
Reverse Engineering of Binary Device Drivers with RevNIC

Vitaly Chipounov and George Candea

School of Computer and Communication Sciences
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract
This paper presents a technique that helps automate the re-
verse engineering of device drivers. It takes a closed-source
binary driver, automatically reverse engineers the driver’s
logic, and synthesizes new device driver code that imple-
ments the exact same hardware protocol as the original
driver. This code can be targeted at the same or a different
OS. No vendor documentation or source code is required.

Drivers are often proprietary and available for only one
or two operating systems, thus restricting the range of de-
vice support on all other OSes. Restricted device support
leads to low market viability of new OSes and hampers OS
researchers in their efforts to make their ideas available to
the “real world.” Reverse engineering can help automate the
porting of drivers, as well as produce replacement drivers
with fewer bugs and fewer security vulnerabilities.

Our technique is embodied in RevNIC, a tool for reverse
engineering network drivers. We use RevNIC to reverse en-
gineer four proprietary Windows drivers and port them to
four different OSes, both for PCs and embedded systems.
The synthesized network drivers deliver performance nearly
identical to that of the original drivers.

Categories and Subject Descriptors D.3.4 [Processors]:
Code generation

General Terms Performance, Design, Languages

Keywords Device drivers, Reverse engineering, Binary,
Closed-source, Proprietary software

1. Introduction
The ability to use a hardware device with an operating sys-
tem requires that a corresponding device driver be available,
i.e., a program that knows how to mediate the communi-
cation between the OS kernel and that specific device. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’10, April 13–16, 2010, Paris, France.
Copyright © 2010 ACM 978-1-60558-577-2/10/04. . . $10.00

driver may be supplied by either the hardware vendor or the
developer of the operating system.

Hardware vendors typically provide drivers for the one
or two most popular OSes. It appears that supporting many
other platforms is not profitable, because the high cost of
development and technical support can be amortized only
over comparatively fewer customers. As a result, drivers are
rarely available for every OS/device combination. This is-
sue is common to various device classes, including network
drivers. Alas, for an operating system to be viable and widely
adopted, it must support a wide range of hardware.

Even when drivers are available, they are often closed-
source and proprietary. Despite this making them less trust-
worthy, proprietary drivers are still permitted to run at the
highest level of privilege in an operating system. Not sur-
prisingly, buggy drivers are a leading cause of crashes [41].
They can also be a security threat, as was the case of a driver
shipped with all versions of Windows XP that was found to
contain a zero-day privilege escalation vulnerability [29].

Writing a driver for an OS that is not supported by the
device vendor is challenging, because the device specifica-
tion is often not available. While the interface exposed by
an OS to the driver is well known, the specification of the
interface between the hardware and the driver is often not
public. The classic approach is to manually reverse engi-
neer the original driver, but that involves a lot of work. When
the device is too complex to be reverse engineered, develop-
ers resort to emulating the source OS using wrappers (e.g.,
NDISwrapper [32] allows running Windows NIC drivers on
Linux). However, this adds performance overhead, can only
use drivers from one source OS, and requires changing the
wrapper each time the source OS driver interface changes.

Even when the hardware specification is available, writ-
ing the driver still requires substantial effort. That is why,
for example, it took many years for Linux to support widely
used wireless and wired NIC devices. Vendor-providedspec-
ifications can miss hardware quirks, rendering drivers based
on these specifications incomplete (e.g., the RTL8139 NIC
driver on Linux is replete with workarounds for such quirks).

Our proposed approach overcomes unavailability of spec-
ifications and costly development with a combination of au-
tomated reverse engineering and driver code generation. We

observe that a device specification is not truly necessary as
long as there exists one driver for one platform: that one
driver is a (somewhat obscure) encoding of the correspond-
ing device protocol. Even if they are not a perfect representa-
tion of the protocol, proprietary drivers incorporate handling
of hardware quirks that may not be documented in official
specification sheets. We also observe that writing drivers in-
volves a large amount of boilerplate code that can be easily
provided by the OS developer. In fact, an entire category of
drivers can use the same boilerplate; driver writers plug into
this boilerplate the code specific to their hardware device.

We implemented our approach in RevNIC, a tool for
automating the reverse engineering of network drivers. This
tool can be used by hardware vendors to cheaply support
their devices on multiple platforms, by OS developers to
offer broader device support in their OS, or by users who
are skeptical of the quality and security of vendor-provided
closed-source proprietary drivers.

Our paper makes three main contributions. First, we in-
troduce a technique for tracing the driver/hardware inter-
action and turning it into a driver state machine. Second,
we demonstrate the use of binary symbolic execution to
achieve high-coverage reverse engineering of drivers. Third,
we show how symbolic hardware can be used to reverse en-
gineer drivers without access to the actual physical device.

After providing an overview of RevNIC (§2), we describe
how RevNIC “wiretaps” drivers (§3) and synthesizes new
driver code (§4), we evaluate RevNIC (§5), discuss limita-
tions (§6), survey related work (§7), and conclude (§8).

2. System Overview
To reverse engineer a driver, RevNIC observes the driver-
hardware interaction, i.e., the manifestation of the device-
specific protocol, encoded in the driver’s binary. RevNIC
synthesizes an executable representation of this protocol,
which the developer can then use to produce a driver for the
same or a different OS.

RevNIC employs a mix of concrete and symbolic execu-
tion to exercise the driver and to wiretap hardware I/O oper-
ations, executed instructions, and memory accesses. For this,
RevNIC uses a modified virtual machine (Figure 1). The out-
put of the wiretap is fed into a code synthesizer, which ana-
lyzes the trace information and generates snippets of C code
that, taken together, implement the functionality of the de-
vice driver. The developer then pastes the code snippets into
a driver template to assemble a new driver that behaves like
the original one in terms of hardware I/O.

Exercising the driver. It is difficult to exercise every
relevant code path in the driver using just regular workloads.
Many paths correspond to boundary conditions and error
states that are hard to induce. E.g., a NIC driver could take
different paths depending on the packet type transmitted by
the network stack (ARP, IP, VLAN, etc.) or depending on
how the hardware responds.

RevNIC Code
Synthesizer

Synthetic Driver
(e.g., for Linux)

Original
Driver

V
ir

tu
a

l M
a

ch
in

e

(e.g., Windows)
Guest OS

RevNIC Wiretap
Activity traces

NIC Driver Template

C code

Figure 1: High-level architecture of RevNIC.

In order to induce the device driver to perform its op-
erations, RevNIC guides the execution with a mix of con-
crete and symbolic workload. The concrete workload ini-
tiates driver execution by triggering the invocation of the
driver’s entry points. RevNIC selectively converts the pa-
rameters of kernel-to-driver calls into symbolic values (i.e.,
values that are not constrained yet to be any specific, con-
crete value) and also treats the responses from the hardware
side as symbolic. This drives the execution down many fea-
sible paths through the driver, as well as exercises all code
that depends on hardware input/returns.

By using symbolic values, RevNIC is completely inde-
pendent of the physical hardware device. Unconstrained
symbolic values provide the driver a representation of all
the responses from the hardware that the driver thinks could
ever be received.

Recording driver activity. The RevNIC wiretap records
the driver’s hardware I/O, along with the driver’s memory
accesses and an intermediate representation of the instruc-
tions it executes (§3). Such detailed tracing imposes perfor-
mance overheads, but the overheads are irrelevant to reverse
engineering.

Synthesizing driver code. RevNIC infers from the col-
lected activity traces the state machine of the binary driver
and produces C code that implements this state machine.
RevNIC automatically merges multiple traces to reconstruct
the control flow graph (CFG) of the original driver. Since
the generated CFG is equivalent to that of the original driver,
covering most of the basic blocks is sufficient to reverse en-
gineer the driver—complete path coverage is not necessary.

