IntPatch: Automatically Fix
Integer-Overflow-to-Buffer-Overflow
Vulnerability at Compile-Time

Chao Zhang, Tielei Wang, Tao Wei, Yu Chen, and Wei Zou

Institute of Computer Science and Technology, Peking University
Key Laboratory of Network and Software Security Assurance (Peking University),
Ministry of Education
{zhangchao,wangtielei,weitao,chenyu,zouwei}@icst.pku.edu.cn

Abstract. The Integer-Overflow-to-Buffer-Overflow (I02B0O) vulnera-
bility is an underestimated threat. Automatically identifying and fixing
this kind of vulnerability are critical for software security. In this pa-
per, we present the design and implementation of IntPatch, a compiler
extension for automatically fixing IO2BO vulnerabilities in C/C++ pro-
grams at compile time. IntPatch utilizes classic type theory and dataflow
analysis framework to identify potential IO2BO vulnerabilities, and then
instruments programs with runtime checks. Moreover, IntPatch provides
an interface for programmers to facilitate checking integer overflows. We
evaluate IntPatch on a number of real-world applications. It has caught
all 46 previously known I02BO vulnerabilities in our test suite and found
21 new bugs. Applications patched by IntPatch have a negligible runtime
performance loss which is averaging about 1%.

1 Introduction

The Integer Overflow to Buffer Overflow vulnerability (/02BO for short), defined
in Common Weakness Enumeration (CWE-680 [7]), is a kind of vulnerability
caused by integer overflows, i.e. an integer overflow occurs when a program
performs a calculation to determine how much memory to allocate, which causes
less memory to be allocated than expected, leading to a buffer overflow.

For instance, figure [[a) shows a typical I02BO vulnerability which existed
in the old version of Faad2 [I1]. In this code snippet, the argument mp4ff_t *f
represents a mp4-file stream. Routine mp4ff_read_int32(f) at line 467 reads an
integer value from external file £ without any checks. The unchecked integer value
(e.g. 0280000001) is then used in a memory allocation function at line 469. If an
overflow occurs there, a smaller than expected memory (e.g. 0280000001 x4 = 4)
will be allocated. At line 483, some values read from external file without any
checks will be written to the allocated memory chunk. Because the allocated
memory is smaller than expected, these writes will corrupt the heap and may
lead to arbitrary code execution [40].

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 71-[86 2010.
© Springer-Verlag Berlin Heidelberg 2010

72 C. Zhang et al.

458. static int32 t mpdff read ctts(mpdff t *f)
459. {
460. // sth. omitted ...
467. p_track->ctts_entry count = mp4ff read int32(f);
468.
469. p_track—>ctts_sample count =

(int32 t*) malloc (p_track->ctts_entry count * sizeof (int32 t));
470. p_track—>ctts_sample offset =

(int32_t*) malloc (p_track—>ctts entry count * sizeof (int32 t));

481. for (i = 0; i < p track->ctts entry count; i++)

482, { integer overflows heap overflows

484. p_track—>ctts_sample offset[i] = mp4ff read int32(f);
485. }

486. return 1;

488. }

102BO vulnerabilities

(a) (b)

Fig.1. (a)A real-world I02BO vulnerability in Faad2. (b)Number of vulnerabilities
reported by NVD from April 1, 2009 to April 1, 2010. There are 129 (=72+57) integer
overflows and 182 (=57+125) heap overflows. More than 44% (=57/129) of integer
overflows are I02BO vulnerabilities.

I02BO is an underestimated threat. In recent years, we have witnessed that
102BO is being widely used by attackers, such as bypassing the SSH authenti-
cation in [30] and the heap corruption attack in [40]. Moreover, according to the
statistical data (from April 2009 to April 2010) in the National Vulnerability
Database (NVD [I7]), nearly a half of integer overflow vulnerabilities and one
third of heap overflow vulnerabilities are IO2BO, as shown in Fig. dI(b).

