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1.Introduction

1. Introduction

This report describes the current maturity state of the Clang/LLVM 

C/C++ compiler. The main focus is on compile time and memory 

consumption. Other aspects of compiler quality have already been 

subject to sufficient independent research. Select examples are 

summarized and referenced to ease further studying of the subject.

1.1. Motivation

For many years the GNU Compiler Collection (GCC) was the de facto 

standard complier of the open source community. In 2007 the Free 

Software Foundation released version 3 of their popular GPL license 

[GnuGpl]. The GCC project uses this license from the GCC4.3 branch 

on.

The GPL version 3 introduces new licensing restrictions for patent 

holders that some open source operating system projects do not 

want to impose on their users. These, commonly BSD-style licensed 

systems, are currently stuck with the unmaintained 4.2 branch of 

GCC1 and in desperate need for a compiler replacement.

One possible candidate is Clang/LLVM.  The FreeBSD Status Reports 

January - March, 2009, published by Brad Davis on freebsd-

announce@FreeBSD.org [FbsdAn2009] announced:

… . The FreeBSD project is looking at the possibility to replace 

GCC with Clang as a system compiler. It can compile 99% of the 

FreeBSD world and can compile booting kernel on i386/amd64 but 

it still contains bugs and its C++ support is still immature.

LLVM has been gaining public attention during the last years, which 

is well documented on the LLVM publications page [LlvmPubs]:

1 27 April 2010 the latest release branch was GCC 4.5.0, GCC 4.6.0 was in active 

development and the GCC 4.2. branch was no longer maintained 

(http://gcc.gnu.org/).
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1.Introduction

Clang has recently had some major breakthroughs. Doug Gregor 

wrote on the 4th February, 2010 on the LLVM Project Blog 

[Gregor201002]:

Today, Clang completed its first complete self-host! We built all of 

LLVM and Clang with Clang (over 550k lines of C++ code). The 

resulting binaries passed all of Clang and LLVM's regression test 

suites, and the Clang-built Clang could then build all of LLVM and 

Clang again. The third-stage Clang was also fully-functional, 

completing the bootstrap.

On the 29th of May, 2010 Roman Divacky announced on freebsd-

current@FreeBSD.org, that the Clang testing branch of FreeBSD 

would soon be merged with the major FreeBSD development branch 

[Divacky201005]:

ClangBSD was updated to LLVM/clang revision 104832 which is 

what we aim to import into HEAD in roughly a week.

1.2. What is a Compiler

On page 5 of the introduction to “Compiler Construction” 

[Wirth1996], Niklas Wirth answers the basic question of what 

constitutes a compiler:
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1.Introduction

Computer programs are formulated in a programming language 

and specify classes of computing processes. Computers, however, 

interpret sequences of particular instructions, but not program 

texts. Therefore, the program text must be translated into a 

suitable instruction sequence before it can be processed by a 

computer. This translation can be automated, which implies that it 

can be formulated as a program itself. The translation program is 

called a compiler, and the text to be translated is called source text 

(or sometimes source code).

1.3. Compilation Tasks

The book then continues to divide compilation into four tasks:

1. Lexical analysis, the source code is divided into tokens

2. Syntax analysis, the syntax tree is built from the tokens

3. Type checking, operators and operands are checked for 

compatibility

4. Code generation, the machine readable code is generated

In the case of C/C++, a preprocessor step has to be performed prior 

to step 1. The C preprocessor performs header inclusion, code macro 

substitution and in the case of C also defines constants. Furthermore 

the preprocessor is used to trigger platform specific hacks, to work 

around non-portable code.

The fourth step is in the case of C/C++ normally divided into three 

steps:

a) Assembler generation, the abstract representation is translated 

into a platform specific assembler dialect (.d)

b) Assemble, the code is converted into binary object files (.o)

c) Link, the object files are linked to executable binaries and 

libraries (.so | bin on *nix, .dll | .exe on MS Windows platforms)
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1.4. Compiler Architecture

On page 7 Wirth recommends a two component architecture:

A wise compromise exists in the form of a compiler with two parts, 

namely a front end and a back end. The first part comprises lexical 

and syntax analyses and type checking, and it generates a tree 

representing the syntactic structure of the source text. This tree is 

held in main store and constitutes the interface to the second part 

which handles code generation. The main advantage of this 

solution lies in the independence of the front end of the target 

computer and its instruction set. This advantage is inestimable if 

compilers for the same language and for various computers must 

be constructed, because the same front end serves them all.

