
Appears in the 37th International Symposium on Computer Architecture (ISCA ’10)

Relax: An Architectural Framework for Software Recovery
of Hardware Faults

Marc de Kruijf, Shuou Nomura, Karthikeyan Sankaralingam
Vertical Research Group

University of Wisconsin – Madison
{dekruijf, nomura, karu}@cs.wisc.edu

ABSTRACT
As technology scales ever further, device unreliability is cre-
ating excessive complexity for hardware to maintain the illu-
sion of perfect operation. In this paper, we consider whether
exposing hardware fault information to software and allow-
ing software to control fault recovery simplifies hardware
design and helps technology scaling.

The combination of emerging applications and emerging
many-core architectures makes software recovery a viable al-
ternative to hardware-based fault recovery. Emerging appli-
cations tend to have few I/O and memory side-effects, which
limits the amount of information that needs checkpointing,
and they allow discarding individual sub-computations with
small qualitative impact. Software recovery can harness
these properties in ways that hardware recovery cannot.

We describe Relax, an architectural framework for soft-
ware recovery of hardware faults. Relax includes three core
components: (1) an ISA extension that allows software to
mark regions of code for software recovery, (2) a hardware or-
ganization that simplifies reliability considerations and pro-
vides energy efficiency with hardware recovery support re-
moved, and (3) software support for compilers and program-
mers to utilize the Relax ISA. Applying Relax to counter the
effects of process variation, our results show a 20% energy
efficiency improvement for PARSEC applications with only
minimal source code changes and simpler hardware.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—Hard-
ware/Software Interfaces; C.4 [Computer Systems Orga-
nization]: Performance of Systems—Fault Tolerance

General Terms
Design, Performance, Reliability

1. INTRODUCTION
As CMOS technology scales, individual transistor compo-

nents will soon consist of only a handful of atoms. At these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’10,June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

sizes, transistors are extremely difficult to control in terms
of their individual power and performance characteristics,
their susceptibility to soft errors caused by particle strikes,
the rate at which their performance degrades over time, and
their manufacturability – concerns commonly referred to as
variability, soft errors, wear-out, and yield, respectively. Al-
ready, the illusion that hardware is perfect is becoming hard
to maintain at the VLSI circuit design, CAD, and manufac-
turing layers. Moreover, opportunities for energy efficiency
are lost due to the conservative voltage and frequency as-
sumptions necessary to overcome unpredictability.

This trend towards increasingly unreliable hardware has
led to an abundance of work on hardware fault detection [21,
25, 27, 33, 36] and recovery [3, 8, 32, 38]. Additionally, re-
searchers have explored architectural pruning [26] and tim-
ing speculation [12, 14, 15] as ways to mitigate chip design
and manufacturing constraints. However, in all cases these
proposals have focused on conventional applications running
on conventional architectures, with a typical separation of
hardware and software concerns.

In this paper, we observe two complementary trends in
emerging applications and architectures that favor a new
overall architectural vision: hardware faults recovered in
software. Below, we explain these trends, articulate the chal-
lenges in designing an architecture with software recovery,
and finally describe our proposed framework, Relax.

Emerging applications – applications that continue to drive
increases in chip performance – include computer vision,
data mining, search, media processing, and data-intensive
scientific applications. Many of these applications have two
distinct characteristics that make them interesting from a
reliability perspective. First, and a key observation unique
to this work, is that many have few memory side-effects at
the core of their computation. In particular, state-modifying
I/O operations are rare and memory operations are primar-
ily loads, because the compute regions of these applications
perform reductions over large amounts of data. Second, for
many emerging applications, a perfect answer is not attain-
able due to the inherent computational complexity of the
problem and/or noisy input data. Therefore, they employ
approximation techniques to maximize the qualitative “use-
fulness” of their output. This suggests that these applica-
tions might be error tolerant, which has been observed in
prior work as well [6, 11, 22, 23, 42]. In this paper, we
specifically explore the phenomenon that the application can
discard computations in the event of an error.

The concurrent architecture trend is that massively multi-
core architectures are emerging to meet the computational

Figure 1: The evolution of hardware, architecture, and applications in the context of Relax.

demands of emerging applications [13, 16, 19]. These ar-
chitectures often employ simple, in-order cores to maximize
throughput and energy efficiency with little or no support
for speculative execution or buffering. Hence, the paradigm
that hardware misspeculation-recovery mechanisms can be
repurposed for error recovery does not apply for these archi-
tectures. The valuable chip real estate that would otherwise
be devoted to hardware recovery resources could be better
spent elsewhere if software recovery were efficient.

Overall, the combination of limited side-effects and error
tolerance that exists in large portions of emerging appli-
cations renders hardware recovery inflexible, unnecessarily
conservative, and too expensive for emerging many-core ar-
chitectures. Figure 1 shows the evolutionary path to soft-
ware recovery considering these trends in hardware, archi-
tecture, and applications. Historically, traditional applica-
tions running on traditional superscalar processor architec-
tures built with perfect CMOS devices required no recov-
ery (Figure 1(a)). Even with imperfect CMOS, these ap-
plications still work best utilizing hardware recovery when
running on traditional processor architectures (Figure 1(b)).
However, with emerging applications running on emerging
many-core architectures, hardware recovery introduces the
inefficiencies we have described (Figure 1(c)). In the fu-
ture, while hardware substrates will be unreliable, we require
mechanisms that provide flexibility to software and keep the
architecture simple. An architecture that exposes hardware
errors to allow software recovery enables synergy between
applications and architectures as shown in Figure 1(d).

The design of a system architecture that allows such soft-
ware recovery of hardware faults involves many important
questions and challenges. The first and most obvious ques-
tion is whether changes to the ISA are necessary. To answer
this question, we refer to prior studies that show applica-
tion tolerance to arbitrary instruction-level errors is very
poor [6, 11, 23, 22, 42]. Operations relating to control flow
and memory accesses are failure prone and constitute a large
percentage of application operations. For an architecture to
allow reasonably fine-grained software recovery without ISA
changes, it would be necessary for the hardware to somehow
distinguish these “critical” operations from the“non-critical”
operations as it executes code. To date, no one has been able
to propose an efficient way to do this. Hence, ISA support
appears necessary.

The next logical question concerns what form ISA support
should take. Software recovery of hardware faults has been
proposed before in the context of software detection, using
compiler-automated triple-modular redundancy (TMR) [8].
TMR makes sense when the overhead of detection is already
very high, as is the case with comprehensive software detec-
tion. However, it is expensive and does not allow the appli-

cation to exploit error tolerance. A more efficient solution
that allows an application to choose its own form of recovery
is closer to ideal.

Yet still more questions follow: How might the application
writer express software recovery in the application? How can
applications be designed to behave predictably when errors
occur non-deterministically? Are there ways in which the
software development process can be automated or assisted?
What should be the hardware organization – should all cores
have no recovery support, or just some cores? Are there
special considerations for the hardware microarchitecture?

In this paper, we propose a holistic architectural frame-
work, called Relax, that provides specific answers to each
of these questions. We divide Relax into three core compo-
nents: (1) an ISA extension, (2) hardware support to imple-
ment the Relax ISA, and (3) software support for applica-
tions to use the Relax ISA. We discuss each component in a
separate section:

• ISA extension: In Section 2, we describe the Re-
lax ISA extension, which enables software to register
a fault handler for a region of code. The extension
allows applications to encode behavior similar to the
try/catch behavior found in modern programming lan-
guages. The ISA behavior is intuitive to programmers,
and the compiler and hardware combine to make guar-
antees about the state of the program as the region is
executed. We also provide a rigorous definition of the
ISA’s semantics.

