
Master’s Thesis

Emulator Speed-up Using JIT and LLVM

Author
Hans Wennborg

Adviser
Krister Walfridsson

ARM Sweden

Examiner
Dr Jonas Skeppstedt

Lund University

January 2010

Abstract

English

This thesis investigates compiler optimisations applied to a JIT-compiling em-
ulator which is used in a video-coding system. The JIT compiler is built using
LLVM which provides some readily available optimisation passes. Some of these
are evaluated, some are patched, and some new ones are implemented. The op-
timisations are evaluated by running a number of benchmarks. By applying
optimisations that target redundancies introduced by the JIT-compiler, as well
as some optimisations not performed on the firmware originally, a benchmark
execution speed-up of between 20 and 70 % is achieved.

Swedish

Detta examensarbete undersöker kompilatoroptimeringar applicerade på en JIT-
kompilerande emulator som används i ett system för videokodning. JIT-kom-
pilatorn är byggd med hjälp av LLVM, som erbjuder flera lättillgängliga opti-
meringspass. Några av dessa utvärderas, några patchas, och några nya imple-
menteras. Optimeringarna utvärderas genom att köra olika benchmarks. Genom
att applicera optimeringar som riktar sig mot redundans introducerad av JIT-
kompilatorn, samt optimeringar som inte gjorts på firmwaren ursprungligen,
uppnås en uppsnabbning av körtiden på mellan 20 och 70 %.

iii

Preface

There are two persons who have been especially influential in the conception of
this thesis work: Jonas Skeppstedt and Krister Walfridsson. Jonas Skeppstedt’s
courses have continuously fueled my affection for beautifully written and well
performing software. In particular, his courses on optimising compilers and
algorithm implementation have given me the urge to reduce cycle counts. Krister
Walfridsson and I first discussed LLVM during a company Christmas party at
ARM Sweden (called Logipard at the time) in 2007. Since then, it has come up
now and again and when I found out that it was being used in their emulator,
and that there was potential for a master’s thesis, I was thrilled. Thank you
both for the inspiration and support I have received during this project.

I am also very grateful for the support received from the LLVM community
through the #llvm IRC channel and the LLVM developers’ mailing list.

Finally, thanks to ARM Sweden who have been kind enough to have me in
the office, tinkering with their software.

This work is dedicated to the IBM Personal System/2 Model 50. Thank you for
getting me started!

Lund, Sweden
January 2010

v

Contents

1 Introduction 1

2 Background 3

2.1 The Video Engine . 3
2.2 Just-In-Time Compilation (JIT) 3
2.3 The Low-Level Virtual Machine (LLVM) 4

3 Purpose and Method 5

3.1 Purpose . 5
3.2 Benchmarks . 5
3.3 Measurement Points . 6
3.4 Measurement Implementation . 6
3.5 Equipment . 7
3.6 Presentation of Results . 7
3.7 Baseline . 7

4 The Emulator System 9

4.1 System Overview . 9
4.2 RASC Emulation Overview . 10
4.3 LLVM Representation . 10

4.3.1 Building Blocks . 10
4.3.2 RASC Emulation Functions 11

4.4 Stepping the Emulator . 12
4.5 An Example . 12

5 Optimisations 17

5.1 Removing Redundant Memory Accesses 17
5.1.1 Improving Alias Analysis 17
5.1.2 Dead Load Elimination 19
5.1.3 Dead Store Elimination 20

5.2 Reducing MMU Emulation . 23
5.2.1 Compile-time Constant Address Translation 23
5.2.2 Moving Address Translation Out of Loops 24
5.2.3 Combining Translation of Close Addresses 28

5.3 Loop-Invariant Code Motion . 32
5.4 Changing Calling Convention . 33
5.5 Nice Functions . 34
5.6 Function Inlining . 35

vii

CONTENTS

5.7 Loop Unrolling . 36
5.8 Register Allocation and Code Generation 36

6 Conclusions 39

A Performance Measurements 41

B Code Listings 47

B.1 Null Pointers Do Not Alias . 47
B.2 Constant Pointers and Aliasing 47
B.3 Number of Uses of Store Instructions 48
B.4 DSE With Non-Local Dependencies 48
B.5 Moving Address Translation Out of Loops 49
B.6 Combining Translation of Close Addresses 54
B.7 Function Inlining . 59

Bibliography 63

viii

Chapter 1

Introduction

This master’s thesis investigates the possibility of increasing performance using
compiler optimisations in an emulator system that uses LLVM to perform JIT-
compilation of the emulated code.

Getting a speed-up is valuable to users of the emulator, who are typically
software developers or test engineers. Increased emulator performance allows
developers and testers to be more effective in their work. As JIT-compilation
and LLVM are both popular technologies, it is interesting to see what kind of
optimisations are worthwhile in this setting.

This thesis is organised as follows: A background to the technology used in
this thesis is given in Chapter 2. Chapter 3 specifies the purpose of the thesis
and defines how measurements are made and what benchmarks are used. The
system which is the concern of this thesis is described in detail in Chapter 4. The
main part of this thesis is Chapter 5 which describes and evaluates optimisations.
Finally, conclusions are made in Chapter 6.



Chapter 2

Background

2.1 The Video Engine

ARM Sweden develops a system for encoding and decoding video. This system is
used in products such as mobile phones where it allows for playback of video and
encoding of video captured using the device’s camera. Using special hardware
for video coding frees up the CPU of the host system, is much more energy
efficient, and in some cases allows video processing that would not be possible
using the host’s processor.

An emulator is used during the development of the system. This allows for
early development and testing of the system’s firmware without the need for
actual hardware.

Until sometime late 2008, the emulator performed simple interpretation of
the firmware code, but today it does JIT-compilation using LLVM to achieve
better performance.

2.2 Just-In-Time Compilation (JIT)

The term just-in-time (JIT) has long been used in business context to describe
the idea of manufacturing products just in time for when they are needed,
thereby reducing inventory costs.

In computer software, JIT refers to the concept of somehow compiling code
on demand as a program is running, rather than doing it before-hand. The
history of JIT compilation can be traced back to the 1960s [5], but it is today
perhaps most widely known for its use in virtual machines used for executing
Java programs.

Java programs are compiled to a format called byte code. This byte code
is then run by a virtual machine. The virtual machine can either interpret the
byte code or, when it sees fit, compile the byte code into native machine code
which is then executed. This execution of native code is typically much faster
than interpreting the original byte code. The virtual machine must be careful
to handle the trade-off between the extra time to compile to native machine
code and the benefit of faster execution.



Background .

2.3 The Low-Level Virtual Machine (LLVM)

The Low-level Virtual Machine (LLVM) is a framework for optimisation, com-
pilation and execution of programs. It was introduced by Chris Lattner in his
master’s thesis of 2002 [7]. As its name suggests, LLVM can be used as a vir-
tual machine to execute programs represented in a virtual instruction set, in
this case LLVM IR (for intermediate representation). Such programs can be
executed by LLVM using interpretation or JIT-compilation. It can also compile
the programs off-line for later execution.

One use for LLVM is as a compiler back-end. For example, Clang [1] is a
front-end for C, C++ (parts of it) and Objective C, that produces LLVM IR,
which is then optimised and compiled to native code. Another front-end is llvm-
gcc, which is the GNU Compiler Collection (GCC) with the back-end replaced
by LLVM.

Another way to use LLVM is as a JIT engine. This is done by projects such
as Unladen Swallow [3], a JIT-ing Python implementation. The basic idea is to
translate the source language code to LLVM IR, and then use LLVM to compile
it to native code which is then executed. This is also what the emulator in this
thesis does.



Chapter 3

Purpose and Method

3.1 Purpose

When the simple interpreting emulator for the video engine was changed for a
JIT-compiling implementation, it provided a significant speed-up. The purpose
of this thesis is to investigate what can be done in terms of compiler opti-
misations to make it run even faster. One reason for implementing the JIT
compilation using LLVM was, apart for the convenience of it, that LLVM pro-
vides much analysis and many optimisation passes that could be used, and that
the infrastructure makes it easy to implement new optimisations. This thesis
leverages on that functionality to evaluate, patch, extend and implement new
passes to increase performance.

Much JIT research is targeted at deciding which parts of a program to com-
pile and how much effort to use for optimisations in order to provide undisrupted
execution, which is necessary for interactive applications. In this case, however,
the focus is on net speed-up. It does not matter if the emulator spends a second
or two extra on start-up if it means the total execution time is reduced.

3.2 Benchmarks

Optimisations are evaluated by running a number of benchmarks. The bench-
marks consist of decoding video files in different formats, as described in Ta-
ble 3.1.

Benchmark Format Resolution Frames

A α 720× 480 455
B α 720× 526 219
C β 720× 480 455
D β 1280× 720 320

Table 3.1: Benchmarks.

The decoder implementations for the two formats differ quite substantially.
Most importantly, the α decoder does most of its work using hardware accel-



Purpose and Method .

erators, while the β decoder is implemented entirely in software. This means
that optimisations that speed up firmware execution will have a much greater
effect on the β benchmarks. Benchmark C is actually the same video clip as
Benchmark A transcoded into the β encoding.

3.3 Measurement Points

As the objective of the optimisations is to make the benchmarks run faster, the
time to run benchmarks is measured. However, to determine if an optimisation
is actually improving the code, and to evaluate how expensive it is to perform, it
is desirable to break down the benchmark time into two parts: compilation time
and execution time. This is easily done in a traditional compiler system where
code is first compiled and then executed, in separate stages. In this emulator
system, the phases are intertwined as LLVM IR cannot be generated for all
functions before execution, and machine code is generated lazily as functions
are called.

The approach taken is to measure the following:

• Time spent running the emulator

• Time spent building the LLVM IR, excluding optimisations

• Time spent running optimisation passes and generating machine code

• Time spent in hardware emulation.

Those measurements are used to calculate the following values:

• Compilation time, which is the time spent building the LLVM IR plus
time spent optimising and generating machine code

• Execution time, which is the time spent running the emulator minus the
compilation time.

In some cases, the time spent in hardware emulation is also presented. In
tables, such time is presented separately, but in diagrams it is subtracted from
the execution time so that the height of the bar represents the total time to run
a benchmark. See for example Table 3.2 and Figure 3.1.

3.4 Measurement Implementation

LLVM provides tools for collecting timing information and other statistics.
These can be activated for the low-level tools such as opt (which is used to
run optimisations on LLVM IR) using command-line arguments such as -stats
and -time-passes. The same functionality can be enabled inside the emulator
system internally. These switches will make print-outs of how much time is
spent in each optimisation and code generation pass, and statistics such as the
number of emitted machine instructions.

In addition to this information, additional timers are used for measuring the
time building LLVM IR, etc. The timers are implemented using calls to the
POSIX function gettimeofday(2) and measure wall clock time.



. Equipment

3.5 Equipment

Measurements are run on a computer used solely for this purpose. The computer
is a Dell Optiplex GX270 with an Intel Pentium 4 3.00 GHz processor and
1 GB memory. It is running a vanilla install of Debian GNU/Linux 5.0.3,
and is in single user mode during tests to make it quiescent. Address space
layout randomisation is disabled on the system in an attempt to make it more
homogeneous between executions.

The version of LLVM that is used for the benchmarks is revision 89096
(except when the patches discussed in Section 5.1.1 are disabled) of the SVN
trunk, compiled with GCC (Debian 4.3.2-1.1) and configured with the options
–enable-jit –enable-targets=host-only –enable-optimized.

3.6 Presentation of Results

Each measurement is run a number of times (ten, if nothing else is stated) and
the mean value, standard deviation and number of measurements are presented.
Standard deviation is calculated as:

σ =

√

√

√

√

1

n− 1

n
∑

i=1

(xi − x)
2

where σ is the standard deviation, x1, . . . , xn the samples and x the mean of
the samples.

Speed-up is defined as

S =
Told

Tnew

where S is the speed-up, Told time before an optimisation and Tnew time after
optimisation. For example, if a benchmark runs for 15 s before an optimisation
and 10 s after, that optimisation is said to give the benchmark a speed-up of
1.5, or 50 %. If the benchmark runs slower with an optimisation, say it runs
for 15 s without an optimisation and 20 s with, it is said to give the benchmark
a speed-up of 0.75, or a 25 % slowdown. Unless otherwise specified, speed-up
refers to benchmark execution time throughout the thesis.

3.7 Baseline

The time to execute the benchmarks without optimisations, that is the time it
took before this thesis work begun, is used as a baseline against which optimisa-
tions are evaluated. Baseline execution times for the benchmarks are presented
in Table 3.2 and Figure 3.1, together with times for running the benchmarks in
interpreted mode to show what an improvement the move to JIT was for the
emulator.

Note how the JIT-mode is about twice as fast for the A and B benchmarks
compared to interpretation, and more than ten times faster for the C and D
benchmarks. The fact that the β decoder, which is used for the C and D bench-
marks, is entirely software based is the reason why interpretation is so slow for
those benchmarks, and why they have so much to gain from JIT compilation.



Purpose and Method .

Mode Benchmark Execution (s) Compile (s) HW (s)

mean σ mean σ mean σ

Interpreted A 492.79 0.41 n.a 169.17 0.17
B 243.91 0.35 n.a 87.28 0.17
C 2,588.58 2.18 n.a 0.00 0.00
D 4.590.85 4.03 n.a 0.00 0.00

JIT A 246.13 0.41 12.25 0.06 165.36 0.05
B 123.66 0.17 12.28 0.08 85.46 0.09
C 188.06 0.11 11.07 0.08 0.00 0.00
D 335.11 0.13 9.99 0.06 0.00 0.00

Table 3.2: Baseline and interpreted benchmark times.