The main reason that I02BO is so popular is that many programmers have
not yet realized the danger brought by integer overflows. Even for those who are
aware of integer overflows, fixing these bugs is tedious and error-prone. For ex-
ample, CUPS [4], a well-known open source printing system, has an I02BO vul-
nerability in the function _cupsImageReadPNG [6]. CUPS first released a patch,
but the initial patch failed to fix the vulnerability properly [B]. The developers
had to release another patch to completely fix this vulnerability. Moreover, the
C99 standard [12] specifies that signed overflow is considered as an undefined
behavior, thus some patches that work properly in some compiler environments
may fail in others.

Some compilers or compiler extensions such as RICH [25] have the ability
to insert extra code to capture integer overflows at runtime. For example, with
—-ftrapv option, GCC can insert additional code to catch each overflow at run-
time. However, there exists benign integer overflows deliberately used in ran-
dom numbers generating, message encoding/decoding or modulo arithmetic [25],
and thus such full instrumentation inevitably generates false positives. Further-
more, the instrumented programs usually suffer from a non-trivial performance
overhead.

There are a number of integer overflow detection studies, such as [41] [38]
[29] [28]. For the static-analysis-based tools, false positives are non-negligible.

IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 73

Manually analyzing and patching the potential integer overflows is still error-
prone. For the dynamic-analysis-based tools, the main disadvantage is their false
negatives. Although many dynamic analysis systems (such as KLEE [26], EXE
[27], CUTE [39], DART [35]) use symbolic execution techniques to improve code
coverage and can be extended for detecting integer overflows, the analysis results
are not sound.

In this paper, we present IntPatch, a tool capable of identifying potential
I02BO vulnerabilities and fixing them automatically. First, we use a type anal-
ysis to detect potential IO2BO vulnerabilities. Then, for each candidate vulner-
ability, another analysis pass is made to locate the points to fix at.

In the type analysis process, we consider each variable’s taintedness and
whether it overflows. If a tainted (thus untrusted) and maybe overflowed variable
is used in a memory allocation function, there is a potential [02BO vulnerabil-
ity. In the locating and patching process, we use backward slicing [42] technique
to identify those related vulnerable arithmetic operations and then insert check
statements after them to catch vulnerability at runtime.

We implement IntPatch based on LLVM (Low Level Virtual Machine [3637])
and evaluate its performance on a number of real-world open-source applications.
Experiments show that IntPatch has caught all 46 previously known I02BO vul-
nerabilities and it helps us find 21 zero-day bugs. These zero-day bugs are in the
process of being submitted. Compared to their original versions, the patched ap-
plications have a negligible runtime performance loss which is averaging about
1%. Thus, IntPatch is a powerful and lightweight tool which can efficiently cap-
ture and fix IO2BO vulnerabilities. It could help programmers accelerate soft-
ware development and greatly promote programs’ security.

Contributions. This paper presents an automatic tool for efficiently protecting
against I02BO vulnerabilities. Specially, we:

— Survey 46 I02BO vulnerabilities and compare some of them with their
patched versions. We figure out that fixing IO2BO is tedious and error-prone.

— Construct a type system to model I02BO vulnerabilities and present a
framework for automatically identifying and fixing them at compile time.

— Provide an API for programmers who want to fix I02BO vulnerabilities
manually.

— Implement a tool called IntPatch. It inserts dynamic check code to protect
against I02BO. The patched version’s performance overhead is low, on av-
erage about 1%. Experiments also show that IntPatch is able to capture all
previously known IO2BO vulnerabilities.

— Identify 21 zero-day bugs in open-source applications with IntPatch.

Outline. We first describe what an I02BO-type vulnerability is and how com-
plicated it is when we try to fix it in Sect.[2l Our system overview and the type
system we used to model IO2BO vulnerability are shown in Sect. [3l In Sect. [,

74 C. Zhang et al.

we discuss our system’s implementation, including the interface provided for
programmers. Section [0 evaluates our work, and shows the performance and
false positives. Related work and conclusion are discussed in Sect. [6] and Sect. [7

2 Background

Although integer overflows may cause many other vulnerability types [23125],
the most typical case is IO2BO. In this section, we will discuss in detail what an
102BO vulnerability is and what difficulties programmers may meet when they
try to fix it.