• Hardware support: We cover the hardware support
for Relax in Section 3. The Relax ISA’s semantics
allow hardware design simplification and provide en-
ergy efficiency by relaxing the reliability constraints of
the hardware. We describe support for fault detec-
tion and discuss hardware organizations that support
Relax. We show that mechanisms such as aggressive
voltage scaling, frequency overclocking, and turning
off recovery mechanisms provide adaptive support for
Relax. We also consider statically heterogeneous ar-
chitectures, where cores are constructed with different
reliability guarantees at design time.

• Software support: In Section 4, we develop a C/C++
language-level recovery construct to expose the Re-
lax ISA extension to developers. We propose two key
ideas: relax blocks to mark regions that may experi-
ence a hardware fault, and optional recover blocks to
specify recovery code if a fault occurs. Our results
indicate promise for alternative forms of application
support as well, such as automated support through
compiler static analysis or profile-guided compilation.

To support Relax, we develop performance models to guide
the development of “relaxed” applications. The models, dis-
cussed in Section 5, determine the efficiency of Relax based
on application and architecture characteristics and can be
used to compute the achievable efficiency improvements for a
given application, recovery behavior, and architecture com-
bination. We evaluate Relax in Sections 6 and 7, where we
apply our language construct and Relax compiler to real ap-
plications, and simulate how Relax enables energy efficiency
gains using process variation as a case study. We discuss
directions for future work in Section 8, related work in Sec-
tion 9, and finally we conclude in Section 10.

2. ISA SUPPORT
In this section, we discuss the ISA component of the Re-

lax framework. In Section 2.1, we describe the Relax ISA
extension and briefly introduce our language-level construct,
which we use to illustrate how high-level recovery behavior
is mapped onto the ISA. In Section 2.2 we describe the ISA
semantics in detail.

2.1 ISA & Compiler Support
We sketch a simple C function example to motivate and

explain software recovery, and use this example to intro-
duce Relax’s ISA extension. Code Listing 1 shows a simple
C function and how it is augmented with Relax support and
compiled to a sequence of instructions. Listing 1(a) shows
the simple summation function and Listing 1(b) shows this
function augmented to use Relax. The function uses our
relax/recover construct, which is analogous to the try/catch
construct of high-level languages that support exceptions.
For the purposes of the example, the next paragraph pro-
vides a brief overview of the construct. Section 4 gives more
details and uses.

In Code Listing 1(b), all code except the return statement
is wrapped in a relax block. Code inside a relax block is sus-
ceptible to failure, where a hardware fault detected inside
the block constitutes failure. The optional variable rate
specifies a relax block’s probability of failure. Without it,
the hardware dictates this probability independent of the
application. In some situations, this variable is important
to make reasonable guarantees about the quality of an appli-
cation’s output. If a failure occurs, control transfers to the
recover block. In this case, the recover block contains a retry
statement, which causes re-execution of the relax block.

To support this behavior through the ISA, Code List-
ing 1(c) shows the assembly code for this function with the
Relax additions highlighted. For readability, we use sym-
bolic register names rather than numbered registers. A sin-
gle instruction (rlx) communicates the start and end of
relax blocks to the hardware. When used to enter a relax
block, the rlx instruction optionally reads a general pur-
pose register containing the desired failure rate, as well as
the offset of the PC address to the recovery block, to which
the hardware automatically transfers control on failure. The
same instruction with a PC offset of 0 signals the end of the
relax block. Within the relax block, the execution semantics
of the hardware are relaxed. A rigorous definition of what
this means follows in Section 2.2.

Compiler support for Relax is relatively straightforward.
The compiler sets up the recovery block and adds compen-
sating code to save or recover state if necessary. In the case
of the example function, the function has no side-effects and

therefore has no state, beyond its input state, that needs
to be restored in the event of a failure. If a failure occurs
inside the function, it is sufficient to simply jump back to
the beginning of the function, as Code Listing 1(c) demon-
strates, with the guarantee that the input registers have not
been overwritten. The compiler transparently enforces this
guarantee simply by knowing that such a control path exists,
thereby effectively implementing a software checkpoint. The
checkpoint is extremely lightweight: the compiler only saves
state that is strictly required. In this case, the two inputs,
list and len , must either be saved to the program stack
or must occupy available registers. Five physical registers
are needed to store all the live variables in this function. If
five are available, Relax adds no software overhead.

2.2 ISA Semantics
Relax allows instructions to commit potentially erroneous

state, while the compiler ensures that this state is either
discarded or overwritten after the fault is discovered and re-
covery is initiated. For the compiler to ensure recovery from
the fault, the resulting error must be a Locally Correctable
Error (LCE), as defined by Sridharan et al. [39]. Hence,
the error must be spatially and temporally contained, which
forces the following hardware constraints:

1. Errors must be spatially contained to the target re-
sources of a relax block’s execution. In other words,
an instruction must not commit corrupted state to a
register or memory location not written to by other
instructions in the relax block. For stores, this means
that a store must not commit if its destination address
is corrupt, or if the store is reached through erroneous
control flow. A simple (but high overhead) way to han-
dle this is to stall on the error detection logic prior to
committing a store. For other instructions that write
only to registers, a tight coupling between the detec-
tion logic of the destination register datapath and the
instruction commit logic enables rapid resolution of
writes to incorrect destination registers.

2. The contents of memory locations must not sponta-
neously change, e.g. due to a particle strike. Relax de-
pends on traditional mechanisms such as ECC to pro-
tect memories, caches, and registers from soft errors.
Other errors that cannot be temporally contained to
the scope of a relax block, such as most faults in the
cache coherence or cache writeback logic, are also not
recoverable by Relax.

3. Arbitrary control flow is not allowed. Control flow
must follow the program’s static control flow edges.
Note that faulty control decisions are still acceptable
since the static control flow is not violated.

4. Hardware exceptions must not trigger until hardware
detection ensures that the exception is not the result
of an undetected hardware fault.

5. Specifically under retry behavior (as in the example
of Code Listing 1), an instruction may not store to
a volatile address: on re-execution, the store might
write to a different address and the initial store is then
an irreversible data corruption. Atomic read-modify-
write operations, such as an atomic increment, are also
problematic to handle under retry behavior without
violating the atomicity constraint. For this reason, re-
lax blocks using retry may not currently contain any
atomic read-modify-write operations.

Code Listing 1 A simple summation function (a) modified to use Relax (b) and the assembly output produced by the
compiler (c). For (c), the Relax additions are in bold. The RECOVERlabel can be folded away but is included for clarity.

int sum(int * list, int len) {
int sum = 0;
for (int i = 0; i < len; ++i) {

sum += list[i];
}
return sum;

}

(a)

int sum(int * list, int len) {
relax (rate) {

int sum = 0;
for (int i = 0; i < len; ++i) {

sum += list[i];
}

} recover { retry ; }
return sum;

}

(b)

ENTRY:
rlx ${rate}, RECOVER # Relax on
mv 0 -> $sum
ble $len, 0, EXIT

LOOP_PREHEADER:
mv 0 -> $i

LOOP:
sll $i, 2 -> $tmp
ld [$list + $tmp] -> $tmp
add $sum, $tmp -> $sum
add $i, 1 -> $i
blt $i, $len, LOOP

EXIT:
rlx 0 # Relax off
ret $sum

RECOVER: # Relax automatically off
jmp ENTRY

(c)

RECOVER:√
rlx ${1/rate}, RECOVER√
mv 0 -> $sum√
ble $len, 0, EXIT

X mv 0 -> $i
sll $i, 2 -> $tmp

? ld [$list + $tmp] -> $tmp

Figure 2: An example of Relax’s execution behavior.