0

50

100

150

200

250

300

350

A B C D

T
im

e
(s

)

Compile
HW
Exec

Figure 3.1: Baseline compilation, hardware and execution times.



Chapter 4

The Emulator System

4.1 System Overview

The RASC processor is a processor developed specifically for use in the video
engine. The emulation of the processor, which is what this thesis is concerned
with, is part of a larger emulation system; see Figure 4.1.

...

MMU
Emulator

Emulator
HW

Emulator System

Host Software

Emulator API

Emulator Driver

RASCRASCRASC
0 1 n

Figure 4.1: The emulator system.

In a deployed system, a program running on a host CPU uses the system
to encode or decode video. Special video coding software runs on one or more
RASC CPUs, and hardware accelerators are used for part of their work. These
components, the host CPU, RASC CPUs and hardware accelerators, communi-
cate using shared memory and interrupts.

When run against the emulator, the host program utilises an API which
is equivalent to the one it would use if it were talking to real hardware. The
emulator should, as closely as possible, mimic the hardware system.



The Emulator System ..

The RASC emulators read a stream of instructions and executes them, up-
dating their registers and the shared memory.

The MMU (memory management unit) Emulator is important for making
the shared-memory communication work. It determines if an address in a load
or store operation belongs to RASC memory (pointing to the address of an
instruction or something on the execution stack), to memory shared with the
host program (the host program has to register such memory areas with the
MMU), or if the address is a special hardware register and the access should
trigger some action in the HW Emulator.

The HW Emulator contains software implementations of all the hardware
accelerator blocks.

Orchestrating the process of emulation, the Emulator Driver steps the RASC
emulators in a round-robin fashion and handles the communication between the
different components of the emulator and the host software.

4.2 RASC Emulation Overview

The flow from firmware source to execution is illustrated in Figure 4.2.

Source

RASC Emulator

Code

RASC

Compiler

Compiler
Instruction

Parser

Interpretation

LLVM
Function Builder

JIT
Execution

Figure 4.2: Flow from RASC source code to execution.

RASC source is compiled using a custom compiler. The resulting file is
referred to as the RASC firmware. This firmware is optimised for fast RASC
execution and small code size. The emulator begins execution from the first
byte of the file.

An instruction parser in the emulator parses the instructions in the firmware
file. Depending on emulation mode, the instructions can then be run in an
interpreter straight away: the interpreter simply looks at the current instruction,
and performs some action accordingly.

For JIT compilation, the RASC instruction stream is translated to LLVM
instructions. This is not a simple one-to-one translation: the details are ex-
plained in Section 4.3.2 below. The LLVM instructions are then JIT-compiled
to native machine code and executed.

4.3 LLVM Representation

4.3.1 Building Blocks

LLVM represents programs as modules, functions, basic blocks, instructions and
values. These are described in detail in [2].



.. RASC Emulation Functions

The concept of modules is similar to translation units in C. A module con-
tains functions and global variables. The RASC emulator only produces one
module, representing the entire firmware.

Functions are similar to function concepts in most programming languages:
they take arguments, return values and contain instructions to be executed when
the function is called.

In functions, the instructions are stored in basic blocks. A basic block con-
tains an ordered list of non-branching instructions and a terminating branch or
return instruction. This terminating instruction determines which basic blocks
can be successors in the execution. The basic blocks of a function form a graph
which is known as the control-flow graph (CFG). One basic block is the function
entry block, and does not have preceding blocks. Execution of a function flows
from the entry block to a block with a return as terminating instruction.

An LLVM value can be a literal, such as 42, or an instruction such as an
add instruction. LLVM programs are on static single assignment (SSA) form,
meaning a value is defined exactly once. This makes it easy to find definitions
and uses of values and work with them.

4.3.2 RASC Emulation Functions

The RASC emulator builds RASC emulation functions with names such as
Funcaddr, which take as argument a pointer to a variable representing the
RASC CPU state. Running such a function has the effect of emulating firmware
execution starting at address addr.

Instructions in the function object operate on the state variable which is
passed when calling the function. For example, a RASC instruction which
adds the values of two registers and stores it in a third would result in LLVM
instructions to load the register values from the state variable, add the values
and write the result back to the state variable.

Memory accessing instructions in firmware cannot be easily translated to
memory accessing LLVM instructions. An address in the RASC address space
is generally not the same as an address in host space. The address could rep-
resent a hardware register, in which case a write should trigger some action
by the HW emulator. Otherwise, the address should be translated to an ad-
dress in the host memory. Both these tasks are handled by the MMU emulator,
which is reached via calls to functions called emul_read32, emul_write32 and
emul_translate_addr.

Function objects are generally built to match functions in the firmware.
Calling such a function object and passing a pointer to a state variable has the
same effect on the state as running the firmware function on a RASC with the
same state. Such a function always ends with a return of zero.

There are however situations when an LLVM function does not match a
firmware function. For example, the destination of an indirect jump instruction
(where the target address is read from a register) is normally not known when
the function object is built, as it is determined at run-time. In such situations,
the function builder does not know how to continue, and thus terminates the
function with a return instruction which returns the special value one.

The same thing happens when the emulation should stop for some reason.
This is the case with the wait instruction, which means the emulator should



The Emulator System .

temporarily suspend emulation, check for an interrupt, and then resume emula-
tion. The situation is handled in the same way as above: by a return instruction
which returns one.

This means that the generated functions can return for two reasons: either
because there was a return instruction in the RASC program, or because the
emulator cannot or will not continue in that function. The function’s return
value is used to separate these cases. A return value of zero means it is a normal
return and a return value of one means it is a get-out-of-emulation return. This
affects how function calls are emulated. The calling function must look at the
return value, and if the return value is one, the calling function must propagate
that value by returning one itself.

4.4 Stepping the Emulator

When it comes to running a RASC emulator, the emulator driver calls a func-
tion, step_jit(), passing the state of the CPU as an argument.

The emulator looks at the program counter (PC) in the state variable to
determine where to start execution. This address is zero the first time the CPU
is stepped. Using the address, the emulator looks up the function object that
has been built to emulate execution starting at this address. If there is no such
function object, one is built as described above.

To execute the function, the emulator calls on LLVM’s ExecutionEngine

to get a function pointer to the function. If the function object has not been
compiled before, it is now compiled, and native code is emitted into the host
computer’s memory. A function pointer into this memory is returned, and the
emulator makes a call through the pointer.

LLVM call instructions are compiled into native call instructions which point
either to the natively compiled functions in memory or, if the called function
is not compiled yet, to special functions which compile the called functions and
back-patch the address into the call sites. This way, if a function object is
never called, native code is never generated for it. That is why it is called JIT
compilation: a part of a program is compiled just in time for its execution.

4.5 An Example

The flow from RASC source code to native machine instructions is illustrated
in this example.

A simple function is defined in the firmware, and a call to it is inserted at the
very beginning of the program, see Listing 4.1. After compilation into RASC
machine code, the function looks as in Listing 4.2 The LLVM Function object
is shown in Listing 4.3, and the machine code emitted after JIT compilation of
the function object is shown in Listing 4.4.

(After studying the generated code, the careful reader may now start to
realise the potential for optimisations of the code.)



. An Example

#define NFIBS 100

unsigned fibs[NFIBS];

void fib(void)
{

int i;

fibs[0] = 0;
fibs[1] = 1;

for (i = 2; i < NFIBS; i++) {
fibs[i] = fibs[i-1] + fibs[i-2];

}
}

void rasc0_start(void)
{

fib();
...

Listing 4.1: fib implemented in the firmware source code.

<fib >:
lpc r0 ,2360c <fibs >
mov r1 ,0
st r1 ,[r0 ,0]
mov r2,r0
mov r1 ,1
st r1 ,[r0 ,4]
add r2 ,4
mov r3 ,0x62

<.L4 >:
ld r0 ,[r2 ,0 xfffffffc]
ld r1 ,[r2 ,0]
add r0,r1
st r0 ,[r2 ,4]
add r2 ,4
dbne r3 ,5681 <.L4>
jmp lr

Listing 4.2: fib function in RASC machine code.



The Emulator System .

define internal i32 @Func0000566d(%0* noalias nocapture) {
%2 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 0
%3 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 1
%4 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 2
%5 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 3
%6 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 14
%7 = getelementptr inbounds %0* %0, i32 0, i32 0
store i32 144908 , i32* %2
call void @emul_write32(i32 144908 , i32 0, i8* null)
%8 = load i32* %2
store i32 %8, i32* %4
store i32 1, i32* %3
%9 = load i32* %2
%10 = add i32 %9, 4
call void @emul_write32(i32 %10, i32 1, i8* null)
%11 = load i32* %4
%12 = add i32 %11, 4
store i32 %12, i32* %4
store i32 98, i32* %5
br label %15

; <label >:13
%14 = load i32* %6
store i32 %14, i32* %7
ret i32 0

; <label >:15
%16 = load i32* %4
%17 = add i32 %16, -4
%18 = call i32 @emul_read32(i32 %17, i8* null)
store i32 %18, i32* %2
%19 = load i32* %4
%20 = call i32 @emul_read32(i32 %19, i8* null)
store i32 %20, i32* %3
%21 = load i32* %2
%22 = add i32 %21, %20
store i32 %22, i32* %2
%23 = load i32* %4
%24 = add i32 %23, 4
call void @emul_write32(i32 %24, i32 %22, i8* null)
%25 = load i32* %4
%26 = add i32 %25, 4
store i32 %26, i32* %4
%27 = load i32* %5
%28 = add i32 %27, -1
store i32 %28, i32* %5
%29 = icmp eq i32 %28, 0
br i1 %29, label %13, label %15

}

Listing 4.3: LLVM function object to emulate execution of the fib function.



. An Example

0xb6976ee0: push esi
0xb6976ee1: sub esp ,0x10
0xb6976ee4: mov esi ,DWORD PTR [esp+0x18]
0xb6976ee8: mov DWORD PTR [esp+0x8],0x0
0xb6976ef0: mov DWORD PTR [esp+0x4],0x0
0xb6976ef8: mov DWORD PTR [esp],0x2360c
0xb6976eff: mov DWORD PTR [esi+0x4],0x2360c
0xb6976f06: call 0xb73e3520 <emul_write32 >
0xb6976f0b: mov eax ,DWORD PTR [esi+0x4]
0xb6976f0e: mov DWORD PTR [esi+0xc],eax
0xb6976f11: mov DWORD PTR [esi+0x8],0x1
0xb6976f18: mov eax ,DWORD PTR [esi+0x4]
0xb6976f1b: add eax ,0x4
0xb6976f1e: mov DWORD PTR [esp],eax
0xb6976f21: mov DWORD PTR [esp+0x8],0x0
0xb6976f29: mov DWORD PTR [esp+0x4],0x1
0xb6976f31: call 0xb73e3520 <emul_write32 >
0xb6976f36: add DWORD PTR [esi+0xc],0x4
0xb6976f3a: mov DWORD PTR [esi+0x10],0x62
0xb6976f41: mov eax ,DWORD PTR [esi+0xc]
0xb6976f44: add eax ,0xfffffffc
0xb6976f47: mov DWORD PTR [esp],eax
0xb6976f4a: mov DWORD PTR [esp+0x4],0x0
0xb6976f52: call 0xb73e34a0 <emul_read32 >
0xb6976f57: mov DWORD PTR [esi+0x4],eax
0xb6976f5a: mov eax ,DWORD PTR [esi+0xc]
0xb6976f5d: mov DWORD PTR [esp],eax
0xb6976f60: mov DWORD PTR [esp+0x4],0x0
0xb6976f68: call 0xb73e34a0 <emul_read32 >
0xb6976f6d: mov DWORD PTR [esi+0x8],eax
0xb6976f70: add eax ,DWORD PTR [esi+0x4]
0xb6976f73: mov DWORD PTR [esi+0x4],eax
0xb6976f76: mov DWORD PTR [esp+0x4],eax
0xb6976f7a: mov ecx ,DWORD PTR [esi+0xc]
0xb6976f7d: add ecx ,0x4
0xb6976f80: mov DWORD PTR [esp],ecx
0xb6976f83: mov DWORD PTR [esp+0x8],0x0
0xb6976f8b: call 0xb73e3520 <emul_write32 >
0xb6976f90: add DWORD PTR [esi+0xc],0x4
0xb6976f94: mov eax ,DWORD PTR [esi+0x10]
0xb6976f97: dec eax
0xb6976f98: mov DWORD PTR [esi+0x10],eax
0xb6976f9b: test eax ,eax
0xb6976f9d: jne 0xb6976f41
0xb6976fa3: mov eax ,DWORD PTR [esi+0x3c]
0xb6976fa6: mov DWORD PTR [esi],eax
0xb6976fa8: xor eax ,eax
0xb6976faa: add esp ,0x10
0xb6976fad: pop esi
0xb6976fae: ret

Listing 4.4: Machine code after JIT compilation of the fib function.



Chapter 5

Optimisations

5.1 Removing Redundant Memory Accesses

5.1.1 Improving Alias Analysis

Alias analysis is the process of figuring out whether two pointers may point
to the same object in memory or not. Such information is vital for compiler
optimisations such as dead load elimination and dead store elimination.

The basic alias analysis implementation (there are others, but this one is
good enough for the emulator) in LLVM was improved to handle two cases
commonly occurring in the IR generated by the emulator.

