrealistic to expect modern developers
to have source code access to their entire applications, and if DDT
required source code access then it would be considerably less use-
ful.

Once instrumented, the sample executions record both memory
allocations and stores to create an evolving memory graph. Loads
are also instrumented to determine which functions access various
parts of the memory graph, thus helping to delineate interface func-
tions. Finally, function calls are also instrumented to describe the
state of the memory graph before and after their calls. This state is
used to detect invariants on the function calls. Once all of this infor-
mation is generated by the instrumented binary, an offline analysis
processes it to generate the three traits (memory graph, interface
functions, and invariants) needed to uniquely identify a data struc-
ture. Identification is handled by a hand-designed decision tree that
tests for the presence of the critical characteristics that distinguish
data structures. For example, if nodes in a memory graph always
have one edge that points to NULL or another node from the same
allocation site, and there is an insert-like function which ac-
cesses that graph, etc., then it is likely that this memory graph rep-
resents a singly-linked list. The remainder of this section describes
in detail how DDT accomplishes these steps using C++-based ex-
amples.

3.1 Tracking Data Organization with a
Memory Graph

One part of characterizing a data structure involves understand-
ing how data elements are maintained within memory. This rela-
tionship can be tracked by monitoring memory regions that exist
to accommodate data elements. By observing how the memory is
organized and the relationships between allocated regions, it is pos-
sible to partially infer what type of data structure is used. This data
can be tracked by a graph whose nodes and edges are sections of
allocated memory and the pointers between allocated regions, re-
spectively. We term this a memory graph.

The memory graphs for an application are constructed by instru-
menting memory allocation functions' (e.g., malloc) and stores.

"Data structures constructed in the stack, i.e., constructed without
explicitly calling a memory allocation routine, are not considered
in this work, as it is typically not possible to reconstruct how much



(1) node = call malloc(sizeof(struct node_t));
(2) store[node->next] = NULL;
(3) new_node = call malloc(sizeof(struct node_t));
(4) store[new_node->next] = NULL;
(5) store[node->next] = new node;
]

node

|/node->next
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new_node

Address Space
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Figure 2: (a) Memory graph construction example. Right side of the

Transition diagram for classifying edges in the memory graph.

Allocation functions create a node in the memory graph. DDT
keeps track of the size and initial address of each memory allocation
in order to determine when memory accesses occur in each region.
An edge between memory nodes is created whenever a store is en-
countered whose target address and data operands both correspond
to addresses of nodes that have already been allocated. The target
address of the store is maintained so that DDT can detect when the
edge is overwritten, thus adjusting that edge during program execu-
tion.

Figure 2 (a) illustrates how a memory graph is built when two
memory cells are created and connected to each other. Each of
the allocations in the pseudo-code at the top of this figure create
a memory node in the memory graph. The first two stores write
constant data NULL to the offset corresponding to next. As a re-
sult, two edges from each memory node to the data are created. For
the data being stored, two nodes are created. To distinguish data
from memory nodes, they have no color in the memory graph. In
instruction (5) of the figure, the last store updates the original edge
so that it points to the second memory node. Thus, stores can de-
stroy edges between nodes if the portion of the node containing an
address is overwritten with a new address. Typically, DDT must
simultaneously keep track of several different memory graphs dur-
ing execution for each independent data structure in the program.
While these graphs dynamically evolve throughout program exe-
cution, they will also exhibit invariant properties that help identify
what data structures they represent, e.g., arrays will only have one
memory cell, and each node in a binary tree will contain edges to at
most two other nodes.

Extending the Memory Graph: The memory graph as pre-
sented thus far is very similar to that proposed in previous work [20].
However, we have found that using this representation is not suffi-
cient to identify many important invariants for data structure iden-
tification. For example, if the target application contained a singly-
linked list of dynamically allocated objects, then it would be im-
possible to tell what part of the graph corresponded to list and what
part corresponded to the data it contains. In order to overcome this
hurdle, two extensions to the baseline memory graph are needed:
allocation-site-based typing of graph nodes, and typing of edges.

memory is reserved for each data structure without access to com-
piler internals. Custom memory allocators can be handled provided
DDT is cognizant of them.