Execution may leave a relax block once the hardware de-
tection guarantees error-free execution. In the event of an
error, the hardware must trigger recovery at some point be-
fore execution leaves the relax block.

An example that illustrates Relax’s ISA semantics in ac-
tion is shown in Figure 2. It uses the instruction stream
from Code Listing 1(c). The rlx , mv, and ble instructions
all complete and commit successfully but a fault occurs exe-
cuting the second mv that is initially undetected and so the
instruction commits as normal. Next, the result of the sll
instruction is pipeline bypassed to the ld instruction. When
the ld executes it triggers a page fault exception due to its
corrupted input address. Before the exception is handled,
the hardware waits for the detection to catch up. The fault
from the mv is detected and execution jumps back to the
RECOVERlabel.

3. HARDWARE SUPPORT
In this section, we present the hardware component of

Relax. The Relax ISA’s main hardware benefits are design
simplification and energy efficiency, while the key hardware
requirement is fault detection. We first discuss Relax’s hard-
ware benefits, followed by the hardware detection support.
We conclude with a description of the overall hardware or-
ganization.

3.1 Hardware Simplification
Relax provides sevaral hardware benefits. First, the hard-

ware need not provide support for buffering, checkpointing,
or rollback for software-recoverable errors. Second, compli-
cated techniques to combat parameter variations and wear-
out, such as fine-grained body biasing [40], are less useful
under Relax because, by design, variations are more tolera-
ble. Finally, Relax reduces hardware design complexity be-
cause design margins to account for silicon uncertainity can
be relaxed. This also potentially improves energy efficiency,
as it allows hardware to be designed for correct and efficient
operation under common case conditions, but with possible
failures under dynamically worst case conditions. The over-
all result is hardware that is error-prone, but is easier to
design and potentially more energy efficient. In Section 7,
we consider timing faults from process variations and show
how Relax provides energy efficiency and design complexity
benefits.

3.2 Hardware Detection
Relax requires support for low-latency fault detection in

hardware. Two viable alternatives are Argus [25] and redun-
dant multi-threading (RMT) [27]. Argus provides compre-
hensive error detection specifically targeted at simple cores,
and RMT runs two copies of a program on separate hard-
ware threads and compares their outputs to detect faults.
In addition, Razor [12] describes support for adaptive failure
rate monitoring for timing faults. Relax requires a similar
mechanism to ensure the fault rate remains stable if the rlx
instruction’s target fault rate input is specified.

3.3 Hardware Organization
While hardware that implements Relax everywhere and

has no recovery support at all is the ideal, it is disrup-
tively different from existing hardware and requires com-
plete software support. Other configurations that partially
implement Relax can be incrementally built into existing
hardware organizations. In this section, we consider in de-
tail three such organizations with both relaxed hardware

Relaxed Hardware Recover Transition
Implementation Cost Cost

Fine-grained tasks 5 5
DVFS 5 50
Architectural core salvaging 50 0

Table 1: Parameters for three alternative relaxed
hardware designs.

and normal hardware, where relax blocks execute on relaxed
hardware and other code executes on normal hardware.

Whether hardware is relaxed or not can be configured ei-
ther statically or dynamically. In the static case, two types
of cores are used: relaxed cores and normal cores. Relax
blocks are off-loaded to relaxed cores and other code exe-
cutes on normal cores. The relaxed cores can use less design
guardband and do not need any hardware recovery mecha-
nism. In the dynamic case, circuit techniques like voltage
scaling or frequency over-clocking are used to execute re-
laxed blocks with improved overall efficiency and/or hard-
ware recovery support can be adaptively disabled.

The type of hardware organization affects the performance
of Relax. In particular, two costs dictated by the hardware
are important: (1) the cost in cycles to detect and initiate
recovery, and (2) the cost in cycles to transition into and out
of relax blocks. Table 1 gives estimates for these two costs
for three different hardware alternatives we examine.

The first alternative is a statically configured architecture
with support for fine-grained parallelism, where relax blocks
are enqueued on a neighboring, unreliable core with low la-
tency (e.g. Carbon [19]). The cost to recover is the cost of a
pipeline flush, approximated at 5 cycles for a simple in-order
core, and the cost to transition is the time to enqueue a task,
which we estimate at 5 cycles. The second alternative is a
dynamically configured architecture that uses dynamic fre-
quency and voltage scaling (DVFS) to enter and exit relax
blocks (e.g. Paceline [14]). The cost to recover is again just
the cost of a pipeline flush, and we approximate the cost of
DVFS at 50 cycles, which the work of Kim et al. suggests
is reasonable for on-chip DVFS [17]. Finally, we consider
an organization where hardware recovery is adaptively dis-
abled and a thread swap occurs with a neighboring core in
the event of a fault (e.g. Architectural Core Salvaging [31]).
We assume the cost of a thread swap to recover is 50 cycles,
with no cost to transition. We revisit the values in Table 1
when we discuss performance models in Section 5.

4. SOFTWARE SUPPORT
In this section, we use the recovery construct introduced

in Section 2.1 to demonstrate how Relax enables the imple-
mentation of flexible and efficient recovery policies in soft-
ware through a series of example use cases. Our use cases
derive from the code shown in Code Listing 2, adapted from
the x264 video encoding application. The listing shows a C
function returning the sum of absolute differences over the
array inputs left and right . It provides an example of a
computation that is well suited for software-level recovery.

Although this example is taken from x264, many mod-
ern, computationally-intensive applications employ compu-
tation such as this, i.e. reduction, at the core of their exe-
cution. x264 uses a two-dimensional version of this function
to search for a predicted frame macroblock’s most similar

Code Listing 2 The sum of absolute differences code ex-
ample that is the basis for all use cases.

int sad(int * left, int * right, int len) {
int sum = 0;
for (int i = 0; i < len; ++i)

sum += abs(left[i] - right[i]);
return sum;

}

reference frame macroblock. The function measures similar-
ity by performing a pixel by pixel comparison over two mac-
roblocks. A high similarity presents redundancy that can be
exploited to minimize the amount of information encoded.
The overall process is called motion estimation, which allows
for better data compression. The four use cases we explore
each perform a different type of recovery over this function.
We consider two high-level recovery behaviors: retry (Re)
and discard (Di), furthermore distinguished by their granu-
larities: coarse-grained (Co) and fine-grained (Fi). Table 2
illustrates the resulting taxonomy.

Use Case 1: Coarse-Grained Retry (CoRe). Relax
and recover blocks can be used to implement coarse-grained
retry (CoRe) as shown in the upper-left quadrant of Table 2.
This case is the same as shown for the example presented in
Section 2.1. Just like the sum function, the sad function has
no memory side-effects and therefore execution can simply
jump back to the beginning of the function if a fault occurs,
provided the inputs are still available. The Relax compiler
performs a control flow analysis over the relax block, sets up
the recovery code, and adds compensating code to save or
recover state if necessary.