2.1 What Is an I02BO Vulnerability?

An TIO2BO vulnerability, as defined in CWE [7], is a kind of vulnerability caused
by integer overflow. Specifically, when an overflowed value (smaller than ex-
pected) is used as the size of a memory allocation, subsequent reads or writes
on this allocated heap chunk will trigger a heap overflow vulnerability. A typical
instance has been shown in the previous section.

Characteristics of I02BO Vulnerabilities. We have surveyed 46 102BO
vulnerabilities consisting of 17 bugs found by IntScope [41] and 29 bugs reported
in CVE [2], Secunia [21], VUPEN [22], CERT [1] and oCERT [1]].

According to the survey, we find that an exploitable IO2BO vulnerability has
many significant features, similar to those presented in [41]. First, the program
reads some user-supplied thus untrusted input. Then, the input value is used in
an arithmetic operation to trigger an integer overflow. Finally, the overflowed
value is propagated to the memory allocation function, and thus a smaller than
expected memory is allocated.

Overflow in the Context of IO2BO Cannot be Benign. As mentioned in
the introduction, it is difficult to distinguish integer overflow vulnerabilities from
benign overflows. However, we argue that, in a context of IO2BO, the involved
integer overflow cannot be benign.

More precisely, if an untrusted value triggers an integer overflow and then the
overflowed result is used in memory allocation, the involved integer overflow is
a real vulnerability. Usually, the overflowed result is smaller than its expected
value. Besides, allocating a small memory chunk rather than a huge one doesn’t
cause any warnings or failures. Thus, programmers have no idea that the allo-
cated memory is smaller than expected. It is note worthy that, further actions
such as read/write will still be taken on the expected memory chunk, and then
trigger buffer overflows. So, the involved integer overflow is a real vulnerability.

With this argument, we can conclude that, if an integer overflow in the context
of I02BO is caught at runtime, this overflow should be a real vulnerability. Thus,
it is possible to construct a fixing mechanism with a low false positive rate for
protecting against I02BO.

IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 75

2.2 How to Fix I02BO Vulnerabilities?

Among the 46 I02BO vulnerabilities, we investigate 18 patches of them. We
find that manually fixing integer overflows is tedious. Even worse, some patches
cannot fix integer overflows correctly.

Input Validation. Fixing integer overflows is essentially an input validation
problem. Incomplete input validation is the origin of I0O2BO vulnerability.
The widely used method for checking integer overflow in practice looks like:

if (b#£0 && (axb)/b+#a) MSG(”overflow occurs”);

However, this method has some problems when programs are compiled with
GCC. We will discuss later.

On assembly language level, to check an integer overflow is also an annoy-
ing work. For example, on x86 architecture, methods for checking overflows in
signed /unsigned multiplications/additions are different. Instructions jo, jc, and
js should be used in combination to check those overflows [13].

Fallibility and Complexity. Fixing integer overflow manually is error-prone.
Figure [2] illustrates an erroneous patch in CUPS. Field img->ysize is propa-
gated from the argument height which is read from external. If this field is
given a big enough value, operation img->ysize*3 may overflow first, then it
will make the check in this patch useless. For example, let img->xsize=2 and
img->ysize=0x60000000, then img->ysize*3 will be equal to 0220000000 (over-
flowed). Then the product of img->xsize, img->ysize and 3 overflows but this
overflow cannot be caught by the check in this patch.

png get IHDR(pp, info, &width, &height, // untrusted source read from file
&bit depth, &color type, &interlace type, &compression type, &filter type);

img—>xsize = width; // propagate
img—>ysize = height;

= in = malloc (img—>xsize * img—>ysize * 3); // overflow occurs, and
// used in sensitive operation

+ {

+ bufsize = img->xsize * img—>ysize * 3;

+ if ((bufsize / (img—>ysize * 3)) != img->xsize) // incorrect patch
+ fprintf (stderr, “+”);

+)

+ in = malloc (bufsize) ;

Fig. 2. Incorrect Patch in CUPS-1.3 for vulnerability whose ID is CVE-2008-1722 [6]

76 C. Zhang et al.

The correct method for checking overflow in this expression will take two
steps. First, check whether expression img->ysize*3 overflows. Then, check
whether expression product*img->xsize overflows, where product is the prod-
uct of img->ysize and 3.