RevNIC uses virtualization and symbolic execution in-
stead of mere decompilation for four main reasons. First,
static decompilers face undecidable problems (e.g., disam-
biguating code from data) and can produce inaccurate re-
sults [38]. Second, while some decompilers can record dy-
namic execution traces [20] to improve accuracy, RevNIC
explores multiple paths in parallel and covers unexplored
code faster using symbolic execution. Third, since the VM
catches all hardware accesses, RevNIC can distinguish ac-
cesses to a memory-mapped device from regular memory
accesses, which is notoriously difficult to do statically on

architectures like x86. Identifying such instructions is cru-
cial to preserving memory access ordering in the generated
code (e.g., write barriers). Finally, RevNIC must recognize
DMA-allocated regions assigned by the OS to the driver (by
recording the address values returned by the OS API); doing
this in a decompiler requires complex inter-procedural data
flow analysis.

Writing a driver template. The template contains all
OS-specific boilerplate for interfacing with the kernel (e.g.,
NDIS API on Windows, network API on Linux). Templates
can be arranged in a class hierarchy with an abstract template
implementing the basic boilerplate, and derived templates
implementing additional functionalities. For example, a base
template may target a generic PCI-based, wired NIC, while a
derived template further adds DMA capabilities. This mod-
ularity allows accommodating all common types of network
devices. Depending on the OS, templates can be derived
from examples in driver development kits (e.g., the Windows
Driver Kit [30]) or automatically generated, with tools like
WinDriver [22].

Besides mandatory boilerplate, a template also contains
placeholders for the actual hardware interaction. Since de-
vices in a given class (e.g., NICs) tend to operate in the
same manner (e.g., initializing, sending, receiving, comput-
ing checksums using well-defined standards), the functional
differences between drivers are at the level of code imple-
menting this hardware I/O.

Producing the synthetic driver. The developer pastes
synthesized code snippets into the template’s placeholders
in order to specialize the template for the device of interest.
The result is then compiled into a driver. In order to paste
code snippets correctly, the developer has to know how to
write drivers both for the source and for the target OS.

In this paper, we explore the porting to various OSes:
Linux, Windows, the µC/OS-II real-time embedded OS for
FPGA systems, and our own experimental KitOS. The fol-
lowing sections detail how RevNIC traces driver activity and
processes activity traces to produce the synthetic driver.

3. Exercising and Tracing Driver Activity
We now describe how RevNIC uses symbolic execution to
exercise drivers, how it copes with the absence of actual
hardware, and what information it records to generate a
working driver for the target OS. Throughout the paper, we
illustrate reverse engineering of Windows NIC drivers, but
the techniques can be adapted to other operating systems.

3.1 Achieving High Coverage

To exercise a driver’s execution paths automatically, RevNIC
uses symbolic execution [24]. The driver is provided with
symbolicvalues for parameters coming from the OS (λ ,β ,
etc.), instead of theconcretevalues of those parameters
(0xE9, “foo”, etc.). Every assignment in the program along a
given execution path updates the driver variables with a sym-

bolic expression (e.g.,x = λ − 2), instead of a concretely
computed value (x = 9− 2 = 7). A conditional statement
(e.g., “if x>0 then...else...”) splits (or forks) the execu-
tion into two new paths—one for the then-branch and one
for the else-branch—with a common prefix. Along the then-
path, values are constrained by theif condition (λ −2 > 0)
and along the else-path by theelse condition (λ −2≤ 0).
An execution path can thus be thought of as a path from
the root of the program’s “execution tree” (initial state) to
the leaves (final states). The symbolic execution engine in-
vokes a constraint solver each time it encounters a condi-
tional statement that depends on a symbolic input—by solv-
ing the conjunction of the constraints collected along the cur-
rent path, it decides which branches are feasible to execute.

Running a driver symbolically poses several challenges,
such as interacting with the OS and coping with the exponen-
tial number of paths. To address this, we developed a tech-
nique calledselective symbolic execution[8]. Compared to
other approaches [6, 7, 31, 34], it allows running the driver
inside its native environment, without requiring any modifi-
cation of the driver or the OS. First, selective symbolic ex-
ecution allows specifying what piece of code should be ex-
ecuted symbolically (e.g., the driver), and what should run
natively (e.g., the OS). Second, it allows mixing symbolic
and concrete driver inputs. These two types of selections
reduce the number of symbolic values in the system, and
prune unnecessary paths by reducing the number of forks on
branches, thus mitigating the state explosion problem [4].

RevNIC employssymbolic hardware, which always re-
turns symbolic values. All reads from hardware done by the
driver are intercepted by RevNIC and replaced with sym-
bolic values. This exercises many more code paths than real
hardware could. Consider, for example, the NIC interrupt
handler: since a read of the status register returns a sym-
bolic value, all conditional branches that depend on the re-
turned value are automatically explored, without requiring a
cleverly crafted workload that would induce a real NIC into
producing all possible return values (which may even be im-
possible to do solely using a workload).

As I/O to and from the hardware is symbolic, the ac-
tual device is never needed. This allows developers using
RevNIC to reverse engineer drivers for rare or expensive
devices they do not (yet) have access to. §3.4 shows how
RevNIC implements symbolic hardware.

3.2 Mechanics of Exercising the Driver

RevNIC attempts to maximize the basic block coverage
of the driver, in order to maximally capture its behavior.
RevNIC first determines the entry points of the driver and
makes the OS invoke them, in order to initiate their symbolic
execution. Then, RevNIC guides the symbolic execution us-
ing a set of heuristics whose goal is to maximize coverage
while reducing the time spent exercising the driver.

RevNIC’s requirements. To exercise the driver, RevNIC
must know the semantics of the OS interface. This requires

that the OS driver interface and all API functions used by the
driver be documented. The documentation must include the
name of the API functions, the parameter descriptions, along
with information about data structures (type and layout)
used by these functions. RevNIC internally encodes this
information in order to correctly determine and exercise the
entry points provided by the driver.

Discovering driver entry points. RevNIC monitors OS-
specific entry point registration calls. In the case of Win-
dows, drivers usually export one function, which is called
by the kernel to load the driver. This function registers the
driver’s entry points with the OS by passing a data struc-
ture to a specific OS function (NdisMRegisterMiniport).
At run-time, the driver can register other entry points, like
timers (via NdisInitializeTimer). RevNIC monitors
calls to such OS APIs to record the contents of the data
structures and function pointers. Since these structures con-
tain actual function pointers and have documented member
variables, RevNIC knows which entry points need to be ex-
ercised and the developer is aware of the functionality each
entry point is responsible for. RevNIC includes a default set
of NDIS function descriptions and allows users to specify
what additional functions to monitor.

RevNIC invokes each entry point of the driver via a user-
mode script or program that runs in the guest OS. The script
first loads the driver so as to exercise its initialization routine,
then invokes various standard IOCTLs, performs a send, ex-
ercises the reception, and ends with a driver unload. Interrupt
handlers are triggered by the VM, as we shall see shortly.
Once an entry point is called, its code is executed symbol-
ically until no more new code blocks are discovered within
some predefined amount of time.

Initiating symbolic execution. RevNIC intercepts en-
try point invocations, then fills with symbolic data the user
buffers and the integer parameters passed in, while keeping
the other parameters, like pointers, concrete. For example, to
exercise sending, RevNIC runs a program that sends pack-
ets of various sizes. RevNIC catches the invocation of the
send entry point, then replaces the concrete data within the
packet and the packet length with symbolic values. This ex-
ercises the paths corresponding to the various packet types
and sizes. Existing techniques can be employed to mix con-
crete and symbolic data within the same buffer [17, 19], in
order to speed up exploration.

Injecting symbolic values from the OS side, however,
may cause execution to reach an impossible error state (e.g.,
wrongly crash the driver) if the symbolic values subsume
concrete values the kernel would never pass to the driver.
When any error state is reached, RevNIC terminates the ex-
ecution path and resumes a different one. Reaching these in-
feasible error states does not perturb the reverse engineering
process, since RevNIC merely aims to touch as many basic
blocks as possible and cause them to manifest in the traces.
RevNIC’s goal is not to expose the driver to a realistically

functioning device or OS, but rather to reverse engineer the
state machine implemented by the driver.