Child
Pointer
Edge

Foreign
Pointer
Edge

—» Connect heap cells from the same group
==<=> Connect heap cells from different groups
--=--» Write data to a heap cell

(b)
figure shows the memory graph for the pseudo-code at top. (b)

The purpose of allocation-site-based typing of the memory nodes
is to solve exactly the problem described above: differentiating
memory nodes between unrelated data structures. Many people
have previously noted that there is often a many-to-one mapping be-
tween memory allocation sites and a data structure type [12]. Thus,
if we color nodes in the memory graph based on their allocation
site, it is easy to determine what part of the memory graph corre-
sponds to a particular data structure and what part corresponds to
dynamically allocated data.

However, in the many-to-one mapping, an allocation site typi-
cally belongs to one data structure, but one data structure might
have many allocation sites. In order to correctly identify the data
structure in such a situation, it is necessary to merge the memory
node types. This merging can be done by leveraging the obser-
vation that even if memory nodes of a data structure are created
in different allocation sites, they are usually accessed by the same
method in another portion of the application. For example, even
if a linked-list allocates memory nodes in both push_front and
push_back, the node types can be merged together when a back
method is encountered that accesses memory nodes from both allo-
cation sites.

While empirical analysis suggests this does help identify data
structures in many programs, allocation-site-based coloring does
not help differentiate graph nodes in applications with custom mem-
ory allocators. That is because multiple data structures can be cre-
ated in a single allocation site, which is the custom memory allo-
cator. This deficiency could be remedied by describing the custom
memory allocators to DDT so that they could be instrumented as
standard allocators, such as malloc, currently are.

The second extension proposed for the memory graph is typing
of edges. As with node coloring, typing the edges enables the de-
tection of several invariants necessary to differentiate data struc-
tures. We propose three potential types for an edge in the mem-
ory graph: child, foreign, and data. Child edges point to/from
nodes with the same color, i.e., nodes from the same data struc-
ture. The name “child” edge arose from when we first discovered
their necessity while trying to identify various types of trees. For-
eign edges point to/from memory graph nodes of different colors.
These edges are useful for discovering composite data structures,
e.g., list<set<vector> > >. Lastly, data edges simply iden-
tify when a graph node contains static data. These edges are needed
to identify data structures which have important properties stored in



vector<list<int> > v(4);

for (int i=0; i < 20; i++)

©
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index = i % v.size();

v[index].push back(i)
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(a)

Figure 3: (a) Code snippet of the program using a vector of 1ists and (b) its memory graph.

the memory graph nodes. E.g., a red-black tree typically has a field
which indicates whether each node is red or black.

A single edge in the memory graph can have several different
uses as the dynamic execution evolves, e.g., in Figure 2 (a), the
next pointer is initially assigned a data edge pointing to NULL
and later a child edge pointing to new_node. The offline invariant
detection characterizes the data structure based on a single type for
each edge though, thus Figure 2 (b) shows classification system for
edges. When a store instruction initially creates an edge, it starts
in one of the three states. Upon encountering future stores that
adjust the initial edge, the edge type may be updated. For example,
if the new store address and data are both pointers from the same
allocation site, the edge becomes a child edge, no matter what the
previous state was. However, if the edge was already a child edge,
then storing a pointer from another allocation site will not change
the edge type.

The reason for this can be explained using the example from Fig-
ure 2 again. Initially the next pointer in a newly initialized node
may contain the constant NULL, i.e., a data edge, and later on dur-
ing execution next will be overwritten with new_node from the
same allocation site, i.e., a child edge. Once next is overwritten
again, DDT can produce more meaningful results if it remembers
that the primary purpose of next is to point to other internal por-
tions of the data structure, not to hold special constants, such as
NULL. The prioritization of child edges above foreign edges serves
a similar purpose, remembering that a particular edge is primarily
used to link internal data structure nodes rather than external data.

Figure 3 gives an example demonstrating why typing nodes and
edges in the memory graph is critical in recognizing data structures.
The code snippet in this figure creates a vector with four 1ists
and inserts integer numbers between 0 and 19 into each 1ist ina
round robin manner. Nodes are colored differently based on their
allocation site, and edges types are represented by different arrow
structures. To identify the entire data structure, DDT first recog-
nizes the shape of a basic data structure for each allocation site by
investigating how the “child” edges are connected. Based on the
resulting graph invariants, DDT infers there are two types of basic
data structures, vector and 1ist. Then, DDT checks each “for-
eign” edge to identify the relationship between the detected data
structures. In this example, all the elements of vector point to a
memory node of each 1ist, which is a graph invariant. Without
the node or edge typing, it would be impossible to infer that this is a
composite vector-of-lists instead of some type of tree, for example.