Null-pointers

The MMU emulator functions each take a call-back function as parameter. In
the LLVM IR, this will always be null, and it thus seems obvious that it cannot
alias with anything. However, this heuristic was not implemented in LLVM,
and in code such as this:

%t = type { i32 }

declare void @test1f(i8*)

define void @test1(%t* noalias %stuff) {

%p = getelementptr inbounds %t* %stuff, i32 0, i32 0

%before = load i32* %p

call void @test1f(i8* null)

%after = load i32* %p ; <--- This should be a dead load

%sum = add i32 %before, %after;

store i32 %sum, i32* %p

ret void

}

LLVM would be unsure if the null pointer and %p could alias, so that the call to
@test1f might modify the variable that %p pointed to. As it was unsure about
this, it did not consider the second load redundant, and failed to remove it as a
dead load.



Optimisations ..

A patch which adds the heuristic that null pointers do not alias with anything
(not even themselves, as one cannot read or write through them) was added to
the LLVM trunk in revision 86582, see B.1.

Constant Pointers

Another thing which occurs frequently in the generated LLVM IR is emulated
accesses to fixed addresses, for example hardware registers. This code provides
an example:

store i32 -268300288, i32* %2

%79 = call i32 @emul_read32(i32 -268300276, i8* null)

store i32 %79, i32* %6

%80 = load i32* %2; <-- This should be a dead load

%81 = add i32 %80, 8

The variable %2 is derived from the pointer to the state variable, which is marked
noalias. The problem here is that LLVM is unsure whether or not the constant
in the @emul_read call might alias with %2, and cannot deduce that the load
from %2 is dead because it has not been written to since the store at the first
line.

As the noalias attribute means that the parameter is the only way to ac-
cess the underlying variable from the function, it can be safely assumed that
a constant address in the function cannot point to the same variable. A patch
that covers this case was added to the LLVM trunk in revision 88760, see B.2.

Results

Alias analysis is vital to dead load and store elimination. Table 5.1 shows the
number of dead loads and stores (using the default global value numbering
and dead store elimination passes) before and after the improvements to alias
analysis.

Benchmark Un-improved AA Improved AA

Dead loads Dead Stores Dead Loads Dead Stores

A 5,148 1,147 14,380 3,658
B 5,148 1,147 14,380 3,658
C 4,530 1,092 10,558 2,512
D 4,200 1,005 9,559 2,343

Table 5.1: Dead loads and stores with and without improved alias analysis.

This improvement has no effect on the execution of the baseline, as dead load
elimination is not enabled there, but it is vital for making the other optimisations
effective. In the rest of this thesis, measurements are conducted with these
patches applied.



.. Dead Load Elimination

1 define internal i32 @Func0000566d(%0* noalias nocapture) {
2 %2 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 0
3 %3 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 1
4 %4 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 2
5 %5 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 3
6 %6 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 14
7 %7 = getelementptr inbounds %0* %0, i32 0, i32 0
8 store i32 144908 , i32* %2
9 call void @emul_write32(i32 144908 , i32 0, i8* null)

10 %8 = load i32* %2
11 store i32 %8, i32* %4
12 store i32 1, i32* %3
13 %9 = load i32* %2
14 %10 = add i32 %9, 4
15 call void @emul_write32(i32 %10, i32 1, i8* null)
16 [snip]

Listing 5.1: Part of the fib function with several dead loads.

1 define internal i32 @Func0000566d(%0* noalias nocapture) {
2 ; <label >:1
3 %2 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 0
4 %3 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 1
5 %4 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 2
6 %5 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 3
7 %6 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 14
8 %7 = getelementptr inbounds %0* %0, i32 0, i32 0
9 store i32 144908 , i32* %2

10 call void @emul_write32(i32 144908 , i32 0, i8* null)
11 store i32 1, i32* %3
12 call void @emul_write32(i32 144912 , i32 1, i8* null)

Listing 5.2: Part of the fib function with dead loads eliminated.

5.1.2 Dead Load Elimination

Dead load elimination, sometimes called redundant load elimination, is the elim-
ination of loads which are unnecessary because the result of the load is already
known. The result of a load can be known beforehand either because a load
from the same address has been made before, or a store to the address has been
made before.

Dead loads are very frequent in the code generated by the emulator. RASC
instructions operate on registers, which means that when LLVM IR is generated
to emulate an instruction, one or more loads from the state variable are pro-
duced, many of which are redundant. This is illustrated in Listing 5.1 where,
for example, there are two loads from %2 even though none is necessary as the
variable is not touched after the store on line 8 and that value could simply be
propagated to where it is needed.

LLVM performs dead load elimination as part of its global value numbering
(GVN) pass. The effect on the example code is shown in Listing 5.2, and the
effect on the benchmarks is shown in Table 5.2. There is not much speed-up on
the α benchmarks, but for the β benchmarks, this optimisation provides a 4 %
speed-up.

For the α benchmarks, the low execution time reduction weighed against the
increased compilation time makes the optimisation seem counter-productive.
However, this optimisation is crucial for getting more fruitful optimisations to
work, and therefore worth the extra compilation time.



Optimisations ..

Benchmark Execution (s) Compile (s) Dead Loads Speed-up

mean σ mean σ

A 244.88 0.46 13.72 0.08 14,380 1.01
B 123.43 0.10 13.75 0.07 14,380 1.00
C 181.33 0.08 12.45 0.04 10,558 1.04
D 321.24 0.09 11.17 0.05 9,559 1.04

Table 5.2: Benchmarks run with global value numbering.

5.1.3 Dead Store Elimination

A store is dead if the value it writes is never read before a subsequent store
instruction writes to the same memory location. It is also dead if it writes the
same value that was loaded from the memory location earlier, and there has
been no stores in between.

Dead stores are common in the generated IR for the same reasons as dead
loads. The only stores that are really necessary are the ones which affect the
state variable which is seen after return from the function, or by called functions
which are passed a pointer to the state variable.

LLVM provides a pass for dead store elimination (DSE), which was enabled
in the emulator. However, several dead stores were still present because the
pass only performs DSE within basic blocks.

It is easy to see if a store is followed by another store within a basic block:
they just have to come in successive order in the instruction list. And if there
are no loads or other uses of the location they store to in between, then the first
store is dead.

The situation is more complex between basic blocks, as execution may take
different paths between the instructions. To remove the first store, one must be
positive that the second store will always be executed afterwards. This happens
if the second store post-dominates the first. A basic block B post-dominates A

if every path from A to the exit of the function passes through B [4, 10.4.1].

LLVM provides an analysis called MemoryDependenceAnalysis. This pass
answers the question of what instruction a memory-accessing instruction de-
pends on. For example, a load from location p may be dependent on a pre-
ceding store to that location which would define the value at p, an allocation
instruction which would make the value undefined or a call instruction which
could have effect on the value, making it unknown.

For dead store elimination however, the opposite question is more relevant:
what instructions are depending on a given store instruction. LLVM does not
provide such analysis (it could have been called ReverseMemoryDependence-
Analysis, and it might happen one day), but the necessary information can still
be obtained by simply walking through all instructions, see if they depend on a
store and count how many dependencies there are on each store. This is shown
in Algorithm 5.1 and the code in B.3.

This backwards approach to finding the number of uses of a store is not
efficient, and was therefore not submitted to LLVM. However, the emulator’s
benefit from global DSE is large enough that this implementation is better than



.. Dead Store Elimination

uses[I] = 0 ∀ I ∈ F

for each instruction I ∈ F do

if I is a call or load instruction then

for each instruction ID that I depends on do

if ID is a store instruction then

uses[ID]← uses[ID] + 1
end if

end for

end if

end for

Algorithm 5.1: Number of uses of each store instruction in function F .

none at all.
Post-dominance analysis and information about number of uses of stored

values is sufficient for deciding if a store is dead because of a subsequent store
or not. Algorithm 5.2 and the code in B.4 show global dead store elimination
added to the DSE pass used by the emulator.

D ← instructions that a store instruction IS depends on
if |D| = 1 then

ID ← the instruction in D
if ID is a load from same location as IS and the value stored by IS is ID

then

Remove IS as a dead store
end if

end if

for each ID ∈ D do

if ID is a store instruction then

if uses[ID] = 0 then

if block(IS) post dominates block(ID) then

if storage type of ID ≤ storage type of IS then

Remove ID as a dead store
end if

end if

end if

end if

end for

Algorithm 5.2: Dead store removal with non-local dependencies.

Benchmark performance when running with this improved DSE together
with GVN is shown in Table 5.3. The number of dead stores is up by between
50 and 70 % (compare Table 5.1), and the β benchmarks get a nice speed-
up, while the α benchmarks do not benefit much, but rather suffer from the
increased compilation time. Because of the benefit on the β benchmarks, this
optimisation will continue to be used.



Optimisations ..

Benchmark Execution (s) Compile (s) Dead Stores Speed-up

mean σ mean σ

A 244.14 0.22 14.60 0.09 5,763 1.01
B 123.37 0.27 14.59 0.11 5,763 1.00
C 171.88 0.08 13.17 0.07 4,470 1.09
D 302.47 0.11 11.84 0.06 4,097 1.11

Table 5.3: Benchmarks run with GVN and improved DSE.



.. Reducing MMU Emulation

5.2 Reducing MMU Emulation

Each load and store in the RASC firmware generates calls to MMU emulator
functions in the LLVM IR. The generated calls are either for emul_read32,
emul_write32 or emul_translate_addr. These functions look at the address
and determines if it represents a hardware register, in which case the HW em-
ulator takes action, or else it looks in a structure of memory mappings and
translates the address to a host address which it reads or writes to.

Loads and stores are frequent in RASC programs, as in most programs, and
as each call to the MMU emulator is much more costly than a native load or
store, this is considerable overhead. The numbers of MMU calls are shown in
Table 5.4. (Total instruction counts are available in Appendix A.) It is desirable
to replace as many of these instructions as possible with native loads and stores.

Benchmark emul_read32 emul_write32 emul_translate_addr

A 2,279 2,134 1,210
B 2,279 2,134 1,210
C 589 898 2,060
D 536 801 1,771

Table 5.4: Number of MMU calls in benchmarks.

5.2.1 Compile-time Constant Address Translation

If the address in a call to the MMU Emulator is constant, the address transla-
tion can be done compile-time. Such cases are not uncommon. For example,
statically allocated data areas have static addresses pointing into the firmware,
as in the case of the fibs array from Listing 4.1.

An optimisation pass for doing translation of constant addresses compile-
time was already implemented along the lines of Algorithm 5.3. Addresses
referring to hardware registers cannot be translated, but the rest can.

This seems straight-forward enough, but as it was it did not have any impact
on the emulator’s performance. The reason is that accesses to constant addresses
look something like this (from the fib example in Listing 4.2):

<fib>:

lpc r0,2360c <fibs>

mov r1,0

st r1,[r0,0]

mov r2,r0

mov r1,1

st r1,[r0,4]

It turns out that the address operands to the store instructions are not constant,
but rather the result of retrieving a value from r0 and adding with constant
values (0 and 4 in this case). Dead load elimination is needed to propagate the
constants into the arguments of the calls to emul_write32. With the GVN pass
enabled, this optimisation removes a significant number of MMU calls and gives
the benchmarks a speed-up, as seen in Table 5.5.



Optimisations ..

for each call instruction IC ∈ F do

A← first function argument (the address)
if callee(IC) = emul_read32 and A is constant then

if A can be translated to a host address then

Replace IC with a read from Atranslated

end if

else if callee(IC) = emul_write32 and A is constant then

if A can be translated to a host address then

Replace IC with a write to Atranslated

end if

else if callee(IC) = emul_translate_addr and A is constant then

if A can be translated to a host address then

Replace IC with Atranslated

end if

end if

end for

Algorithm 5.3: Compile-time constant address translation for function F .

Benchmark Execution (s) Compile (s) Removed MMU Calls Speed-up

mean σ mean σ

A 240.02 0.21 14.34 0.07 1,001 1.03
B 121.17 0.18 14.37 0.11 1,001 1.02
C 133.17 0.26 12.62 0.07 1,232 1.41
D 233.70 0.39 11.38 0.09 1,056 1.43

Table 5.5: Performance with compile-time translation of constant addresses.

5.2.2 Moving Address Translation Out of Loops

Listing 5.3 shows an example piece of RASC code that accesses memory in loops,
and Listing 5.4 shows the resulting LLVM IR. Such loops are heavily dominated
by the calls to MMU emulation. Since the accesses in a loop are all to the same
array, it would be desirable to just translate the base address of the array, and
then use that and the array offsets to compute host addresses at each iteration.

To detect loop accesses to arrays, an optimisation pass has to look at the ad-
dress argument of MMU calls in loops, and analyse how they vary between loop
iterations. LLVM provides an analysis that does this: ScalarEvolutionAnalysis.
The pass looks for addresses that can be represented as add recurrences. This
is a concept in scalar evolution which is based on [6]. Scalar evolution provides
utilities for building expressions for the address at the first loop iteration, Abase,
which is loop invariant.

Those expressions can be used to get the translated address as

T (A) = T (Abase) + A−Abase

where T (Abase) is the address in the first iteration, translated to a host address.



.. Moving Address Translation Out of Loops

static void block_zero(void)
{

int i,j;
for (j=0;j<6;j++)

for (i=0;i<64;i++) g_mb ->QF[j][i] = 0;
}

<block_zero >:
push lr-r14

<.LCFI14 >:
lpc r3 ,87e0 <mb>
mov r4 ,6

<.L160 >:
mov r0 ,0
mov r2 ,2
mov r1 ,0x3f
sth r0 ,[r3 ,0]

<.L161 >:
mov r0,r2
add r0,r3
mov lr ,0
sth lr ,[r0 ,0]
add r2 ,2
dbne r1 ,26db <.L161 >
add r3 ,0x80
dbne r4 ,26d2 <.L160 >
popr lr-r14

Listing 5.3: block_zero as implemented in RASC firmware.

