Orthrus: Efficient Software Integrity Protection on Multi-Cores

Ruirui Huang, Daniel Y. Deng, and G. Edward Suh

Computer Systems Laboratory, Cornell University, Ithaca, NY 14853, USA
{rh335,dyd2}@cornell.edu, suh@csl.cornell.edu

Abstract

This paper proposes an efficient hardware/software system that sig-
nificantly enhances software security through diversified replica-
tion on multi-cores. Recent studies show that a large class of soft-
ware attacks can be detected by running multiple versions of a
program simultaneously and checking the consistency of their be-
haviors. However, execution of multiple replicas incurs significant
overheads on today’s computing platforms, especially with fine-
grained comparisons necessary for high security. Orthrus exploits
similarities in automatically generated replicas to enable simultane-
ous execution of those replicas with minimal overheads; the archi-
tecture reduces memory and bandwidth overheads by compressing
multiple memory spaces together, and additional power consump-
tion and silicon area by eliminating redundant computations. Uti-
lizing the hardware architecture, Orthrus implements a fine-grained
memory layout diversification with the LLVM compiler and can de-
tect corruptions in both pointers and critical data. Experiments in-
dicate that the Orthrus architecture incurs minimal overheads and
provides a protection against a broad range of attacks.

Categories and Subject Descriptors C.0 [GENERAL)]. Hard-
ware/software interfaces; D.4 [OPERATING SYSTEMS]: Security
and Protection

General Terms Design, Performance, Security

Keywords Memory protection, Multi-core architecture, Software
diversity and redundancy, Replication-aware architecture, Software
security

1.

As we place more responsibilities into computing devices, the
secure operation of computers is becoming critical. Yet, today’s
software programs are far from perfect, often containing various
types of vulnerabilities that may be exploited to maliciously alter
the program behavior. Moreover, programs are likely to have more
types of vulnerabilities that are unknown today. As an example,
the format string exploit was first reported in 1999 even though the
vulnerability existed for years. The Orthrus system aims to enhance
the security of future computing systems by enabling efficient and
fine-grained software diversity and redundancy on multi-cores.

In recent years, researchers have shown that the security of a
system can be greatly enhanced by introducing automatically gen-

Introduction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’10, March 13-17, 2010, Pittsburgh, Pennsylvania, USA.

Copyright © 2010 ACM 978-1-60558-839-1/10/03. .. $10.00

371

erated diversity and redundancy to the system even when the sys-
tem contains various types of exploitable vulnerabilities. In this ap-
proach, a program is automatically transformed into multiple ver-
sions with the identical functionality ("in-specification” behavior)
but diverse implementation details (”out-of-specification” behav-
ior). At run-time, multiple replicas execute together with the same
input and their behaviors are checked to be consistent. An adver-
sary needs to compromise all replicas without causing detectable
divergence in order to compromise the system. This approach is
particularly attractive because it provides general protection against
a large class of known or even unknown attacks while being appli-
cable to legacy code. The recent trend towards large-scale multi-
core systems also provides an opportunity to deploy the replication
techniques.

However, there exists one major obstacle for the replication
techniques to be widely deployed in real-world systems. Today, ex-
ecuting N diverse replicas incurs N times overheads in all resources
including memory space, on-chip area, power consumption, and
bandwidth consumption. In fact, the overheads are far greater if
the replicas are compared at a fine granularity for high security.
While the exponential growth in the number of transistors with ad-
vances in fabrication technologies may alleviate the overheads in
on-chip area and main memory space, power consumption and off-
chip bandwidth cannot scale with the number of transistors and will
continue to be major bottlenecks in modern and future computing
systems. As a result, applying a technique with two replicas to a
system can reduce the system throughput by half or more, which is
often too high a price to pay for systems in the field.

This paper proposes a multi-core extension named Orthrus that
supports efficient execution of diversified replicas exploiting the
close relationship between replicas. Replicas often share many
identical properties such as a control flow and most data because
they are automatically generated from one program. As a result,
most memory operations and computations of one replica can be
quite accurately obtained from those of another replica. In this pa-
per, we introduce a replication-aware memory system that elimi-
nates unnecessary bandwidth overheads by efficiently compressing
multiple replicas’ memory spaces, and a tightly-coupled core archi-
tecture that removes redundant computations along with their en-
ergy and on-chip area overheads. In addition to lowering the over-
heads, the proposed architecture also enables fine-grained compar-
isons between replicas to enhance security.

To utilize the Orthrus architecture, this paper proposes and stud-
ies a memory layout diversification scheme. With the fine-grained
checks that are enabled by the architecture, the layout diversifica-
tion can provide a comprehensive detection for spatial memory er-
rors and can also detect some temporal errors. Experiments with
real-world vulnerabilities and test programs demonstrate that the
layout diversification on Orthrus can detect a broad range of attacks
exploiting vulnerabilities such as buffer overflows, format string
bugs, and dangling pointers. The layout diversification with repli-
cation can detect attacks that overwrite memory no matter which

vulnerability allows the overwrite as long as they incur discrepan-
cies between two replicas.

The experimental results also demonstrate that the proposed ar-
chitecture features are quite effective in reducing the replication
overheads. The replication-aware memory system reduces the sec-
ond replica’s off-chip bandwidth usage by over 77% on average,
and the selective instruction processing eliminates 70% of instruc-
tions on average. In fact, with the reduced overheads, the experi-
ments show that an asymmetric core configuration with a wide (4-
issue) superscalar core and a single-issue in-order core can execute
two replicas with different memory layouts with a 2.7% slowdown
on average while maintaining the same protection as the traditional
dual-core configuration with two large cores.

The following summarizes the main contributions of this paper:

® Replication-aware memory system (Section 3.3): The mem-
ory architecture reduces bandwidth overheads by compressing
multiple replicas’ memory spaces while enabling fine-grained
checks.

Selective instruction processing (Section 3.4): Orthrus removes
redundant computations between replicas. Experiments show
that even a simple single-issue in-order core can match the
throughput of a wide (4-issue) superscalar processor, saving
energy and on-chip area.

Fine-grained memory layout diversity (Section 4): The paper
introduces a diversity technique that can detect both temporal
and spatial memory errors while applicable to legacy code.

The rest of the paper is organized as follows. Section 2 describes
the diversified replication in general, and Section 3 presents our ar-
chitecture design to enable efficient replication. Section 4 explains
how a fine-grained memory layout diversification scheme can run
on our architecture. Section 5 evaluates the proposed architecture,
and Section 6 discusses related work. Finally, Section 7 concludes
the paper.

2. Software Security Through Diversity and
Redundancy

2.1 Security Attack Scope

The main focus of this paper is to detect software attacks that tam-
per with the program integrity by overwriting program state. More
specifically, attacks may tamper with data pointers either by di-
rectly injecting a pointer or exploiting bugs in the pointer manipu-
lation such as buffer overflows, overwrite code pointers to change
the control flow, or overwrite critical non-control data. While we do
believe that the diversity and redundancy can also enhance other as-
pects of security such as confidentiality and availability, this paper
focuses on the integrity of an individual program execution.

We note that the attacks on data pointers, code pointers, and
data values can be largely independent even though many known
attacks use errors in a data pointer such as a buffer overflow in
order to tamper with code pointers or data values. As an example,
a format string attack may overwrite a pointer or a data value using
an existing data pointer in the stack. Therefore, only protecting data
pointers is not sufficient in general.

This paper mainly studies programs written in C or C++ where
low-level vulnerabilities are most common. Currently, our system
has not been tested with self-modifying code. While we believe
that the general technique can be applied to self-modifying code,
this paper does not discuss issues related to self-modifying code.

2.2 Diversification for Software Security

Traditionally, most computer systems share identical executable
binaries and configurations, which allows one software exploit to

372

work for all instances of a vulnerable program. Software diversity
addresses this weakness by randomizing implementation details on
each system. Because a successful exploit needs to match the im-
plementation details, this randomization prevents a single exploit
to be applied to many systems (see Figure 1(a)). For example, in
the stack smashing attack, if each program instance has a different
stack layout, an adversary needs to customize an attack in order
to successfully overwrite a return address. Many approaches have
been proposed in this direction, including randomizing the memory
layout [3, 4, 16, 34, 44], relocating code [16], randomizing instruc-
tion opcode [2, 23], and changing the name of system calls [8].

However, diversification alone is often not enough to stop a de-
termined attacker from compromising a system. Even when imple-
mentation details are obfuscated and initially kept secret, studies
show that an adversary, especially for 32-bit machines, can circum-
vent the randomization through trial and error; the address space
randomization can be broken in hundreds of seconds [36] and the
instruction set randomization can be compromised in several min-
utes [39]. The main benefit of the diversification is a slowdown of
attacks, but not prevention of attacks.