Guiding driver exploration with heuristics. Symbolic
execution generates a large number of possible execution
paths, with execution having progressed to various depths
down each path. RevNIC executes one path at a time, but
frequently switches between them. The choice of which path
to execute next is driven by a strategy that, in RevNIC, relies
on several heuristics. RevNIC’s heuristics aim to choose the
paths most likely to lead to previously unexplored code. Dis-
carding early on paths that are unlikely to discover any new
code helps cope with the large number of paths. Note that
RevNIC allows these heuristics to be modularly replaced,
when and if better ones are discovered.

The first heuristic explicitly selects paths most likely to
discover new code. Every time RevNIC completes execut-
ing one basic block of the driver, it decides whether to con-
tinue that same execution path (by executing the next basic
block) or to switch to a basic block in another execution path.
We refer to a <path,block> tuple as “state,” as it directly de-
termines program state. RevNIC associates with each basic
block a counter that is incremented after that block is exe-
cuted. The next state to execute is the one corresponding to
the basic block with the lowest count. A good side effect of
this strategy is that it does not get “stuck” in loops, since
it decreases the priority of states that merely re-execute a
previously explored loop. We found this heuristic to speed
up exploration, compared to depth-first search (which can
get stuck in polling loops) or breadth-first search (which can
take a long time to complete a complex entry point).

A separate heuristic selects paths to discard in polling
loops and large entry points. Symbolic execution forks virtu-
ally identical states at a high rate in case of polling loops.To
avoid memory exhaustion, RevNIC keeps the paths that step
out of the polling loops and kills those that go on to the next
iteration. A large number of states can also get RevNIC stuck
in one entry point, preventing subsequent entry points from
ever being reached. To cope with this, whenever an entry
point completes with a successful error code a given number
of times, RevNIC discards all paths except one successful
one chosen at random. The execution then proceeds to the
next entry point, controlled by the script.

A third heuristic guides RevNIC in injecting interrupts
at specific points in the execution, to exercise interrupt han-
dlers. For NIC drivers, triggering interrupts after returning
from a driver entry point (e.g., send) works well, since that
is the moment when the device either triggers a completion
interrupt, a receive interrupt, or some other type of interrupt
(error, buffer overflow, etc.). This strategy results in virtually
complete coverage of the interrupt handlers. In general, how-
ever, the code paths in asynchronous event handlers depend
on previous execution histories—we are exploring ways to
use data dependency information to optimally choose the
moment to inject such asynchronous events.

A final heuristic helps RevNIC skip over unnecessary
function calls. First, device drivers often call functionsir-
relevant to the hardware protocol, such as writing debug/log
information (via calls likeNdisWriteErrorLogEntry).
Such (OS-specific) functions can be indicated in RevNIC’s
configuration file, and RevNIC will skip them. Second, some
hardware-related functions can be replaced with models, to
speed up execution. E.g., a common pattern is to write a reg-
ister address on one port and read the value on another. This
type of function may be called frequently, yet it exercises
the same set of paths on every call. RevNIC can report the
most frequently called functions on a first run, in order to let
the developer specify which ones should be replaced with
models on subsequent runs. Such models have a few lines of
code and are easy to write: they just need to set the program
counter appropriately to skip the call, and return a symbolic
value (e.g., in case the modeled function is a register read).

3.3 Wiretapping the Driver

RevNIC exercises the driver, so that the wiretap can see and
record as much behavioral information as possible.

First, the wiretap saves the instructions executed by the
driver in an intermediate representation. This serves as a ba-
sis for C code generation during the synthesis phase (§4).
Second, the wiretap records whether the instructions access
device-mapped memory or regular memory, along with the
value of the corresponding pointer and the transferred data.
This simplifies the data flow analysis during reverse engi-
neering (§4.1), by disambiguating aliased pointers. Third,
the wiretap records the type of executed basic blocks (con-
ditional vs. direct/indirect jumps vs. function calls) andthe
contents of the processor’s registers at the entry and exit of
each basic block. This helps reconstruct the control flow dur-
ing synthesis.

3.4 Exerciser/Tracer Prototype

The driver exerciser/tracer part of RevNIC has three com-
ponents, all of which extend the QEMU hypervisor [2]: one
initiates symbolic execution starting from a concretely run-
ning OS environment, another one performs selective sym-
bolic execution on the driver using a modified version of
KLEE [6], and the last one optimizes symbolic execution
in order to make driver exploration efficient.

Creating the illusion of real hardware. To make the OS
load the driver and initiate symbolic execution, RevNIC uses
a “shell” virtual device in the hypervisor to create the illu-
sion that the actual device is present. The shell device redi-
rects the driver’s hardware accesses to a symbolic execution
engine, which provides symbolic input for each read from
that device. The engine also triggers symbolic interrupts by
asserting the interrupt pin of the shell device. The shell de-
vice consists of a PCI configuration space descriptor, which
contains crucial information for loading the corresponding
driver: the vendor and product identifier of the device whose
driver is being reverse engineered, the I/O memory ranges,

and the interrupt line. The developer obtains these parame-
ters from the Windows device manager and passes them to
RevNIC on the command line. RevNIC can reverse engineer
x86 binary drivers for PCI or ISA devices; adding support
for other buses like USB is straightforward.

The shell device relies on RevNIC to detect and han-
dle DMA memory. The shell device cannot handle DMA
directly because it does not know how the original device
would handle DMA internally. Drivers use specific APIs to
register memory to be used in DMA operations. RevNIC de-
tects DMA memory regions by tracking calls to the DMA
API and communicating the returned physical addresses to
the shell device, which returns symbolic values upon reads
from these regions.

Symbolic execution. RevNIC executes the driver sym-
bolically and runs the rest of the system (OS kernel and
applications) concretely. It monitors OS attempts to load
the driver, in order to track the location of the driver code.
RevNIC then parses the operating system’s data structures
directly from inside the hypervisor. It does not require any
modification of the drivers or the guest OS, but needs to
know the type of the OS data structures and their location.

RevNIC passes the driver code to a dynamic binary trans-
lator (DBT) to generate equivalent blocks of LLVM bit-
code [26]—the intermediate representation used by RevNIC
in its traces and used for symbolic execution in KLEE.
QEMU passes the current program counter to the DBT,
which translates the code until it finds an instruction alter-
ing the control flow. Then, the DBT packages the translated
LLVM bitcode into atranslation block1, which is ready for
symbolic execution. The DBT cannot translate all the code
at once, because the code may not be available in advance
(e.g., it could be paged out, it might be self-modifying).

The generated blocks of bitcode are run by the KLEE
symbolic execution engine in the context of the current state.
A state consists of the contents of the physical memory, the
CPU registers, and the virtual devices. KLEE updates the
state as it executes a block of LLVM code (i.e., write to CPU
registers, memory, and devices according to the executed
code). When encountering branches that depend on sym-
bolic values, the current state is copied, conceptually similar
to what thefork syscall does. When KLEE completes the
execution of the block of code, it returns the updated current
state to QEMU, along with the set of forked states. RevNIC’s
heuristics then choose the next state to execute.

RevNIC enables QEMU to switch between the concrete
and symbolic execution domains. First, QEMU and KLEE
share a common representation of the physical memory. This
memory can store symbolic values that occur during sym-
bolic execution of the driver. RevNIC automatically con-

1 A translation block is a sequence of guest machine instructions translated
to LLVM, ending with a terminator (call, return, branch, etc.). A translation
block can consist of multiple basic blocks, when an instruction in the middle
of the translation block is the target of a branch from outside that block.

cretizes the symbolic values whenever they are read by the
OS, thus keeping the OS unaware of symbolic execution.
Second, RevNIC copies the CPU state between QEMU and
KLEE whenever execution crosses the concrete/symbolic
boundary. A calling convention that uses registers to pass
parameters would require concretizing symbolic register val-
ues. In Windows, thestdcall calling convention passes all
arguments on the stack, which means that only registers with
concrete values need to be copied.

Coping with a large state space. The last component
helps RevNIC cope with two aspects that compound the state
explosion problem: symbolic memory addresses and the 4
GB limit on system memory in 32-bit machines.