Drawing 1 illustrates the data flow of such a frontend, backend 

solution.

Labelled arrows stand for input and output files, lines with arrow 

heads present the data flow within compiler components. Dotted 

lines represent the execution order, where data is just worked on 

instead of being converted.
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The GNU Compiler Collection divides the backend into a universal 

middle end and an architecture specific backend. Drawing 2 and 

Drawing 3 are both based on a diagram in the WikiBooks 

[WikiBooks] article “GNU C Compiler Internals” [WBGccArch], which 

can be discovered following the links in the documentation of the 

official GNU GCC project home page [GnuGcc].

The GCC frontend performs two tasks, parsing an input file into an 

Abstract Syntax Tree (AST), and the conversion into a generic 

representation of the AST.
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1.Introduction

The generic AST representation is passed on to the GCC middle end. 

There it is converted into a representation called GIMPLE, which is 

described as “a convenient representation for optimizing the source 

code” by the same WikiBooks article.

From there it is converted into a so called Static Single Assignment 

(SSA) representation, upon which more than 20 optional optimization 

passes can be performed. After the optimization passes the SSA 

representation is converted back into GIMPLE and from there into 

the Register Transfer Language (RTL).

The RTL is an assembler language for an imaginary processor 

architecture. It is passed on to the backend, which converts it into 

the machine code for the target architecture.
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1.Introduction

1.5. Introduction to Clang/LLVM

Being a young project not much effort has been spent on recording 

the history of Clang/LLVM and its major creators and contributors. 

One of the few valuable sources available is the article “Apple's other 

open secret: the LLVM Compiler” by Prince McLean [McLean2008], 

which was published in the online magazine AppleInsider 

[AppleInsider].

The LLVM project started as a research project of Chris Lattner at 

the University of Illinois in 2000 and was first released in 2003. 

Lattner later caught the attention of Apple, which started 

contributing to the project in 2005 and later employing Lattner to 

fund his work.
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1.Introduction

LLVM has since been subject to a lot of attention in university 

research, whereas Apple has started incorporating LLVM into its 

products. Some of these uses are detailed in the aforementioned 

article.

In order to understand the architecture of the Clang frontend it is 

first necessary to understand some aspects of the LLVM backend. In 

2004 Chris Lattner and Vikram Adve wrote released the paper 

“LLVM: A Compilation Framework for Lifelong Program Analysis & 

Transformationin” [LattnerAdve2004], which describes the LLVM 

architecture in detail:

This paper describes LLVM (Low Level Virtual Machine), a 

compiler framework designed to support transparent, life-long 

program analysis and transformation for arbitrary programs, by 

providing high-level information to compiler transformations at 

compile-time, link-time, run-time, and in idle time between runs.

12/46

Illustration 2: The LLVM logo



1.Introduction

A basic design principle of LLVM is that all components work on the 

same intermediate representation (LLVM IR), which is described in 

Chapter 2 of the paper:

The code representation is one of the key factors that 

differentiates LLVM from other systems. The representation is 

designed to provide high-level information about programs that is 

needed to support sophisticated analyses and transformations, 

while being low-level enough to represent arbitrary programs and 

to permit extensive optimization in static compilers.

Similar to the GCC optimizer the LLVM backend uses an SSA form, 

the main difference is that this SSA form is the intermediate 

language used throughout the entire backend:

LLVM uses SSA form as its primary code representation, i.e., each 

virtual register is written in exactly one instruction, and each use 

of a register is dominated by its definition. Memory locations in 

LLVM are not in SSA form because many possible locations may be 

modified at a single store through a pointer, making it difficult to 

construct a reasonably compact, explicit SSA code representation 

for such locations.