2.3 Diversified Replication

The security of a computer system can be greatly enhanced by
introducing redundancy (replication) within a system in addition to
diversity. In this approach, one system executes multiple diversified
versions of a program simultaneously as shown in Figure 1(b).
Externally, the replicas appear as one program instance; an input to
the program is duplicated and fed to all instances, and outputs from
multiple replicas are combined into one. During the execution, a
system compares the behaviors of replicas such as system calls,
memory accesses, and control flows to be consistent; divergence
beyond the built-in diversity indicates an error or an attack.

To circumvent this protection method, an attacker must compro-
mise all replicas without incurring detectable divergence in their
behaviors. This proposition can be made infeasible for a class of
attacks given that all replicas operate on the same input. As an ex-
ample, consider an attack to overwrite a function pointer exploiting
a format string vulnerability on the two replicas in Figure 1(c). To
compromise Replica 1, an attack can overwrite a pointer at Ad-
dress 0x200. However, this malicious input also causes Replica 2
to overwrite a different object at Address 0x200. An attack cannot
overwrite the pointer in both replicas at the same time. Therefore,
this attack can be detected if the discrepancy in memory writes can
be checked. Note that fine-grained checks at each memory access
are critical to ensure the security. Otherwise, an attacker can com-
promise both replicas in sequence.

The diversified replication can be applied to many program
characteristics and provide protection from a broad range of soft-
ware attacks. The following examples show how different program
components can be protected.

® Data Pointers: As shown in the above example, the data layout
diversity can detect injected pointers or out-of-bound pointers.
DieHard [3] and the N-variant system [10] show examples of
such layout diversification. A previous study shows that the
layout diversity provides protection comparable to that of a type
system with bound checks [32].

Code Pointers: Program pointers can be protected by diversi-
fying the code layout. Overwriting a program pointer results in
discrepancy in a control flow given that an attack injects the
same pointer to all replicas.

Critical Data: Diversification of data can detect attacks that
overwrite critical data values. For example, the N-variant sys-
tem [31] protects user IDs from data corruption attacks by hav-
ing replicas with different UID representations. Similarly, di-

Same functionality
Different implementation

Program :
P’ 1
1

1/0 input

- -

F-——————==-

ineffective
Attack for P

1/0 output
(b) Diversity & redundancy

(a) Diversity

Consistent
behavior?

Exception

Replica 1 Replica 2
0x204 0x204
0x200 | PTR 0x200 A
0x19¢ ' 0x19¢
0x198 | A 0x198 | PTR
0x194 0x194

Addr Value Addr Value

malicous overwrite

(c) Memory layout diversity

Figure 1. Diversity and redundancy techniques to enhance software security.

versifying system call names prevents attacks that corrupt sys-
tem calls [8].

2.4 Strengths and Limitations

The diversified replication provides a promising way to protect the
integrity of computing systems thanks to its broad attack coverage
and applicability to legacy code. The approach checks discrepan-
cies in pointers or data values instead of preventing particular types
of vulnerabilities such as buffer overflows or format string errors.
This property is particularly attractive because it implies that the
diversified replication can detect attacks even if they exploit new
types of vulnerabilities that are unknown today as long as the at-
tacks overwrite pointers or data.

In fact, the studies in this paper show that the layout diversifica-
tion can detect both spatial errors such as buffer overflows and for-
mat string vulnerabilities and temporal errors such as certain dan-
gling pointers. Unlike most memory protection schemes such as
array bound checks, the diversified replication can even potentially
detect memory overwrites by malicious code. For example, a third
party library may contain an intentional backdoor that allows an at-
tacker to overwrite a specified address with a specified value. Tradi-
tional bound checks cannot prevent such attacks because malicious
code can arbitrarily set the bound information and may not even
use an array pointer. In the diversified replication, however, the ma-
licious code still cannot compromise multiple replicas at the same
time unless the malicious code in each replica can be customized
to overwrite a different memory location. Because an attacker can
only provide one copy of malicious code, such customization for
each replica cannot be done. Effectively, the diversified replication
provides fine-grained memory protection in this scenario.

At the same time, the diversification can often be carried out au-
tomatically without human intervention or sometimes even without
source code. Code and heap layouts can be changed by the linker
[10] or the malloc() function [3]. Stack layouts or system call
names can be changed by a simple re-compilation. Therefore, the
diversification approach can often be applied to legacy code or li-
braries without significant human efforts. Finally, while this paper
focuses on detection of attacks, we also note that the replication can
potentially enable recovery from attacks because multiple replicas
are unlikely to be corrupted in the same way [3].

The main limitation of today’s diversified replication approach
lies in its overheads. Because each instance of the program essen-
tially acts as if it is a stand-alone process, each replica occupies
its own memory space and requires its own processing core unless
replicas run in sequence with a two times slowdown. Therefore,
the replication scheme with N copies incurs NN times overheads
in all resources including memory, bandwidth, caches, processing
cores, and power consumption. While advances in fabrication tech-

373

nologies will help, the overheads in off-chip bandwidth and power
consumption significantly hinder wide deployment of these repli-
cation schemes. Moreover, fine-grained comparisons in software
often result in prohibitive overheads. As a result, today’s replica-
tion techniques often rely on checks at system calls, which limits
their security - an attacker may be able to compromise one replica
at a time with multiple attacks.

3. Orthrus Replication-Aware Architecture

This section describes our multi-core architecture that enables ef-
ficient execution of diversified replicas with fine-grained monitor-
ing. The architecture is designed to run two replicas while the same
approach may be extended to more replicas. The discussion uses
a memory layout diversification as the main example because the
scheme is important for a large class of memory errors and incurs
significant difference between replicas; arguably, the scheme is the
most difficult one to execute efficiently. Section 4 describes the lay-
out diversification in detail.

In a high level, the proposed architecture consists of two compo-
nents. A replication-aware memory subsystem compresses the two
replicas’ memory spaces into one so that the second copy is used
only if it is different from the first one. In this way, the off-chip
bandwidth overhead is minimized. Selective instruction processing
reduces redundant computations for the second replica and allows
the use of a simple in-order core instead of an out-of-order core to
minimize the on-chip area and power consumption.

3.1 Opportunity: Similarities in Replicas

Diversified replicas often share lots of common properties together
because they are generated from one program. For example, repli-
cas with diversified memory layouts differ only in the memory ad-
dresses that they use. All replicas have the same control flow, the
same instruction opcodes, and identical data values in memory.
Figure 2 illustrates the similarities between two replicas when
the memory layout diversification is applied to Apache web server
and a set of SPEC CPU2000 benchmarks [18]. As shown in Fig-
ure 2(a), the corresponding memory locations of two replicas’ of-
ten contain an identical value; 9.9% of instructions are different be-
cause their immediate field represents a memory address, and 6.7%
of data are different because they are pointers. Overall, most cor-
responding memory locations hold the same value. In the figure,
Total shows the differences in the entire memory space whereas
Inst and Data only consider code and data, respectively. As a result,
the total percentage is not a simple sum of the percentages for Inst
and Data. Similarly, Figure 2(b) shows that both replicas perform

I'Two locations (one from each replica) that contain the same variable or
array element of a program.

30 70
Binst Blinst
25 | OData - 60 —{ @Data 1
g OTotal 2 OTotal
> 20 g 50
g 2 40
g "® 2 I
£ % 30
o 10 [
8 2 20 - 1
o] o
o o
0- 0
ST IV - S S R S S NN 4 R S S
& & & ® Q@@ RS S & s &rz}“ q&'z’é\ IS\Q}& R é}‘? & @0\ QQ;\& @(@ & évz?(‘ é\e?'b e&f?g ,ﬁ,bo“e'@m@‘f'
(a) Memory content (b) Computation
Figure 2. Differences between two replicas in the memory layout diversification.
Example: DI ificati Diversity Requirement SIMDA
Properties | Replica 1 | Replica 2 O hCISHcanon i
e . : Layout Diversity Techniques HSmon Coliauiilon enough?
Addr | Value | Control | Op | Value
=] Address A MAP[Az] | Ag,= MAP[Ag,]
o — Data Layout Y Y N N Y Y
5 Value V, Any Vro=
= Rl Vg or MAP[Vg,] Code Location Y Y N N Y Y
S PCro=
o R2
2 [Control Flow | PCry [MAPIPCgil| \appC, 1 System Call N Y N N Y Y
2| Operation Opz; Opz; Opg; = Opg, Data Value N Y N N[Y Y
IS Vo, =
gl Value Vri Ay o I'\RIIZAP[VM] Instruction N N N Y| N N

(a) SIMDA Model

(b) SIMDA applicability in diverse replication schemes

Table 1. Single Instruction Multiple Data and Address (SIMDA) computation model and its applicability to diversified replication schemes.