Since Abase is loop invariant, the expression for T (Abase) can be moved outside
the loop. The translated address, T (A), can then be used to replace the MMU
emulation call inside the loop. This is outlined in Algorithm 5.4, which is an
optimisation pass that is applied to loops. The code is shown in B.5.

The optimisation has to be careful when moving translations out of a loop.
The new translation is only allowed to execute in cases where an MMU call would
have been performed inside the loop, otherwise it might alter the program’s
behaviour. Therefore, translations moved out of loops are conditional on that
the loop’s trip count is known to be greater than zero. Also, there may be
different execution paths through a loop body, so knowing that a loop is executed
is not enough to know an MMU call inside it will be made. A condition that
the MMU call post-dominates the loop header is required for this optimisation.

Listing 5.5 shows LLVM IR for the block_zero function after this optimi-
sation. Note that there are no calls for MMU emulation inside the loops. Also
note that emulation calls have been removed both from the inner and outer loop,
because the optimisation is applied to inner loops first. Since the base address
of the array is a constant, it has been translated to a host address (134769016)
at compile time.

Table 5.6 shows benchmark performance together with number of transla-
tions moved out of loops. GVN, improved DSE and compile-time translation of
constant addresses are also enabled. This optimisation provides a nice speed-up
for the β benchmarks, and also for the α benchmarks, although not as signifi-
cant as it runs many loops in hardware emulation instead of software. Note that
the optimisation is cheap in terms of additional compilation time; it is definitely
worth the extra effort.



Optimisations ..

define internal i32 @Func000026c9(%0* noalias nocapture) {
; <label >:1

%2 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 0
%3 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 1
%4 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 2
%5 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 3
%6 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 4
%7 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 14
%8 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 15
%9 = getelementptr inbounds %0* %0, i32 0, i32 0
%10 = load i32* %8
%11 = add i32 %10, -4
%12 = lshr i32 %11, 2
%13 = getelementptr i32* inttoptr (i32 134734176 to i32*), i32 %12
%14 = load i32* %7
store i32 %14, i32* %13
store i32 %11, i32* %8
store i32 34784, i32* %5
store i32 6, i32* %6
br label %30

; <label >:15
%16 = add i32 %32, 128
store i32 %16, i32* %5
%17 = add i32 %31, -1
store i32 %17, i32* %6
%18 = icmp eq i32 %17, 0
br i1 %18, label %28, label %30

; <label >:19
%20 = phi i32 [%26, %19], [63, %30]
%21 = phi i32 [%25, %19], [2, %30]
%22 = add i32 %21, %32
store i32 %22, i32* %2
store i32 0, i32* %7
%23 = call i8* @emul_translate_addr(i32 %22, i32 1, i8* null)
%24 = bitcast i8* %23 to i16*
store i16 0, i16* %24
%25 = add i32 %21, 2
store i32 %25, i32* %4
%26 = add i32 %20, -1
store i32 %26, i32* %3
%27 = icmp eq i32 %26, 0
br i1 %27, label %15, label %19

; <label >:28
%29 = load i32* %13
store i32 %29, i32* %7
store i32 %10, i32* %8
store i32 %29, i32* %9
ret i32 0

; <label >:30
%31 = phi i32 [%17, %15], [6, %1]
%32 = phi i32 [%16, %15], [34784, %1]
store i32 0, i32* %2
store i32 2, i32* %4
store i32 63, i32* %3
%33 = call i8* @emul_translate_addr(i32 %32, i32 1, i8* null)
%34 = bitcast i8* %33 to i16*
store i16 0, i16* %34
br label %19

}

Listing 5.4: LLVM IR generated for the block_zero function.



.. Moving Address Translation Out of Loops

define internal i32 @Func000026c9(%0* noalias nocapture) {
; <label >:1

%2 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 0
%3 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 1
%4 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 2
%5 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 3
%6 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 4
%7 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 14
%8 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 15
%9 = load i32* %8
%10 = add i32 %9, -4
%11 = lshr i32 %10, 2
%12 = getelementptr i32* inttoptr (i32 134734232 to i32*), i32 %11
%13 = load i32* %7
store i32 %13, i32* %12
store i32 %10, i32* %8
store i32 34784, i32* %5
store i32 6, i32* %6
br label %22

; <label >:14
store i32 %tmp13 , i32* %5
store i32 %tmp15 , i32* %6
%indvar.next4 = add i32 %indvar3 , 1
%exitcond9 = icmp eq i32 %indvar.next4 , 6
br i1 %exitcond9 , label %19, label %22

; <label >:15
%indvar = phi i32 [%indvar.next , %15], [0, %22]
%tmp1 = sub i32 62, %indvar
%tmp2 = shl i32 %indvar , 1
%tmp7 = add i32 %tmp2 , %tmp6
%tmp8 = add i32 %tmp2 , 4
store i32 %tmp7 , i32* %2
store i32 0, i32* %7
%16 = sub i32 %tmp7 , %tmp17
%17 = add i32 %16, %23
%18 = inttoptr i32 %17 to i16*
store i16 0, i16* %18
store i32 %tmp8 , i32* %4
store i32 %tmp1 , i32* %3
%indvar.next = add i32 %indvar , 1
%exitcond = icmp eq i32 %indvar.next , 63
br i1 %exitcond , label %14, label %15

; <label >:19
%20 = getelementptr inbounds %0* %0, i32 0, i32 0
%21 = load i32* %12
store i32 %21, i32* %7
store i32 %9, i32* %8
store i32 %21, i32* %20
ret i32 0

; <label >:22
%indvar3 = phi i32 [%indvar.next4 , %14], [0, %1]
%tmp16 = shl i32 %indvar3 , 7
%tmp17 = add i32 %tmp16 , 34786
%23 = add i32 %tmp16 , 134769018
%tmp10 = shl i32 %indvar3 , 7
%tmp6 = add i32 %tmp10 , 34786
%tmp13 = add i32 %tmp10 , 34912
%tmp15 = sub i32 5, %indvar3
store i32 0, i32* %2
store i32 2, i32* %4
store i32 63, i32* %3
%24 = add i32 %tmp10 , 134769016
%25 = inttoptr i32 %24 to i16*
store i16 0, i16* %25, align 8
br label %15

}

Listing 5.5: block_zero with address translation moved out of loops.



Optimisations ..

for each MMU emulation call IC in loop L do

A← the address operand of IC

if TC(L) (trip count) is not available then

break

end if

if IC does not post-dominate loop header then

continue

end if

if A can be represented as an add recurrence by scalar evolution analysis
then

Abase ← expression for A at first iteration, inserted in loop header
T (Abase)← insert translation of Abase to host address in loop header,
conditional on TC(L) > 0
T (A)← T (A) + (A−Abase)
Replace IC with native read, write, etc. using T (A)

end if

end for

Algorithm 5.4: Moving address translations out of loops.

Benchmark Execution (s) Compile (s) Moved Translations Speed-up

mean σ mean σ

A 232.98 0.12 14.67 0.11 135 1.06
B 117.79 0.20 14.67 0.09 135 1.05
C 116.32 0.09 12.94 0.06 457 1.62
D 207.57 0.09 11.70 0.05 383 1.61

Table 5.6: Benchmark performance with address translation moved out of loops.

5.2.3 Combining Translation of Close Addresses

Listing 5.6 shows an example of a function that accesses two elements of a
struct. The LLVM IR for the function, shown in Listing 5.7, shows two calls
for MMU emulation: one for each write instruction. As with the array accesses
in Section 5.2.2, it would be desirable to only perform one address translation
when the addresses refer to the same structure.

The approach taken by this optimisation is to look for a set of memory
accesses with addresses A = {ai|ai = base + xi} where base is a common base,
and xi are constant offsets. The RASC ABI specifies that there must be at least
one memory page of unused address space between each memory mapping, so
if the maximum distance between any two addresses in A is less than this gap,
then they must all refer to the same memory mapping.

It is important that the optimisation stays clear of addresses to hardware
registers. Hardware register addresses are always constant values, and they are
not allowed to be passed as arguments to RASC functions. Base addresses can
be restricted to only be addresses that come from loading the value of a RASC



.. Combining Translation of Close Addresses

struct foo_t {
int a;
int b;

} foos [100];

void foo(struct foo_t *f)
{

int i;

f->a = 0;
f->b = 1;

}

<foo >:
mov r1 ,1
st r1 ,[r0 ,4]
mov r1 ,0
st r1 ,[r0 ,0]
jmp lr

Listing 5.6: The foo function as implemented in the RASC firmware.

define internal i32 @Func00005663(%0* noalias nocapture) {
%2 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 0
%3 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 1
%4 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 14
%5 = getelementptr inbounds %0* %0, i32 0, i32 0
%6 = load i32* %2
%7 = add i32 %6, 4
call void @emul_write32(i32 %7, i32 1, i8* null)
store i32 0, i32* %3
call void @emul_write32(i32 %6, i32 0, i8* null)
%8 = load i32* %4
store i32 %8, i32* %5
ret i32 0

}

Listing 5.7: LLVM IR generated for the foo function.



Optimisations ..

define internal i32 @Func00005663(%0* noalias nocapture) {
%2 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 0
%3 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 1
%4 = getelementptr inbounds %0* %0, i32 0, i32 1, i32 14
%5 = getelementptr inbounds %0* %0, i32 0, i32 0
%6 = load i32* %2
%7 = call i8* @emul_translate_addr(i32 %6, i32 4, i8* null)
%8 = ptrtoint i8* %7 to i32
%9 = add i32 %8, 4
%10 = inttoptr i32 %9 to i32*
store i32 1, i32* %10
store i32 0, i32* %3
%11 = bitcast i8* %7 to i32*
store i32 0, i32* %11
%12 = load i32* %4
store i32 %12, i32* %5
ret i32 0

}

Listing 5.8: LLVM IR generated for the foo function after optimisation.

register. But what if a constant address is stored in a register and then used
as base address of a memory access? Then the constant address will have been
constant-propagated by the GVN pass so this does not happen.

A dangerous situation occurs when a RASC function is represented by more
than one LLVM function object. This could happen because the firmware con-
tains a wait instruction, in which case there will be LLVM functions to emulate
the firmware before and after the wait. A constant may be stored in a register
in the first function, and loaded in the second. Global value numbering only
works within functions, so the value is not constant-propagated. Because of
this, combining translation of close addresses is only done on functions that are
considered “proper”, meaning that they correspond to whole RASC functions,
or at least the first part.

When inserting an address translation of the base address, it must be guar-
anteed that it will be used: inserting translation of an address that would not
be done otherwise would be a change in program behaviour. To ensure this,
the optimisation makes sure that at least one of the users of the base address
post-dominates the instruction defining the base address.

The algorithm for combining translation of close addresses is shown in Al-
gorithm 5.5. The code is shown in B.6. Note that the optimisation is iterated
as long as it has any effect on the code. MMU emulation calls that are replaced
with loads in one iteration may in turn be used as base addresses in a later
iteration. The extra iterations add little compilation time.

The effect of running the optimisation on the foo function above is shown in
Listing 5.8. Note how a single address translation has replaced the two previous
calls for MMU emulation.

Table 5.7 shows benchmark performance when run with this optimisation.
The α benchmarks receive the highest speed-up, as they apparently have the
most occurrences of the pattern targeted by this optimisation.

These three optimisations significantly reduce the number of calls for MMU
emulation. Table 5.8 shows the exact numbers for the benchmarks.



.. Combining Translation of Close Addresses

for each MMU emulation call IC in proper function F do

A← the address operand of IC

if A = add IL, C where IL is a load and C a constant then

if C ≤ threshold then

users(IL)← uses(IL) ∪ (IC , C)
end if

else if A is a load instruction then

users(A)← users(A) ∪ (IC , 0)
end if

end for

for each base address B in users do

S ← users(B)
if |S| = 1 then

continue

end if

if There is no (IC , C) ∈ S such that IC post-dominates B then

continue

end if

Normalise S so that ∃(IC , C) ∈ S such that C = 0
Insert translation of B to host address
for each (IC , C) ∈ S do

Replace IC by using translation of B and offset C

end for

end for

Algorithm 5.5: Combining translation of close addresses.

Benchmark Execution (s) Compile (s) Translations Speed-up

mean σ mean σ Replaced New

A 204.82 0.16 14.38 0.10 927 190 1.20
B 103.31 0.09 14.39 0.05 927 190 1.20
C 115.96 0.07 12.91 0.13 255 70 1.62
D 206.86 0.07 11.63 0.07 255 70 1.62

Table 5.7: Performance with combined translation of close addresses.

Benchmark emul_read32 emul_write32 emul_translate_addr

A 1,431 1,326 953
B 1,431 1,326 953
C 285 285 1,157
D 259 258 1,010

Table 5.8: MMU calls in benchmarks after optimisations.



Optimisations .

define void @f(%0* noalias) {
L0:

%p = getelementptr inbounds %0* %0, i32 0, i32 1, i32 3
br label %L1

L1:
%c = phi i32 [100, %L0], [%d, %L1]
%a = load i32* %p
%b = add i32 %a, 1
store i32 %b, i32* %p
%d = sub i32 %c, 1
%x = icmp eq i32 %d, 0
br i1 %x, label %L2, label %L1

L2:
ret void

}

Listing 5.9: Loop with accesses to loop-invariant addresses before LICM.

define void @f(%0* noalias) {
L0:

%p = getelementptr inbounds %0* %0, i32 0, i32 1, i32 3
%p.promoted = load i32* %p
br label %L1

L1:
%p.tmp.0 = phi i32 [%p.promoted , %L0], [%b, %L1]
%c = phi i32 [100, %L0], [%d, %L1]
%b = add i32 %p.tmp.0, 1
%d = sub i32 %c, 1
%x = icmp eq i32 %d, 0
br i1 %x, label %L2, label %L1

L2:
store i32 %b, i32* %p
ret void

}

Listing 5.10: Loop with accesses to loop-invariant addresses after LICM.