One potential drawback of this approach is that typing of edges
and nodes is input dependent, and therefore some important edges
may not be appropriately classified. For example, even though an
application uses a binary tree, DDT may report it is a linked-list if
all the left child pointers of the tree have NULL values due to a par-
ticular data insertion pattern. However, our experimental analysis

demonstrated no false identifications for this reason, and if a bi-
nary tree were behaving as a linked-list, this pathological behavior
would be very useful for a developer to know about.

3.2 Identifying Interface Functions for the
Memory Graph

Understanding how data is organized through the memory graph
is the first step toward identifying data structures, but DDT must
also understand how that data is retrieved and manipulated. To ac-
complish this DDT must recognize what portions of code access
and modify the memory graph. DDT makes the assumption that
this code can be encapsulated by a small set of interface functions
and that these interface functions will be similar for all implementa-
tions of a particular data structure. E.g., every linked-list will have
an insertion function, a remove function, etc. The intuition is that
DDT is trying to identify the set of functions an application devel-
oper would use to interface with the data structure.

Identifying the set of interface functions is a difficult task. One
cannot simply identify functions which access and modify the mem-
ory graph, because often one function will call several helper func-
tions to accomplish a particular task. For example, insertions into a
set implemented as a red-black tree may call an additional func-
tion to rebalance the tree. However, DDT is trying to identify set
functionality, thus rebalancing the tree is merely an implementation
detail. If the interface function is identified too low in the program
call graph (e.g., the tree rebalancing), the “interface” will be imple-
mentation specific. However, if the interface function is identified
too high in the call graph, then the functionality may include oper-
ations outside standard definitions of the data structure, and thus be
unmatchable against DDT’s library of standard data structure inter-
faces.

Figure 4 (a) shows an example program call graph for a simple
application using the vector class from the C++ Standard Tem-
plate Library, or STL [22]. In the figure each oval represents a func-
tion call. Functions that call other functions have a directed edge
to the callee. Boxes in this figure represent memory graph accesses
and modifications that were observed during program executions.
This figure illustrates the importance of identifying the appropriate
interface functions, as most STL data structures’ interface methods
call several internal methods with call depth of 3 to 9 functions. The
lower level functions calls are very much implementation specific.

To detect correct interface functions, DDT leverages two charac-
teristics of interface functions. First, functions above the interfaces
in the call graph never directly access data structures; thus if a func-
tion does access the memory graph, it must be an interface function,
or a successor of an interface function in the call graph. Figure 4
demonstrates this property on the call graph for STL’s vector.
Boxes in this figure represent memory graph accesses. The highest
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template<class T>
void vector<T>::
push_back(const T& x)

void foo (int num)
// num is mutable

num = ...
// x is immutable

v.push_back(num); ~m _insert aux(end(), x);

(b)

Figure 4: (a) Interface identification from a call graph for STL’s vector and (b) code snippet showing argument immutability.

nodes in the call graph that modify the memory graph are colored,
representing the detected interface functions.

It should be noted that when detecting interface functions, it is
important to consider the memory node type that is being modified
in the call graph. That is, if an interface function modifies a memory
graph node from a particular allocation site, that function must not
be an interface for a different call site. This intuitively makes sense,
since the memory node types represent a particular data structure,
and each unique data structure should have a unique interface.

You can see that finding the highest point in the call graph that
accesses the memory graph is fairly accurate. There is still room
for improvement, though, as this method sometimes identifies in-
terface functions too low in the call graph, e.g.,_m_insert_aux
is identified in this example.

The second characteristic used to detect interface functions is that
generally speaking, data structures do not modify the data. Data
is inserted into and retrieved from the data structure, but that data
is rarely modified by the structure itself. That is, the data is, im-
mutable. Empirically speaking, most interface functions enforce
data immutability at the language-level by declaring some argu-
ments const. DDT leverages this observation to refine the in-
terface detection.