To suit different purposes, the LLVM IR exists in three equivalent 

representations:
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The LLVM representation is a first class language which defines 

equivalent textual, binary, and in-memory (i.e., compiler’s internal) 

representations. The instruction set is designed to serve effectively 

both as a persistent, offline code representation and as a compiler 

internal representation, with no semantic conversions needed 

between the two. Being able to convert LLVM code between these 

representations without information loss makes debugging 

transformations much simpler, allows test cases to be written 

easily, and decreases the amount of time required to understand 

the in-memory representation.

Chapter 3.2 describes the general layout of an LLVM compiler 

frontend:

External static LLVM compilers (referred to as front-ends) 

translate source-language programs into the LLVM virtual 

instruction set. Each static compiler can perform three key tasks, 

of which the first and third are optional: (1) Perform language-

specific optimizations, e.g., optimizing closures in languages with 

higher-order functions. (2) Translate source programs to LLVM 

code, synthesizing as much useful LLVM type information as 

possible, especially to expose pointers, structures, and arrays. (3) 

Invoke LLVM passes for global or interprocedural optimizations at 

the module level. The LLVM optimizations are built into libraries, 

making it easy for front-ends to use them.

The “"Clang" CFE Internals Manual” [ClangInternals] describes the 

Clang architecture in detail. Currently Clang consists of 11 libraries 

and the Clang driver tool.

The “Clang Driver Manual” [ClangDriver] describes the purpose of 

the driver:
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The Clang driver is intended to be a production quality compiler 

driver providing access to the Clang compiler and tools, with a 

command line interface which is compatible with the gcc driver.

When invoked to compile C/C++/ObjC code, performs the following 

steps:

1. Parse command line parameters

2. Invoke Clang preprocessor

3. Invoke Clang compiler

1. Parse code into AST

2. Lower the AST into LLVM IR

4. Call the LLVM optimizer, linker and other libraries according to 

the given parameters

The following illustration shows the the way the frontend operates is 

very similar to GCC:
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At this point the process steps back into the domain described in the 

Lattner, Adve paper [LattnerAdve2004]. The border between the 

Clang frontend and the LLVM backend runs right through the code 

generation stage. The first step of that stage is to transform the AST 

into the LLVM IR. Everything that follows is performed by LLVM 

components. However the entire compile pass is controlled by Clang.

The most notable difference to the GCC backend is that the LLVM IR 

encompasses the entire compile run time. Because the LLVM IR is 

available at link time, the linker can perform additional optimizations 

across object files.

The entire process is more conservative than originally envisioned in 

the Lattner, Adve paper [LattnerAdve2004]. This is most likely due to 

Clang's development goal to function as a drop in replacement for 

the GCC.
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1.Introduction

According to the paper LLVM would be capable to attach the LLVM 

IR to the final binaries, allowing on the fly relinking when depending 

libraries are updated or to apply new optimizations passes, e.g. when 

the compiler is updated or when new profiling data is available, that 

suggests that specialized versions of certain functions would benefit 

runtime. All components to realize this are already in place, all it 

would need was another Clang driver without the GCC legacy 

architecture and an operating environment that tightly integrates 

LLVM.
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2. The Makings of a Good Compiler

Before going into detail about the features of Clang/LLVM, it is 

necessary to define what constitutes a good compiler. Later chapters 

will then explore these established aspects of compiler quality.

There are two levels at which a compiler's quality has to be 

measured. Compilers are software and at the same time they 

produce binary representations of software, that can be interpreted 

by a virtual machine or directly by a micro controller or processor. 

So quality measures need to be established for how well the compiler 

software performs and for how well the compiled software, i.e. 

binary representations, perform. For the sake of simplicity, the term 

binary will be used for compiled software within this document.

Micro controllers and processors will be abbreviated CPU for central 

processing unit.

2.1. Compiler Performance

The significant aspects of compiler performance are usability and 

speed.

The usability of a compiler depends on the expressiveness of 

warnings and errors, debugging capabilities, its interfaces to embed 

it into other software and the availability of supporting tools and the 

integration into established development tools, e.g. IDEs.