M AP]] is a mapping between the two address spaces.

an identical operation with identical input operand values in most
cases as they are different only for pointer arithmetic operations and
jump targets; 5.2% of instructions use different immediate values
and 25.1% of instructions have different source register values.

The above experimental results show the similarities between
replicas with diverse memory layouts. In general, the same obser-
vation can be made for most, if not all, automatic diversification
schemes. In fact, we believe that other diversification schemes re-
sult in even less differences between replicas. For example, replicas
in the data diversity scheme will only be different for the parts that
process the protected data, such as UIDs and system call names,
which are often very small portions of the entire program.

3.2 Computation Model

The large amount of similarities in automatically-generated repli-
cas suggest that there is an opportunity to significantly reduce over-
heads of replication by eliminating unnecessary redundancy. How-
ever, dynamically detecting such similarities is quite difficult with-
out explicit annotations if replicas are allowed to diverge in an ar-
bitrary fashion. To effectively exploit the similarities, it is critical
to carefully limit the extent of divergence between replicas while
allowing enough flexibility to support various diversification tech-
niques.

Fortunately, replicas in our diversification schemes satisfy sim-
ple relations because only pointers or data values are changed for
integrity protection. Essentially, the replicas share one control flow
and perform the same operation instruction-by-instruction. On the
other hand, the replicas can diverge in their data values in an ar-

374

bitrary way and use different memory addresses as long as there
exist a one-to-one mapping between their addresses. We call this
diversification model as SIMDA (Single Instruction Multiple Data
and Address). Essentially, the model is the same as SIMD with ad-
ditional flexibility in the memory addresses.

Table 1(a) summarizes the SIMDA model and shows the rela-
tionship between two replicas in the memory layout diversification
as an example. The model requires that both replicas perform iden-
tical operations (opcode) on each instruction (Opr1 = Opr2). The
memory layouts can be different between replicas, but there needs
to be a one-to-one mapping Ago M AP[AR:] between two
replicas’ memory spaces at any given point of time®. Here, Ag1
and A ro represent the addresses in Replica 1 and Replica 2, respec-
tively. Therefore, data accesses and program counters should sat-
isfy the following conditions: Ars = M AP[ARr1] and PCRr2 =
M AP[PCga]. Finally, there is no restriction on memory and reg-
ister content (values).

As shown in Table 1(b), the SIMDA model can support multi-
ple diversity techniques as long as they do not require divergence
in the control flow or the operations. For example, any memory
layout diversification scheme [3, 4, 10, 16, 44], system call ran-
domization [8], and data diversification to protect integrity [31] are
all supported. We do not support the instruction set randomization
[2, 23] that detects injected code because instructions are usually
read-only except for self-modifying code. Also, injected instruc-

2 The mapping can change over time.

forward

Core 1 i—»ﬂﬂ—m
prefetch MAP I

>
4

I-TLB D-'ILB (m8])| [I-'I;LB) [DiI'VLB]
* v
(L5 [] (L1s (maps] [(L1-8
T 1 I 1
L2$ [tag]
3
(Off-Chip Memory [teg |

(a) Memory system architecture

Memory Allocation:
Core 1: allocate (Baser;,Sizegry), Core 2: (Baseg,,Sizer,)

Update each entry in MAPJ] for Ag, in [Basegrq,Baseg +Sizegq]
1) Update MAP[Baseg+C] € Baseg,+C

Memory Write:
Core 1: write (Vgy,tag) to Agq, Core 2: write Vg, to Ag,

Update MEM1[Ag;] € (Vrs, tag)

1) Check Ag, == MAP[AR;]. If fail, raise an exception
2) If tag is 1, update MEM2[Ag,] € Vg,

Core 1:
Core 2:

Memory Read:
read Ag, Core 2: read Ag,

1) Read (Vgy, tag) from MEM1[Ag4]

2) If tag is 0, forward Vg,

1) Check Ag, == MAP[AR]. If fail, raise an exception
2) If tag is 0, use Vgy. If tag is 1, read MEM2[Ag,]

Core 1:

Core 1:

Core 2:

(b) Memory operation summary

Figure 3. The replication-aware memory system. Dark colors
(blue and orange) indicate the additional modules compared to a
standard memory system.

tions are harmful only if a control flow can be changed to execute
them, which can be prevented with other diversity schemes.

3.3 Replication-Aware Memory System

The replication-aware memory system aims to support two replicas
with minimal overheads, especially in the off-chip bandwidth con-
sumption. In the SIMDA model, the memory system must allow the
replicas to read and write different values to different addresses as
if each replica has its own memory space, MEM1 for Replica 1 and
MEM2 for Replica 2. The memory system, however, can assume that
both replicas always perform the same type of memory operation
(read or write) to the same object’. In the common case, the corre-
sponding memory operations from the two replicas are likely to use
an identical value (see Figure 2(a)). The replication-aware mem-
ory system exploits this redundancy and effectively compresses the
second memory space (MEM2).

Figure 3 illustrates our replication-aware memory system de-
sign and its high-level operation. To remove redundant copies be-
tween the two replicas, the memory system adds a 1-bit tag for
each word in Core 1’s memory hierarchy including both L1 caches,
the L2 cache, and the main memory. The tag indicates whether both
replicas have the same value (tag 0) or not (tag 1). Core 1 also prop-
agates this value tag during its computation by combining (OR) the
source tags on each operation. On a read, Replica 1 on Core 1 reads

3 The same scalar variable or the same array element.

375

a value and the corresponding tag from its memory space (MEM1).
These values are forwarded to Core 2. Replica 2 on Core 2 uses
the forwarded value from Core 1 for its read operation if the tag is
zero, and reads from its own memory space (MEM2) if the tag is one.
Similarly, on a write, Core 1 writes a value-tag pair to its memory
(MEM1), but Core 2 performs a write to MEM2 only if the tag is one.

Because the tags are only kept for each word, the current ar-
chitecture does not allow store byte instructions, which only up-
date a byte in memory, from diverging in their store values. This
constraint is not an issue for typical diversification techniques that
protect pointers and critical integer data. If necessary, however, the
architecture can be modified to maintain per-byte tags and support
value diversification at any granularity. A previous work on Dy-
namic Information Flow Tracking (DIFT) [40] showed that a sim-
ilar tag scheme at a byte-granularity incurs a slowdown less than
0.1% in the worst case even when tags share the memory bus with
regular data. The DIFT implementation uses a simple compression
scheme to reduce the size of tags. The same technique can also be
applied to Orthrus. For simplicity, this paper uses per-word tags
and dedicated tag bits in the off-chip bus and memory as in Rak-
sha [12]. Therefore, the tag bits do not incur any slowdown in our
implementation.

The replication-aware memory system is based on the assump-
tion that accesses from Core 2 always match accesses from Core 1,
which is true in the SIMDA model. However, this assumption can
be violated if there is an error. To check the consistency between
two cores’ accesses, the memory system dynamically constructs
and checks the address map between the two cores. Conceptually,
the address map M AP| is a table that takes an address of Replica
1 and provides the corresponding address in Replica 2. The map-
ping is stored as a linear array in its own virtual memory space, and
our architecture provides a dedicated L1 cache and a TLB for the
address map. Both the map cache and TLB are attached to Core 2.

To construct this map table, the architecture relies on hints
from a compiler. On each memory allocation such as a function
prolog (stack) or a malloc() function (heap), a compiler inserts
a special instruction mem-alloc that indicates an allocation of
memory space. The instruction provides the base address Base
and the size Size of an allocated memory object. This instruction
simply provides hints to set the address map, and does not have
any impact on the execution. At run-time, Core 1 forwards the
allocation information from Replica 1 to Core 2. Core 2 combines
the hints from both replicas and enqueues them into the map store
queue, which updates the address map in the background in a way
similar to store queues. For a memory allocation, the map store
queue updates each map entry that represents the allocated object:
MAP[Baser1+C] = Baserz+C where 0 < C' < Sizery. Our
current implementation requires the size of corresponding objects
to be the same for both replicas (Sizer1 Sizegrs). As in a
typical load bypass for store queues, following reads from the
map cache takes the value from the map store queue if there is a
matching entry.

During the execution, Core 2 checks the consistency of data
memory access from the two replicas by comparing the ad-
dress from Replica 2 (Agr2) with the address from the map
(M AP[ARi)). If the address does not match the map, an exception
is raised indicating an error. For instruction fetches, the mapping
between the two PCs is checked on indirect jump instructions when
they can diverge. Because such checks are infrequent, the architec-
ture shares one cache for M AP between instruction fetches and
data accesses.