5.3 Loop-Invariant Code Motion

Loop-invariant code motion (LICM), sometimes called hoisting, is the process
of moving code that does not need to be in a loop out of it. For example, a store
instruction that writes to the same memory location (such as a register variable
in the state object), can be moved out of the loop because only the last store
is important. Similarly, a load instruction that reads from the same memory
location each loop iteration can be moved out. These loads and stores are not
dead, so they are not removed by dead load and store elimination. However,
they are frequently occurring, and moving them out of loops makes the loops
run faster.

This optimisation is already implemented in LLVM and thus easily turned
on in the emulator. The effects on code can be seen by comparing Listing 5.9
(before LICM), and Listing 5.10.

The effect of LICM on the benchmarks is shown in Table 5.9. It benefits the
β benchmarks and does not affect the α benchmarks much (it actually slows
them down a little for some reason). It is cheap in terms of compilation time,
and because of its benefit on the β benchmarks, it is kept.



. Changing Calling Convention

Benchmark Execution (s) Compile (s) Speed-up

mean σ mean σ

A 206.12 0.10 14.28 0.07 1.19
B 103.92 0.09 14.25 0.09 1.19
C 111.59 0.07 12.84 0.08 1.69
D 199.28 0.12 11.56 0.05 1.68

Table 5.9: Benchmarks after loop-invariant code motion.

5.4 Changing Calling Convention

A calling convention is a scheme for generating machine code that implements
function calls and returns. There are many ways to do this, and they differ
between hardware platforms and operating systems.

On Intel x86 processors, calling a function normally involves pushing the
function arguments on the stack, making the actual call (storing return address
on stack and setting program counter to the function’s location), and looking
for the return value in the eax register afterwards.

Here is an example from the native code generated by the JIT compiler:

0xb695f721: mov DWORD PTR [esp],esi

0xb695f724: call 0xb69ea040

0xb695f729: test eax,eax

0xb695f72b: jne 0xb695f770

As described in Section 4.3.2, function objects take a pointer to the state
variable as argument. In this example, that pointer is stored in the esi register,
and is moved to the stack which is pointed to by esp. Room has been made
on the stack earlier. After the call, a test is made to see if the return value, in
register eax, is non-zero.

LLVM allows for the use of different calling conventions. It provides a fast
calling convention which passes arguments in registers instead of on the stack,
thereby reducing memory accesses. As this does not follow the standard con-
vention, it can only be used internally: in functions that are defined within the
emulator and only called internally.

When using the fast calling convention, the example looks like this:

0xb695e5ba: call 0xb69e9048

0xb695e5bf: test eax,eax

0xb695e5c1: jne 0xb695e67c

The argument to the function was placed in ecx earlier, which is where
the called function looks for it. This is a very small optimisation. The code
generated with the default convention is already quite good, but this gives an
opportunity for the code generator to do an even better job.

Benchmark performance when running with this optimisation together with
the previous ones is shown in Table 5.10. The effect on the benchmarks is so
tiny that this optimisation cannot be considered valuable, and it is therefore
not used further.



Optimisations .

Benchmark Execution (s) Compile (s) Speed-up

mean σ mean σ

A 206.22 0.31 14.30 0.07 1.19
B 103.89 0.11 14.29 0.09 1.19
C 111.59 0.08 12.83 0.06 1.69
D 199.14 0.10 11.61 0.04 1.68

Table 5.10: Benchmarks with fast calling convention.

5.5 Nice Functions

Recall from Section 4.3.2 that generated functions return the value 1 when they
want to get out of emulation, and subsequently that all function calls must
be followed by checks of the return value. In many cases, these checks are
unnecessary as the function is nice and can never return 1. The checks imply
instructions for testing and branching, which can be removed if the call is to a
nice function.

This optimisation investigates whether a function is nice. If a function is
nice, calls of the function can be simplified: the return value check can be
removed. When a call has been simplified it is possible that the entire calling
function becomes nice, and so the niceness propagates in the call tree.

The optimisation is implemented in two places:

1. During function building, when making a call, the called function is looked
up in a table of nice functions. If the callee is in the table, no return value
check is inserted.

2. After a function is built, it is nicified. This means going through the
function, looking to see if a non-zero value is ever returned. If it is not,
the function is registered in the table of nice functions, calls to it are
simplified, and affected calling functions are nicified.

Benchmark performance when doing nice function optimisation together
with previous optimisations is shown in Table 5.11. As can be seen, the per-
formance is not affected much (the effect is even slightly negative). Simplifying
the call sites may seem like a nice idea in theory, but it does not seem to have
any practical effect on these benchmarks. This optimisation is not used further.

Benchmark Execution (s) Compile (s) Functions Speed-up

mean σ mean σ Nice Total

A 208.04 0.15 14.62 0.10 125 259 1.18
B 104.85 0.12 14.68 0.12 125 259 1.18
C 111.84 0.18 13.09 0.07 67 162 1.68
D 200.39 0.35 11.76 0.07 66 158 1.67

Table 5.11: Benchmarks with nice function optimisation.



. Function Inlining

5.6 Function Inlining

Function inlining is the process of replacing function call instructions with the
bodies of the called functions. This has two main advantages:

1. The removal of the call overhead. There is some work involved in making
a call, and it hurts instruction cache locality. If the called function is very
small, the overhead of calling it may be large compared to the execution
time of the function body.

2. Increased scope for optimisations. For example, if a function is called
inside a loop, inlining it may expose some loop-invariant variables which
can be moved out of the loop with LICM. Other optimisations, such as
dead load and store elimination, the MMU emulation optimisations, etc.,
all benefit: the wider their scope, the more they can do.

The main disadvantage of function inlining is code growth. Compiling more
code takes more time: both for optimisations and code generation. Executing
more code may also be slower, because of increased pressure on the processor’s
instruction cache. The inliner must take this into consideration when making
decisions about where to inline a function.

LLVM provides a pass for function inlining. The pass works on an entire
module and performs inlining where it sees fit. However, it is not suitable for
use in the emulator as the module there is built gradually: all functions are not
built at once, so inlining needs to be performed gradually, once every time a
new function is built. The utility functions that perform the inlining at a call
site can be reused, however.

Implementation of a custom inlining pass, suitable for running after a func-
tion is built, is shown in B.7. The pass first looks at all function calls made
within the function and decide if they should be inlined. Then, it looks at all
callers of the just built function, and decides if it should be inlined into them.

Three criteria are used to decide where to perform inline expansion of a
function call:

1. Callee size: if the called function is small, the cost of inlining it is small.

2. Leaf functions: if the called function is a leaf in the call graph (it does not
itself make any function calls), then it should have priority.

3. Function calls in loops: if a call is made in a loop, it is probably made
several times. Valuable optimisations such as LICM and moving address
translation out of loops may be made possible if the call is inlined.

When a newly built function is inlined into an already built and optimised
function, that function will be re-optimised. This adds some compilation time,
but not very much.

Function inlining often involves deleting the called function if all calls to it
are inlined. In the emulator, however, there is no way to know if a function may
be called in the future. Therefore, functions are never deleted by the inliner.

Benchmark performance and number of inlined functions is shown in Ta-
ble 5.12. As can be seen, the β benchmarks receive a small speed-up, and the α

benchmarks are not much affected. One might have hoped for a larger speed-up,
but at least the operation is not too expensive in terms of increased compilation
time.



Optimisations .

Benchmark Execution (s) Compile (s) Inlined Speed-up

mean σ mean σ

A 207.99 0.12 15.54 0.10 94 1.18
B 104.78 0.09 15.54 0.09 94 1.18
C 111.05 0.06 13.87 0.05 53 1.69
D 198.77 0.27 12.49 0.07 53 1.69

Table 5.12: Benchmarks with function inlining.

5.7 Loop Unrolling

Loop unrolling is the process of transforming a loop, which executes the same
code a number of iterations, into continuous code. One can think of it as a
number of the loop’s bodies being copied and laid out after each other. The
main idea is to give optimisation passes a wider scope to work with. LLVM
provides a pass to perform loop unrolling, ready to be used.

The effect of using loop unrolling together with previous optimisations on the
benchmarks is shown in Table 5.13. This optimisation provides a small speed-up
for the α benchmarks, but does not affect the β benchmarks very much, though
there are several unrolled loops. The small gain makes it doubtable whether
this optimisation is worth its cost.

Benchmark Execution (s) Compile (s) Unrolled Speed-up

mean σ mean σ Partly Fully

A 206.84 0.11 15.18 0.04 14 21 1.18
B 104.51 0.07 15.15 0.08 14 21 1.18
C 110.98 0.09 14.00 0.07 53 45 1.69
D 198.63 0.06 12.65 0.03 47 37 1.69

Table 5.13: Benchmarks with function loop unrolling.

5.8 Register Allocation and Code Generation

LLVM provides a couple of different register allocation implementations. The
one used by the emulator is the default allocator known as the local register al-
locator. There is also a linear scan register allocator, which is supposedly faster,
and the partitioned boolean quadratic programming (PBQP) register allocator,
which is more heavyweight. None of these make any significant difference to the
emulator’s performance, so the default is determined to be a good choice.

The code generator, that is the process that finally translates LLVM IR to
machine code, has different optimisation levels. The emulator has been using the
default level, but there are also levels for none, less, or aggressive optimisations.
Going for the aggressive optimisations does not make the code emulator go any
faster. Using the low-effort levels “none” and “less” makes compilation faster,



. Register Allocation and Code Generation

but not as much as it makes execution slower, so they are no good either. The
emulator continues to use the default level.



Chapter 6

Conclusions

Figure 6.1 illustrates the benchmarks’ performance before and after optimisa-
tion. As can be seen, there was some performance to be gained by applying
compiler optimisations. Especially the β benchmarks benefit, as their execution
is dominated by RASC emulation, with the D benchmark’s running time going
from more than five minutes to less than four. As illustrated by the figure,
the increase in compilation time is small compared to the decrease in execution
time.

One might have hoped for even better speed-ups as not many optimisations
were turned on in the baseline. But one must remember that the firmware is
already optimised once. The optimisations that prove to be most useful, that is
dead load and store elimination and reduction of MMU emulation, are mostly
cleaning up redundancy introduced by the JIT-compiler. Trying to perform
optimisations such as function inlining and loop unrolling, that are typically
not done on the RASC firmware because of the target’s small caches, has not
really been successful. There may still be some performance to gain there, but
it requires more careful implementation and tuning.

Some optimisations are not beneficial for all benchmarks. This thesis pro-
poses that the optimisations be added to the emulator as options that can be
activated by command-line switches. Optimisations such as dead load and store
elimination and MMU emulation reduction should go in at a default optimisa-
tion level, whereas loop-invariant code motion, inlining and unrolling should be
left as separate flags which can be turned on by the expert user.

All in all, an execution time speed-up of about 70 % for RASC-dominated
benchmarks, and 20 % for the others should make the users of the emulator
happy.



Conclusions 

0

50

100

150

200

250

300

350

A Aopt B Bopt C Copt D Dopt

T
im

e
(s

)

Compile
HW
Exec

Figure 6.1: Benchmarks before and after optimisation.



Appendix A

Performance Measurements

The following tables present measurements of execution and compilation time
for the benchmarks using different optimisations. Each benchmark has been
executed ten times, and the means and standard deviations are presented. The
speed-up column refers to speed-up of execution time.



A
p
p
e
n
d
ix

A

§ 5.1.2 § 5.1.3 § 5.2.1 § 5.2.2 § 5.2.3 § 5.3 § 5.4 § 5.5 § 5.6 § 5.7 Exec (s) Compile (s) Instr Speed-up

mean σ mean σ

246.13 0.41 12.25 0.06 78,896 1.00
• 244.88 0.46 13.72 0.08 60,222 1.01
• • 244.14 0.22 14.60 0.09 57,877 1.01
• • • 240.02 0.21 14.34 0.07 57,489 1.03
• • • • 232.98 0.12 14.67 0.11 58,339 1.06
• • • • • 204.82 0.16 14.38 0.10 59,476 1.20
• • • • • • 206.12 0.10 14.28 0.07 59,611 1.19
• • • • • • • 206.22 0.31 14.30 0.07 59,611 1.19
• • • • • • • 208.04 0.15 14.62 0.10 58,752 1.18
• • • • • • • 207.99 0.12 15.54 0.10 61,256 1.18
• • • • • • • • 206.84 0.11 15.18 0.04 61,899 1.19

Table A.1: Benchmark A executed 10 times with different optimisations: global value numbering (§ 5.1.2), improved dead-store elimination
(§ 5.1.3), compile-time constant address translation (§ 5.2.1), moving address translation out of loops (§ 5.2.2), combining translation of
close addresses (§ 5.2.3), loop-invariant code motion (§ 5.3), fast calling convention (§ 5.4), nice functions (§ 5.5), function inlining (§ 5.6)
and loop unrolling (§ 5.7) .