For each detected interface function, DDT examines the argu-
ments of those functions that call it and determines if they are mod-
ified during the function using either dataflow analysis or invariant
detection. If there are immutable data arguments, then the interface
is pushed up one level in the call graph, and the check is repeated
recursively. The goal is to find the portion of the call graph where
data is mutable, i.e., the user portion of the code, thus delineating
the data structure interface.

Using the example from Figure 4, _m_insert_aux is initially
detected as an interface function. However, its parent in the call
graph, push_back, has the data being stored as an immutable ar-
gument as described in Figure 4 (b). In turn, DDT investigates,
its parent, foo to check whether or not it is real interface function.
Even if foo has the same argument, it is not immutable. Thus DDT
finally selects push_back as an interface function. Detecting im-
mutability of operands at the binary level typically requires only
liveness analysis, which is a well understood compiler technique.
When liveness is not enough, invariant detection on the function ar-
guments can provide a probabilistic guarantee of immutability. By
detecting memory graph modifications, and immutable operands
DDT was able correctly to detect that the yellow-colored ovals in
Figure 4 (a) are interface functions for STL’s vector.

One limitation of the proposed interface detection technique is
that it can be hampered by compiler optimizations such as func-
tion inlining or procedure boundary elimination [26]. These opti-
mizations destroy the calling context information used to detect the
interface. Future work could potentially address this by detecting

interfaces from arbitrary sections of code, instead of just function
boundaries. Source code access would help in this process. A sec-
ond limitation is that this technique will not accurately detect the
interface of data structures that are not well encapsulated, e.g., a
class with entirely public member variables accessed by arbitrary
pieces of code. However, this situation does not commonly occur
in modern applications.

3.3 Understanding Interface Functions
through Invariant Detection

Now that the shape of the data structure and the functions used
to interface with the data are identified, DDT needs to understand
exactly what the functions do, i.e., how the functions interact with
the data structure and the rest of the program. Our proposed solu-
tion for determining what an interface function does is to leverage
dynamic invariant detection. Invariants are program properties that
are maintained throughout execution of an application. For exam-
ple, a min-heap will always have the smallest element at its root
node or a data value being inserted into a splay-tree will always be-
come a new root in the tree. Invariants such as these are very useful
in many aspects of software engineering, such as identifying bugs,
and thus there is a wealth of related work on how to automatically
detect probable invariants [9].

Invariant properties can apply before and after function calls,
e.g., insert always adds an additional node to the memory graph,
or they can apply throughout program execution, e.g., nodes always
have exactly one child edge. We term these function invariants and
graph invariants, respectively. As described in Section 3.1, graph
invariants tell DDT the basic shape of the data structure. Function
invariants allow DDT to infer what property holds whenever func-
tions access the data structure as the example.

In using invariants to detect what data structures are doing, DDT
is not concerned so much with invariants between program vari-
ables as much as it is concerned with invariants over the memory
graph. For example, again, insertion to a linked list will always cre-
ate a new node in the memory graph. That node will also have at
least two additional edges: one pointing to the data inserted, and
a next pointer. By identifying these key properties DDT is able to
successfully differentiate data structures in program binaries.

Target Variables of Invariant Detection: The first step of in-
variant detection for interface functions is defining what variables
DDT should detect invariants across. Again, we are primarily con-
cerned with how functions augment the memory graph, thus we
would like to identify relationships of the following variables be-
fore and after the functions: number of memory nodes, number of
child edges, number of data edges, value pointed by a data edge,
and data pointer. The first three variables are used to check if an
interface is a form of insertion. The last two variables are used to
recognize the relationship between the data value and the location
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Figure 5: Invariant detection examples of interface functions; (a) STL deque, (b) STL set.

it resides in, which determines how the value affects deciding the
location that accommodates it.

As an example, consider the STL deque’s® interface functions,
push_front and push_back. DDT detects interesting invari-
ant results from the target variables mentioned above, as shown on
the left side of Figure 5. Since the STL deque is implemented us-
ing dynamic array, number of memory nodes and number of child
edges remain unchanged when these interface functions are called.
DDT recognizes that these interface functions insert elements; how-
ever, because number of data edges, represented as ’data_edges’
in the figure, increase whenever these functions are called. In the
push_front, data pointer decreases while it increases in the push
_back, meaning that data insertion occurs in head and tail of the
deque, respectively. That lets us know this is not an STL vector
because vector does not have the push_ front interface func-
tion.