In our design, the memory system keeps the mapping for each
64-byte memory block rather than each word. This design choice
was made to reduce overheads and also because even the most ag-
gressive layout diversification scheme only needs to change the lay-

forward PC, inst , src, result

il

exception -

Core 2: in-order

D

| 1F | | ExX | cT

Core 1: Out-of-order superscalar

(a) Asymmetric core architecture

Core 1:
1) Maintain a tag for each instruction and register/ROB value
2) At the commit stage, forward instructions to Core 2 if the tag
is one (needs execution on Core 2)

Core 2:
1) Re-execute forwarded instructions (tag of 1)
2) Update/check MAP[Ag;] with Ag,

(b) Core operation summary

Figure 4. Heterogeneous core architecture for efficient execution
of two replicas.

out at the granularity of an array or a heap object, which is typically
much larger than 64 bytes. As a result, the memory layout between
two replicas can only differ at a 64-byte granularity. All addresses
within a 64-byte block in one replica must map to one 64-byte
block in another replica, and the six LSBs (least significant bits)
of the corresponding addresses in two replicas must be identical.
Section 4.2 discusses how the compiler infrastructure can ensure
these restrictions in the memory layout diversification.

3.4 Selective Instruction Processing

The processing part of the Orthrus architecture dynamically re-
moves redundant operations from Replica 2 to further reduce
unnecessary overheads. As shown in Figure 4, Core 1 executes
Replica 1 ahead of Core 2. During its execution, Core 1 maintains
a tag for each instruction and data that indicates whether it is dif-
ferent for Replica 2. The tag is read from the memory system on a
load and gets propagated on every operation. At the commit stage,
Core 1 forwards a completed instruction to Core 2 if either source
operands are tagged to be different (fag == 1) or the operation
needs a consistency check (memory accesses and indirect jumps).
Core 2 only executes a small portion of Replica 2, which are iden-
tified and forwarded by Core 1. We note that some of Core 2’s state
such as register values and a program counter (PC) can become
stale because some instructions are skipped. To address this issue,
Core 2 uses a source operand from Core 1 if it is tagged zero and
keeps an offset register between two PCs so that its PC can be ob-
tained from Core 1’s PC. To properly update Core 2’s PC when
the offset between two replicas’ PCs may change, a taken branch
whose target offset is different from Core 1 and an indirect jump
are re-executed on Core 2.

To minimize the impact on Core 1’s performance and also
enable low-overhead forwarding paths, our design chooses to have
two cores loosely coupled instead of executing in lock step. Core 1
can continue committing its instructions without waiting for Core
2. Because the only option on an attack detection is to abort an
application, there is no need to support a precise exception. Core
1 stalls its commit stage only if the FIFO between the two cores is
full or if there is a system call.

376

The above optimizations significantly reduce the number of in-
structions that need to be processed by Core 2. As shown in Fig-
ure 2(b), only 30% of instructions on average are different between
two replicas. At the same time, because Core 1 resolves control and
many data dependencies ahead of time, Core 2 runs faster than by
itself. This reduced computation requirement for Core 2 indicates
that an asymmetric core configuration, where Replica 1 runs on a
fast but large out-of-order superscalar core, and Replica 2 runs on a
simple in-order core, can further reduce the silicon area and energy
consumption. In fact, the experimental results in Section 5 show
that a single-issue in-order core is sufficient for Replica 2 and can
match the throughput of a 4-issue superscalar core for all bench-
marks that we tried. While the asymmetric cores are beneficial on
average cases, we note that a small core cannot guarantee to match
the throughput of a large core in extremely memory intensive appli-
cations. The Orthrus architecture can support both symmetric and
asymmetric configurations.

3.5 Operating System Support

The Orthrus architecture requires the operating system (OS) to be
aware of the replicas as well as the hardware features. For example,
as discussed in Section 2, the OS must provide the same inputs to
all replicas on a system call and remove redundant outputs. The OS
must also allocate memory for the address map, properly initialize
the meta-data such as value tags and the address map at a start-
up, and manage context switches and paging. For this purpose, the
processor supports new supervisor instructions to read and write
meta-data.

In our architecture, both cores behave as one entity from the
OS’s perspective. On an exception or a system call, both cores
synchronize and trap into one OS instance on Core 1 instead of
executing two separate OS instances. In this way, the execution
of the replicas can be precisely synchronized. For example, on an
interrupt for a context switch, Core 1 waits for Core 2 to complete
all instructions and finishes checks before it starts executing the OS
code. The OS needs to treat Core 2 as a co-processor of Core 1 and
handles both cores together.

4. Fine-Grained Memory Layout Diversity

This section describes the memory layout diversification scheme
that Orthrus uses to protect memory integrity, and shows how
the proposed layout diversification together with the address map
(MAP) can detect both spatial and temporal memory errors. We
first describe the technique based on a fine-grained address map and
discuss the changes necessary to accommodate the coarse-grained
MAP that is used in the Orthrus architecture.

4.1 Fine-Grained Address Map

A memory layout diversification scheme executes multiple replicas
of a program, which are identical except for their memory layouts.
Assuming that the program is indifferent to its memory layout, all
replicas must access exactly the same variable or array element
on each memory access even though they use different addresses.
For example, if the first replica reads an array element a[0], the
second replica must also read a[0] in its memory space. Layout
diversification schemes aim to carefully design the differences in
the memory layout so that a memory error violates the above
invariant and causes a detectable divergence between replicas. In
our architecture, the detectable divergence implies that a check on
the address map fails.

In order to provide a comprehensive detection of spatial mem-
ory errors, we use two simple transformations similar to previous
proposals [3, 17]. First, Replica 2’s memory space is shifted by a
constant to ensure that each object is located at different address

“>MAP[] mismatch!

AP O
8] write B[2] 8 [Gq 8 [£ 8D
7 | (overflow) 7 [Grg 7] é” 7
6 6 6 10] ~/ 6
5[c] (8] 5 B[5 9] &/ 5Bl
4 o] (7] 4[B[0 4 B & 4 (B[O
3 B[] (5] 3 3 15| write C[0] 3
2 (B[O} [4] 2 |A[t 2 14| (dangling 2 |A[1
1 [a] [2] 1 [A[0 1 12| pointer) 1 [A[0
o [a[o] (1] 0 0 1] 0
Replica 1 Replica 2 Replica 1 Replica 2

(a) Buffer overflow detection (b) Dangling pointer detection

Figure 5. Memory layout diversification to detect spatial and tem-
poral memory errors.

in two replicas. This transformation ensures that an error that uses
data as a pointer, such as a format string error, results in an access
to different memory objects in two replicas. As an example, let us
consider a simple example in Figure 5(a), which shows three arrays
A, B, and C. If a format string attack overwrites memory using 2
as an address, Replica 1 will access B[0] whereas Replica 2 will
access A[1]. Second, in Replica 2, a pad is added before and af-
ter each array and a heap allocated object so that buffer overflows
make the replicas access different memory objects. In Figure 5(a),
an overflow in B (write to B[2]) will overwrite C[0] in Replica 1
whereas overwrite a pad in Replica 2.

As described in Section 3, the proposed architecture uses a
dynamically-constructed address map (M AP][)) to detect such di-
vergence between memory accesses from two replicas. As an ex-
ample, Figure 5(a) illustrates how a buffer overflow in Array B
gets detected with the address map. In the example, a program er-
roneously overwrites B[2], which is beyond the array bound. The
out-of-bound access results in a write to Address 4 in Replica 1 and
a write to Address 6 in Replica 2. Thus, the overflow gets detected
by a mismatch between the address map (M AP[4] = 7) and the
address from Replica 2 (6).

In general, let us consider an overflow in Array A, which ei-
ther erroneously reads or writes Variable X in Replica 1. Be-
cause both replicas use the same array index, Replica 2 accesses
addrr2(A[0]) + C when Replica 1 accesses addrri(A[0]) + C.
Here, addrgri(A[0]) and addrr2(A[0]) represent the address of
A[0] in Replica 1 and Replica 2, respectively. C' is a constant.
In order for an out-of-bound access to go undetected, both repli-
cas must access an identical object with that particular memory
operation. If the out-of-bound operation accesses Variable X in
Replica 1, the following condition must hold: addrg:(A[0]) +
C = addrri(X) and addrg2(A[0]) + C = addrr2(X).
In other words, addrri(X) — addrri(A[0]) must be equal to
addrrz2(X) — addrr2(A[0]). However, because Replica 2 has
an extra pad on each array, this condition cannot be true, and an
out-of-bound access will get detected.