The speed of a compiler depends on its execution time and memory 

footprint. The latter is especially significant with modern multi core 

CPUs. Compilation is a process that can easily be split into parallel 

tasks.
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Because the required amount of memory scales linearly with the 

number of running processes, memory use can severely impact 

performance. If the system runs out of memory and starts swapping, 

execution time can easily increase by unacceptable factors.

The author of this document regularly builds OpenOffice.org 

packages for the FreeBSD operating system and only recently has 

(i.e. March, 2010) switched to parallel OpenOffice.org builds after 

upgrading to 8GB RAM from 2GB.

2.2. Binary Performance

The significant aspects of binary performance in respect to the 

compiler are speed and correctness.

Correctness is the minimum requirement of a binary. It means that 

the binary, interpreted by a CPU or virtual machine, performs the 

logic specified in the source code. Considering the availability of 

compatible CPU families for a single platform like i386 or AMD64, all 

with their own specific bugs a compiler has to circumvent, and the 

extensive code optimizations performed by a compiler, this is a non-

trivial matter.

The speed at which a binary performs the coded logic depends on 

how well the compiler optimizes for a CPU architecture or a specific 

CPU family. Optimizing for a specific family has the downturn of 

potentially reducing the performance with other architecture 

compatible CPUs, but is a significant requirement for high 

performance applications like clustered physics simulations. 

Generally optimizing for a specific CPU family only makes sense, 

when the user of a binary has access to the source code and can thus 

recompile it.
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2.3. C/C++ Compiler Performance Check List

✔ Compile time

✔ Maximum memory use

✔ Features

✔ Feature integration

✔ Binary correctness

✔ Binary performance

As mentioned in the introduction only compile time and memory use 

were extensively tested for this report, the remaining aspects are 

mentioned in passing.
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3. Clang/GCC Compile Time Comparisons

This chapter contains compile time measurements from tests 

performed for this paper2. The LLVM home page [LLVM] boldly 

states on the first page:

Clang is an "LLVM native" C/C++/Objective-C compiler, which 

aims to deliver amazingly fast compiles (e.g. about 3x faster than 

GCC when compiling Objective-C code in a debug configuration), 

…

The project offers several examples backing these bold claims. 

However these testaments to the superiority of Clang/LLVM were 

obviously hand picked to represent the project. This chapter provides 

numbers based on a real world use scenario, the source code of the 

FreeBSD operating system.

3.1. ClangBSD Compile Time

ClangBSD is a branch of FreeBSD that aims to integrate Clang/LLVM 

into the FreeBSD operating system in an effort to break the 

dependency on GCC.

The following compile time measurements were performed on a 

FreeBSD/amd64 8.0-STABLE system:

FreeBSD mobileKamikaze.norad 8.0-STABLE FreeBSD 8.0-STABLE #0: Mon 

Apr  5 12:45:41 CEST 2010 

root@mobileKamikaze.norad:/usr/obj/HP6510b-

8/amd64/usr/src/sys/HP6510b-8  amd64

The hardware is a HP Compaq 6510b notebook with the following 

parameters:

• Intel(R) Core(TM)2 Duo CPU     T7700  @ 2.40GHz (2394.02-MHz K8-

class CPU)

2 In the course of this research more than 50 hours of real compile time were 

spent.
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• 8192 MB RAM (2 x 4GB DDR2)

• FSB 800MHz

The following is a list of the used host system compilers.

clang clang version 1.5 (trunk)

Target: x86_64-portbld-freebsd8.0

Thread model: posix

gcc Using built-in specs.

Target: amd64-undermydesk-freebsd

Configured with: FreeBSD/amd64 system compiler

Thread model: posix

gcc version 4.2.1 20070719  [FreeBSD]

Table 1: Used compiler version information

The following charts display measurements for different compiler 

settings. To understand what these charts mean one has to 

understand the general layout of the FreeBSD source tree and its 

bootstrapping process in very broad terms.

Chapter 24 Updating and Upgrading FreeBSD of the FreeBSD 7.3-

RELEASE and FreeBSD 8.0-RELEASE Handbook [FbsdHandbook] 

describes the build process in two steps:

1. make buildworld

This first compiles the new compiler and a few related tools, 

then uses the new compiler to compile the rest of the new 

world. The result ends up in /usr/obj.