Use Case 2: Coarse-Grained Discard (CoDi). Three
difficulties with CoRe are that it (1) potentially requires
saving and restoring software state, (2) requires a retry mech-
anism that can deflect recurring failures, and (3) can hurt
performance predictability. For error-tolerant applications,
particularly those with real-time constraints, a potentially
better alternative is to simply abort the function and return
a value that indicates the function output should be disre-
garded. The code in the upper-right quadrant of Table 2
explores this alternative. In the case of x264, returning a
maximum integer value effectively tells the application to
disregard this macroblock pair and continue looking. Simi-
lar to CoRe, this use case operates at a coarse granularity.

Use Case 3: Fine-Grained Retry (FiRe). Another
alternative to CoRe is to retry at a finer granularity to
minimize the amount of wasted work on failure. This can
be done simply by moving the relax block into the loop as
shown in the lower-left quadrant of Table 2. In this case,
each individual accumulation is retried on failure. Since the
last instruction of the relax block is the accumulation onto
sum, the old value of sum can be immediately overwritten
as the block terminates.

Use Case 4: Fine-Grained Discard (FiDi). For func-
tions that allow approximate output, individual accumula-
tion values can be discarded as shown in the lower-right
quadrant of Table 2. Note that there is only a single relax
block and no recover block. The resulting behavior is as if
there was a recover block that was empty (omitting it en-

Retry Discard
C

o
a
rs

e
-g

ra
in

e
d int sad(int * left, int * right, int len) {

relax (rate) {
int sum = 0;
for (int i = 0; i < len; ++i)

sum += abs(left[i] - right[i]);
} recover { retry ; }
return sum;

}

Use Case 1 (CoRe)

int sad(int * left, int * right, int len) {
relax (rate) {

int sum = 0;
for (int i = 0; i < len; ++i)

sum += abs(left[i] - right[i]);
} recover { return INT_MAX; }
return sum;

}

Use Case 2 (CoDi)

F
in

e
-g

ra
in

e
d

int sad(int * left, int * right, int len) {
int sum = 0;
for (int i = 0; i < len; ++i)

relax (rate) {
sum += abs(left[i] - right[i]);

} recover { retry ; }
return sum;

}

Use Case 3 (FiRe)

int sad(int * left, int * right, int len) {
int sum = 0;
for (int i = 0; i < len; ++i)

relax (rate) {
sum += abs(left[i] - right[i]);

}
return sum;

}

Use Case 4 (FiDi)

Table 2: Our four use cases classified by granularity and recovery behavior.

hances readability). Without the recover block, the variable
sum has two possible values at the end of the relax block:
either it has been updated with the new value, or it is un-
changed. This achieves the desired behavior: on failure, the
accumulation value is discarded.

5. APPLICATION DEVELOPMENT
Relax provides hardware energy efficiency improvements

by removing the need for hardware recovery support while
still allowing hardware faults to occur. However, there are
software overheads associated with Relax. In the case of
retry behavior, there is the potential cost of saving and
restoring state, and also the overhead of the wasted time
spent executing failed relax block executions. In the case
of discard behavior, failed relax block executions reduce the
application’s output quality (e.g. image sharpness). To com-
pensate, the application must be configured at a higher qual-
ity setting (e.g. more iterations) to achieve the same output
quality. This introduces execution time overhead.

In this section, we develop a set of analytical models to
help developers reason about the various efficiency consid-
erations. One of the key outcomes of our models is that,
depending on application, recovery behavior (e.g. retry vs.
discard), and architecture characteristics, we can determine
the specific fault rate that maximizes overall efficiency. The
models are extended from the probabilistic models for the
performance overhead of backward error recovery developed
by De Kruijf et al. [9]. We refer the reader to a techni-
cal report for details on how we extended the models for
Relax [10]. We focus on energy efficiency and specifically
energy-delay product (EDP), although our methodology can
be trivially extended to other metrics.

Model for Retry Behavior. Our model for retry behav-
ior uses four primary inputs: cycles, the execution time in
cycles of a relax block, recover, the cost in cycles to initiate
recovery, transition, the cost of transitions into and out of
relax blocks, and rate, the per-cycle error rate. Using ba-
sic probability theory we define a function to compute the
overheads due to re-execution triggered by faults. We com-
bine this with a hardware efficiency function that maps a
hardware fault rate to the energy efficiency of the hardware

10
−4

10
−6

10
−8

10
−10

10
−12

10
−14

Hardware per-cycle fault rate (rate)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

R
e
la
ti
v
e
e
n
e
rg
y
-d
e
la
y
p
ro
d
u
c
t
(E

D
P
) EDPhw

EDPretry, recover = 5, transition = 5

EDPretry, recover = 5, transition = 50

EDPretry, recover = 50, transition = 0

Figure 3: A mapping from fault rate to EDP for
different architectural parameters.

relative to hardware that does not allow any faults. We call
this function EDPhw. The functions combine to produce a
final function that maps a fault rate to the energy-delay of
the whole system. We call this function EDPretry. Solving
for the derivative of this equation set to zero yields the fault
rate that minimizes overall EDP.

For a relax block where cycles is roughly 1170, Figure 3
shows a graph evaluating the three hardware organizations
from Table 1, using the hardware-specific values for recover
and transition given in columns 2 and 3. We assume there is
no overhead to save or restore software state, which we find
to be realistic in practice. The solid curve shows a hypothet-
ical EDPhw mapping, which represents the ideal case. The
dotted curve considers fine-grained tasks, the dash-dotted
curve considers DVFS. and the dashed curve considers ar-
chitectural core salvaging1, The figure shows that, for these
three hypothetical design points, Relax provides an approxi-

1For architectural core salvaging, the thread swap on failure

mately 22.1%, 21.9%, and 18.8% optimal EDP reduction for
each, respectively. The optimal fault rates are in the range
1.5e−5 to 3.0e−5 faults per cycle.

Model for Discard Behavior. The challenge with dis-
card behavior is that an application’s output quality de-
pends on the fault rate. We add a new function that maps
a combination of an application’s input quality setting and
the hardware fault rate to the application’s output quality.
That is, for a target output quality qo and an input qual-
ity setting qi, quality(qi, rate) = qo. Then, the constraint
quality(qi, rate) = quality(qibase , 0) for input qualities qi

and qibase ensures that output quality remains constant with
Relax (left-hand side) relative to without Relax (right-hand
side). We then, extend the retry models with this func-
tion to create EDPdiscard. Our technical report presents a
detailed discussion of determining the quality function for
a given application and relax block, and give examples on
how to apply it to the Relax framework [10].

6. EVALUATION METHODOLOGY
While several phenomena can cause faults to occur in the

hardware, we evaluate one specific case here. The scenario
we consider is Relax in the context of process variations
where the hardware is designed to ignore these variations,
resulting in some timing faults. This section discusses our
evaluation methodology and the next section presents ex-
perimental results.

We implemented language support for relax and recover
blocks in C/C++ programs using the LLVM compiler infras-
tructure [20]. We apply the compiler to applications and
simulate them using instruction-level fault injection to es-
timate the potential energy efficiency gains of Relax when
coupled with hardware that runs more efficiently in the pres-
ence of faults. In Section 6.1 we describe our methodology
for evaluating applications using discard behavior specifi-
cally. In Section 6.2 we describe our fault injection method-
ology and in Section 6.3 we discuss performance metrics.
Finally, in Section 6.4 we derive a hardware efficiency func-
tion to model the impact of allowing errors due to process
variations on hardware energy efficiency.