The right side of Figure 5 shows another example of the seven
invariants DDT detects in STL set’s interface function insert.
The first two invariants imply that the insert increases number
of memory nodes and number of child edges. That results from
the fact the insert creates a new memory node and connects it
to the other nodes. In particular, the third invariant, “2 * number
of memory nodes - number of child edges - 2 == 0,” tells us that
every two nodes are doubly linked to each other by executing the
insert function. The next three invariants represent that the value
in a memory node is always larger than the first child and smaller
than the other child. This means the resulting data structure is a
similar to a binary tree. The last invariant represents that there is a
data value that always holds one or zero. STL set is implemented
by using red-black tree in which every node has a color value (red
or black), usually represented by using a boolean type.

Similar invariants can be identified for all interface functions, and
a collection of interface functions and its memory graph uniquely
define a data structure. In order to detect invariants, the instru-
mented application prints out the values of all relevant variables
to a trace file before and after interface calls. This trace is post-
processed by the Daikon invariant detector [9] yielding a print out
very similar to that in Figure 5. While we have found invariants
listed on the graph variables defined here to be sufficient for identi-
fying many data structures, additional variables and invariants could
easily be added to the DDT framework should they prove useful in
the future.

3.4 Matching Data Structures in the Library

2deque is similar to a vector, except that it supports constant time
insertion at the front or back, where vector only supports constant
time insertion at the back.

DDT relies on a library of pre-characterized data structures to
compare against. This library contains memory graph invariants,
a set of interface functions, and invariants on those interface func-
tions for each candidate data structure. The library is comprised
of a hand-constructed decision tree that checks for the presence of
critical invariants and interface functions in order to declare a data
structure match. That is, the presence of critical invariants and in-
terface functions is tested, and any additional invariants/interfaces
to not override this result.

The invariants are picked that distinguish essential characteris-
tics of each data structure, based on its definition rather than on
implementation. That is, for a linked list, the decision tree attempts
to look for an invariant, “an old node is connected to a new node”
instead of “a new node points to NULL . The latter is likely to be
implementation specific. Intuitively, the memory graph invariants
determine a basic shape of data structures, e.g., each node has two
child edges. Meanwhile, the invariants of interface functions dis-
tinguish between those data structures which have similar shapes.
Extending this library is an easy process: simply run a sample exe-
cution of an application with the target data structure, look through
the list of identified invariants, and add the critical invariants into
the decision tree. In practice, a new data structure can be added to
the library in a few minutes.

At the top of the decision tree, DDT first investigates the basic
shape of data structures. After the target program is executed, each
memory graph that was identified will have its invariants computed.
For example, an STL vector will have the invariant of only hav-
ing a single memory node. With that in mind, DDT guesses the data
structure is array-like one. This shape information guides DDT
into the right branch of the decision tree in the next to check desired
function invariants.

Among the detected interface functions, DDT initially focuses
on insert-like functions. That is because most data structures
have at minimum an insertion interface function, and they are very
likely to be detected regardless of program input. If the required
interface are not discovered, DDT reports that the data structure
does not match. After characterizing the insertion function, DDT
further investigates other function invariants traversing down the
decision tree to refine the current decision. As an example, in order
to determine between deque and vector, the next node of the
decision tree investigates if there is the invariant corresponding to
push_front as shown in Section 3.3. It is important to note that
the interface functions in the library contain only necessary invari-
ants. Thus if the dynamic invariant detection discovers invariants
that resulted only because of unusual test inputs, DDT does not re-
quire those conservative invariants to match what is in the library.
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Figure 6: Portion of the decision tree for recognizing binary search trees in DDT.

Figure 6 shows a portion of DDT’s decision tree used to classify
binary trees. At the top of the tree, DDT knows that the target data
structure is a binary tree, but it does not know what type of binary
tree it is. First, the decision tree checks if there is the invariant cor-
responding to a “binary search tree”. If not, DDT reports that the
target data structure is a simple binary tree. Otherwise, it checks if
the binary tree is self-balancing. Balancing is implemented by tree
rotations and they are achieved by updating child edges of pivot
and root, shown in the top-left of Figure 6. The rotation function is
detected by the invariant that two consecutive and different “child*
edges are overwritten (shown in bold in Figure 6). If tree-rotation
is not detected in the insert, DDT reports that the data structure
is a “simple binary search tree.” More decisions using the pres-
ence of critical functions and invariants further refine the decision
until arriving at the leaf of the decision tree, or a critical property
is not met, when DDT will report an unknown data structure. Af-
ter data structures are identified, the decision tree is repeated using
any “foreign” edges in the graph in order to detect composite data
structures, such as vector<list<int> >.