The proposed layout diversity scheme also detects a memory
error where a data value gets used as a pointer. Say that there is a
bug such as the format string vulnerability, which causes a data
value V' to be used as a memory address to access Variable X
in Replica 1: V' = addrgri(X). Because only the memory lay-
out is different, data values including external inputs are identical
for both replicas, and the error implies that both replicas access
the same address V. However, our layout transformation ensures
that X is located at two different addresses in each memory space,
addrri1(X) # addrga2(X), which means that the two replicas
cannot both access X with an erroneous memory operation. On the
other hand, the address map of X will point to the corresponding
address in Replica 2 (M AP[addrri(X)] = addrr2(X)). There-

377

MAP

0x184| Y 0x300 0x284 | B[1]
0x180] X / 0x280| B[0]
0x144 | B[1] || 0x280 0x244 | Pad
0x140| B[0] 0x240

0x104 | A[1] || 0x200 |[———> 0x204 | A[1]
0x100 | _A[0] 0x200 | _A[0]

Replica 1 Replica 2

Figure 6. Memory layout diversification for 64-B granularity
MAP.

fore, the erroneous accesses to X will find a discrepancy in the
map. Overall, the proposed diversity together with the address map
checks provides a comprehensive protection against spatial mem-
ory errors. The experimental results in the next section also demon-
strate the error detection capability.

While not as comprehensive, the address map can also detect
temporal memory errors in some cases. Dangling pointer errors
can be detected if the address map is different before and after
the re-allocation. As an example, Figure 5(b) illustrates a dangling
pointer error when Array C' is freed from Figure 5(a) and Array
D is allocated in its place. If a dangling pointer for C' (C[0])
is used and overwrites D[0] in Replica 1, the updated address
map (M AP[4] 8) does not match the old address of C'[0]
in Replica 2 (7), detecting an error. Similarly, an access to an
unallocated memory location can be detected because the address
map is not set. A read from an uninitialized location does not incur
an inconsistency in the address map, but may be detected eventually
if two replicas read different values and diverge in future control
flows or memory accesses.

We note that the temporal error detection in Orthrus is not
comprehensive. As an example, a use of a dangling pointer may
not be detected if the address maps for the old and new objects
happen to be identical.

4.2 Coarse-Grained Address Map

As an optimization to reduce overheads, Orthrus maintains the ad-
dress map at a coarse granularity (64-B blocks) instead of keeping
the map for each byte or word. Therefore, the compiler is restricted
to change the memory layout between two replicas only at the gran-
ularity of the map. If not, two objects that share the same map en-
try may have different mapping, resulting in a false positive. Our
compiler infrastructure ensures that the layout is changed at the 64-
B granularity by properly aligning memory objects and injecting
pads.

Figure 6 illustrates the layout diversification considering the
coarse address map. In addition to adding pads to Replica 2, the
compiler places objects that are separated by a pad in two different
64-B blocks. In other words, these objects are aligned at 64-B
boundaries. As an example, Array A and B in the figure are placed
in two separate 64-B blocks by inserting extra space between them
even though the arrays are smaller than 64 bytes. For Replica 2,
the compiler also adds an additional pad whose size is a multiple
of 64 bytes. These constraints ensure that all objects that share one
map entry have identical offsets between the address in Replica 1
and the address in Replica 2. They also ensure that the 6 LSBs (
least significant bits) of corresponding addresses in two replica are
identical. Therefore, one map entry provides an accurate address
translation for all objects within a 64-B block.

We note that not all objects need to be aligned at 64-B bound-
aries. Our current layout diversity scheme injects a pad before and

after an array, but not between scalar variables because there can-
not be an overflow or an underflow from them. Therefore, multiple
scalar variables may share the same address map as illustrated by
X and Y in the figure.

The additional space for alignment has no practical impact on
the detection capability. The layout diversification with a coarse-
grained map still detects spatial errors where a data value is used as
a pointer or where an out-of-bound access from an array reads or
writes another object. The technique can also detect some temporal
errors if they result in inconsistent address maps or inconsistent
read values. On the other hand, the coarse-grained scheme does
not detect an out-of-bound access to the extra space after an array
that is added for alignment. For example, in Figure 6, an overflow
from Array A to the space between A and B will not be detected.
However, such out-of-bound accesses have no impact in practice
because the added space is not used by a program.

5. Evaluation
5.1 Experimental Methods

We use detailed simulations to evaluate the effectiveness and per-
formance overheads of the proposed architecture with the layout di-
versity technique. The simulation infrastructure is built with the Pin
binary instrumentation tool [26] and the TAXI performance sim-
ulator [42]. In the front-end, the Pin tool runs two versions of a
program and generates execution traces. To check the functional-
ity, our back-end uses these traces to construct the address map and
check for an error. To evaluate the performance, the back-end per-
forms a cycle-by-cycle micro-architecture simulation that models
two processing cores and the memory hierarchy. We used x86 ISA
in our simulation. The transformation for the layout diversification
is performed with the LLVM compiler infrastructure [24].

The performance simulations use benchmarks from the SPEC
CPU2000 suite [18] and the Apache web server. Each benchmark
is fast forwarded 2 billion instructions and then a cycle-by-cycle
micro-architecture simulation is performed to 200 million instruc-
tions. While the SPEC benchmarks do not represent typical net-
work workloads, which are most likely targets of software attacks,
they allow us to study the impact of the proposed architecture on
a diverse set of workloads. From a processor’s perspective, net-
work applications will look similar to bandwidth-limited bench-
marks such as mcf because they often process a large stream of
data. We note that our Apache simulations are currently limited to
the user space due to limitations of Pin. We expect Apache to ben-
efit more from Orthrus optimizations in practice because the data
transfers in the OS will further stress the off-chip bandwidth. In the
experiments, we only used C and C++ programs from the bench-
marks because our LLVM extension currently only supports C and
C++.

Table 2 summarizes the simulation parameters for four config-
urations that we compare. The baseline represents a case without
any protection. The dual-core represents a traditional method where
two large cores without a special memory system run replicas.
Finally, there are two configurations for the Orthrus architecture,
both with the replication-aware memory system and fine-grained
checks; one has symmetric cores and the other has asymmetric
cores. We assume a 32-entry FIFO between the two cores. Simula-
tion studies showed that there is not much benefit of having more
than 32 entries in the FIFO. The parameters for the complex core
are based on Intel’s Core2 microarchitecture.

5.2 Error Detection Capability

To validate the error detection capability of Orthrus, we tested a
range of real-world attacks and attack test suites. The experiments
confirmed that the layout diversification scheme on Orthrus can in-

378

deed detect all tested attacks without any false positive. Table 3
summarizes the attacks that we tested with description of the pro-
gram and the vulnerability. The exploit ID is also presented if ap-
plicable. First, we tested 15 buffer overflows in three open source
programs (bind, sendmail, and wu-ftpd) using the Zitser test suite
[47]. We have also tested additional overflow attacks in various util-
ities using the BugBench suite [25]. Furthermore, we constructed
additional bug test programs for format string attacks, and dangling
pointer exploits. These test programs are written based on examples
in [35].

Previous studies have also shown that the diversified replication
is effective for a large class of real-world attacks. For example, N-
variant systems studied the Apache web server to demonstrate that
the address space partitioning is effective against pointer injections
[10] and the data diversity can detect critical data (UID) corruption
[31]. DieHard [3] also demonstrated that diversified heap layouts
can detect errors in the Squid web cache and the Mozilla web
browser.

5.3 False Positives

To test possible false positives, we functionally simulated the SPEC
and Apache benchmarks used in this paper for 2 billion instructions
each. We did not encounter any false positive cases.

5.4 Die Area and Power Consumption

The main on-chip hardware overheads for the Orthrus architecture
consists of the MAP cache and additional tag bits for each level of
the caches. We note that the MAP TLB and FIFO queue structures
add an insignificant amount of hardware in comparison to the MAP
cache and the tag bits. To evaluate the additional hardware overhead
of Orthrus, we estimated the area and power consumption of the
MAP cache as well as other caches with and without additional tag
bits using Cacti [38] for the 45nm technology node. For the 32-KB
2-way MAP cache and 1-bit tag per 32-bit word, which are used
in our simulations, the area overhead is estimated to be 0.24mm?
for the MAP cache and 0.08/mm? for tag bits. The MAP cache and
the tag bits also add 0.23 Watts of total power. Compared to a 45nm
Intel Core 2 Duo processor [20], these overheads are less than 0.5%
of the total area and less than 1% of the total power dissipation.

The asymmetric Orthrus architecture uses a simple in-order core
instead of another out-of-order core to execute the second replica.
While we do not have numbers from a detailed implementation,
previous studies on checker cores [1, 43] suggest that a simple core
will require about 10 times less area and power compared to the
baseline core. For example, Intel’s 45nm Core 2 Duo processor
has an area of 107mm? [20] with the power budget of 35 Watts
whereas a much simpler and in-order Intel Atom processor running
at the same frequency has an area of 25mm? and consumes only
2.5 Watts. Therefore, the Atom processor, if used as the checker
core, will occupy less than a quarter of the area and consume less
than 8% of the power compared to having another complex core.
Overall, the use of asymmetric cores can significantly reduce the
overheads for the additional core in Orthrus.