2. make buildkernel

Unlike the older approach, using config(8) and make(1), this 

uses the new compiler residing in /usr/obj. This protects 

you against compiler-kernel mismatches.
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I.e. the host system compilers will only be used in the first 

buildworld step. Which compiler is used can be influenced by 

setting the CC and CXX variables and passing them on to make3. CC 

controls the C compiler and CXX the C++ compiler used.

The charts list three different compiler settings, gcc, cc and clang, 

which are abbreviations for different CC and CXX settings. The 

following table shows how each setting is mapped to them:

CC CXX

gcc gcc g++

cc cc c++

clang clang clang++

Table 2: C and C++ compiler table

The cc case is special, because it refers to the default compiler. On a 

FreeBSD-8 host system the default compiler is gcc:

> ll `which cc` `which gcc`
-r-xr-xr-x  2 root  wheel   401K  5 Apr 12:56 /usr/bin/cc*
-r-xr-xr-x  2 root  wheel   401K  5 Apr 12:56 /usr/bin/gcc*
> md5 `which cc` `which gcc`
MD5 (/usr/bin/cc) = 5cf8f8a2031c09ed9d7e9fb05046d245
MD5 (/usr/bin/gcc) = 5cf8f8a2031c09ed9d7e9fb05046d245

However after the bootstrap the ClangBSD default compiler clang 

will be used. Thus the build is done by two entirely different 

compilers.

This particular case actually caused the first test runs to 

fail. Depending on whether gcc or clang are used, the 

build has to be performed with different system headers 

and the ClangBSD build infrastructure of the SVN revision 

207220, which was used for the first preliminary tests, did 

not handle the CC=cc case, resulting in a build failure.

3 There are numerous ways of doing this, such as exporting them to the 

environment, setting them in a configuration file or passing them on to make as 

parameters.
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After a post on the freebsd-current mailing list, the 

author was contacted by ClangBSD developer Roman 

Divacky, who after a short mail exchange pointed out the 

responsible section of the build infrastructure and provided 

a first patch attempt, that tried to ask the compiler 

whether it was actually clang instead of guessing it from 

the values of CC and CXX.

Though this patch did not work, due to PMake performing 

all conditional and variable evaluation as a preprocessing 

step of makefile parsing (see PMake – A Tutorial by Adam 

de Boor [Boor1988]) and thus before the bootstrapping 

took place, the idea proved right when it led to a working 

patch, which circumvented the issue by injecting the check 

as runtime executed shell code.

The patch was committed to SVN revision 207367 

[ClangBSD207333], which was used for the measurements 

described in this paper.

The buildworld and buildkernel targets were measured separately, 

because they represent very different code layouts. The buildkernel 

step compiles the operating system kernel, which has a very clear 

and simple structure. Most of the code was originally developed for 

FreeBSD. Even code originating from different projects (called 

contributed code) is strongly changed to fit in.

The buildworld target on the other hand compiles a conglomeration 

of FreeBSD specific and contributed code from a vast number of 

different projects. All integrated into a single source tree, that makes 

up the FreeBSD operating system.

To check for the impact of potentially different file system access 

patterns, each test was performed in a temporary hard disk (HD) 

space and on a memory disk (MD).
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Further measurements are suffixed with -j3. This implies that the 

make call was performed with the parameter -j3. The make(1)

[MAN1MAKE] manual page states:

-j max_jobs
   Specify the maximum number of jobs that make may have running at
   any one time.  Turns compatibility mode off, unless the -B flag
   is also specified.

The documentation to the -B parameter elaborates that serial 

execution is the default behaviour:

-B Try to be backwards compatible by executing a single shell per
   command and by executing the commands to make the sources of a
   dependency line in sequence.  This is turned on by default unless
   -j is used.

The purpose of calling make with the -j3 parameter is to allow it to 

perform several independent compilations at once to make use of all 

available CPU cores. The number 3 was chosen, because the system 

has 2 cores. The additional process is there to avoid idle time while a 

process is waiting for I/O operations.