Suppose we want to check an overflow in a long expression such as a*b*c*d*exf,
it follows that five sub-expressions should be checked separately. Since methods
for checking each sub-expression are similar, it is too tedious for a programmer
to manually fix integer overflows.

Compiler Problem. In this section, we will explain why the widely used
method for checking integer overflow listed above will be useless when programs
are compiled with GCC.

The C99 standard [10] specifies that signed overflow is considered as undefined
behavior, thus implementation specific. And the GCC developers think that
programmers should detect an overflow before an overflow is going to happen
rather than using the overflowed result to check the existence of overflow. The
detailed discussion between programmers and GCC developers can be found
in [9].

As aresult, the condition statement if (a*b/b!=a) in the widely used method
may be removed totally when the program is compiled with GCC, especially
when it is compiled with optimization options. The Python interpreter is a victim
of this problem. Python developers use a check like if (x>0 && x+x<0) to test
whether x+x (where x is a signed int variable) could overflow. However, the check
may be optimized and discarded by GCC compiler [20], so that the code is still
vulnerable. See [20] for more information.

So, freeing programmers from fixing integer overflows is necessary. Compilers
should be responsible for fixing integer overflows.

3 System Overview

In this section, we describe the overview of our system which is aimed at fix-
ing I02BO vulnerabilities automatically. To fix IO2BO vulnerabilities, we must
identify them first. According to the features of I02BO vulnerabilities, we use
a type analysis to detect them. Then another analysis is made upon those can-
didate vulnerabilities to decide which points to fix at. Finally, runtime check
statements are inserted at those points.

3.1 Identify Potential IO2BO Vulnerabilities

As mentioned above, an I02BO vulnerability has some significant features. Thus,
properties of variables, such as whether they are trusted and whether they may
be overflowed, are considered. Then a type system is constructed and a type
analysis to identify potential IO2BO vulnerabilities is made.

IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 77

Type System. Figure Bla) shows our type system. Our type system forms
a lattice. The bottom of the lattice is type Tgg. Variables with this type are
trusted, i.e. their values are not from program input, and non-overflowed. The
top of this lattice is type T11, which represents for untrusted and may-overflow.
Variables with this type origins from program input, and origins from some
variables possibly overflowed. Our type system also has another two types Tig
and Ty, which respectively represents for untrusted and may-overflow.

untrusted and vz v,

= .
may-overflow L (assignment)
v, :7

untrusted and trusted and FEv e rtv,:z, v=v®v

non-overflowed

2 (arith-ops)
may-overflow I'vi(r,ve,vT)

Tk = i
VT Y=Y (store operation)
I'E*v:r tpv=itp vvtT
trusted and no Vv, =t (load operation)
non-overflowed v, :(vipv v ipv)
velV
@ ®)

Fig. 3. (a)Our type system, (b)type inference rules in our system

If a variable with type Ti; is assigned to a variable which expects type Ty,
there is a type conflict, which means there is a potential I0O2BO. Due to the
characteristics of IO2BO vulnerabilities, other type casting are allowed.

Type Initialization. Our type system is different from embeded type system
of the C/C++ programming language. So, when applying our type system on
programs, we must assign each variable with a type. It is impossible to assign
each variable with a type manually. We just assign variables at key points with
specific types. For example, if a variable is read from program input (called
sources), then type Ty will be assigned to it. If a variable is used in memory
allocation (called sinks), it will be assigned with type Tqg. Then, following type
inference rules are used to decide the remainder variables’ types.

Type Inference. Figure[B[(b) shows our type inference rules.
Assignment Statement. The right-hand side variable’s type will be directly as-
signed to the left-hand side variable.

Arithmetic Operation. Overflow could only occurs in addition, subtraction, mul-
tiplication or left shift operation. So, the listed rule for arithmetic operation
covers only these four kinds of operations. The result’s type is joined by the

78 C. Zhang et al.

two operands’ types and Tp;. It means that, the result may overflow, and is
untrusted if any one of its operand is untrusted.