RevNIC avoids the complexity of dealing with symbolic
addresses by concretizing them. Keeping track of all pos-
sible addresses for each memory access that uses a sym-
bolic location is expensive. Symbolic memory addresses oc-
cur when symbolic input is used to reference memory, e.g.,
when a symbolic IOCTL number is used as an index in a ta-
ble. They also occur with jump tables produced by compil-
ers for switch statements. Depending on the number of case
statements, a compiler constrains the range of values (e.g.,
0≤ i < 16) by putting a check in the code, and jumping to
the default case when the value is out of range. Since there
are typically only a few concrete values, RevNIC generates
all of them and forks the execution for each such value.

Symbolically executing drivers can generate tens of thou-
sands of states. Even though RevNIC is compiled to use the
full 4 GB of virtual address space, RevNIC requires more
memory. We augmented KLEE’s object-level copy-on-write
with page-level copy-on-write (to avoid forking large mem-
ory objects) and added transparent page swapping to disk (to
explore a virtually unlimited number of states, without being
restricted by available physical memory). 64-bit versionsof
QEMU and KLEE would alleviate this problem.

4. Synthesizing New Drivers
RevNIC exercises the driver and outputs a trace consisting
of translated LLVM blocks, along with their sequencing and
all memory and I/O information. Now we describe how this
information is processed (§4.1) and used to synthesize C
code for a new driver that behaves like the original (§4.2).

4.1 Turning Traces into a C-encoded State Machine

Generating C code from the traces consists of rebuilding the
control flow graph of the driver’s functions and converting
the corresponding basic blocks from LLVM to C.

Rebuilding the CFG. The driver wiretap produces raw
execution traces that contain explicit paths through the
driver’s execution tree (§3.1). Each such path, from the root
to a leaf, corresponds to an execution of the driver, exercis-
ing a different subset of the code. The trace does not contain
OS code, because RevNIC stops recording when execution
leaves the driver. A traced path ends when it is terminated

by RevNIC (e.g., due to being stuck in a polling loop), when
driver initialization fails, or when the unload routine of the
driver completes (and thus there is nothing more left to exe-
cute). The traces also contain interspersed snippets of asyn-
chronous execution, like interrupt and timer handlers.

RevNIC merges the execution paths from traces in order
to rebuild the state machine (i.e., control flow graph) of the
original driver. A CFG contains all the paths that a driver
could traverse during its execution. To build a CFG equiva-
lent to that of the original driver, it is sufficient to execute at
least once each basic block of the driver. Building is done in
two steps: First, RevNIC identifies function boundaries by
looking for call-return instruction pairs. Second, the transla-
tion blocks between call-return pairs are chained togetherto
reproduce the original CFG of the function. RevNIC splits
translation blocks into basic blocks in the process.

Execution paths can contain manifestations of asyn-
chronous events that disrupt the normal execution flow.
RevNIC detects these events by checking for register value
changes between two consecutively executed translation
blocks. The register values are saved in the trace before and
after the execution of each block. RevNIC builds the CFG
of each such event just like for normal functions.

From CFG to C code. The output of the CFG builder is a
set of functions in LLVM format. The last phase turns these
functions into C code, reconstructs the driver’s state, and
determines the function parameters, the return values, and
the local variables. Listing 1 shows a sample of generated
code. The control flow is encoded using direct jumps (goto)
and all function calls are preserved.

void function_12606(uint32_t GlobalState)
{

//Local variables
uint32_t Vars4[4];

Vars4[3] = 0x0;
//Driver’s state is accessed using pointer arithmetic
Vars4[2] = *(uint32_t*)(GlobalState + 0x10);
write_port32(Vars4[2] + 0x84, Vars4[3]);
//Remainder omitted...

}

Listing 1: Generated code sample (annotated).

RevNIC preserves the local and global state layout of the
original driver (Listing 1). Drivers usually keep global state
on the heap, a pointer to which is passed to the driver upon
each entry point invocation. To access their global state, they
use offsets from that pointer. Binary drivers access local
variables similarly, by adding an offset to the stack frame
pointer. The synthesized code preserves this mechanism by
keeping the pointer arithmetic of the original driver.

RevNIC determines the number of function parameters
and return values using standard def-use analysis [10] on
the collected memory traces. Since the traces contain the
actual memory access locations and data, it is possible to
trace back the definition of the parameters and the use of the

possible return values. To determine whether a functionf
has a return value, RevNIC checks whether there exists an
execution path where the register storing the return value2 is
used without being redefined afterf returns. The number of
parameters is determined by looking for memory accesses
whose addresses are computed by adding an offset to the
stack frame pointer, resulting in an access to the stack frame
of the parent function.

The generated code may be incomplete if the driver is not
fully covered (i.e., the code has an incomplete CFG). Incom-
pleteness manifests in the generated source by branches to
unexercised code. RevNIC flags such branches to warn the
developer. Missing basic blocks happen for driver functions
containing API calls whose error recovery code is not usu-
ally exercised. It does not affect the synthesized driver, since
error recovery code is part of the template (§4.2). However,
in the case when code for hardware I/O is missing, the de-
veloper can request QEMU’s DBT to generate the missing
translation blocks by forcing the program counter to take the
address of the unexplored block. Since RevNIC does not ex-
ecute such blocks, they do not appear in the execution trace:
the developer must insert the code for these blocks manually,
which slows down the reverse engineering process.

4.2 From State Machine to Complete Drivers

Producing a new driver consists of pasting the synthesized
C code into a driver template. A template is written once
and can be reused as long as the OS/driver interface does not
change. The template contains all the boilerplate to commu-
nicate with the OS (e.g., memory allocation, timer manage-
ment, and error recovery). Depending on the OS, more or
less boilerplate code may be required (e.g., a driver for an
embedded OS typically has less boilerplate than an NDIS
driver). The boilerplate can also vary depending on the OS
version. E.g., a template could use the newer NAPI network
model on Linux, or the older API. This only affects the or-
ganization of the template. Besides the boilerplate, the tem-
plate also contains placeholders where the actual hardware
I/O code is to be pasted. Listing 2 shows a fragment of the
init function from the Linux NIC template, which we use
as a running example. RevNIC includes a NIC template for
each supported target OS.

Drivers typically have four types of functions. The first
type corresponds to functions that only call hardware I/O
routines (e.g.,write_port32 in Listing 1) or other hard-
ware functions: register read-modify-write, disable inter-
rupts on a NIC, read the MAC address, etc. The second type
consists of OS-dependent functions that assemble hardware-
dependent routines to perform a high-level functionality.
E.g., asendwould call a function that sets the ring buffer in-
dex, then call the OS to get the packet descriptor, after which
it would invoke another hardware-specific routine, passing

2 This is specific to the Windowsstdcall calling convention; other
conventions can be implemented as well.

int revnic_pci_init_one (struct pci_dev *pdev,
const struct pci_device_id *ent)

{
/* Variable declarations omitted */

// The template first allocates PCI device resources
if (pci_enable_device (pdev)) {
// OS-specific error handling provided by template

}
ioaddr = pci_resource_start (pdev, 0);
irq = pdev->irq;
if (request_region(ioaddr, ADDR_RANGE, DRV_NAME)) {
// OS-specific error handling provided by template

}

// Then the template allocates persistent state.
// A pointer to this state is passed to each
// reverse engineered entry point.
dev = alloc_netdev(/*..*/, /*..*/, ethdev_setup);
if (dev) {
// OS-specific error handling provided by template

}
memset(netdev_priv(dev), 0, /*..*/);
SET_NETDEV_DEV(dev, &pdev->dev);
revnic = REVNICDEVICE(dev);

// The synthesized functions may expect specific state
// (e.g., the I/O address) to be initialized. Here,
// the I/O address is stored at offset IOADDR_OFFSET.
revnic->Private.u4[IOADDR_OFFSET] = ioaddr;

//***
// Developers paste calls to RevNIC-synthesized
// hardware-related functions here.