5.5 Performance Overheads

Figure 7 illustrates the performance of Orthrus for SPEC2000
benchmarks and Apache when two replicas with different mem-
ory layouts execute simultaneously. The performance is shown as
execution time that is normalized to the baseline. On average, be-
cause most benchmarks only utilize a small portion of the off-chip
bandwidth, both traditional dual-core configuration and the Orthrus
architecture closely match the performance of the baseline: 12.0%
slowdown for the dual-core, 2.2% slowdown for Orthrus with sym-
metric cores, and 2.7% slowdown for Orthrus with asymmetric
cores. However, for a bandwidth-sensitive benchmark such as mcf,

[Parameter | Baseline | Dual-Core [Orthrus Symmetric [Orthrus Asymmetric
Frequency 3 GHz
Processing 1 4-issue OoO 2 4-issue 00O 2 4-issue 00O 1 4-issue 000 &
Cores 1 1-issue in-order
Checks None Coarse-grained Fine-grained Fine-grained
L1 caches 4-way 64KB/64KB | Corel: 4-way 64KB/64KB | Corel: 4-way 64KB/64KB | Corel: 4-way 64KB/64KB

(I$/D$) (32B Block)

Core2: 4-way 64KB/64KB

Core2: 4-way 64KB/64KB
MAP: 2-way 32KB

Core2: 2-way 32KB/32KB
MAP: 2-way 32KB

L1 latency

2 cycles

L2 cache (64B Block)

2-MB unified, 8-way, 14 cycle latency

DRAM

Latency: 50 ns, Bandwidth: 8 GB/s

Table 2. Simulation parameters.

[Program [Ref | Description [Error
bind-8.2 CA-1999-14 DNS server Size arg of memcpy not checked
bind-8.2 CA-1999-14 DNS server memcpy underflows to large positive int
bind-8.2 CVE-1999-0009 DNS server Size arg of memcpy not checked
bind-8.2 CVE-2001-0013 DNS server Use of sprintf() without proper bounds checking

sendmail-8.12

CA-2003-07

mail transfer agent

sprintf() without bounds checking

sendmail-8.12

CVE-1999-0131

mail transfer agent

Upper bound increment for a > char not decrement for <

sendmail-8.12

CVE-1999-0206

mail transfer agent

gecos field copied into fixed-size buffer without size check

sendmail-8.12

CVE-1999-0047

mail transfer agent

Pointer to buffer not reset after line read

sendmail-8.12

CA-2003-12

mail transfer agent

Size check not performed

sendmail-8.12

CVE-2001-0653

mail transfer agent

Input byte set to Oxff cast to minus one error code

sendmail-8.12

CVE-2002-0906

mail transfer agent

Unchecked strncpy

wu-ftpd-2.6.2 CVE-1999-0878 FTP server Unchecked strcpy
wu-ftpd-2.6.2 CAN-2003-0466 FTP server Wrong size check inside a if statement
wu-ftpd-2.6.2 CVE-1999-0368 FTP server Unchecked strcpy and strcat

ncompress-4.2.4

CVE-2001-1413

file (de)compression

Stack smash

polymorph-0.4.0

BID-7663

file system “unixer”

(WIN32 to Unix filename converter)

Stack smash &
Global buffer overflow

gzip-1.2.4 CVE-2001-1228 file (de)compression Global buffer overflow
man-1.5h1 CVE-2001-0641 documentation tools Global buffer overflow
be-1.06 AccMon [46] interactive algebraic language Heap buffer overflow
bugl Seacord 2005 [35] | Bug test program Dangling pointer
bug2 Seacord 2005 [35] | Bug test program Format string
Table 3. Attacks used for error detection validation.
1.2 184
P ®Dual-Core
1.15 +

E OOrthrus Asym

_s 11] OOrthrus Sym !

5 7 _

o

2

w 1.05

°

1]

N

T 17

E

]

2 0.95 -

0.9 -
gap gzip bzip2 twolf parser vortex mcf crafty mesa equake apache average

Figure 7. Slowdown for layout diversity.

the traditional dual-core incurs a significant slowdown (84%) by
increasing the off-chip traffic. In this case, the replication-aware
asymmetric architecture reduces the overhead to 14.3% by effec-
tively reducing the memory traffic. For Apache, Orthrus reduces
the performance overhead from 17.8% to 8.5%. We note that this

379

performance improvement is even without considering data trans-
fers inside the operating system where most web page data are
moved. Pin only allows us to instrument user-level instructions,
therefore we could not monitor OS activity. We expect the perfor-
mance improvement to be greater if we include OS-level memory

accesses. The data transfers for large web pages will stress the
off-chip bandwidth but be common for both replicas. The Orthrus
memory system will combine off-chip accesses from two repli-
cas for such common data transfers. The results also show that
the asymmetric configuration has a negligible performance degra-
dation compared to the symmetric configuration at least for the
benchmarks here.

In order to understand the sources of the performance overhead
in Orthrus, we performed a detailed analysis of the overhead for
the asymmetric core configuration. The breakdown is estimated by
incrementally adding each source of the overhead in simulations:
Corel-to-Core2 FIFO stalls, mem-alloc instructions, M AP][| ac-
cesses, shadow memory (M E M 2) accesses. As shown in Figure 8,
the performance overheads in mcf and Apache are largely due to
shadow memory accesses and partly due to address map accesses.
The shadow memory accesses and address map accesses pollute the
shared L2 cache and the off-chip bandwidth, and may slow down
the main core (Core 1) by increasing its L2 misses and memory la-
tency. Given that mcf and Apache are the two benchmarks with the
highest performance overheads for Orthrus, the shadow memory
access appears as the main source of the performance slowdowns.

Some benchmarks such as gzip, parser, vortex, and equake
show slowdowns mainly due to additional mem-alloc instruc-
tions. For example, we found that parser has significantly more
mem-alloc instructions than other benchmarks. When the map
store queue is full due to a large number of memory allocations,
Core 2 needs to stall on the next mem-alloc instruction. Such
overheads may be alleviated by increasing the size of the map
store queue. For equake, we also found that the injection of the
mem-alloc instructions slightly degrades the branch prediction ac-
curacy and the instruction cache hit-rate. However, we note that the
absolute performance overheads due to the memory allocation in-
structions are insignificant. As an example, gzip and vortex do
not show any noticeable slowdown (less than 0.02%) as shown in
Figure 7 even if the mem-alloc instruction is the main source of
the slowdown.

If the FIFO queue between the two cores gets full, it slows down
the main core by delaying instruction commits. Such stalls due to
the throughput discrepancy in the asymmetric configuration con-
tribute significantly to several benchmarks’ slowdown. However,
again, the absolute slowdown due to the FIFO stalls was rather
insignificant, even in the worst case in gap. The results indicate
that the small core can keep up with the large core in general, and
the 32-entry FIFO queue is large enough to hide any temporary
throughput differences between the two cores. In fact, our simula-
tion studies (not shown here) indicate that there is not much benefit
of having more than 32 entries in the FIFO.

In order to see the effects of architectural parameters, we also
simulated the performance with varying L1 and L2 cache sizes and
parameters (not shown here). We found that the average perfor-
mance overheads for various L2 sizes remain almost the same at
2.7% because the baseline performance also changes with different
L2 size. L1 cache parameters have small effects because Core 2’s
execution does not directly stall the main core.

5.6 Off-Chip Bandwidth Overheads

Table 4 summarizes the off-chip bandwidth usage of the traditional
dual-core configuration and our architecture with two replicas. The
table only shows one set of numbers for Orthrus because both sym-
metric and asymmetric configurations use the same replication-
aware memory system and show almost identical memory band-
width usage. As shown in the table, the dual-core configuration
more than doubles the bandwidth consumption as both cores make
the same number of memory accesses to two disjoint memory
spaces, which increases both the total number of memory accesses

380

as well as L2 cache miss-rates. On the other hand, Core 2 and the
address map (M A P) together in the Orthrus architecture consume
only 22.3% more bandwidth compared to the Core 1’s bandwidth
consumption. While the savings in the bandwidth may not translate
into increased performance for applications with low bandwidth us-
age, the lower off-chip traffic should result in a lower energy con-
sumption. Because the off-chip bandwidth cannot scale with the
number of transistors on a die, saving the bandwidth is likely to
become even more important for future many-core processors.