3.1.1. Understanding Charts

The measurements were performed with the command time -l, 

which invokes the commands given as its parameter as a child 

process and uses the getrusage(2) [MAN2GETRUSAGE] system call 

to collect information about the performed operations.

Time measurements are given in seconds, memory measurements in 

kb (as in 2¹  bytes):⁰

• real

The real time that passed from command execution to 

termination. On a single core system this amounts to user + 

sys + the time lost to other processes (which can never be 

completely avoided on a multi tasking system) or waiting for 

I/O.

27/46



3.Clang/GCC Compile Time Comparisons

• user

The CPU time spent in the user context. Note that the CPU 

time is counted for each core, so this can amount to more 

than the real time if more than one CPU is involved.

• sys

The CPU time spent in the system context. This is time 

spent in the kernel for things like locking and device access.

• maxrss

The maximum resident set size is the highest amount of 

memory that was in use during the entire run time. It is a 

good indicator for how much system memory is required. 

This value refers to the amount of memory really used, not 

by the amount of memory allocated.

3.1.2. ClangBSD SVN r207367 buildworld

The following chart shows the time measurements for the 

buildworld target:
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As can be seen in serial execution mode clang beats gcc by more 

than 16 minutes, which means that it took gcc 13.78% more time to 

complete. With the cc setup compilation is nearly as fast, which can 

probably be attributed to cc mostly being clang.

In parallel build mode clang beats gcc by 11 minutes, which means 

that gcc took even 17.59% longer to complete.

The next chart shows the same measurements performed on a 

memory disk:
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In serial mode the gcc compiler was 4.66% faster than on a hard 

disk, which amounts to over 6 minutes. However this is still slower 

than clang or cc on a hard disk. On a memory disk clang was 7.97% 

faster than on a hard disk, more than 9 minutes faster than it was on 

a hard disk. This means that on a memory disk gcc took 17.87% 

more time to complete than clang.

In parallel mode clang was again more than 11 minutes faster, which 

means that  gcc took 17.93% longer.

In parallel mode clang was only 4.16% faster than on a hard disk, 

similar to gcc, which was 3.89% faster. This means the effect of 

running on a memory disk is much smaller than in serial mode, 

which confirms the assumption that performing parallel builds using 

more parallel processes than processing units, helps circumventing 

I/O delays.

The next chart shows the maximum memory used during each build 

run:
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This chart confirms what one would naturally expect. The I/O device 

(i.e. hard disk or memory disk) does not influence memory use.

Unlike with the build times the cc setup follows the gcc compiler 

setup in maximum memory use. This implies that the bootstrapping 

process requires the most memory. The most significant part of the 

bootstrapping process is probably the compilation of the compilers 

clang and gcc, both are good suspects to attribute the maximum 

memory use to.

In all cases the maximum memory use of clang was around 65% of 

gcc's memory use. In other words, gcc required up to 384mb of 

memory to do the same job clang did with 252mb.

The implications are not immediately obvious, because both numbers 

do not look very high on modern systems (e.g. the notebook the test 

ran on has 8gb of RAM at its disposal). However maxrss measures 

the largest process in the entire build run, i.e. in the -j3 case the 

build process might have used up to 3 times the memory, so 1152mb 

for gcc and 757mb for clang. The implication is that a machine with 

1gb of RAM a gcc build should be limited to 2 parallel processes, 

whereas it would provide sufficient resources for 3 parallel processes 

using clang.
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Illustration 5: buildworld memory consumption
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The implications become even more dire, when considering that 

there are much more memory demanding build processes around. 

The following notice is printed when attempting to build 

OpenOffice.org 3.2.0_2 with the FreeBSD Ports Tree4 [FPortsOOo3]:

NOTICE:

To build OOo, you should have a lot
of free diskspace (~ 11GB) and memory (~ 2GB).

4 The software package building infrastructure of FreeBSD.
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3.1.3. ClangBSD SVN r207367 buildkernel

The buildkernel stage is less interesting than the buildworld stage 

insofar that the kernel sources neither reach the size nor the 

diversity of the world sources. However it allows the comparison of 

host system compilers to the bootstrapped compilers.