// A driver may want to check the hardware first...
if (ne2k_check_device_presence(&revnic->Private) < 0) {

// Error recovery provided by the template
// (e.g., unload the driver)

}

// ...before initializing it
if (ne2k_init(&revnic->Private) < 0) {
//Device-specific recovery synthesized by RevNIC...
ne2k_shutdown(&revnic->Private);
// ...followed by template-provided recovery code.
// (e.g., unload the driver)

}
//***

// More OS-specific initialization goes here.
// Initialize IRQ, I/O addresses, entry points, etc.
// ...

// Template adapts the driver’s data structures to
// the target OS. Here, it copies the MAC address
// from driver’s memory to the Linux data structure.
// Adaptation is done by the driver developer.
for (i=0; i<MAC_ADDR_LEN; i++) {
dev->dev_addr[i] = revnic->Private.u1[0x14b + i];

}
register_netdev(dev);
return 0;

}

Listing 2: Exampleinit() routine of the Linux NIC tem-
plate (edited for brevity).

a pointer and a size to transmit the packet. The third type is
similar to the second, except that it mixes hardware accesses
with calls to the OS. This happens, e.g., when the driver in-
lines hardware functions. Finally, the fourth type includes
functions that implement OS-independent algorithms, such
as checksum computation.

Given a NIC driver template, a developer inserts the calls
to OS-independent functions generated by RevNIC into the
template. The amount of effort required to build a working
driver is usually minimal: look at the context in which the
functions were called in the original driver (in an interrupt, a
send packet routine, a timer entry point, etc.) and paste them
in the corresponding places in the template. The developer
also has to adapt various OS-specific data structures to the
target OS, e.g., to convert the WindowsNDIS_PACKET struc-
ture to the equivalentsk_buff Linux structure. This is the
most time-consuming part of reverse engineering, but could
be simplified by annotating the generated code with type in-
formation (e.g., based on the source OS’s header files). The
developer also needs to match OS-specific API calls to those
of the target OS. In Windows, such APIs and structures are
public and documented.

Filling in a template is straightforward when only func-
tions of types 1, 2, and 4 occur in the traces. However, when
hardware I/O is mixed with OS-specific code (type 3), more
effort is required. Without RevNIC, the developer would
have to look at the disassembly or the decompiled code to
understand what the driver does. This requires distinguish-
ing regular from device-mapped memory accesses, under-
standing complex control flow, and grasping the interaction
with the OS. Instead, RevNIC provides the developer with
execution traces annotated with hardware I/O, which can be
used to retrace the execution instruction by instruction. This
makes it easier to understand the interaction between the
driver’s components and eases integration into the template.

NIC driver templates follow common patterns, which we
found to be similar across different OSes. E.g., theinit en-
try point implemented by the Linux, Windows and µC/OS-II
templates first allocates device resources, calls a hardware-
specific function that checks for the presence of the hard-
ware, registers the device, and brings it to its initial state.
Likewise, an interrupt handler in these three OSes first calls
a hardware routine to check that the device has indeed trig-
gered the interrupt, before handling it.

Common template patterns facilitate driver synthesis for
multiple platforms. E.g., each template contains one lock
to serialize the entry points (this ensures correct operation
but may affect performance). The developer strips all OS-
specific locks that might be present in the original driver,
because they are not needed anymore. Then, the developer
pastes that code in the same places across all templates,
without worrying about target OS-specific synchronization.

Ideally, the merging of the synthesized driver code with
the template would be fully automated. However, the pro-
cess of translating from one OS to another requires refac-
toring the original driver’s OS-specific functions and trans-
lating API calls to fit them in the generic template for the
target OS. While human developers can guess quite easily
how to translate these, an automated translator would need
to correctly reconstruct the driver binary’s missing type in-

formation to understand how the driver manipulates the data
structures (e.g., lists) in order to adapt them to the targetOS.

5. Evaluation
In this section we address several important questions:
Do RevNIC-generated drivers have functionality (§5.2)
and performance (§5.3) equivalent to the original drivers?
How much effort does the reverse engineering process en-
tail (§5.4)? How far can RevNIC scale (§5.5)? To answer
these questions, we use RevNIC to port four closed-source
proprietary Windows NIC drivers to three other operating
systems as well as back to Windows, producing a total of 11
driver binaries. At no time in this process did we have access
to the drivers’ source code.

5.1 Experimental Setup

We first present the evaluated drivers, describe the three
target operating systems, and give details on the hardware
used for measurements.

Evaluated Drivers. We used RevNIC to reverse engineer
the Windows drivers of four widely used NICs (Table 1).
Three of the four ship as part of Windows, attesting to
their popularity. The drivers range in size from 18KB to
35KB, which is typical for NIC drivers in general (e.g.,
80% of network drivers in Linux 2.6.26 are smaller than
35KB). The number of functions the drivers implement
ranges from 48 to 78 and the number of used OS API
functions ranges from 37 to 51. The Windows driver files
for AMD PCNet, RTL8139, SMSC 91C111, and RTL8029
are pcntpci5.sys, rtl8139.sys, lan9000.sys, and
rtl8029.sys, respectively. Linux has equivalent drivers
for the same chipsets:pcnet32.c (2300 LOC),8139too.c
(1900 LOC),smc91x.c (1300 LOC), andne2k-pci.c /
8390.c (1200 LOC).

Target Platforms. We use RevNIC to port the PCNet,
RTL8139, and RTL8029 drivers to Linux 2.6.26, and 91C111
to µC/OS-II. This shows RevNIC’s ability to port drivers be-
tween systems with different APIs of varying complexity. It
also enables a comparison of the performance of synthesized
drivers to that of the native drivers on the target OS.

We used RevNIC to port all drivers to our custom op-
erating system, called KitOS, running on “bare” hardware.
This OS initializes the CPU into protected mode and lets
the driver use the hardware directly, without any OS-related
overhead (no multitasking, no memory management, etc.).
This experiment evaluates the performance of the synthe-
sized drivers in the absence of OS interference. Bare hard-
ware is the mode in which RevNIC would be used during
the initial development of new drivers (KitOS boots instantly
and starts executing immediately the driver, thus shortening
the compile/reboot cycle, allowing developers to fix driver
bugs quicker). Once the driver works properly, the develop-
ers can “transplant” the driver to the target OS.

Reverse Engineered
Windows Driver

RevNIC Ported from
Windows to ...

Driver
Size

Code Segment
Size

Imported Windows
Functions

Functions Implemented by
the Original Driver

AMD PCNet Windows, Linux, KitOS 35KB 28 KB 51 78
Realtek RTL8139 Windows, Linux, KitOS 20KB 18 KB 43 91
SMSC 91C111 µC/OS-II, KitOS 19KB 10 KB 28 40
Realtek RTL8029 (NE2000) Windows, Linux, KitOS 18KB 14 KB 37 48

Table 1: Characteristics of the proprietary, closed-source Windows network drivers used to evaluate RevNIC.

We also ported the PCNet, RTL8139, and RTL8029
drivers back to Windows XP SP3. Porting to the same OS
enables quantifying the overhead of the generated code with
respect to the original Windows driver. In practice, porting to
the same OS is useful when the binary driver exists for one
version but not the other (e.g., 32-bit vs. 64-bit Windows),
or when the original driver causes the OS to crash or freeze.

Test Hardware. We evaluate the performance of the syn-
thesized drivers by running them on an x86 PC, an FPGA-
based platform, and two virtual machines. This allows us to
measure performance of generated drivers in a wide range
of conditions. The PC and VMs run fresh installations of
Windows XP SP3, Debian Linux 2.6.26, and KitOS. The
FPGA system runs the µC/OS-II priority-based preemptive
real time multitasking OS kernel for embedded systems.

We measure the performance of the RTL8139 driver on a
PC based on an Intel Core 2 Duo 2.4 GHz CPU with 4 GB
of RAM. The physical NIC is based on a Realtek RTL8139C
chip, widely used in commodity desktop systems.

We evaluate the 91C111 driver on the FPGA4U [36]
development board. It is based on an Altera Cyclone II
FPGA with a Nios II processor, 32 MB of SDRAM, and an
SMSC 91C111 network chip. The FPGA and the SDRAM
run at 75 MHz, while the 91C111 chip runs at its native
frequency of 25 MHz. This allows quantifying the overhead
on a severely resource-constrained system.