Using invariant detection to categorize data structures is proba-
bilistic in nature, and it is certainly possible to produce incorrect
results. However, this approach has been able to identify the behav-
ior of interface functions for several different data structure imple-
mentations from a variety of standard libraries, and thus DDT can
be very useful for application engineering. Section 4 empirically
demonstrates DDT can effectively detect different implementations
from several real-world data structure libraries.

4. EVALUATION

In order to demonstrate the utility of DDT, we implemented it as
part of the LLVM toolset. DDT dynamically instruments the LLVM
intermediate representation (IR), and the LLVM JIT converts the IR
to x86 assembly code for execution. Output from the instrumented
code is then fed to Daikon [9] to detect invariants needed to identify
data structures. These invariants are then compared with a library
of data structures that was seeded with simple programs we wrote
using the C++ Standard Template Library (STL) [22]. The entire
system was verified by recognizing data structures in toy applica-

tions that we wrote by hand without consulting the STL implemen-
tation. That is, we developed the classes MyList, MySet, etc.
and verified that DDT recognized them as being equivalent to the
STL implementations of 1ist, set, etc. Additionally, we verified
DDT’s accuracy using four externally developed data structure li-
braries: the GNOME project’s C-based GLib [25], the Apache C++
Standard Library STDCXX [24], Borland C++ Builder’s Standard
Library STLport [23], and a set of data structures used in the Tri-
maran research compiler [27].

Even though the current implementation of DDT operates on
compiler IR, there is no technical issue preventing DDT’s imple-
mentation on legacy program binaries. The LLVM IR is already
very close to assembly code, with only two differences worth ad-
dressing. First, LLVM IR contains type information. The DDT tool
does not leverage this type information in any way. Second, LLVM
IR is not register allocated. The implication is that when DDT in-
struments store instructions it will avoid needlessly instrumenting
spill code that may exist in a program binary. This may mean that
the overhead experienced for instrumentation is probably underes-
timated by a small factor. It is likely to be a small factor, though,
because the amount of spill code is generally small for most appli-
cations.

4.1 Demonstrating the Correctness of DDT

Table 1 shows how DDT correctly detects a set of data struc-
tures from STL, STDCXX, STLport, GLib, and Trimaran. The data
structures in this table were chosen because they represent some of
the most commonly used, and they exist in most or all of the li-
braries examined (there is no tree-like data structure in Trimaran).
Several synthetic benchmarks were used to evaluate DDT’s effec-
tiveness across data structure implementations. These benchmarks
were based on the standard container benchmark [3], a set of pro-
grams originally designed to test the relative speed of STL contain-
ers. These were ported to the various data structure libraries and
run through DDT.

Overall, DDT was able to accurately identify most of the data
structures used in those different library implementations. DDT
correctly identified that the set from STL, STDCXX, STLport



| Library | Data structure type | Main data structure | Reported data structure | Identified? |
vector dynamic array vector yes
STL deque double-ended dynamic array | deque yes
list doubly-linked list doubly-linked list yes
set red-black tree red-black tree yes
vector dynamic array vector yes
Apache (STDCXX) | deque double-ended dynamic array | deque yes
list doubly-linked list doubly-linked list yes
set red-black tree red-black tree yes
vector dynamic array vector yes
Borland (STLport) | deque double-ended dynamic array | deque yes
list doubly-linked list doubly-linked list yes
set red-black tree red-black tree yes
GArray double-ended dynamic array | deque yes
GLib GQueue doubly-linked list doubly-linked list yes
GSList singly-linked list singly-linked list yes
GTree AVL tree balanced binary search tree | no
Vector dynamic array vector yes
Trimaran List singly-linked list singly-linked list yes
Set singly-linked list singly-linked list yes

Table 1: Data structure detection results of representative C/C++ data structure libraries.

were all implemented using a red-black tree. To accomplish this,
DDT successfully recognized the presence of tree-rotation func-
tions, and that each node contained a field which contains only
two values: one for “red” and one for “black”. DDT also detected
that Trimaran’s Set exploits list-based implementation and GLib’s
GQueue is implemented using a doubly-linked list.