5.7 Memory Space Overheads

Figure 9 shows the memory usage of Orthrus’s layout diversity
scheme normalized to the baseline without any protection. The
traditional dual-core configuration incurs a 2 times overhead in
memory space in order to run two replicas. On the other hand,
the replication-aware memory system allocates a page for Replica
2 only if its content is different from Replica 1’s. As a result,
in our memory system, Replica 2 consumes much less memory
(17.9%) than Replica 1. Our current implementation cannot take
a full advantage of the fact that only about 7% of memory values
are different between replicas (see Figure 2(a)), because shadow
memory allocation is done at a page granularity. This is also the
reason why gap shows close to 2x memory usage overhead. The
memory access pattern of gap is spread across different pages in
the memory space.

In addition to the memory space for applications, our memory
system also uses meta-data such as a 1-bit tag for each 32-bit word
and an address map (32 bits) for each 64-byte block, which result in
an additional 9.375% overhead. Overall, on average, our memory
system requires 27.3% more memory than the baseline, which is
much less than the dual-core configuration.

6. Related Work

There exists a large body of work on protecting computing systems
from various types of software exploits. Here, we discuss most
closely related work that either provides a broad attack coverage
or has similarities in the approach. Due to the space limit, we could
not include all software protection techniques.

Software Diversity and Redundancy. Section 2 describes the
previous work on software diversification and replication tech-
niques for security [2—-4, 8, 10, 16, 23, 31, 34, 44]. Overall, the pro-
posed Orthrus architecture implements such replication techniques
efficiently and enables fine-grained checks for enhanced security.

Diversification and replication techniques are also being used
beyond protecting the software integrity. TightLip [45] protects the
confidentiality by using a replica with diversified sensitive data.
The outputs of the two processes are then checked for divergence at
system call level to determine whether sensitive information could
be leaked. Bressoud and Schneider proposed a software approach
for fault-tolerance using hypervisor based replicas [6]. The Orthrus
architecture can potentially be extended to support such replication
techniques more efficiently.

Safe Languages. This paper studies the layout diversification,
which provides a comprehensive detection of spatial memory er-
rors as well as some temporal errors, as the main example of our
proposed architecture. Alternatively, safe languages such as Java,
and safe dialects of C such as CCured [30] and Cyclone [21] can
provide strong memory safety using type systems and run-time
checks. While safe languages provide more comprehensive mem-
ory safety then the layout diversification, they also require non-
trivial programmer efforts to port legacy code and incur significant
overheads. On the other hand, the layout transformation is com-
pletely automatic.

Bound Checks. Recent studies show that compilers can auto-
matically add array bound checks to legacy C code [15, 29, 33].

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Performance Overhead

B Shadow_Mem_Access
BOMAP_Access

= Mem-alloc

OFIFO Queue Full

gap gzip bzip2 twolf parser vortex

mcf crafty mesa equake apache

Figure 8. The breakdown of the performance overheads for the asymmetric Orthrus configuration. The breakdown is estimated by
incrementally adding each source of the overhead in simulations: Corel-to-Core2 FIFO stalls, mem-alloc instructions, M AP][| accesses,

shadow memory (M E M?2) accesses.

Benchmark Baseline Dual-Core Orthrus

Base Core Core 1 Core 2 Corel | Core2 [MAP
gap 18.4454 19.4485 19.4415 19.4091 9.2265 0.9744
gzip 0.3098 0.3098 0.3098 0.3097 0.0005 0.0035
bzip2 12.4595 29.3977 29.1489 13.6530 0.0073 0.4352
twolf 1.0427 13.9297 13.5913 1.0427 0.0018 0.0327
parser 1.4385 1.7522 1.9459 1.5825 0.3493 0.0367
vortex 0.4558 0.5309 0.5382 0.4710 0.0927 0.0125
mcf 807.2247 11939716 | 1184.2169 883.0118 | 302.9616 | 47.8127
crafty 1.1673 1.7559 1.7613 1.1682 0.0053 0.0049
mesa 0.1773 0.1772 0.1772 0.1773 0.0212 0.0022
equake 5.4999 7.3787 7.3673 5.4993 0.0040 0.1793
apache 0.2344 0.2344 0.2344 0.2344 0.1807 0.0094

Table 4. Off-chip bandwidth usage (MB per 200 million instructions).

2.2
::’7 2 Bdata only OAll - data & meta-data
S
> 1.8
o
§
£ 1.6
k]
N
5 1.4 -
E
2 12 []
1 4
0.8 -

gap gzip bzip2 twolf parser

vortex mcf crafty ~mesa equake apache average

Figure 9. Memory usage for layout diversity.

However, bound checks in software can still incur a significant
slowdown in memory intensive programs (up to 1.69x in [15]).
Hardware support for bound checks [9, 13] can reduce the perfor-
mance overhead to 5-20% and provide comprehensive protection
for buffer overflows. Compared to Orthrus, these hardware bound

checking schemes show comparable but slightly higher perfor-
mance overheads. The additional hardware requirements are also
comparable to Orthrus if we do not consider the second core that
is used by Orthrus. As an example, HardBound [13] requires a tag
bit per word to mark pointers as well as base and bound addresses

381

for each pointer, which has similar overheads as the MAP and the
shadow memory in Orthrus. However, the bound checks only target
to address one type of spatial memory errors, namely buffer over-
flows. The proposed architecture with the diversified replication is
capable of detecting corruption of pointers and data from other vul-
nerabilities such as format string errors, temporal memory errors,
etc.

Hardware Support for Dynamic Taint Analysis. For security
attacks, dynamic taint analysis provides a general technique to
detect a large class of software attacks including high-level exploits
such as SQL injections with minimal hardware and performance
overheads [11, 12, 40]. However, the taint analysis can only detect
a subset of memory errors where I/O inputs corrupt code pointers
or certain critical data that are checked. The proposed architecture
provides a comprehensive memory protection from both malicious
attacks and unintended software errors.

Multi-Core for Security. INDRA [37] and LBA [7] propose
to use multi-core architecture to inspect run-time program behav-
ior. Nagarajan et al. also studied dynamic taint analysis on multi-
cores [28]. While the idea of using multi-cores is similar to the
proposed architecture, these techniques are designed to explicitly
check properties such as illegal control flows or use of tainted val-
ues, and rely on symmetric multi-cores. The proposed architecture
supports software diversity and redundancy, and investigates both
symmetric and asymmetric cores.

Efficient Execution of Software Variants. Tucek et al. pro-
posed delta execution as an efficient way to validate software
patches by executing both patched and unpatched versions together
[41]. To reduce overheads, delta execution only executes parts of
the patched program that are different from the original and have
both versions share common pages. Biswas et al. [5] proposed to
improve the performance by exploiting the similarities in data when
many instances of a program with slightly different data need to be
run. In a high-level, these approaches are similar to the proposed
architecture optimizations. However, they target different applica-
tions and do not support diversity in memory layouts. The Orthrus
architecture can potentially be used to extend the delta execution
for more complex patches that change memory layouts.

7. Conclusion and Future Directions

This paper presents the Orthrus architecture that enables efficient
software diversity and redundancy with fine-grained checks. The
proposed architecture significantly reduces the overheads associ-
ated with executing multiple replicas by removing unnecessary re-
dundancy. The experiments demonstrate that a small single-issue
in-order core is sufficient to match the throughput of a wide out-
of-order core. Utilizing this hardware support, the paper also intro-
duces and evaluates a memory layout diversification scheme that
can detect a wide range of memory errors.

The current Orthrus design does not support multithreaded ap-
plications. However, we believe that the proposed approach to ef-
ficiently execute multiple replicas can be generalized to multi-
threaded applications. One challenge in replicating multithreaded
applications lies in ensuring identical execution of replicas. Recent
techniques from deterministic multithreading and replay present vi-
able solutions to this problem [14, 19, 27]. Moreover, we believe
that the memory compression in Orthrus reduces the sources of
non-determinism in multithreading because synchronization oper-
ations are typically done using data, which are identical between
replicas. For multithreaded applications, Orthrus must also ensure
the coherence between data and their tags. Fortunately, recent stud-
ies in Dynamic Information Flow Tracking handle the same issue
[22, 28].

In the future, we also plan to extend Orthrus to protect confi-
dentiality in addition to software integrity, to automatically recover

382

from attack techniques exploiting multiple replicas, and to handle
hardware and design errors in addition to the software security at-
tacks. We believe that such extensions can be implemented with
minimal increase in the overheads because Orthrus already has the
redundancy that is often required to detect other types of errors.

Acknowledgments

We thank anonymous reviewers for their feedback and Professor
David Lie for his suggestions to improve the final version of the
paper. This work was partially supported by the National Science
Foundation under grants CNS-0746913 and SA4897-10808PG, by
the Air Force Office of Scientific Research under Grant FA9550-
09-1-0131, and an equipment donation from Intel Corporation. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of NSF, AFOSR, or Intel.