6.1 Evaluating Discard Behavior
Prior work evaluating application-level error tolerance has

employed application-specific quality metrics to assess the
degree of output quality deterioration [6, 11, 22, 23]. These
studies attempt to hold execution time relatively constant
while using the error rate to vary output quality. The diffi-
culty with this approach is that it is fundamentally hard to
quantify and evaluate variations in output quality.

We provide a novel solution to this problem by taking
the converse approach of holding output quality constant
while using the error rate to vary execution time. For each
application using discard behavior, we define a function that
maps an input quality setting and a fault rate to an output
quality, and we use it to adjust the input quality setting
as we adjust the fault rate to hold output quality constant.
The function is the quality function discussed at the end
of Section 5, and it allows an apples-to-apples comparison
across applications. We provide more detail in our technical
report [10].

effectively doubles the fault rate, since the neighboring core
must abort as well. This is not modeled.

6.2 Fault Injection
To perform detailed quality analysis for discard behavior

as described above, we required a simulation framework that
would allow us to run relaxed applications to completion on
large, representative input data. To meet this challenge,
we developed an LLVM instrumentation pass to perform
instruction-level fault injection for rapid simulation. We
chose LLVM because its virtual ISA closely matches both
the x86 and SPARC V9 instruction sets [2], while instru-
menting LLVM bytecode is straightforward and flexible. For
fault injection, each LLVM instruction inside a relax block
is surrounded by code that probabilistically injects an error
into the output of that instruction. Although we inject only
single-bit errors, the nature of the error is in practice not rel-
evant since corrupted output is ultimately either discarded
or overwritten, and hence is never used.

If an error occurs in the address computation of a store
instruction, the store does not commit and execution imme-
diately jumps to the recovery destination. If an error occurs
in any other instruction, the instruction commits and execu-
tion continues as normal, but a recovery flag is set to indicate
that an error occurred. When control reaches the end of the
relax block, execution jumps to the recovery destination if
the recovery flag is set. This behavior is consistent with the
ISA semantics described in Section 2.2.

6.3 Performance Metrics
We use execution cycles to measure performance over-

heads and energy efficiency improvements. To compute ex-
ecution cycles we record the number of dynamic LLVM in-
structions executed (not including instructions added for
fault instrumentation) and multiply by the CPL (cycles per
LLVM instruction) of the relax block. We similarly divide
the per-instruction fault rate by the the CPL to compute
the per-cycle fault rate.

The validity of using CPL to produce cycle-accurate per-
formance numbers depends on our ability to assert that CPL
does not change when relax blocks are augmented with retry
or discard behavior. Below, we explain why the two factors
that might affect CPL, instruction mix and memory latency,
are not adversely affected by these behaviors. First, all relax
blocks we consider have a largely homogeneous instruction
mix. Therefore, partial execution of a relax block has a
CPL very close to the overall CPL of the block, and cer-
tainly averaged over many millions of executions, the CPL
will tend towards the CPL of the whole block. Second, for
memory latency, we note that retry behavior will re-execute
over data that is already cached, and therefore our measured
CPL will be an overestimate, while for discard behavior, any
early termination will place more weight on up-front loads
that bring in potentially uncached compute data, yielding
an underestimate. We accept the overestimating factor and
our results for retry behavior are therefore conservative. For
discard behavior, we observe that none of our applications
are structured with up-front loads since the relax blocks are
in all cases iterating over simple array structures. We assert
that the overestimating effect is therefore negligible.

6.4 Hardware Efficiency Model
De Kruijf et al. extend the VARIUS model [35] for process

variations to provide estimates for the efficiency of hardware
allowing timing faults for the OpenRISC core design [9].
The resulting model outputs the relative energy efficiency

Application Function Function %
Name Name Exec. Time

barneshut RecurseForce >99.9
bodytrack InsideError 21.9
canneal swap cost 89.4
ferret isOptimal 15.7
kmeans euclid dist 2 83.3
raytrace IntersectTriangleMT 49.4
x264 pixel sad 16x16 49.2

Table 4: Application functions and percentage of
execution time inside each function.

of a given processor design as the error rate is varied. We
applied the methodology developed by De Kruijf et al. to de-
velop our hardware efficiency function, which we use in our
evaluation to model hardware that runs more efficiently in
the presence of timing faults induced by process variations.
Details of the function’s derivation are in our technical re-
port [10].

7. RESULTS
This section presents results using and evaluating the Re-

lax framework. In Section 7.1 we show evidence for the error
tolerance phenomenon by identifying applications from the
PARSEC benchmark suite that are tolerant to discarded
computations. We then show in Section 7.2 the results ap-
plying our language constructs to each of these applications.
We show that relax block regions account for large portions
of application execution times, and that the phenomenon of
limited memory side-effects allows Relax to work with es-
sentially no software overhead. Finally, using our efficiency
mapping driven by process variations, we evaluate energy-
delay improvement using Relax in Section 7.3. Overall, our
results show that 20% improvement in energy efficiency is
common, and the optimal fault rate is highly application
dependent, varying by several orders of magnitude.

7.1 Evidence for Error Tolerance
We identified seven applications from the PARSEC bench-

mark suite [7] employing approximation techniques. How-
ever, two applications, fluidanimate and streamcluster, did
not have an easily identifiable input quality parameter, which
was needed to evaluate discard behavior. Since this was
merely an artifact of their implementation, we replaced them
with more straightforward alternatives from the same appli-
cation domain. We replaced fluidanimate with barneshut, a
physics application from the Lonestar Benchmark Suite [18],
and streamcluster with kmeans, a clustering application from
NU-MineBench [29].

Table 3 shows the details for each application. Columns
1-3 show the application name, benchmark suite, and ap-
plication domain, respectively. Columns 4-5 concern evalu-
ation of discard behavior only, and show the input quality
parameter used to configure output quality and the quality
evaluator used to evaluate output quality, respectively.

7.2 Application Relaxation
The seven applications were modified to implement the

four use cases described in Section 4. For each application,
we modified only a single, dominant function to use Relax.
More functions exist, but evaluating all of them was beyond
the scope of this work. Table 4 identifies each application’s

function and the percentage of execution time spent inside
the function. Percentages were measured using the Google
Performance Tools CPU profiler [1] running applications na-
tively on a 2.53 GHz Core 2 Duo processor and include time
spent in external library calls.

Six of the seven applications were evaluated for all four use
cases FiRe, CoRe, FiRe, and FiDi. Barneshut could only
support the two fine-grained use cases FiRe and FiDi. Ta-
ble 5 shows detailed statistics for each application. Columns
2-5 show the length of each relax block in cycles. Columns
6 and 7 show the percentage of executed LLVM instructions
affected by Relax for each use case. Combined with the data
from Table 4, we see that for three applications more than
70% of the application is relaxed, for two others roughly
50% is relaxed, and for the last two less than 20% is relaxed.
Columns 8 and 9 show the number of C/C++ source code
lines modified or added. In all cases, the number of changes
is very low. Relax blocks do not appear to obstruct code
readability and are in most cases straightforward to imple-
ment. Finally, columns 10 through 11 show the number of
register spills needed to set up a software checkpoint for retry
behavior. The numbers assume an architecture with 16 gen-
eral purpose integer registers and 16 floating point registers.
In all cases, there is no software checkpointing overhead; the
functions are side-effect free, and simple enough that there
is insufficient register pressure to force additional register
spills to save input state. Even with register pressure, the
number of extra registers needed is between zero and two.