P
e
r
f
o
r
m
a
n
c
e

M
e
a
s
u
r
e
m
e
n
t
s

§ 5.1.2 § 5.1.3 § 5.2.1 § 5.2.2 § 5.2.3 § 5.3 § 5.4 § 5.5 § 5.6 § 5.7 Exec (s) Compile (s) Instr Speed-up

mean σ mean σ

123.66 0.17 12.28 0.08 78,896 1.00
• 123.43 0.10 13.75 0.07 60,222 1.00
• • 123.37 0.27 14.59 0.11 57,877 1.00
• • • 121.17 0.18 14.37 0.09 57,489 1.02
• • • • 117.79 0.20 14.67 0.09 58,339 1.05
• • • • • 103.31 0.09 14.39 0.05 59,476 1.20
• • • • • • 103.92 0.09 14.25 0.09 59,611 1.19
• • • • • • • 103.89 0.11 14.29 0.09 59,611 1.19
• • • • • • • 104.85 0.12 14.68 0.12 58,752 1.18
• • • • • • • 104.78 0.09 15.54 0.09 61,256 1.18
• • • • • • • • 104.51 0.07 15.15 0.08 61,900 1.18

Table A.2: Benchmark B executed 10 times with different optimisations: global value numbering (§ 5.1.2), improved dead-store elimination
(§ 5.1.3), compile-time constant address translation (§ 5.2.1), moving address translation out of loops (§ 5.2.2), combining translation of
close addresses (§ 5.2.3), loop-invariant code motion (§ 5.3), fast calling convention (§ 5.4), nice functions (§ 5.5), function inlining (§ 5.6)
and loop unrolling (§ 5.7) .




A
p
p
e
n
d
ix

A

§ 5.1.2 § 5.1.3 § 5.2.1 § 5.2.2 § 5.2.3 § 5.3 § 5.4 § 5.5 § 5.6 § 5.7 Exec (s) Compile (s) Instr Speed-up

mean σ mean σ

188.06 0.11 11.07 0.08 63,001 1.00
• 181.33 0.08 12.45 0.04 48,974 1.04
• • 171.88 0.08 13.17 0.07 46,651 1.09
• • • 133.17 0.26 12.62 0.07 45,719 1.41
• • • • 116.32 0.09 12.94 0.06 46,613 1.62
• • • • • 115.96 0.07 12.91 0.13 46,872 1.62
• • • • • • 111.59 0.07 12.84 0.08 46,784 1.69
• • • • • • • 111.59 0.08 12.83 0.06 46,784 1.69
• • • • • • • 111.84 0.18 13.09 0.07 46,454 1.68
• • • • • • • 111.05 0.06 13.87 0.05 47,748 1.69
• • • • • • • • 110.98 0.09 14.00 0.07 49,413 1.69

Table A.3: Benchmark C executed 10 times with different optimisations: global value numbering (§ 5.1.2), improved dead-store elimination
(§ 5.1.3), compile-time constant address translation (§ 5.2.1), moving address translation out of loops (§ 5.2.2), combining translation of
close addresses (§ 5.2.3), loop-invariant code motion (§ 5.3), fast calling convention (§ 5.4), nice functions (§ 5.5), function inlining (§ 5.6)
and loop unrolling (§ 5.7) .




P
e
r
f
o
r
m
a
n
c
e

M
e
a
s
u
r
e
m
e
n
t
s

§ 5.1.2 § 5.1.3 § 5.2.1 § 5.2.2 § 5.2.3 § 5.3 § 5.4 § 5.5 § 5.6 § 5.7 Exec (s) Compile (s) Instr Speed-up

mean σ mean σ

335.11 0.13 9.99 0.06 57,033 1.00
• 321.24 0.09 11.17 0.05 44,430 1.04
• • 302.47 0.11 11.84 0.06 42,362 1.11
• • • 233.70 0.39 11.38 0.09 41,581 1.43
• • • • 207.57 0.09 11.70 0.05 42,341 1.61
• • • • • 206.86 0.07 11.63 0.07 42,600 1.62
• • • • • • 199.28 0.12 11.56 0.05 42,530 1.68
• • • • • • • 199.14 0.10 11.61 0.04 42,530 1.68
• • • • • • • 200.39 0.35 11.76 0.07 42,200 1.67
• • • • • • • 198.77 0.27 12.49 0.07 43,494 1.69
• • • • • • • • 198.63 0.06 12.65 0.03 44,991 1.69

Table A.4: Benchmark D executed 10 times with different optimisations: global value numbering (§ 5.1.2), improved dead-store elimination
(§ 5.1.3), compile-time constant address translation (§ 5.2.1), moving address translation out of loops (§ 5.2.2), combining translation of
close addresses (§ 5.2.3), loop-invariant code motion (§ 5.3), fast calling convention (§ 5.4), nice functions (§ 5.5), function inlining (§ 5.6)
and loop unrolling (§ 5.7) .




Appendix B

Code Listings

B.1 Null Pointers Do Not Alias

--- llvm/trunk/lib/Analysis /BasicAliasAnalysis.cpp (original)
+++ llvm/trunk/lib/Analysis /BasicAliasAnalysis.cpp Mon Nov 9 13:29:11 2009
@@ -646,6 +646 ,15 @@

const Value *O1 = V1->getUnderlyingObject();
const Value *O2 = V2->getUnderlyingObject();

+ // Null values in the default address space don ’t point to any object, they
+ // don ’t alias any other pointer .
+ if (const ConstantPointerNull *CPN = dyn_cast <ConstantPointerNull>(O1))
+ if (CPN->getType ()->getAddressSpace() == 0)
+ return NoAlias ;
+ if (const ConstantPointerNull *CPN = dyn_cast <ConstantPointerNull>(O2))
+ if (CPN->getType ()->getAddressSpace() == 0)
+ return NoAlias ;
+

if (O1 != O2) {
// If V1/V2 point to two different objects we know that we have no alias.
if (isIdentifiedObject(O1) && isIdentifiedObject(O2))

B.2 Constant Pointers and Aliasing

--- llvm/trunk/lib/Analysis /BasicAliasAnalysis.cpp (original)
+++ llvm/trunk/lib/Analysis /BasicAliasAnalysis.cpp Sat Nov 14 00:15:14 2009
@@ -659,7 +659 ,12 @@

// If V1/V2 point to two different objects we know that we have no alias.
if (isIdentifiedObject(O1) && isIdentifiedObject(O2))

return NoAlias ;
-
+
+ // Constant pointers can ’t alias non-const isIdentifiedObject objects.
+ if ((isa<Constant >(O1) && isIdentifiedObject(O2) && !isa <Constant >(O2))||
+ (isa<Constant >(O2) && isIdentifiedObject(O1) && !isa <Constant >(O1)))
+ return NoAlias ;
+

// Arguments can’t alias with local allocations or noalias calls.
if ((isa<Argument >(O1) && (isa <AllocaInst >(O2) || isNoAliasCall(O2))) ||

(isa<Argument >(O2) && (isa <AllocaInst >(O1) || isNoAliasCall(O1))))



Appendix B

B.3 Number of Uses of Store Instructions

void DSE:: checkStoreUses(Function &F) {
MemoryDependenceAnalysis &MD = getAnalysis <MemoryDependenceAnalysis >();

for (Function ::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();

BI != BE; ++BI) {
Instruction *Inst = BI;

if (isa<LoadInst >(Inst) || isa<CallInst >(Inst)) {
// Potential user of stores
MemDepResult InstDep = MD.getDependency(Inst);

if (InstDep .isNonLocal()) {
SmallVector <MemoryDependenceAnalysis::NonLocalDepEntry , 64> Deps;

if (isa <LoadInst >(Inst)) {
Value *Addr = Inst ->getOperand(0);
MD.getNonLocalPointerDependency(Addr , true , FI, Deps);

} else if (CallInst *CI = dyn_cast <CallInst >(Inst)) {
CallSite CS = CallSite ::get(CI);
for (unsigned i = 0, e = CS.arg_size (); i != e; ++i) {

Value *V = CS.getArgument(i);

if (isa <PointerType >(V->getType ())) {
SmallVector <MemoryDependenceAnalysis:: NonLocalDepEntry ,64> R;
MD.getNonLocalPointerDependency(V, true , FI, R);
Deps.append(R.begin(), R.end());

}
}

}

for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
MemDepResult &DepInfo = Deps[i].second;
Instruction *I = DepInfo .getInst ();

if (isa <StoreInst >(I))
++nbrStoreUses[I];

}
} else {

// Local dependency
Instruction *I = InstDep .getInst ();
if (isa <StoreInst >(I))

++ nbrStoreUses[I];
}

}
}

}
}

B.4 DSE With Non-Local Dependencies

if (InstDep .isNonLocal()) {
StoreInst *SI = dyn_cast <StoreInst >(Inst);
if (!SI)

continue ;

SmallVector <MemoryDependenceAnalysis::NonLocalDepEntry , 64> Deps;
MD.getNonLocalPointerDependency(Inst ->getOperand(1), false , &BB, Deps);

if (Deps.size() == 1 && Deps[0]. second.isClobber())
continue ; // Phi translation failure

if (Deps.size() == 1 && Deps[0]. second.isDef()) {
MemDepResult& DepInfo = Deps[0]. second;

if (LoadInst *DepLoad = dyn_cast <LoadInst >(DepInfo .getInst ())) {
if (SI->getPointerOperand() == DepLoad ->getPointerOperand() &&



Moving Address Translation Out of Loops

SI->getOperand(0) == DepLoad) {
WeakVH NextInst (BBI);
DeleteDeadInstruction(SI);

if (NextInst == 0)
BBI = BB.begin();

else if (BBI != BB.begin ())
--BBI;

NumFastStores++;
MadeChange = true;
continue ;

}
}

}

for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
BasicBlock *DepBB = Deps[i].first;
MemDepResult& DepInfo = Deps[i].second;

if (DepInfo .isClobber())
continue ;

if (!DepInfo .isDef ())
continue ;

Instruction *DepInst = DepInfo .getInst ();
if (StoreInst *DepStore = dyn_cast <StoreInst >(DepInst)) {

if (nbrStoreUses[DepStore] != 0)
continue ;

if (DepStore ->isVolatile())
continue ;

if (PDT.properlyDominates(&BB, DepBB)) {
if (isStoreAtLeastAsWideAs(Inst , DepStore , TD)) {

// DepStore is a dead store
DeleteDeadInstruction(DepStore);
NumFastStores++;
MadeChange = true;

BBI = Inst;
if (BBI != BB.begin())

--BBI;
}

}
}

}
continue ;

}

B.5 Moving Address Translation Out of Loops

#define DEBUG_TYPE "MemLoop "

#include "llvm/Pass.h"
#include "llvm/Analysis /LoopPass .h"
#include "llvm/Analysis /ScalarEvolution.h"
#include "llvm/Analysis /ScalarEvolutionExpander.h"
#include "llvm/Analysis /ScalarEvolutionExpressions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support /CallSite .h"
#include "llvm/Support /IRBuilder.h"
#include "llvm/Analysis /PostDominators.h"

#include "rasc.h"

using namespace llvm;

namespace {



Appendix B

class MemLoopPass : public LoopPass {
public:

static char ID;

MemLoopPass();
bool runOnLoop(Loop* L, LPPassManager &LPM);

private :
ScalarEvolution *SE;
DominatorTree *DT;
PostDominatorTree *PDT;
Function *translateIfLoop;

virtual void getAnalysisUsage(AnalysisUsage& AU) const {
AU.addRequired <ScalarEvolution >();
AU.addRequired <DominatorTree >();
AU.addRequired <PostDominatorTree >();

}

bool processCall(Loop *L, CallInst *CI);

void replaceTranslate(Loop *L, Value *TC, CallInst *CI, Value *Addr ,
Value *Base);

void replaceRead(Loop *L, Value *TC, CallInst *CI, Value *Addr ,
Value *Base);

void replaceWrite(Loop *L, Value *TC, CallInst *CI, Value *Addr ,
Value *Base , Value *WriteVal);

Value *newAddrTranslation(Loop *L, Value *TC, CallInst *CI,
Value *Addr , Value *Base);

void findInsertPoint(BasicBlock *&Block , BasicBlock:: iterator &Pos ,
Value *TC, Value *Base , Loop *L);

};
}

LoopPass *createMemLoopPass() {
return new MemLoopPass();

}

char MemLoopPass::ID = 0;
static RegisterPass <MemLoopPass >
X(" MemLoopPass", "Move address translation out of loops ");

STATISTIC(NumMemLoop , "Addr translations moved out of loops ");
STATISTIC(NumTranslate , "emul_translate_addr moved out of loops ");
STATISTIC(NumTranslateIfLoop, "emul_translate_addr_if_loop moved ");
STATISTIC(NumRead , "emul_read32 moved out of loops");
STATISTIC(NumWrite , "emul_write32 moved out of loops ");

// Convenience variables
namespace {

const Type *int8Ty = Type:: getInt8Ty(getGlobalContext());
const Type *int32Ty = Type:: getInt32Ty(getGlobalContext());
const PointerType *VoidPTy = PointerType::getUnqual(int8Ty);
Value *const_0 = llvm:: ConstantInt::get(int32Ty , 0);
Value *const_1 = llvm:: ConstantInt::get(int32Ty , 1);
Value *const_4 = llvm:: ConstantInt::get(int32Ty , 4);

}

// External variables that we need
extern Function *emul_translate_addrV;
extern Module *TheModule;

/*
Create function that performs address translation when the
loop count is != 0, and returns garbage otherwise (garbage
which should not be used , as the loop should never run).