The first chart shows the regular compilation performance with the 

bootstrapped compilers.

As the chart shows clang only gains a 2.82% advantage over gcc in 

serial compilation mode. In parallel mode the distance grows to 

5.48%, still significantly below the 17.59% when performing a 

buildworld. The values of cc and clang are very close, this can be 

attributed to cc being an alias for clang in this case. Differences 

have to be attributed to different treatment by the build system and 

the general load every multi-tasking system is inevitable subject to.

The following chart depicts the same measurements performed with 

the host compilers.
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Illustration 6: buildkernel on a HD
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With the notable exception of gcc -j3 the host system compilers 

perform slower. A probable explanation is that the bootstrapped 

compilers were linked against a recent FreeBSD 9 development 

environment (i.e. ClangBSD), whereas the host system was a stable 

FreeBSD release engineering branch.
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Illustration 7: buildkernel with host compilers on a HD
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On a memory disk gcc built 9.73% faster than on the hard disk. 

Again cc gains a little more with 13.44% performs  and clang gains 

12.64%. The parallel gcc -j3 build actually gains slightly more from 

the move to to a memory disk with 10.21%,  cc with 9.03% and 

clang with 8.59% don't gain quite as much, but still a lot more than 

during buildworld. This means that the parallel build process does 

not compensate hard disk I/O delays quite as well as during a 

builworld.

The next chart also shows how the host compilers perform on a 

memory disk.
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Illustration 8: buildkernel on a MD

gcc cc clang gcc -j3 cc -j3 clang -j3
0

600

1200

987.67

886.6
929.57

674.93
629.59 651.3

893.9

757.28
800.34

932.5

795.63
836.41

120.92 125.3 124.56 130.98 149.89 138.64

real
user
sys



3.Clang/GCC Compile Time Comparisons

With 11.70% the host system gcc performance improves similar to 

the  bootstrapped gcc. However it's only 0.35% slower than the build 

system gcc on a memory disk. Unlike on a hard disk, where the gcc 

-j3 host compiler test case was actually faster than the bootstrapped 

compiler, the parallel gcc -j3 build on a memory disk, performed 

0.65% slower. For clang the disadvantage of the host system 

compiler, compared to the bootstrapped compiler is less significant 

with 4.67%. The parallel clang -j3 build had a similar disadvantage 

of 4.72%.

The last chart of this chapter shows the maximum memory 

consumption during buildkernel.
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Illustration 9: buildkernel with host compilers on a MD
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With 11.7% less memory than gcc, clang does not nearly gain as 

much of an advantage as during the buildworld tests. The complexity 

of kernel code probably does not suffice to unveil memory issues.

3.2. Reasons for Differences in Compile Time

These, partly rather significant, compile time differences between 

Clang/LLVM and GCC, might be attributed to several different 

features. The reasons laid out in this subsection should be 

considered speculations until further investigation confirms or 

denounces them.

The “Clang – Features and Goals” [ClangFeatures] manual states 

that the clang frontend's preprocessor and AST building is 

significantly faster:

In our measurements, we find that clang's preprocessor is 

consistently 40% faster than GCCs, and the parser + AST builder 

is ~4x faster than GCC's.
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Illustration 10: buildkernel memory consumption
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Apart from that, looking at the architecture layouts of Clang and 

GCC laid out in section 1.4, Compiler Architecture (page 8) and 1.5, 

Introduction to Clang/LLVM (page 11) show that the internal code 

representation of GCC goes through several conversions that are not 

necessary in the LLVM backend, because code is always kept in the 

LLVM IR there.
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4. Clang/GCC Binary Performance 

Measurements

Binary performance is not the focus of this report. So this chapter 

just provides a starting point for those willing to research. The 

source used in this chapter is Phoronix [Phoronix], an online 

magazine that regularly publishes articles with performance 

measurements, normally produced with the Phoronix Test Suite 

[PhoronixTS].