Finally, we evaluate the RTL8029 driver on QEMU and
the PCNet driver on VMWare. Virtualization is seeing in-
creasing use in networked computing infrastructures, so per-
formance in such an environment is important. The virtual
machines are QEMU 0.9.1 and VMWare Server 1.0.10. The
host OS is Windows XP x64 edition SP2 in both cases, run-
ning on a dual quad-core Intel Xeon CPU at 2 GHz, with
20 GB of RAM. QEMU uses a TAP interface for network-
ing, while VMWare runs a NAT interface. VMs allow us to
better zoom in on driver bottlenecks, which can be harder to
observe on a real machine. For example, VMs disregard the
rated speed of the NIC, so one can send data at even 1 Gbps
using a driver for a 100 Mbps NIC (since there is no physical
cable, the virtual NIC can confirm transmission immediately
after the driver has given it all the data).

5.2 Effectiveness

RevNIC can extract all essential functionality from network
device drivers. Table 2 shows the capabilities of the original
NIC drivers compared to those of the reverse engineered

drivers. A check mark indicates functionality available both
in the original and the synthesized driver.

We identify the functionality implemented in the orig-
inal driver by looking at theQueryInformation status
codes supported by Windows, checking the configuration
parameters in the registry that reveal additional functional-
ity, and looking at the datasheets. For RTL8029 and PCNet,
given that the virtual hardware does not have LEDs and does
not support Wake-on-LAN, we could not directly test these
functions. However, the corresponding code was exercised
and reverse engineered. The RTL8029 and the 91C111 chips
support neither DMA nor Wake-on-LAN.

Functionality A
M

D
P

C
N

et

R
TL

81
39

S
M

S
C

91
C

11
1

R
TL

80
29

Init/Shutdown X X X X

Send/Receive X X X X

Multicast X X X X

Get/Set MAC X X X X

Promiscuous Mode X X X X

Full Duplex X X X X

DMA X X N/A N/A
Wake-on-LAN N/T X N/A N/A
LED Status Display N/T X X N/T

Table 2: Functionality coverage of reverse engineered
drivers (N/A=Not available, N/T=Cannot be tested).

We manually checked the correctness of the reverse en-
gineered functionality by comparing hardware I/O opera-
tions. For this, we ran the original driver on real hardware
and recorded its I/O interaction with the device. Then, we
ran the reverse engineered driver and compared the result-
ing I/O traces with that of the original driver. We exercised
each function using a workload specific to the functionality
in question. E.g., to check send and receive, we transmitted
several files via FTP. Checking the packet filter (i.e., promis-
cuous mode) involved issuing standard IOCTLs.

Finally, we manually checked that the original driver is
a correct encoding of the hardware protocol specification.
For this, we compared I/O interaction traces with the I/O
sequence prescribed by the hardware specification. We fo-
cused on the send/receive functionality, since it is crucial for
a network driver. We did not find meaningful discrepancies
between the collected sample traces and the specifications.

5.3 Performance

We evaluate the performance of the reverse engineered
drivers by measuring throughput and CPU utilization. We
first compare the original Windows driver to the synthesized
Windows driver, in order to quantify the overhead of the
code generated by RevNIC. Then we show the performance
of drivers ported to a different operating system. We wrote
a benchmark that sends UDP packets of increasing size, up
to the maximum length of an Ethernet frame. In the case
of KitOS, the benchmark transmits hand-crafted raw UDP
packets, since KitOS has no TCP/IP stack. The reverse en-
gineered drivers turn out to have negligible overhead on all
platforms.

Figure 2 shows throughput and Figure 3 shows CPU uti-
lization for the RTL8139 drivers. Synthesized drivers incur
practically no overhead. The driver for KitOS is the fastest,
since there is no TCP/IP stack overhead. For unknown rea-
sons, the original Windows driver’s performance drops for
UDP packets over 1 KB; the reverse engineered driver does
not have this problem. We also observe that the synthesized
Windows driver has a slightly higher CPU utilization than
the original, while both the native Linux and the ported
Linux driver have a similar one for most packet sizes.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

UDP Packet Size (Bytes)

Windows→KitOS
Windows→Windows

Linux Original
Windows→Linux

Windows Original

Figure 2: RTL8139 driver throughput on x86.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

 0 200 400 600 800 1000 1200 1400

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

UDP Packet Size (Bytes)

Windows Original
Windows → Windows

Windows → Linux
Linux Original

Figure 3: CPU utilization for RTL8139 drivers on x86.

Turning our attention to embedded systems, we note that
synthesizing a driver for severely resource-constrained en-
vironments is one of the toughest performance challenges
for RevNIC. Original drivers are typically hand-optimized,

0.00

5.00

10.00

15.00

20.00

25.00

30.00

 0 200 400 600 800 1000 1200 1400

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

UDP Packet Size (Bytes)

uC/OSII Original
Windows → uC/OSII

Figure 4: 91C111 driver ported from Windows to an FPGA.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

 0 200 400 600 800 1000 1200 1400

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

UDP Packet Size (Bytes)

uC/OSII Original
Windows → uC/OSII

Figure 5: CPU fraction spent inside the 91C111 driver.

whereas RevNIC’s drivers are not. In Figure 4, we show the
performance of the 91C111 driver ported to the FPGA plat-
form. Throughput is within 10% of the original driver, and
we suspect this difference is mainly due to its cache foot-
print: the RevNIC-generated binary has 87KB, compared to
59KB for the native driver. With further optimizations on
the generated code, we expect this 10% gap to be narrowed.
CPU time spent in the synthesized 91C111 driver is com-
parable to that of the original (Figure 5), ranging roughly
from 20% to 30% for both drivers. The overall CPU usage
is 100%, since DMA is not available. The maximum achiev-
able throughput is limited by the FPGA’s system bus, shared
between the NIC, the SDRAM, and other components.

Finally, Figure 6 and Figure 7 show performance in vir-
tualized environments. For QEMU, we show the RTL8029
driver, since QEMU provides an RTL8029-based virtual
NIC. CPU utilization is close to 100% in all cases, since
RTL8029 does not support DMA. The driver ported from
Windows to Linux is on par with the native Linux driver.
The lean KitOS driver again has the highest throughput. The
difference between Linux and Windows is due to different
behavior of TCP/IP stack implementations in the VM.

For VMware, which provides an AMD PCNet virtual
NIC, we get similar results. Even though DMA is used,
CPU utilization is still 100% in all cases, because the virtual
hardware sends packets at maximum speed, generating a

 0

 50

 100

 150

 200

 0 200 400 600 800 1000 1200 1400

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

UDP Packet Size (Bytes)

Windows→KitOS
Windows→Windows

Linux Original
Windows→Linux

Windows Original

Figure 6: RTL8029 throughput (QEMU).

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200 1400

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

UDP Packet Size (Bytes)

Windows→KitOS
Windows→Windows

Linux Original
Windows→Linux

Windows Original

Figure 7: AMD PCNet throughput (VMWare).

higher interrupt rate than that of real hardware. Performance
on KitOS is lower, but same as that of the original Windows
driver, most likely due to interactions with VM quirks.

5.4 Automation

RevNIC exercises drivers and generates code in less than an
hour. Template instantiation, though manual, takes ordersof
magnitudes less time than writing new drivers from scratch
and does not require obtaining, reading, and understanding
hardware specifications.

Obtaining portable C code. Obtaining the code for OS-
independent and hardware-specific functionality is fully au-
tomated and fast. In Figure 8, we show how driver coverage
varies with RevNIC running time—most tested drivers reach
over 80% basic block coverage in less than twenty minutes,
due to our use of symbolic execution. RevNIC stops either
when all hardware-related functions get close to 100% cov-
erage, or when a specified timeout expires (§3.2).

The running time and memory usage of the RevNIC code
synthesizer is directly proportional to the total length ofthe
traces it processes. RevNIC can process a little over 100
MB/minute. For the drivers we tested, code synthesis took
from a few seconds to a few minutes.