References

[1] T. Austin. DIVA: A reliable substrate for deep submicron microarchi-
tecture design. In Proceedings of the 32t" International Symposium
on Microarchitecture, November 1999.

E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D.
Zovi. Randomized instruction set emulation to disrupt binary code
injection attacks. In Proceedings of the 10*" ACM Conference on
Computer and Communications Security (CCS03), 2003.

E. D. Berger and B. G. Zorn. DieHard: Probabilistic memory safety
for unsafe languages. In PLDI ’06: Proceedings of the 2006 ACM
SIGPLAN conference on Programming language design and imple-
mentation, 2006.

S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: an
efficient approach to combat a broad range of memory error exploitsth.
In Proceedings of 12t USENIX Security Symposium, 2003.

S. Biswas, D. Franklin, A. Savage, R. Dixon, T. Sherwood, and F. T.
Chong. Multi-execution: multicore caching for data-similar execu-
tions. In Proceeding of the 36'" International Symposium on Com-
puter Architecture, June 2009.

[2]

[3

[t

[4

=

[5]

[6

=

T. Bressoud and F. Schneider. Hypervisor-based fault tolerance. In
15" ACM Symposium on Operating Systems Principles, 1995.

S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. Gibbons, T. Mowry,
V. Ramachandran, O. Ruwase, M. Ryan, and E. Vlachos. Flexible
hardware acceleration for instruction-grain program monitoring. In
Proceedings of the 35" International Symposium on Computer Ar-
chitecture, June 2008.

[7

—

[8] M. Chew and D. Song. Mitigating buffer overflows by operating
system randomization. In Technical Report CMU-CS-02-197, 2002.

[9] J. Clause, I. Doudalis, A. Orso, and M. Prvulovic. Effective memory
protection using dynamic tainting. In Proceedings of the 22" Inter-
national Conference on Automated Software Engineering, 2007.

[10] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,
J. Knight, A. Nguyen-Tuong, and J. Hiser. N-variant systems: A se-
cretless framework for security through diversity. In Proceedings of
the 15" USENUX Security Symposium, August 2006.

[11] J. R. Crandall and F. T. Chong. Minos: Control data attack prevention
orthogonal to memory model. In Proceedings of the 37" Interna-
tional Conference on Microarchitecture, December 2004.

[12] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A flexible infor-
mation flow architecture for software security. In Proceedings of the
34" International Symposium on Computer Architecture, June 2007.

[13] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic. Hard-
bound: architectural support for spatial safety of the C programming
language. In ASPLOS XIII: Proceedings of the 13t" international
conference on Architectural support for programming languages and
operating systems, pages 103—114, 2008.

[14] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. Dmp: deterministic
shared memory multiprocessing. In ASPLOS XIV: Proceeding of the

14th international conference on Architectural support for program-
ming languages and operating systems, 2009.

[15] D. Dhurjati and V. Adve. Backwards-compatible array bounds check-
ing for C with very low overhead. In Proceeding of the 28" Interna-
tional Conference on Software Engineering, May 2006.

[16] S. Forrest, A. Somayaji, and D. H. Ackley. Building diverse computer
systems. In Proceedings of 6 Workshop on Hot Topics in Operating
Systems, 1997.

[17] M. Franz. Understanding and countering insider threats in software
development. In Proceedings of the 2008 International Conference on
e-Technologies, January 2008.

[18] J. L. Henning. SPEC CPU2000: Measuring CPU performance in the
new millennium. /EEE Computer, July 2000.

[19] D. R. Hower and M. D. Hill. Rerun: Exploiting episodes for
lightweight memory race recording. In Proceedings of the 35" In-
ternational Symposium on Computer Architecture, June 2008.

[20] Intel Inc. Intel Details Upcoming New Processor Generations, 2007.
http://www.intel.com/pressroom/archive/releases/20070328fact.html.

[21] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.
Cyclone: A safe dialect of C. In Proceedings of the USENIX Annual
Technical Conference, 2002.

[22] H. Kannan. Ordering decoupled metadata accesses in multiprocessors.
In ACM/IEEE 42™% International Symposium on Microarchitecture
(MICRO-42), December 2009.

[23] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-
injection attacks with instruction-set randomization. In Proceedings

of the 10t" ACM Conference on Computer and Communications Se-
curity (CCS03), 2003.

C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization, March
2004.

S. Lu, Z. Li, F Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench:
Benchmarks for evaluating bug detection tools. In Workshop on the
Evaluation of Software Defect Detection Tools(PLDI’05), 2005.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation. In Proceedings of
the 2005 Conference on Programming Language Design and Imple-
mentation International (PLDI), June 2005.

[24]

[25]

[26]

[27] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean: Recording and
deterministically replaying shared-memory multiprocessor execution
effciently. In Proceedings of the 35" International Symposium on

Computer Architecture, June 2008.

[28] V. Nagarajan, H.-S. Kim, Y. Wu, and R. Gupta. Dynamic information
flow tracking on multicores. In Proceedings of the Workshop on

Interaction between Compilers and Computer Architectures, 2008.

S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. Softbound:
highly compatible and complete spatial memory safety for c. In
PLDI ’09: Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation, pages 245-258,
2009.

G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe
retrofitting of legacy code. In Proceedings of the 29" ACM Sym-
posium on Principles of Programming Languages, 2002.

A. Nguyen-Tuong, D. Evans, J. C. Knight, B. Cox, and J. W. David-
son. Security through redundant data diversity. In Proceedings of the
38t" [EEE/IFPF International Conference on Dependable Systems
and Networks, Dependable Computing and Communications Sympo-
sium, 2008.

[29]

[30]

[31]

383

[32] R. Pucella and R. B. Schneider. Independence from obfuscation:
A semantic framework for diversity. In Proceedings of the 2006
Computer Security Foundations Workshop, 2006.

[33] O. Ruwase and M. S. Lam. A practical dynamic buffer overflow
detector. In Proceedings of the 11" Annual Network and Distributed

System Security Symposium, 2004.

[34] B. Salamat, T. Jackson, A. Gal, and M. Franz. Orchestra: intrusion
detection using parallel execution and monitoring of program variants
in user-space. In EuroSys '09: Proceedings of the 4th ACM European

conference on Computer systems, 2009.

R. C. Seacord. Secure Coding in C and C++ (SEI Series in Soft-
ware Engineering). Addison-Wesley Professional, 2005. ISBN
0321335724.

H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and D. Boneh.
On the effectiveness of address-space randomization. In Proceedings
of the 11th ACM Conference on Computer and Communications
Security, 2004.

W. Shi, H.-H. S. Lee, L. Falk, and M. Ghosh. INDRA: An integrated
framework for dependable and revivable architectures using multicore
processors. In Proceedings of the 337¢ International Symposium on
Computer Architecture, 2006.

[35]

[36]

(37]

[38] P. Shivakumar and N. J. Jouppi.
timing, power, and area model.

Report, Feb. 2001.

[39] A. N. Sovarel, D. Evans, and N. Paul. Wheres the FEEB? the effec-
tiveness of instruction set randomizationth. In Proceedings of the 14"
USENIX Security Symposium, 2005.

G. E. Suh, J. Lee, D. X. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. In Proceedings of
the 11%" Int’l Conference on Architectural Support for Programming
Languages and Operating Systems, October 2004.

J. Tucek, W. Xiong, and Y. Zhou. Efficient online validation with
delta execution. In Proceedings of the 14" International Conference
on Architecture Support for Programming Languages and Operating
Systems, 2009.

S. Vlaovic. TAXI: Trace analysis for x86 interpretation. In Proceed-
ings of the 2002 IEEE International Conference on Computer Design,
pages 508-514, 2002.

[43] C. Weaver and T. Austin. A fault tolerant approach to microprocessor
design. In IEEE International Conference on Dependable Systems and
Networks (DSN-2001), June 2001.

[44] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime randomiza-
tion for security. In Proceedings of 2274 International Symposium on
Reliable Distributed Systems (SRDS03), 2003.

[45] A. R. Yumerefendi, B. Mickle, and L. P. Cox. Tightlip: Keeping
applications from spilling the beans. In NSDI, 2007.

[46] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff, and J. Tor-
rellas. Accmon: Automatically detecting memory-related bugs via
program counter-based invariants. In 37th International Symposium
on Microarchitecture (MICRO), pages 269-280, 2004.

[47] M. Zitser, R. Lippmann, and T. Leek. Testing static analysis tools
using exploitable buffer overflows from open source code. SIGSOFT
Softw. Eng. Notes, 29(6):97-106, 2004.

CACTI 3.0: An integrated cache
Technical report, WRL Research

[40]

[41]

[42]