7.3 Execution Time and Energy Efficiency
Figure 4 shows execution time and energy-delay product

(EDP) for each application and use case relative to execution
without Relax. The triangles plot fault rate versus execu-
tion time and the stars plot fault rate versus EDP. EDP is
measured applying our hardware efficiency function to the
square of the execution time. The figure also shows the re-
sults predicted by our models developed in Section 5; the
dotted curves plot the fault rate versus predicted execution
time and the solid curves plot the fault rate versus predicted
EDP. The x-axis ranges are centered around the predicted
optimal fault rate. We model hardware with fine-grained
task support, presented earlier as the first entry in Table 1,
and hence model the hardware costs to initiate recovery and
transition in and out of relax blocks at 5 cycles each.

For retry behavior, the results show that a 20% reduction
in EDP is common for CoRe, and that CoRe tends to per-
form better than FiRe. In some cases, execution time with
FiRe is very high, as with kmeans and x264. For these ap-
plications the fine-grained relax block size is only 4 cycles,
and the 5 cycle cost to transition in and out of the relax
block forces high overheads.

For discard behavior, we see two flavors of results: ideal
and insensitive. The graphs are annotated with these la-
bels. In the ideal cases, changing the input quality setting
and/or injecting errors into the application affects behavior
in a way that is very regular and consistent. As a result,
the discard behavior results for CoDi and FiDi closely mir-
ror those for CoRe and FiRe. The two differences are that
(1) in some cases discard behavior cannot support a fault
rate quite as high as retry behavior, and (2) the resulting
data are slightly more noisy. However, discard behavior will
still be the more desirable alternative when performance pre-
dictability is more important than output predictability, as

Application Benchmark Application Input Quality Quality Evaluator
Name Suite Domain Parameter

barneshut Lonestar Physics Distance before SSDa over body positions, relative
(fluidanimate) (PARSEC) modeling approximation to maximum quality output
bodytrack PARSEC Computer Number of simultaneous Application-internal likelihood

vision body particles estimate
canneal PARSEC Optimization: Number of iterations Change in output cost, relative

local search to maximum quality output
ferret PARSEC Image search Maximum number of SSDa over top 10 ranking, relative

iterations to maximum quality output
kmeans NU-MineBench Data mining: Number of iterations Application-internal validity
(streamcluster) (PARSEC) clustering metric
raytrace PARSEC Real-time Rendering resolution PSNR of upscaled image,

rendering relative to high resolution output
x264 PARSEC Media Motion estimation Encoded output file size relative

encoding search depth to maximum quality output

aSSD = Sum of squared differences

Table 3: The seven applications modified to use Relax.

Application Relax Block Length Percentage of Source Lines Checkpoint Size
Name in Cycles Function Relaxed Modified (Register Spills)

CoRe CoDi FiRe FiDi CoRe / FiRe / CoRe / FiRe / CoRe FiRe
CoDi FiDi CoDi FiDi

barneshut N/A N/A 98 98 N/A 70.6 N/A 6 N/A 0
bodytrack 775 812 25 25 76.3 47.8 2 2 0 0
canneal 2837 2837 115 115 99.8 62.0 2 8 0 0
ferret 4024 4077 12 11 99.6 72.3 2 4 0 0
kmeans 81 81 4 4 99.5 65.8 2 2 0 0
raytracea 2682 2682 136 136 96.5 67.7 2 6 0 0
x264a 1174 1174 4 4 99.9 76.2 2 2 0 0

aSSE is emulated for x264 and raytrace

Table 5: Details for each application’s function and the various use cases implemented.

might be the case with a real-time ray tracer or an online
data clustering algorithm.

The insensitive discard behavior cases are bodytrack and
x264. For bodytrack, the algorithm effectively only has two
outputs: either the tracked body position is close, or it is
off because the algorithm has lost a handle on the body
position. For the quality settings we used, the algorithm
did not lose the body position at fault rates of less than
1e−3 for CoDi and 2e−2 for FiDi. Hence, any lower fault
rate setting produced effectively equivalent output quality,
and, due to the nature of discard behavior, the execution
time of the program was shortened by the faults and EDP
improved. For x264, the reasons are slightly different. For
x264 with the reference input we used, it was very difficult
to affect the output quality by adjusting the input quality
at all. Even at the lowest setting, with a 40% reduction in
execution time, the change in output quality was still only
extremely minor. Although our quality function was able
to capture sufficient variation for FiDi, the range was too
narrow for CoDi. Even for FiDi, the function was very
noisy. We expect that different data input might lead to
different results.

8. FUTURE WORK
The Relax framework presents many interesting directions

for future work. We discuss a few of them below.

Architecture Exploration. In this paper, we considered
the Relax framework in the context of some hypothetical
hardware organizations and their associated parameters. The
design of completely relaxed hardware would allow a de-
tailed exploration of the trade-offs involved in implementing
the Relax ISA. While we believe the ISA provides hard-
ware simplicity, this design exercise would show how effec-
tive it truly is. Other topics for future work include con-
sidering phenomena beyond merely process variations, and
also extending Relax to encompass faults occurring outside
the processor core, which would yield a complete, chip-level
recovery framework for hardware faults.

Compiler-Automated Retry Behavior. The key re-
quirement for retry behavior on a region is idempotency,
which is guaranteed by the absence of read-modify-write
sequences. If, for example, a compiler creates a software
checkpoint at the end of each read-modify-write sequence,
Relax can be active throughout an entire application’s exe-
cution. The key read-modify-write sequences to consider are
load-store pairs targeting the same global or heap memory
location; register spills and refills to and from the program
stack are automatically handled by the compiler to preserve
idempotency.

Binary Support for Retry Behavior. Applying Relax
to static binaries when source code is not available is an-

10
−6

10
−5

10
−4

10
−3

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N/ACORE

10
−7

10
−6

10
−5

10
−4

10
−3

0.8

1.0

1.2

1.4

1.6

1.8

2.0

10
−7

10
−6

10
−5

10
−4

10
−3

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

10
−5

10
−4

10
−3

10
−2

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

10
−7

10
−6

10
−5

10
−4

10
−3

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

10
−6

10
−5

10
−4

10
−3

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

10
−5

10
−4

10
−3

10
−2

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

F IRE

10
−4

10
−3

10
−2

10
−1

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

10
−5

10
−4

10
−3

10
−2

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

10
−3

10
−2

10
−1

1

2

3

4

5

6

7

8

9

10
−3

10
−2

10
−1

10
0

0

2

4

6

8

10

12

10
−5

10
−4

10
−3

10
−2

0.8

1.0

1.2

1.4

1.6

1.8

10
−3

10
−2

10
−1

10
0

1

2

3

4

5

6

7

8

9

10

10
−6

10
−5

10
−4

10
−3

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N/ACODI

insensitive

10
−7

10
−6

10
−5

10
−4

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
ideal

10
−7

10
−6

10
−5

10
−4

10
−3

0.5

1.0

1.5

2.0

2.5

3.0

3.5
ideal

10
−6

10
−5

10
−4

10
−3

0

1

2

3

4

5

6

7
ideal

10
−7

10
−6

10
−5

10
−4

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
ideal

input

dependent

(see text)