Writing a driver template. Producing NIC driver tem-
plates for the four OSes took a few days (Table 3). Writing a
template is done manually, but it is a one-time effort, consid-
erably simplified by using existing driver samples shipped
with SDKs.

0 %

20 %

40 %

60 %

80 %

100 %

 0 5 10 15 20

B
a

s
ic

 B
lo

c
k
 C

o
v
e

ra
g

e
 (

%
)

RevNic Running Time (minutes)

RTL8029
91C111

RTL8139
AMD PCNet

Figure 8: Basic block coverage.

Target OS Person-Days
Windows 5
Linux 3
µC/OS-II 1
KitOS 0

Table 3: Time to write a template.

We first wrote one generic template for all NIC devices,
and then extended it to provide DMA functionality for
RTL8029 and 91C111. Running the driver in KitOS does
not require a template, since the driver can directly talk to
the hardware, without interacting with the OS. The template
for µC/OS-II took only one day, because this embedded OS
has a simple driver interface.

Integrating Hardware Interaction Code in the Template.
A large portion of drivers’ code is hardware-specific. In
Figure 9, we show what fraction of the driver is fully reverse-
engineered by RevNIC. Overall, about 70% of the functions
are fully synthesized. The other functions contain mostly
OS-related code and correspond to high-level functions of
the device drivers, like send and receive. They also include
functions that mix OS and hardware calls (~10%–15% per
driver). These functions are only partly exercised, and the
corresponding traces serve as hints to the developer for the
template integration.

Writing drivers, even from specifications, is hard. Table 4
shows how much effort it took to write and/or debug Linux
open source drivers. We looked at how many developers
were acknowledged in the headers of the source files and
at the reported time span for development. The numbers
also include adaptations to newer versions of Linux. Even
when assuming that developers do not work full-time on
a driver, but on a best-effort basis (like in the open source
community), it still takes a considerable effort. The change
logs of the RTL8139 driver suggest that most time went into
coding workarounds for undocumented hardware quirks.

In contrast, RevNIC uses the original proprietary driver,
which has all the hardware details for all supported devices

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

RTL8029

SMSC 91C111

RTL8139

AMD PCNet

A
u

to
m

a
ti
c
a

lly
 R

e
c
o

v
e

re
d

 F
u

n
c
ti
o

n
s
 (

%
) Automated

Manual

Figure 9: Breakdown of OS-specific vs. hardware-specific
functions (in percentage of recovered functions).

readily available. When using RevNIC, most developer time
goes into instantiating the driver template. This is roughly
proportional to the size of the driver and the number of hard-
ware functions it implements. Table 4 also includes the time
to debug RevNIC, since porting the drivers and debugging
our prototype were done together. Debugging required man-
ually checking the synthesized C code against the original
driver’s binary; this took 1-3 days, depending on driver size.

Device
Manual (Linux) RevNIC

Persons Span Persons Span
RTL8139 18 4 years 1 1 week
SMSC 91C111 8 4 years 1 4 days
RTL8029 5 2 years 1 5 days
AMD PCNet 3 4 years 1 1 week

Table 4: Amount of developer effort. RevNIC numbers in-
clude time to debug the RevNIC prototype itself.

5.5 Scalability

We have shown that our approach works for drivers from
18KB to 35KB. This is representative of most NIC drivers.

Scalability is limited by the performance of symbolic ex-
ecution. Symbolic execution is subject to exponential state
growth and memory consumption [6, 7, 34, 39], both of
which affect RevNIC. We are developing orthogonal tech-
niques that will potentially alleviate these problems, forex-
ample by running symbolic execution (and RevNIC) on large
clusters [11], and carefully selecting what data should be
considered symbolic [8]. Improvements in the field of sym-
bolic execution will automatically benefit to RevNIC.

6. Discussion and Limitations
RevNIC cannot produce a driver that is “more correct” than
the original binary with regards to hardware interaction.
It is hard to fix buggy hardware interaction, when there
are no specifications. However, certain classes of bugs, like
unchecked use of array indexes coming from hardware or

buffer overflows are eliminated by reverse engineering, re-
sulting in a safer driver.

Reverse engineering of proprietary IOCTLs is similar
to that of standard entry points. IOCTLs encode functions
that were not foreseen by the OS driver interface designers.
Instead of triggering proprietary behavior using standard
OS APIs (e.g.send/receive), RevNIC uses the vendor-
supplied configuration tools for doing so. For the standard
interface, the semantics of the behavior are provided by
the OS interface; for the proprietary one, the semantics are
derived from the tool’s documentation.

RevNIC-generated code is not as readable as the original
source, because it does not reconstruct high-level C state-
ments, like loops. The generated code relies ongoto for
control flow. We believe that existing transformation tech-
niques [10] can make generated code more readable. How-
ever, the produced code is substantially more accessible than
disassembly. The generated code is easier to understand and
adapt, because it uses familiar C operators, instead of x86 in-
structions. Moreover, C code can be easily compiled to any
OS or processor architecture, unlike assembly.

Of course, RevNIC can be rerun easily every time there is
an update to the original binary driver. The resulting source
code can be compared to the initially reverse engineered
code and the differences merged into the reverse engineered
driver, like in a version control system. One could also use
binary diffing methods [5] to update the synthesized driver
every time there is a new patch for the proprietary driver
that fixes hardware-related bugs. Thus, we expect RevNIC-
generated code to require minimal maintenance.

Although porting between two OSes by instantiating a
driver template requires substantial code refactoring, one
could automate it to a certain extent. E.g., Coccinelle [33]
automatically translates device drivers between two versions
of the same OS. RevNIC could treat two different OSes as
an evolution from one to the other. Another possibility is to
synthesize a specification from the binary (instead of code)
and use existing tools, like Termite [37], to automatically
generate a driver for any target OS, solving once and for all
the safety and portability problems of device drivers.

RevNIC currently supports NIC drivers, but it is in theory
possible to extend it to any class of device drivers. Exercising
the driver and generating the code is device-agnostic: all
RevNIC needs is OS and hardware input. The developer has
to write a device driver template for the new class of devices,
and this requires a general understanding of what the device
class is supposed to do and how it interfaces with the OS
(e.g., that a sound card is supposed to play sound by copying
a buffer to some memory, very much like a NIC sends a
packet after it is copied to some buffer).

Finally, RevNIC is not meant for reverse engineering the
internals of a device, only its interaction with the driver.
For instance, devices like graphics cards can compile and
run code internally (such as vertex shaders). Reverse engi-

neering firmware or the particular programming language
of a chip is beyond the scope of RevNIC. What a tool like
RevNIC could do for a graphics driver is to extract the ini-
tialization steps and set up a frame buffer, possibly extracting
2D acceleration, if it only involves I/O. It could also make a
synthesized driver replay hardware interactions (e.g., upload
firmware to the card) the same way the original driver would.

7. Related Work
Building portable drivers has been a goal of several previ-
ous projects, including Devil [28], HAIL [40] and UDI [35].
Recent work, like Termite [37], proposes a formal develop-
ment process in which a tool generates drivers from state
machine specifications. These approaches require vendors
to provide formal specifications of the hardware protocols.
RevNIC complements these efforts by extracting the encod-
ing of the protocol from existing device drivers, making the
task of reverse engineering existing drivers more produc-
tive. In some sense, RevNIC can help tools like Termite be-
come practical. VM-based approaches [27] can reuse exist-
ing binary drivers, but are generally heavyweight. Other ap-
proaches can directly reuse existing drivers by emulating the
source OS, e.g., NDISwrapper [32]. However, the emulation
layer has to be updated with each version of the source OS,
is prone to bugs, adds overhead, and works only on the OS
for which it was developed. In contrast, RevNIC makes the
reverse engineered driver independent from the source OS.