*/
static Function *createTranslateIfLoop() {



Moving Address Translation Out of Loops

std::vector <const llvm::Type*> tmp_args ;
tmp_args .push_back(int32Ty); // addr
tmp_args .push_back(int32Ty); // trip count

FunctionType *fty = FunctionType::get(VoidPTy , tmp_args , false);

Function *f = Function ::Create(fty, Function :: InternalLinkage ,
"emul_translate_addr_if_loop", TheModule);

Function :: arg_iterator args = f->arg_begin();
Argument *Addr = args++;
Argument *Count = args++;

BasicBlock *bbStart = BasicBlock::Create(getGlobalContext(), "", f);
BasicBlock *bbZero = BasicBlock::Create(getGlobalContext(), "", f);
BasicBlock *bbNotZero = BasicBlock::Create(getGlobalContext(), "", f);

IRBuilder <false > Builder (getGlobalContext());

Builder .SetInsertPoint(bbStart);
Value *Test = Builder .CreateICmpEQ(Count , const_0);
Builder .CreateCondBr(Test , bbZero , bbNotZero);

Builder .SetInsertPoint(bbZero);
Builder .CreateRet(Builder .CreateIntToPtr(

ConstantInt::get(int32Ty , 0xdeadbeef), VoidPTy));

Builder .SetInsertPoint(bbNotZero);
Value *Res = Builder .CreateCall3(

emul_translate_addrV,
Addr ,
const_4 ,
ConstantPointerNull::get(VoidPTy));

Builder .CreateRet(Res);

return f;
}

MemLoopPass:: MemLoopPass() : LoopPass (&ID) {
translateIfLoop = createTranslateIfLoop();

}

bool MemLoopPass:: runOnLoop(Loop *L, LPPassManager &LPM) {
bool Changed = false;

SE = &getAnalysis <ScalarEvolution >();
DT = &getAnalysis <DominatorTree >();
PDT = &getAnalysis <PostDominatorTree >();

for (Loop:: block_iterator LI = L->block_begin(), LE = L->block_end();
LI != LE; ++LI) {

BasicBlock *BB = *LI;

for (BasicBlock:: iterator BI = BB->begin(), BE = BB->end(), BINext;
BI != BE; BI = BINext) {

/* Remember next instr , we might erase the current one */
BINext = BI; ++BINext;

if (CallInst *CI = dyn_cast <CallInst >(BI)) {
Function *Callee = CI->getCalledFunction();

if (Callee ->getName ().front() != ’e’)
continue ;

Changed |= processCall(L, CI);
}

}
}

return Changed ;
}



Appendix B

bool MemLoopPass::processCall(Loop *L, CallInst *CI) {
enum {

TRANS ,
TRANS_IF_LOOP ,
READ ,
WRITE

} Type;

Function *Callee = CI->getCalledFunction();
const StringRef &FuncName = Callee->getName ();

if (FuncName .equals (" emul_translate_addr"))
Type = TRANS;

else if (FuncName .equals (" emul_translate_addr_if_loop"))
Type = TRANS_IF_LOOP;

else if (FuncName .equals (" emul_read32"))
Type = READ;

else if (FuncName .equals (" emul_write32"))
Type = WRITE;

else
return false;

// Call has to post -dominate loop header.
if (!PDT->dominates(CI->getParent(), L->getHeader()))

return false;

Value *TC = L->getTripCount();
if (TC == NULL) {

// We have do be able to determine trip count to move anything safely
return false;

}

CallSite CS = CallSite ::get(CI);
Value *Addr = CS.getArgument(0); /* Addr to operate on is always arg 0 */

const SCEV *AddrSCEV = SE->getSCEV(Addr);
if (const SCEVAddRecExpr *ARE = dyn_cast <SCEVAddRecExpr >(AddrSCEV)) {

/* Our analysis is based on the Addr value being on this form */

const SCEV *Start = ARE->getStart ();

SCEVExpander Expander (*SE);
Value *Base = Expander .expandCodeFor(Start , int32Ty ,

L->getHeader()->begin ());

switch (Type) {
case TRANS:

replaceTranslate(L, TC, CI, Addr , Base);
++NumTranslate;
++NumMemLoop;
return true;

case TRANS_IF_LOOP:
/* We can only translate if the OldTC is known not zero */
if (const SCEV *OldTC = SE->getSCEV (CS.getArgument(1))) {

if (SE->isKnownNonZero(OldTC)) {
replaceTranslate(L, TC, CI, Addr , Base);
++ NumTranslateIfLoop;
++ NumMemLoop;
return true;

}
}
return false;

case READ:
replaceRead(L, TC, CI, Addr , Base);
++NumRead ;
++NumMemLoop;
return true;

case WRITE:
replaceWrite(L, TC, CI, Addr , Base , CS.getArgument(1));
++NumWrite ;
++NumMemLoop;
return true;

default :
assert (0 && "Unreachable switch case reached ");



Moving Address Translation Out of Loops

break;
}

}

return false;
}

void MemLoopPass:: replaceTranslate(Loop *L, Value *TC, CallInst *CI,
Value *Addr , Value *Base) {

Value *A = newAddrTranslation(L, TC, CI, Addr , Base);

CI->replaceAllUsesWith(A);
CI->eraseFromParent();

}

void MemLoopPass:: replaceRead(Loop *L, Value *TC, CallInst *CI,
Value *Addr , Value *Base) {

Value *A = newAddrTranslation(L, TC, CI, Addr , Base);

IRBuilder <false > Builder (getGlobalContext());
Builder .SetInsertPoint(CI->getParent(), CI);

Value *AA = Builder .CreatePointerCast(A,PointerType::getUnqual(int32Ty));
Value *Load = Builder .CreateLoad(AA);

CI->replaceAllUsesWith(Load);
CI->eraseFromParent();

}

void MemLoopPass:: replaceWrite(Loop *L, Value *TC, CallInst *CI,
Value *Addr , Value *Base , Value *WriteVal) {

Value *A = newAddrTranslation(L, TC, CI, Addr , Base);

IRBuilder <false > Builder (getGlobalContext());
Builder .SetInsertPoint(CI->getParent(), CI);

Value *AA = Builder .CreatePointerCast(A,PointerType::getUnqual(int32Ty));
Builder .CreateStore(WriteVal , AA);

CI->eraseFromParent();
}

Value *MemLoopPass:: newAddrTranslation(Loop *L, Value *TC, CallInst *CI,
Value *Addr , Value *Base)

{
IRBuilder <false > Builder (getGlobalContext());

BasicBlock *TargetBlock;
BasicBlock:: iterator TargetPos;

findInsertPoint(TargetBlock , TargetPos , TC, Base , L);
Builder .SetInsertPoint(TargetBlock , TargetPos);

Value *BasePtr ;
if (isa <ConstantInt >(Base)) {

ConstantInt *C = dyn_cast <ConstantInt >(Base);

BasePtr = Builder .CreateIntToPtr(ConstantInt::get(
int32Ty ,
(uint32_t)emul_translate_addr(

C->getZExtValue(),
4,
NULL)),

VoidPTy);
} else {

BasePtr = Builder .CreateCall2(
translateIfLoop ,
Base ,
Builder .CreateTrunc(TC, int32Ty));



Appendix B

}

Value *BaseVal = Builder .CreatePtrToInt(BasePtr , int32Ty);

Builder .SetInsertPoint(CI->getParent(), CI);
Value *Offset = Builder .CreateSub(Addr , Base);
Value *Sum = Builder .CreateAdd(Offset , BaseVal);
Value *NewAddr = Builder .CreateIntToPtr(Sum , VoidPTy);

return NewAddr ;
}

/*
Find an insert point which is dominated by both TC and Base.

*/
void MemLoopPass::findInsertPoint(BasicBlock *&Block ,

BasicBlock::iterator &Pos, Value *TC, Value *Base , Loop *L) {

Instruction *BaseInst , *TCInst;

if ((BaseInst = dyn_cast <Instruction >(Base)) &&
(TCInst = dyn_cast <Instruction >(TC))) {

if (DT ->dominates(BaseInst , TCInst)) {
// Insert after trip count
Block = TCInst ->getParent();
Pos = TCInst;
++Pos;

} else if (DT->dominates(TCInst , BaseInst)) {
// Insert after base
Block = BaseInst ->getParent();
Pos = BaseInst ;
++Pos;

} else if (isa <PHINode >(TCInst) && isa <PHINode >(BaseInst)
&& TCInst ->getParent() == BaseInst ->getParent()) {

// Phi nodes don’t have dominance relations in the same block.
// Just pick one as insert point , we’ll insert after the phi
// nodes in the block anyway.
Block = TCInst ->getParent();
Pos = TCInst;
++Pos;

} else {
assert (0 && "TCInst and BaseInst not on the same path");

}
} else if ((BaseInst = dyn_cast <Instruction >(Base))) {

// Insert after base
Block = BaseInst ->getParent();
Pos = BaseInst ;
++Pos;

} else if ((TCInst = dyn_cast <Instruction >(TC))) {
// Insert after trip count
Block = TCInst ->getParent();
Pos = TCInst;
++Pos;

} else {
// Just put it somewhere in the loop header
Block = L->getHeader();
Pos = Block ->begin ();

}

// Make sure we don ’t insert among phi nodes
while (Pos != Block ->end() && isa<PHINode >(Pos)) ++Pos;

}

B.6 Combining Translation of Close Addresses

#define DEBUG_TYPE "MergeAddrTrans"

#include "llvm/Pass.h"
#include "llvm/BasicBlock.h"



Combining Translation of Close Addresses

#include "llvm/Instructions.h"
#include "llvm/Support /CallSite .h"
#include "llvm/Function .h"
#include "llvm/Support /raw_ostream.h"
#include "llvm/Support /IRBuilder.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis /PostDominators.h"

#include <vector >
#include <map>
#include <utility >
#include <set>

using namespace llvm;

namespace {
class MergeCloseAddr : public FunctionPass {
public:

static char ID;

MergeCloseAddr() : FunctionPass(&ID) {};
bool runOnFunction(Function &F);

private :
virtual void getAnalysisUsage(AnalysisUsage& AU) const {

AU.addRequired <PostDominatorTree >();
AU.addPreserved <PostDominatorTree >();

}

typedef std::vector <std::pair <CallInst *, int > > UserList ;
typedef std::map <Instruction*, UserList > UseMap;

void processBasicBlock(BasicBlock &BB);
void processCall(CallInst *CI);
bool processUserLists();
bool checkPostDominance(Instruction *Base , UserList & Users);
Instruction *normaliseOffsets(Instruction *Base , UserList &Users);
void transformUsers(Instruction *Base , const UserList &users);
Value* insertTranslation(Instruction *Base , const UserList &users);

void replaceRead(CallInst *Call , Value *BaseVal , int offset);
void replaceWrite(CallInst *Call , Value *BaseVal , int offset);
void replaceTrans(CallInst *Call , Value *BaseVal , int offset);

void removeInst(Instruction *inst);

UseMap useMap;

enum { OFFSET_LIMIT = 512 };
};

}

FunctionPass *createMergeCloseAddrPass() {
return new MergeCloseAddr();

}

char MergeCloseAddr::ID = 0;
static RegisterPass <MergeCloseAddr >
X("MergeAddrTrans", "Merge translation of close memory addresses");

STATISTIC(InsertedTranslations, "Inserted translations");
STATISTIC(ReplacedCalls , "Replaced calls ");
STATISTIC(NonSecureBases , "Non post -dominated bases ");
STATISTIC(Removed , "Removed instructions");

// Convenience variables
namespace {

const Type *int8Ty = Type::getInt8Ty(getGlobalContext());
const Type *int32Ty = Type::getInt32Ty(getGlobalContext());
const PointerType *VoidPTy = PointerType:: getUnqual(int8Ty);
Value *const_0 = ConstantInt::get(int32Ty , 0);
Value *const_1 = ConstantInt::get(int32Ty , 1);
Value *const_4 = llvm::ConstantInt::get(int32Ty , 4);
Value *const_null = ConstantPointerNull::get(VoidPTy);



Appendix B

}

// External vars that we need
extern Function *emul_translate_addrV;
extern std::set <Function *> proper_functions;

bool MergeCloseAddr::runOnFunction(Function & F) {
if (proper_functions.find(&F) == proper_functions.end())

return false;

bool Changed = false;
bool LocalChanged;

do {
LocalChanged = false;
useMap .clear();

for (Function ::iterator I = F.begin(), E = F.end(); I != E; ++I)
processBasicBlock(*I);

LocalChanged = processUserLists();
Changed |= LocalChanged;

} while (LocalChanged);

return Changed ;
}

void MergeCloseAddr:: processBasicBlock(BasicBlock &BB) {
for (BasicBlock::iterator BI=BB.begin(), BE=BB.end(); BI != BE; ++BI) {

Instruction *I = BI;

if (CallInst *CI = dyn_cast <CallInst >(I)) {
Function *Callee = CI->getCalledFunction();
const StringRef& FuncName = Callee ->getName ();

if (FuncName .equals (" emul_read32") ||
FuncName .equals (" emul_write32") ||
FuncName .equals (" emul_translate_addr")) {

processCall(CI);
}

}
}

}

void MergeCloseAddr::processCall(CallInst *CI) {
CallSite CS = CallSite ::get(CI);

Value *Addr = CS.getArgument(0);

if (BinaryOperator *BinOp = dyn_cast <BinaryOperator >(Addr)) {
if (BinOp ->getOpcode() == Instruction::Add) {

Value *OpA = BinOp ->getOperand(0);
Value *OpB = BinOp ->getOperand(1);

if (Instruction *I = dyn_cast <Instruction >(OpA)) {
if (!isa <LoadInst >(I))

return;

if (ConstantInt *C = dyn_cast <ConstantInt >(OpB)) {
int offset = C->getSExtValue();
Instruction *Base = I;

if (offset <= OFFSET_LIMIT)
useMap[Base]. push_back(std::make_pair(CI , offset));

}
}

}
} else if (LoadInst *LI = dyn_cast <LoadInst >(Addr)) {

// If we use a load directly , then offset is zero
useMap [LI].push_back(std:: make_pair(CI, 0));

}
}



Combining Translation of Close Addresses

bool MergeCloseAddr:: processUserLists() {
bool Changed = false;

for (UseMap :: iterator I=useMap.begin(), IE=useMap.end(); I!=IE; ++I) {
UserList & userList = I->second;
Instruction *Base = I->first;

if (userList .size() == 1)
continue ;

if (checkPostDominance(Base , userList)) {
Instruction *NewBase = normaliseOffsets(Base , userList);
transformUsers(NewBase , userList);
Changed = true;

}
}

return Changed ;
}

bool MergeCloseAddr:: checkPostDominance(Instruction *Base , UserList & Users) {
// Check if at least one of the users post -dominates base.