insensitive

10
−7

10
−6

10
−5

10
−4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

F IDI

ideal

barneshut

10
−5

10
−4

10
−3

10
−2

10
−1

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
insensitive

bodytrack

10
−6

10
−5

10
−4

10
−3

0.5

1.0

1.5

2.0

2.5

3.0
ideal

canneal

10
−4

10
−3

10
−2

10
−1

1

2

3

4

5

6

7
ideal

ferret

10
−5

10
−4

10
−3

10
−2

0

5

10

15

20

25
ideal

kmeans

10
−7

10
−6

10
−5

10
−4

10
−3

0.8

1.0

1.2

1.4

1.6

1.8
ideal

raytrace

10
−3

10
−2

10
−1

2.0

2.5

3.0

3.5

4.0

4.5

5.0
insensitive

x264

Figure 4: Solid curves plot analytically predicted fault rate (x-axis) versus EDP (y-axis) for each application
and use case combination, with empirical data shown using stars. Dashed curves plot fault rate versus
execution time only, with empirical data shown using triangles.

other interesting direction for future work. Dynamic binary
instrumentation using tools like Pin [24] can be used to dy-
namically identify good relax block candidates. Static pro-
gram analysis techniques [5] can also be used to identify
idempotent regions in binaries.

Support for Discard Behavior. Discard behavior can
be hard to reason about, in part because it exhibits non-
determinism. Furthermore, unintentional non-determinism
can easily lead to bugs that are very hard to track down.
Language support to annotate intentional non-determinism
could be used by a compiler or static analysis tool to identify
potential bugs in the program. This and other tools to help
reason about the efficacy and impact of discard behavior is
an important topic for future work.

Nesting Support. Nesting relax blocks inside other relax
blocks is a promising idea. The behavior for nested relax
blocks should be a straightforward extension of the normal
behavior: execution inside relax blocks is relaxed even when
nested inside another relax block, and failures cause control
to transfer to the end of the innermost relax block. Archi-
tecturally, the only requirement to implement this behavior
is micro-architectural support for a stack-like structure to
store the stack of failure destination addresses, akin to the
Return Address Stack (RAS) in modern microprocessors.

9. RELATED WORK
We discuss related work in error recovery, full-system so-

lutions to hardware errors, and application error tolerance.

Error Recovery. Sorin provides a complete treatment of
error recovery solutions [37]. He describes two primary ap-
proaches to error recovery: backward error recovery (BER)
and forward error recovery (FER). Relax provides BER un-
der retry behavior, and a restricted form of FER under dis-
card behavior. We consider each separately below.

For BER, Relax is distinct from other mechanisms in that
it is both software based and has a small sphere of recover-
ability. Other software approaches have larger spheres of re-
coverability [30, 41] which comes at a substantial cost to per-
formance. Hardware approaches have both large [32, 38] and
small [3, 28] spheres of recoverability. However, hardware
checkpoints consume substantial chip resources, and may
not even be feasible when dealing with highly error-prone
environments, where the checkpointing logic and storage it-
self cannot be made relatively immune to errors. Relax’s
fine-grained recovery in software is a good fit for an antici-
pated future with high fault rate systems running emerging
applications that have few memory side-effects and can re-
cover in software with low overhead.

On the FER side, the main competing approach is triple-
modular redundancy (TMR). With discard behavior, Relax
does not add any redundancy to implement FER, but rather
allows the programmer to exploit the redundancy inherent
in the application.

Full-System Solutions. Table 6 classifies other full-system
proposals for managing error-prone hardware. SWAT [21,
34] uses lightweight symptom- and invariant-based detec-
tion techniques combined with heavyweight hardware check-
points to recover from failure. SWAT optimizes for the

Recovery
Detection Hardware Software

Hardware RSDT[4] Relax
SWAT [21, 34]

Software SWAT [21, 34] Liberty [8, 33]

Table 6: A taxonomy of full-system solutions.

modern-day common case of failure-free execution with a
primary focus on reducing detection overhead while latency
is not a concern as long as recovery remains possible. Our
work is distinct from SWAT in anticipating a future where,
for efficiency reasons, failure is much more common, and
we shift priorities accordingly. Additionally, Relax is a soft-
ware recovery framework that utilizes hardware detection,
in contrast to SWAT’s hybrid hardware-software detection
with hardware recovery.

The Resilient-System Design Team (RSDT) attempts to
manage faults entirely in hardware by adding mechanisms
for testing, monitoring, and adaptive recovery [4]. While
effective for general-purpose computing systems, this ap-
proach is overly restrictive for emerging applications with
few side-effects and ignores application error tolerance.

Finally, the Liberty Research Group proposes transpar-
ent software-based detection and recovery through compiler
instrumentation [8, 33]. This software-only approach can
be readily deployed in commodity hardware but has high
performance overheads.

Application Error Tolerance. A variety of studies have
attempted to quantify application tolerance to errors [6,
11, 22, 23, 42]. In contrast to Relax, they allow errors
to affect program state rather than discard them. How-
ever, the general findings are that control flow and memory
operations, which together constitute a large percentage of
these applications, remain intolerant to errors. As a result,
these studies ultimately advocate for various forms of detec-
tion and/or recovery. The only technique that incorporates
neither detection or recovery involves manually identifying
“soft” computations and allowing only the backwards slice
of these computations to fail [23]. These instructions can in
some cases account for more than half of an application’s
dynamic instruction stream, but in general the technique by
itself does not scale well beyond fault rates of more than
1e−6, and even this technique would still require changes to
the ISA and compiler for the software to communicate infor-
mation on what is a soft computation to the hardware. The
evident conclusion is that arbitrary and uncontrolled failure
is not generally feasible.

10. CONCLUSION
As CMOS technology scales, hardware reliability is be-

coming a primary design constraint. While languages, ISAs,
and microarchitectures continue to maintain the illusion of
the transistor as a perfect switch, VLSI circuits, CAD, and
manufacturing layers of the silicon stack are under tremen-
dous pressure to maintain this illusion. Emerging applica-
tions provide an opportunity to mitigate these CMOS scal-
ing constraints by relaxing the burden of fault recovery on
hardware.

This paper presented the Relax framework, which relaxes
architectural semantics to help simplify CMOS scaling by
removing the illusion of perfect hardware. Specifically, we

proposed a handful of simple extensions to the programming
language, compiler, ISA, and microarchitecture levels that
simplify hardware design by enabling efficient software-level
recovery of hardware faults. We constructed a spectrum
of language models combining retry and discard behaviors
with coarse and fine recovery granularities to enable flexible
application handling of errors.

We showed that PARSEC applications are easily relaxed
for more than 70% of their execution with only a handful
of source-line modifications required, and that significant
further opportunity exists. Applying the framework to al-
low timing errors due to process variations, we show that,
applications are up to 20% more energy-efficient. Most im-
portantly, the correctness requirements of hardware are re-
duced. Overall, the Relax framework enables flexible and
efficient handling of hardware reliability through multiple
levels of the system stack, instead of placing all the burden
on hardware alone.

11. ACKNOWLEDGMENTS
We thank the anonymous reviewers and the Vertical group

for comments and the Wisconsin Condor project and UW
CSL for their assistance. Many thanks to Mark Hill and
Guri Sohi for several discussions that helped refine this work.
Support for this research was provided by NSF CAREER
award #0845751 and Toshiba corporation.