Store Operation. Type inference rule for memory store operation is a little com-
plex. In order to make a conservative analysis, for each pointer variable v, we
record an additional type information ¢p_v, which represents the possible Type
of those memory chunks Pointed by v. If variable v; with type 7 is stored into a
memory pointed by v, the target memory will be assigned with type 7, and the
memory’s type information will be joined into tp_v.

Load Operation. If variable vs is loaded from memory pointed by vy, it may have
a type same as any memory pointed by v;. Besides, if pointer v; alias to pointers
in set V (denoted as vy ~ V), then variable vy’s type may also be same as any
memory pointed by any pointer v in V. Thus, variable vy’s type is the upper
bounds of tp_v; and tp_v for each pointer v in V.

Misc. Remaining operations’ type inference rules are straightforward. Thus they
are not listed here.

Type Analysis Process. For each application to be analyzed, a configuration
file which defines sources (i.e. functions which read input) and sinks (i.e. memory
allocation functions) is manually provided. This configuration file is read in and
used to initialize our type system. Then, a dataflow analysis applying our type
inference rules is made. As explained above, type T is expected at sinks. If the
type inferred from the dataflow analysis is Ty, there is a type conflict, i.e. there
is a potential IO2BO vulnerability.

3.2 Locate Vulnerable Arithmetic Operations and Patch

After the type analysis, some candidate I02BO vulnerabilities are generated.
The type analysis is conservative, and thus it is sound (i.e. there is no false neg-
atives). However, this type analysis is path-insensitive, thus there may be many
infeasible paths which are reported as I02BO vulnerabilities. Besides, the alias
analysis in LLVM we used is conservative, it may also introduce additional false
positives. Leaving all these candidate vulnerabilities for programmers to validate
is terrible. In this section, we introduce an automatic fixing mechanism which
can reduce false positives and protect programs against IO2BO vulnerabilities.

First, our approach identifies those related vulnerable arithmetic operations
(i.e. overflow occurs here will further triggers the I02BO vulnerability). Then,
for each vulnerable arithmetic operation, statements for checking overflow at
runtime are automatically inserted after it.

To locate vulnerable arithmetic operations, a backward analysis is made for
each candidate I02BO vulnerability. Variables at each vulnerable sink are fo-
cused. Techniques like backward slicing [42] are then used to find other variables
which may affect the focused variable. If a variable found by slicing is with type
T1; and the corresponding statement is an arithmetic operation, this statement
is thought as a vulnerable arithmetic operation. Finally, statements for checking
overflow at runtime are inserted after those vulnerable arithmetic operations.

IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 79

As argued in Sect. 2] integer overflows in the context of I0O2BO are usually
vulnerable. Thus, integer overflows caught by this fixing mechanism at runtime
are real vulnerabilities, i.e. this fixing mechanism can reduce false positives.

4 Implementation

In this section, we present the implementation of our system. We implement
our system as a tool IntPatch based on LLVM. Figure [shows the structure of
IntPatch.

IntPatch

I
¢ file
Analysis 102B0 vul. Patch
—
L |
.cpp file LLVM frontend LLVM IR LLVM backend
11vm—gce .be file 1lc
—

Fig. 4. Structure of IntPatch

binary
executables

IntPatch first makes an classic dataflow analysis to analyze each variable’s
type and identify potential IO2BO vulnerabilities. Then, for each potential vul-
nerability, it makes a slicing to find the vulnerable arithmetic operations. Finally,
check statements are inserted after those vulnerable operations to catch runtime
bugs.

4.1 LLVM

LLVM [36/37] is a compiler infrastructure which supports effective optimization
and analysis at compile time, link-time, run-time and offline. IntPatch utilizes
some useful features or interfaces provided by LLVM.

For example, LLVM provides us an easy-to-use CFG which facilitates iterat-
ing over whole program. All memory accesses are explicitly using load and store
instructions in LLVM. Thus, our type inference rule for load and store operation
is easy to be applied. LLVM’s intermediate representation (IR) is in SSA (Static
Single Assignment [32]) form and thus facilitates our dataflow analysis. In addi-
tion, LLVM provides some intrinsic instructions for catching integer overflows.
LLVM also provides some classic alias analysis pass for us to use, which helps
us a lot when we make type analysis.