The sole incorrect identification was for GLib’s GTree, which
is implemented as an AVL tree. DDT reported that it was a bal-
anced binary search tree because DDT only identified that there are
invariants of tree-rotations. In order to correctly identify AVL trees,
DDT must be extended to detect other types of invariants. This is a
fairly simple process, however, we leave this for future work.

On average, the overhead for instrumenting the code to recog-
nize data structures was about 200X. The dynamic instrumentation
overhead for memory/call graph generation was about 50X while
the off-line analysis time including interface identification and in-
variants detection occupies the rest of the overhead. In particular,
the interface identification time was sufficiently negligible that it
occupies less than 3% of the whole overhead. While this analysis
does take a significant amount of time, it is perfectly reasonable to
perform heavy-weight analysis like this during the software devel-
opment process.

4.2 Demonstrating the Utility of DDT

DDT helps programmers understand and optimize their applica-
tions by identifying the critical data structures within applications.
The introduction described a motivation of automatically replac-
ing data structures in parallel applications, but many other opti-
mizations are enabled by this analysis, e.g., data structure aware
prefetching. Below, we describe an empirical study of using DDT
to help optimize six applications. All the experiments were per-
formed on a Linux-based system with a 2.33 GHz Intel Core2 Quad
CPU and 4GB of RAM.

4.2.1 Em3d

Em3d is a benchmark from the Olden Benchmark Suite [1] that
computes electro-magnetic field values in a 3D space. It maintains
two linked-lists that represent electric and magnetic fields. Its hot
loop traverses each node in one list, computes a result value by

performing convolution of the node’s scaling vector and stores the
value to nodes in the other list. A critical property of this applica-
tions is that the resulting value is only written to the current node,
which means it does not cause data dependence on the next itera-
tion’s computation. The singly linked-list is recognized by DDT.
Based on invariants on its interface functions, DDT found out that
inserting data is occurred at the end of the linked-list. In other
words, DDT detects that the linked lists in this application can be
replaced with a vector-like dynamic array, which improves data lo-
cality, thereby achieving a speedup of 1.14. Replacing the linked
list with a vector also enables well-known automatic parallelization
transformations that do not work on linked lists. By manually par-
allelizing the critical loop, we quickly achieved a speedup of 1.59
for this application.

4.2.2 Bh

Bh, also from the Olden Suite, performs a Barnes and Hut N-
body force algorithm on the gravitational interaction. To access the
bodies, the program maintains a linked-list. The main computa-
tion is occurred in a loop in grav function, which reads each body
and traverses a space decomposition tree from its root to compute
the body’s new acceleration value. Similar to em3d, each result-
ing value written is never read in the critical loop, thereby causing
no data dependence on any other body nodes. DDT again reported
its data structure as a singly linked-list that could be replaced by
a vector. Replacing the linked-list with a vector yielded a speedup
of 1.34, and manually simulating well-understood automatic paral-
lelization of the hot loop in grav, we finally obtained a speedup of
4.35 on our 4-core machine.

4.2.3 Raytrace

Raytrace draws a 3D image of groups of spheres using ray trac-
ing algorithm implemented in C++. The spheres are divided into
groups that use a linked list to store them. The main computation
of the program occurred in a loop in intersect of each group ob-
ject. First, the intersection calculation is performed for each group
of spheres. If a ray hits the group, it is subsequently performed for
its spheres (scenes). DDT correctly reported its data structure as a
doubly linked-list and found that data is inserted at the end of the



linked-list. Replacing the linked-list with a vector again yielded a
speedup of 1.17. The hot loop does exhibit do-all style parallelism,
however, it is not as simple to parallelize as the previous examples.
Instead of parallelizing it, we injected software prefetch instruc-
tions in the loop body by hand, using knowledge of the data struc-
ture. One interesting information DDT reported, the original linked
list keeps a pointer to another heap allocated object as a data value.
In other words, the replaced data structure should be vector of
pointers. With that in mind, for the prefetch target address, we
used data value itself of the vector, not data index location. This
is novel, effective prefetching strategy compared to other statistics
based prefetching techniques, which mostly do not work for irreg-
ular memory access patterns. By applying the data structure con-
scious prefetching technique, we achieved a final speedup of 1.38.