12. REFERENCES
[1] Google performance tools.

http://code.google.com/p/google-perftools/.

[2] V. Adve, C. Lattner, M. Brukman, A. Shukla, and
B. Gaeke. LLVA: A low-level virtual instruction set
architecture. In MICRO ’03, pages 205–216.

[3] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint
processing and recovery: Towards scalable large
instruction window processors. In MICRO ’03, pages
423–434.

[4] T. Austin, V. Bertacco, S. Mahlke, and Y. Cao.
Reliable systems on unreliable fabrics. IEEE Design &
Test of Computers, 25(4):322–332, 2008.

[5] G. Balakrishnan, R. Gruian, T. W. Reps, and
T. Teitelbaum. Codesurfer/x86-a platform for
analyzing x86 executables. In R. Bod́ık, editor, CC,
volume 3443 of Lecture Notes in Computer Science,
pages 250–254. Springer, 2005.

[6] J. Bau, R. Hankins, Q. Jacobson, S. Mitra, B. Saha,
and A. Adl-Tabatabai. Error resilient system
architecture (ERSA) for probabilistic applications. In
SELSE ’07.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
PARSEC benchmark suite: Characterization and
architectural implications. In PACT ’08, pages 72–81.

[8] J. Chang, G. A. Reis, and D. I. August. Automatic
instruction-level software-only recovery. In DSN ’06,
pages 83–92.

[9] M. de Kruijf, S. Nomura, and K. Sankaralingam. A
unified model for timing speculation: Evaluating the
impact of technology scaling, CMOS design style, and
fault recovery mechanism. In DSN ’10.

[10] M. de Kruijf, S. Nomura, and K. Sankaralingam.
Design, modeling, and evaluation of the Relax

architectural framework. Technical Report TR-1672,
University of Wisconsin-Madison, Department of
Computer Sciences, 2010.

[11] M. de Kruijf and K. Sankaralingam. Exploring the
synergy of emerging workloads and silicon reliability
trends. In SELSE ’09.

[12] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao,
T. Pham, C. Ziesler, D. Blaauw, T. Austin,
K. Flautner, and T. Mudge. Razor: A low-power
pipeline based on circuit-level timing speculation. In
MICRO ’03, pages 7–18.

[13] V. Govindaraju, P. Djeu, K. Sankaralingam,
M. Vernon, and W. R. Mark. Toward a multicore
architecture for real-time ray-tracing. In Proceedings
of the 41st International Symposium on
Microarchitecture, pages 176–187, 2008.

[14] B. Greskamp and J. Torrellas. Paceline: Improving
single-thread performance in nanoscale CMPs through
core overclocking. In PACT ’07, pages 213–224.

[15] B. Greskamp, L. Wan, U. Karpuzcu, J. Cook,
J. Torrellas, D. Chen, and C. Zilles. Blueshift:
Designing processors for timing speculation from the
ground up. In HPCA ’09, pages 213–224.

[16] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C.
Crago, W. Tuohy, A. Mahesri, S. S. Lumetta, M. I.
Frank, and S. J. Patel. Rigel: An architecture and
scalable programming interface for a 1000-core
accelerator. In ISCA ’09, pages 140–151.

[17] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks. System
level analysis of fast, per-core DVFS using on-chip
switching regulators. In HPCA ’08, pages 213–224.

[18] M. Kulkarni, K. Pingali, B. Walter,
G. Ramanarayanan, K. Bala, and L. P. Chew.
Optimistic parallelism requires abstractions. In PLDI
’07, pages 211–222.

[19] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon:
architectural support for fine-grained parallelism on
chip multiprocessors. In ISCA ’07, pages 162–173.

[20] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In CGO ’04, pages 75–88.

[21] M. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve,
V. S. Adve, and Y. Zhou. Understanding the
propagation of hard errors to software and
implications for resilient system design. In ASPLOS
’08, pages 265–276.

[22] X. Li and D. Yeung. Application-level correctness and
its impact on fault tolerance. In HPCA ’07, pages
181–192.

[23] X. Li and D. Yeung. Exploiting soft computing for
increased fault tolerance. In Workshop on
Architectural Support for Gigascale Integration, 2006.

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In PLDI
’05, pages 190–200.

[25] A. Meixner, M. E. Bauer, and D. J. Sorin. Argus:
Low-cost comprehensive error detection in simple
cores. IEEE Micro, 28(1):52–59, 2008.

[26] F. Mesa-Martinez and J. Renau. Effective

optimistic-checker tandem core design through
architectural pruning. In MICRO ’07, pages 236–248.

[27] S. Mukherjee, M. Kontz, and S. Reinhardt. Detailed
design and evaluation of redundant multi-threading
alternatives. In ISCA ’02, pages 99–110.

[28] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt.
Runahead execution: an alternative to very large
instruction windows for out-of-order processors. In
HPCA ’03, pages 129–140.

[29] R. Narayanan, B. Ozisikyilmaz, J. Zambreno,
G. Memik, and A. Choudhary. Minebench: A
benchmark suite for data mining workloads. In ISWC
’06, pages 182–188.

[30] J. S. Plank, K. Li, and M. A. Puening. Diskless
checkpointing. IEEE Trans. on Parallel and
Distributed Systems, 9(10):972–986, 1998.

[31] M. D. Powell, A. Biswas, S. Gupta, and S. S.
Mukherjee. Architectural core salvaging in a
multi-core processor for hard-error tolerance. In ISCA
’09, pages 93–104.

[32] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive:
Cost-effective architectural support for rollback
recovery in shared-memory multiprocessors. In ISCA
’02, pages 111–122.

[33] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan,
D. I. August, and S. S. Mukherjee. Software-controlled
fault tolerance. ACM Trans. on Architecture and Code
Optimization, 2(4):366–396, 2005.

[34] S. Sahoo, M.-L. Li, P. Ramachandran, S. Adve,
V. Adve, and Y. Zhou. Using likely program invariants
to detect hardware errors. In DSN ’08, pages 70–79,
2008.

[35] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano,
A. Tiwari, and J. Torrellas. VARIUS: A model of
process variation and resulting timing errors for
microarchitects. IEEE Trans. on Semiconductor
Manufacturing, 21(1):3–13, 2008.

[36] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe.
Reunion: Complexity-effective multicore redundancy.
In MICRO ’06, pages 223–234.

[37] D. J. Sorin. Fault Tolerant Computer Architecture.
Morgan & Claypool, 2009.

[38] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A.
Wood. SafetyNet: improving the availability of shared
memory multiprocessors with global
checkpoint/recovery. In ISCA ’02, pages 123–134.

[39] V. Sridharan, D. A. Liberty, and D. R. Kaeli. A
taxonomy to enable error recovery and correction in
software. In Workshop on Quality-Aware Design, 2008.

[40] J. Tschanz, J. Kao, S. Narendra, R. Nair,
D. Antoniadis, A. Chandrakasan, and V. De. Adaptive
body bias for reducing impacts of die-to-die and
within-die parameter variations on microprocessor
frequency and leakage. IEEE Journal of Solid-State
Circuits, 37(11):1396–1402, 2002.

[41] Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and
C. Kintala. Checkpointing and its applications. In
FTCS ’95, page 22.

[42] V. Wong and M. Horowitz. Soft error resilience of
probabilistic inference applications. In SELSE ’06.