PostDominatorTree& PDT = getAnalysis <PostDominatorTree >();

for (size_t i = 0, e = Users.size(); i != e; ++i) {
Instruction *Inst = Users[i].first;

BasicBlock *bbInst = Inst ->getParent();
BasicBlock *bbBase = Base ->getParent();

if (bbInst == bbBase)
return true; // Inst uses Base , so Inst most post -dominate

if (PDT.properlyDominates(bbInst , bbBase))
return true;

}

++NonSecureBases;
return false;

}

Instruction *MergeCloseAddr::normaliseOffsets(Instruction *Base ,
UserList &Users) {

// Normalise so that at least one of the users have 0 offset

int minOffset = OFFSET_LIMIT + 1;
for (size_t i = 0, e = Users.size(); i != e; ++i) {

int offset = Users[i].second;
assert(offset <= OFFSET_LIMIT);

minOffset = offset < minOffset ? offset : minOffset;
}

if (minOffset == 0)
return Base;

int diff = minOffset;
IRBuilder <false > Builder (getGlobalContext());
BasicBlock:: iterator InsertPoint;
InsertPoint = Base;
++InsertPoint;
Builder .SetInsertPoint(Base ->getParent(), InsertPoint);

Value *b = Builder .CreateAdd(Base , ConstantInt::get(int32Ty , diff));
assert(isa<Instruction >(b));

for (size_t i = 0, e = Users.size(); i != e; ++i)
Users[i].second -= diff;

return dyn_cast <Instruction >(b);
}

void MergeCloseAddr:: transformUsers(Instruction *Base ,



Appendix B

const UserList &users) {
// Insert a translation of the base address , and let all users use
// that together with an offset

Value *BaseVal = insertTranslation(Base , users);
++ InsertedTranslations;

for (size_t i = 0, e = users.size(); i != e; ++i) {
CallInst *Call = users[i].first;
int offset = users[i].second;

const StringRef& FuncName = Call ->getCalledFunction()->getName ();
if (FuncName .equals (" emul_read32")) {

replaceRead(Call , BaseVal , offset);
} else if (FuncName .equals (" emul_write32")) {

replaceWrite(Call , BaseVal , offset);
} else if (FuncName .equals (" emul_translate_addr")) {

replaceTrans(Call , BaseVal , offset);
} else {

assert (0 && "Not reached ");
}

++ ReplacedCalls;
}

}

Value* MergeCloseAddr:: insertTranslation(Instruction *Base ,
const UserList & users) {

// Insert a translation operation which translates Base
// address into a host address

IRBuilder <false > Builder (getGlobalContext());
BasicBlock::iterator InsertPoint = Base;
++ InsertPoint;
Builder .SetInsertPoint(Base ->getParent(), InsertPoint);

Value *p = Builder .CreateCall3(
emul_translate_addrV,
Base ,
const_4 ,
const_null);

Value *v = Builder .CreatePtrToInt(p, int32Ty);
return v;

}

void MergeCloseAddr::replaceRead(CallInst *Call ,Value *BaseVal ,int offset){
IRBuilder <false > Builder (getGlobalContext());
Builder .SetInsertPoint(Call ->getParent(), Call);

Value *t = Builder .CreateAdd(BaseVal , ConstantInt::get(int32Ty , offset));
Value *t2 = Builder .CreateIntToPtr(t, PointerType:: getUnqual(int32Ty));
Instruction *t3 = Builder .CreateLoad(t2);

Call ->replaceAllUsesWith(t3);
removeInst(Call);

}

void MergeCloseAddr::replaceWrite(CallInst *Call ,Value *BaseVal ,int offset){
IRBuilder <false > Builder (getGlobalContext());
Builder .SetInsertPoint(Call ->getParent(), Call);

Value *t = Builder .CreateAdd(BaseVal , ConstantInt::get(int32Ty , offset));
Value *t2 = Builder .CreateIntToPtr(t, PointerType:: getUnqual(int32Ty));

CallSite CS = CallSite ::get(Call);
Builder .CreateStore(CS.getArgument(1), t2);

removeInst(Call);
}

void MergeCloseAddr::replaceTrans(CallInst *Call ,Value *BaseVal ,int offset){
IRBuilder <false > Builder (getGlobalContext());
Builder .SetInsertPoint(Call ->getParent(), Call);



Function Inlining

Value *t = Builder .CreateAdd(BaseVal , ConstantInt::get(int32Ty , offset));
Value *t2 = Builder .CreateIntToPtr(t, VoidPTy);

Call ->replaceAllUsesWith(t2);
removeInst(Call);

}

void MergeCloseAddr:: removeInst(Instruction *I) {
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {

Value *Op = I->getOperand(i);
I->setOperand(i, 0);

if (Op->use_empty())
if (Instruction *NowDead = dyn_cast <Instruction >(Op))

removeInst(NowDead);
}

I->eraseFromParent();
++Removed ;

}

B.7 Function Inlining

#include "llvm/Pass.h"
#include "llvm/Support /CallSite .h"
#include "llvm/Function .h"
#include "llvm/Instructions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Transforms/Utils/Cloning .h"
#include "llvm/Support /raw_ostream.h"
#include "llvm/Support /CFG.h"
#include "llvm/ADT/SCCIterator.h"

#include "MyInlinerPass.h"
#define DEBUG_TYPE "MyInlinerPass"

#ifndef INLINE_LOOP_SIZE
#define INLINE_LOOP_SIZE 200
#endif

#ifndef INLINE_DEF
#define INLINE_DEF 15
#endif

#ifndef INLINE_LEAF
#define INLINE_LEAF 20
#endif

#ifndef INLINE_IN_LOOP
#define INLINE_IN_LOOP 200
#endif

#ifndef INLINE_LEAF_IN_LOOP
#define INLINE_LEAF_IN_LOOP 300
#endif

using namespace llvm;

MyInlinerPass *createMyInlinerPass() {
return new MyInlinerPass();

}

char MyInlinerPass::ID = 0;
static RegisterPass <MyInlinerPass >
X("MyInlinerPass", "Function inlining ");

STATISTIC(NumInlined , "Inlined functions");
STATISTIC(NumDef , "Inlined default ");
STATISTIC(NumInLoop , "Inlined in loop");



Appendix B

STATISTIC(NumLeaf , "Inlined leaves ");
STATISTIC(NumLeafInLoop , "Inlined leaves in loops");

MyInlinerPass::MyInlinerPass() : ModulePass(&ID), Func (0) {}

void MyInlinerPass::getAnalysisUsage(AnalysisUsage& AU) const {
}

void MyInlinerPass::setBuiltFunction(Function *F) {
Func = F;

}

bool MyInlinerPass::runOnModule(Module &M) {
assert(Func && "Running MyInlinerPass without registered Function ");
bool Changed = false;
Modified .clear();

Changed |= inlineCalls();
Changed |= inlineCallers();

return Changed ;
}

std::set<llvm::Function *>& MyInlinerPass::getModified() {
return Modified ;

}

bool MyInlinerPass::inlineCalls() {
bool Changed = false;
std::vector <CallInst *> Calls;

for(Function ::iterator FI = Func ->begin(), FE = Func ->end();
FI != FE; ++FI) {

for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
BI != BE; ++BI) {

if (CallInst *C = dyn_cast <CallInst >(BI)) {
Calls.push_back(C);

}
}

}

for (unsigned i = 0; i < Calls.size(); ++i) {
Changed |= visitSite(Calls[i]);

}

return Changed ;
}

bool MyInlinerPass::inlineCallers() {
bool Changed = false;
std::vector <CallInst *> Callers ;

for (Function ::use_iterator UI = Func ->use_begin(), UE = Func ->use_end ();
UI != UE; ++UI) {

if (CallInst *C = dyn_cast <CallInst >(UI)) {
Callers .push_back(C);

}
}

for (unsigned i = 0; i < Callers .size(); ++i) {
Changed |= visitSite(Callers [i]);

}

return false;
}

static bool isLeaf(Function *F) {
for (Function ::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) {

for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
BI != BE; ++BI) {

if (CallInst *CI = dyn_cast <CallInst >(BI)) {
CallSite CS = CallSite ::get(CI);
if (CS.getCalledFunction()->getName ().startswith("Func"))



Function Inlining

return false;
}

}
}

return true;
}

static unsigned funcSize (Function *F) {
unsigned size = 0;
for (Function :: iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)

size += FI->size();

return size;
}

static bool isInLoop (BasicBlock *BB, Function *F) {
for (scc_iterator <Function *> I=scc_begin(F),E=scc_end (F); I!=E; ++I) {

if (I.hasLoop ()) {
unsigned size = 0;
bool inLoop = false;
const std::vector <BasicBlock*>& Nodes = *I;
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {

if (BB == Nodes[i]) {
inLoop = true;

}
size += Nodes[i]->size();

}

if (inLoop && size <= INLINE_LOOP_SIZE) {
return true;

}
}

}

return false;
}

bool MyInlinerPass:: visitSite(CallInst * C)
{

CallSite CS = CallSite ::get(C);
Function *Callee = CS.getCalledFunction();
Function *Caller = CS.getCaller();

if (!Callee ->getName ().startswith("Func"))
return false;

if (Callee ->empty ())
return false;

bool Inlined = false;

unsigned Size = funcSize (Callee);
bool Loop = isInLoop (C->getParent(), Caller);
bool Leaf = isLeaf(Callee);

bool Inline = false;
if (Size <= INLINE_DEF) {

Inline = true;
++NumDef;

} else if (Leaf && Size <= INLINE_LEAF) {
Inline = true;
++NumLeaf ;

} else if (Loop && Size <= INLINE_IN_LOOP) {
Inline = true;
++NumInLoop;

} else if (Loop && Leaf && Size <= INLINE_LEAF_IN_LOOP) {
Inline = true;
++ NumLeafInLoop;

}

if (Inline) {
Inlined = InlineFunction(C);
if (Inlined) {

++ NumInlined;



Appendix B

Modified .insert(Caller);
return true;

}
}

return Inlined ;
}



Bibliography

[1] Clang: A C language frontend for LLVM, nov 2009. http://clang.llvm.

org/.

[2] LLVM language reference manual, nov 2009. http://www.llvm.org/docs/
LangRef.html.

[3] Unladen swallow, nov 2009. http://code.google.com/p/

unladen-swallow/.

[4] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools (2nd Edition). Addison Wesley, 2
edition, August 2006.

[5] John Aycock. A brief history of just-in-time. ACM Comput. Surv., 35(2):97–
113, 2003.

[6] Olaf Bachmann, Paul S. Wang, and Eugene V. Zima. Chains of recurrences—
a method to expedite the evaluation of closed-form functions. In ISSAC
’94: Proceedings of the international symposium on Symbolic and algebraic
computation, pages 242–249, New York, NY, USA, 1994. ACM.

[7] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization.
Master’s thesis, Computer Science Dept., University of Illinois at Urbana-
Champaign, Urbana, IL, Dec 2002. See http://llvm.cs.uiuc.edu.



http://clang.llvm.org/
http://clang.llvm.org/
http://www.llvm.org/docs/LangRef.html
http://www.llvm.org/docs/LangRef.html
http://code.google.com/p/unladen-swallow/
http://code.google.com/p/unladen-swallow/

	1 Introduction
	2 Background
	2.1 The Video Engine
	2.2 Just-In-Time Compilation (JIT)
	2.3 The Low-Level Virtual Machine (LLVM)

	3 Purpose and Method
	3.1 Purpose
	3.2 Benchmarks
	3.3 Measurement Points
	3.4 Measurement Implementation
	3.5 Equipment
	3.6 Presentation of Results
	3.7 Baseline

	4 The Emulator System
	4.1 System Overview
	4.2 RASC Emulation Overview
	4.3 LLVM Representation
	4.3.1 Building Blocks
	4.3.2 RASC Emulation Functions

	4.4 Stepping the Emulator
	4.5 An Example

	5 Optimisations
	5.1 Removing Redundant Memory Accesses
	5.1.1 Improving Alias Analysis
	5.1.2 Dead Load Elimination
	5.1.3 Dead Store Elimination

	5.2 Reducing MMU Emulation
	5.2.1 Compile-time Constant Address Translation
	5.2.2 Moving Address Translation Out of Loops
	5.2.3 Combining Translation of Close Addresses

	5.3 Loop-Invariant Code Motion
	5.4 Changing Calling Convention
	5.5 Nice Functions
	5.6 Function Inlining
	5.7 Loop Unrolling
	5.8 Register Allocation and Code Generation

	6 Conclusions
	A Performance Measurements
	B Code Listings
	B.1 Null Pointers Do Not Alias
	B.2 Constant Pointers and Aliasing
	B.3 Number of Uses of Store Instructions
	B.4 DSE With Non-Local Dependencies
	B.5 Moving Address Translation Out of Loops
	B.6 Combining Translation of Close Addresses
	B.7 Function Inlining

	Bibliography