4.2.4 Xalancbmk

Xalancbmk is an XSLT processor that performs an XML to HTML
transformations. It takes as inputs an XML document and an XSLT
stylesheet file that contains detailed instructions for the transfor-
mation. The program maintains a string cache comprised of two
levels, m_busyList and m_availableList, vectors. When a string
is freed in XalanDOMStringCache: :release, it moves the string to
the m_availableList provided it is found in the m_busyList. DDT
correctly recognized that the both string lists are implemented us-
ing vectors and reported that the program contains several red-
black trees. Interestingly, the invariants of one interface function
for the vector invoked by XalanDOMStringCache: :release describe
that the interface function loads a sequence of addresses with the
same stride from the start address of the vector, which is exactly
what std::find does for vector. This was suspicious enough for
us to suspect that it performs a linear search having O(n) time com-
plexity. We replaced the data structure with STL set in which the
searching operation uses a binary search algorithm, i.e., O(log n).
This transformation achieved a speedup of 1.13.

4.2.5 Jaula

Jaula is a C++ based JSON parser implemented using STL. It
verifies the syntax of a JSON file and writes the reduced expres-
sion of each JSON type instance as an output to cut down the file
size. During the parsing, the program creates various JSON type in-
stances based on a lexical analysis result. The instances are stored
in different data structures and all their elements are iterated to gen-
erate the output. DDT correctly recognized that the two main JSON
type instances, object and array, are maintained using a red-black
tree and a doubly-linked list, respectively. In particular, DDT re-
ported their insert-like interface functions as array::addltem and
object::insertltem differently. The reason is that DDT performs
argument-immutability based interface detection. However, since
these are just wrappers of STL interface functions, list<T>::push_
back and map<T>::insert, which means their invariant results are
identical, DDT could correctly identified such data structures. We
replaced the linked list with vector as its original name (array)
implies, however, we did not get a significant speedup. This results
from the fact that the syntax of JSON documents is quite simple,
and therefore the majority of the execution time is spent on the lex-
ical analysis.

4.2.6 DDT Memory Graph

Here DDT itself was used as a test application. At runtime, DDT
keeps detailed information about dynamically allocated memory
chunks, e.g., memory nodes to keep track of which two of them are
connected to each other. This information is stored using an STL
set implemented as a red-black tree. DDT correctly recognized this

critical data structure and found out that an interface function ac-
cessing it, operator++, is invoked much more frequently than
the insert-like function. This tells us that the benchmark spends
the majority of its execution time on iterating the data structure re-
peatedly. This was the case because on every memory operation,
the tree needed to be iterated to determine if the address modified
affected memory graph nodes. Thus, DDT tells us that a data struc-
ture with more efficient lookup is appropriate for implementing this
particular set. We implemented a new version of the map that can
lookup all memory nodes whose range contains a target address in
O(log N) time, instead of the O(N) version that was previously im-
plemented. Replacing this data structure, DDT was able to profile
181.mcf from SPECint 2000 in just 6 seconds, where previously it
took over 24 hours to complete.

These examples show that DDT can be used to help developers
understand and easily optimize their applications. This can take the
form of identifying replacement data structures, or enabling other
optimizations such as automatic parallelization or data prefetching.

5. SUMMARY

The move toward manycore computing is putting increasing pres-
sure on data orchestration within applications. Identifying what
data structures are used within an application is a critical step to-
ward application understanding and performance engineering for
the underlying manycore architectures. This work presents a funda-
mentally new approach to automatically identifying data structures
within programs.

Through dynamic code instrumentation, our tool can automati-
cally detect the organization of data in memory and the interface
functions used to access the data. Dynamic invariant detection de-
termines exactly how those functions modify and utilize the data.
Together, these properties can be used to identify exactly what data
structures are being used in an application, which is the first step in
assisting developers to make better choices for their target architec-
ture. This paper demonstrates that this technique is highly accurate
across several different implementations of standard data structures.
This work can provide a significant aid for assisting programmers
in parallelizing their applications. We plan future work to extend
DDT by integrating cost models to predict when alternative data
structures are better suited for the target application, and providing
semi-automatic or speculative techniques to automatically replace
poorly chosen data structures.
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