To pre-empt the conclusion of the Phoronix article, ioquake3 SVN 

r1784 performance built with Clang or GCC does not differ 

significantly on the author's computer system. Ioquake3 is a project 

that maintains a branch of the id Tech 3 engine [IOQ3], which is the 

basis for several standalone projects such as OpenArena 

[OpenArena] or Urban Terror [UT] and can still be used to play 

Quake 3 Arena [Q3A]. The author of this report currently maintains 

the FreeBSD ports of ioquake3 [FPortsIoq3][FPortsIoq3dev].

On its final page, the article “Benchmarking LLVM & Clang Against 

GCC 4.5” written by Michael Larabel and published on 21st April, 

2010 [Larabel2010] concludes:
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While using LLVM is faster at building code than GCC (except for 

the ImageMagick application), in most instances the GCC 4.5 built 

binaries had performed better than LLVM-GCC or Clang. Clang did 

deliver a surprising lead over GCC 4.5 and LLVM-GCC with the 

Apache benchmark where the Clang-built Apache managed to 

handle 9% more requests per second. There was also significant 

benefits for LLVM-GCC and Clang with the BYTE Unix Benchmark 

running the Dhrystone 2 test, but in the rest of the tests the 

performance was either close to that of GCC or well behind. In 

some tests, the performance of the Clang generated binaries was 

simply awful.

This statement illustrates both the potential of Clang as a C/C++ 

compiler as well as its lack of maturity. Maturity in this context has 

to be defined as a two-way relationship. Not only has the GCC had 

several decades more time to mature, but also the software compiled 

with it had the time to be optimized for performing well with GCC.

However, the Clang project emits new success messages at an 

astounding frequency. On 20th May, 2010 Doug Gregor wrote on the 

LLVM Project Blog that “Clang++ Builds Boost!” [Gregor201005]:

This morning, Clang++ had its first fully-successful Boost 

regression test run, passing every applicable C++ test on the 

Boost release branch [*]. According to today's results, Clang is 

successfully compiling more of Boost than other, established 

compilers for which Boost has historically been tailored (through 

various workarounds and configuration switches). In fact, Clang's 

compiler configuration in Boost is completely free of any of Boost's 

C++98/03 defect macros.

Boost is a C++ library collection in wide spread use, the project 

homepage [Boost] provides more information.

What this signifies is that Clang currently matures very fast.
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5. Conclusion

All in all, Clang/LLVM is not yet usable as a drop in replacement for 

the GNU Compiler Collection, however its current progress suggests 

that it soon will be.

In other areas, that were not really part of this report, it already 

outperforms GCC. The modular library architecture of the underlying 

LLVM allows a tight integration into IDEs, runtime optimizers and 

similar tools. Apart from the project's financial backer Apple, other 

projects like Mono also integrate parts of LLVM [MonoLLVM]:

Mono from SVN is now able to use LLVM as a backend for code 

generation in addition to Mono's built-in JIT compiler.

This allows Mono to benefit from all of the compiler optimizations 

done in LLVM. For example the SciMark score goes from 482 to 

610. 

While not yet able to fit into a large production environment like a 

package building cluster, due to the sheer amount of C++ code that 

does not yet compile with Clang, Clang/LLVM is already a valuable 

developer tool. Its widely advertised, clear error and warning 

messages are eye opening for people who are used to gleam meaning 

from the obscure error output produced by GCC5, tools like KLEE 

provide valuable information to developers, as Daniel Dunbar 

explains on the LLVM Project Blog [Dunbar201004]:

If you aren't familiar with it, KLEE  is a tool for symbolic execution 

of LLVM code. It is way too complicated to explain here, but for 

the purposes of this example all you need to know is that it tries to 

explore all possible paths through a program.

5 This statement is based on personal experience.
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From an architecture standpoint LLVM rises and falls with the 

quality of its intermediate representation. The intended long life 

cycle of the LLVM IR, encompassing the entire life time of the 

produced binary, instead of just the short lived compile time forces 

developers to always stay compatible to older versions. Whether this 

is a burden or not remains to be seen.

That Clang/LLVM falls back into the realms of obscurity seems rather 

unlikely at this point. Enthusiasm for the project is wide spread and 

a steady stream of success messages, combined with Apple providing 

financial backing point towards an exciting future for the project.
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