Most of the existing techniques for improving device
driver safety rely on source code [42–44]. Since RevNIC
can obtain a source code representation of a driver binary, it
can enable the use of all these tools on closed-source, propri-
etary device drivers, to improve their reliability. E.g., some
binary drivers do not have proper timeouts in polling loops;
this would be straightforward to fix using [23]. OS-related
safety properties could be checked prior to compilation [1],
or the driver could be split to enhance reliability [16]. Fur-
thermore, if the driver generation follows a formal develop-
ment approach (as in [15] or [37]), it is possible to guarantee
that a reverse engineered driver will not crash the system,
will not hang, and will not introduce security vulnerabilities.

In using VMs to observe system activity, we build upon a
rich set of prior work, including tools such as Aftersight [9]
and Antfarm [21]. Reverse debugging [25] used VMs to de-
bug systems, including device drivers. Symbolic execution
has also been used for program testing [6, 7, 18, 39] and mal-
ware analysis [12, 31, 45]. We extended these approaches to
provide kernel-mode instrumentation. In RevNIC, we com-
bine VM-based wiretapping with symbolic execution to ex-
ercise control on the analyzed system. Reverse engineering
often uses static decompilation [3]; this, however, faces a
number of challenges (e.g., disambiguating code from data),
so we minimized RevNIC’s reliance on static decompilation.

Recent work has been aimed at automatically reverse
engineering message formats in network protocols [13] as

well as files [14], based on traces containing these messages.
Our reliance on driver activity traces is similar but, due tothe
specifics of device drivers, RevNIC manages to also reverse
engineer the relationship between hardware registers, not
just the format. RevNIC extracts the semantics of driver code
dynamically, using traces of memory accesses.

8. Conclusion
In this paper, we presented a new approach and tool for
reverse engineering binary device drivers. One can use this
approach to either port drivers to other OSes or to produce
safer drivers for the same OS.

The tool, called RevNIC, does not require access to
any device documentation or driver source code—it relies
on collecting hardware interaction traces and synthesizing,
based on these, a new, portable device driver. We showed
how RevNIC reverse engineered several closed-source Win-
dows NIC drivers and ported them to different OSes and
architectures. RevNIC is easy to use and produces drivers
that run natively with performance that is on par with that of
the target OS’s native drivers.

9. Acknowledgments
We are indebted to our shepherd, Julia Lawall, and the
anonymous reviewers for helping us improve our paper. We
thank Vlad Georgescu and Volodymyr Kuznetsov for their
contributions to RevNIC’s development. We are grateful to
Daniel Dunbar and Cristian Cadar for sharing an early ver-
sion of KLEE and for answering related questions.

References
[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,

C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner.
Thorough static analysis of device drivers. InEUROSYS
Conf., 2006.

[2] F. Bellard. QEMU, a fast and portable dynamic translator. In
USENIX Annual Technical Conf., 2005.

[3] Boomerang decompiler. http://boomerang.sourceforge.net/.

[4] P. Boonstoppel, C. Cadar, and D. R. Engler. RWset: Attacking
path explosion in constraint-based test generation. InTools
and Algorithms for the Construction and Analysis of Systems,
2008.

[5] D. Brumley, P. Poosankam, D. Song, and J. Zheng. Automatic
patch-based exploit generation is possible: Techniques and
implications. InIEEE Symp. on Security and Privacy, 2008.

[6] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs. InSymp. on Operating Systems Design
and Implementation, 2008.

[7] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: Automatically generating inputs of death. In
Conf. on Computer and Communication Security, 2006.

[8] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea. Se-
lective symbolic execution. InWorkshop on Hot Topics in
Dependable Systems, 2009.

[9] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic
program analysis from execution in virtual environments. In
USENIX Annual Technical Conf., 2008.

[10] C. Cifuentes.Reverse Compilation Techniques. PhD thesis,
Queensland University of Technology, 1994.

[11] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea.
Cloud9: A software testing service. InWorkshop on Large
Scale Distributed Systems and Middleware, 2009.

[12] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado.
Bouncer: Securing software by blocking bad input. InSymp.
on Operating Systems Principles, 2007.

[13] W. Cui, J. Kannan, and H. J. Wang. Discoverer: Automatic
protocol reverse engineering. InUSENIX Security Symp.,
2007.

[14] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz.
Tupni: Automatic reverse engineering of input formats. In
Conf. on Computer and Communication Security, 2008.

[15] K. Elphinstone, G. Klein, P. Derrin, T. Roscoe, and G. Heiser.
Towards a practical, verified kernel. InWorkshop on Hot
Topics in Operating Systems, 2007.

[16] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M.
Swift, and S. Jha. The design and implementation of micro-
drivers. InIntl. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, 2008.

[17] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based
whitebox fuzzing. InConf. on Programming Language De-
sign and Implementation, 2008.

[18] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed au-
tomated random testing. InConf. on Programming Language
Design and Implementation, 2005.

[19] P. Godefroid, M. Y. Levin, and D. Molnar. Automated White-
box Fuzz Testing. InNetwork and Distributed System Security
Symp., 2008.

[20] Hex-Rays. IDA Pro Disassembler. http://www.hex-rays.com.

[21] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Antfarm: Tracking processes in a virtual machine environ-
ment. InUSENIX Annual Technical Conf., 2006.

[22] Jungo. WinDriver device driver development tookit, version
9.0. http://www.jungo.com/windriver.html, 2007.

[23] A. Kadav, M. J. Renzelmann, and M. M. Swift. Tolerating
hardware device failures in software. InSymp. on Operating
Systems Principles, 2009.

[24] J. C. King. Symbolic execution and program testing.Commu-
nications of the ACM, 1976.

[25] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging
operating systems with time-traveling virtual machines. In
USENIX Annual Technical Conf., 2005.

[26] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis and transformation. InIntl. Symp.
on Code Generation and Optimization, 2004.

[27] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmodified
device driver reuse and improved system dependability via

virtual machines. InSymp. on Operating Systems Design and
Implementation, 2004.

[28] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and
G. Muller. Devil: An IDL for hardware programming. In
Symp. on Operating Systems Design and Implementation,
2000.

[29] Microsoft security advisory #944653: Vulnerability in Macro-
vision driver. http://www.microsoft.com/technet/security/
advisory/944653.mspx.

[30] Microsoft Windows Driver Kit.
http://www.microsoft.com/whdc/devtools/WDK, 2009.

[31] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple
execution paths for malware analysis. InIEEE Symp. on
Security and Privacy, 2007.

[32] NDISwrapper. http://ndiswrapper.sourceforge.net,2008.

[33] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Docu-
menting and automating collateral evolutions in Linux device
drivers. InEUROSYS Conf., 2008.

[34] C. Pasareanu, P. Mehlitz, D. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape. Combining unit-level
symbolic execution and system-level concrete execution for
testing NASA software. InIntl. Symp. on Software Testing
and Analysis, 2008.

[35] Project UDI. Uniform Driver Interface. http://udi.certek.com/,
2008.

[36] R. Beuchat, P. Ienne et al. FPGA4U. http://fpga4u.epfl.ch/.

[37] L. Ryzhyk, P. Chubb, I. Kuz, E. L. Sueur, and G. Heiser.
Automatic device driver synthesis with Termite. InSymp. on
Operating Systems Principles, 2009.

[38] B. Schwarz, S. Debray, and G. Andrews. Disassembly of ex-
ecutable code revisited. InWorking Conf. on Reverse Engi-
neering, 2002.

[39] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C. InSymp. on the Foundations of Software
Engineering, 2005.

[40] J. Sun, W. Yuan, M. Kallahalla, and N. Islam. HAIL: a
language for easy and correct device access. InIntl. Conf.
on Embedded Software, 2005.

[41] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy.
Recovering device drivers.ACM Transactions on Computer
Systems, 24(4), 2006.

[42] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
reliability of commodity operating systems.ACM Transac-
tions on Computer Systems, 23(1), 2005.

[43] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Ef-
ficient software-based fault isolation. InSymp. on Operating
Systems Principles, 1993.

[44] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B.
Schneider. Device driver safety through a reference validation
mechanism. InSymp. on Operating Systems Design and
Implementation, 2008.

[45] H. Yin, H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: capturing system-wide information flow for mal-
ware detection and analysis. InConf. on Computer and Com-
munication Security, 2007.