4.2 Type Analysis

IntPatch uses a type analysis to identify potential I02BO vulnerability. In
LLVM, all kinds of instructions and operands are instances of class 11vm: : Value.

80 C. Zhang et al.

A value which represents an instruction could be used as another instruction’s
operand. That is to say, a value representing an instruction also represents the
result of the instruction, thus can be thought as a variable.

We maintain a map from such variables to types. Because LLVM’s IR is in
SSA form, each variable has only one definition point. Thus, the type information
of any variable won’t change.

A predefined file which annotates what are sources and sinks is read in to
initialize the mapping relationship between variables and types. Then we use
classic dataflow analysis method [24] to analyze each variable’s type. Type in-
ference rules are applied on each instruction. At each basic block’s entry, there
may be some phi-nodes [32], which are introduced by SSA. For each of these
phi-nodes, such as v = ¢(vy, va, ..., v,), we join types of variable v, va, ..., U,
together and assign it to variable v.

When the dataflow analysis analyzes variables at sinks, we do a type check
here. If variables at sinks are with type Tp; according to the analysis’s result,
there is a type conflict, and thus a potential IO2BO vulnerability exists.

This type analysis process is implemented as a pass in LLVM and its result
can be used by other passes. Because our analysis is interprocedural, our analysis
pass is an instance of 11vm: :ModulePass and needs to be invocated at link-time.

4.3 Locate Vulnerable Arithmetic Operations and Patch

The type analysis can identify potential IO2BO vulnerabilities. Our remainder
task is to fix IO2BO vulnerabilities automatically. Fixing should be complete, i.e.
if a bug is caught at runtime, it should be a real bug. In other word, a mechanism
is needed to reduce false positive rates. Otherwise, users will complain about the
program’s quality.

We implement another analysis pass to identify those vulnerable arithmetic
operations. This analysis uses classic slicing method [42] to find related variables.
If the related variable’s type is Tq; and the variable (i.e. instruction) is an
arithmetic operation, a check statement is inserted after that instruction. We
use intrinsic instructions provided by LLVM such as 11vm.sadd.with.overflow
to check integer overflow. If an overflow occurs, we redirect the control flow to a
predefined function. By default, this function blocks the program and waits for
user debugging. This function can also be specified by programmers.

Using these two analysis pass, IntPatch is able to automatically identify and
fix IO2BO vulnerabilities over full programs with a reasonable false positive rate.

4.4 Another Compiler Interface

However, in some situations, programmers still want to fix I02BO vulnerabili-
ties manually. In order to shield programmers from the tedious and error-prone
fixing work, IntPatch also provides an easy-to-use interface. With this interface,
programmers can specify what expressions to be monitored and what actions
will be taken when overflow occurs in these expressions.

IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 81

This interface, named IOcheck(int exp, void (*f)()), is implemented as
an API. Programmers pass the expression to be monitored into the first argu-
ment, and pass the overflow handler function into the second argument. The
second argument is default set to NULL, which means we will use a handler
predefined in IntPatch.

In order to support this API, we need to make a few modifications to the
original analysis. In the type analysis process, we just treat the first argument of
function I0check() as sinks. And in the slicing process, we just need to change
the inserted overflow handler function to the handler specified by programmers.
Besides, we provide an library for function IOcheck() which does nothing in
fact. This library will be linked by LLVM.

5 Evaluation

We evaluate IntPatch with several real-world open-source applications, including
libtiff [T4], ming [15], faad2 [11], dillo [8], gstreamer [12] and so on. The evaluation
was performed on an Intel Core2 2.40GHz machine with 2GB memory and Linux
2.6.27.25 kernel.

5.1 Check Density

We first measure how many checks IntPatch inserts into programs. Table[Ilshows,
for each benchmark program, the number of total instructions in the program (in
LLVM IR form), the number of arithmetic operations in the program, and the
number of checks inserted by the IntPatch. Then the checking ratio is calculated,
i.e. (number of checks)/(number of arithmetic operations).

Table 1. Number of checks inserted

application # inst # arith-ops # checks ratio

libtiff-3.8.2 781212 20739 1751 8.44%
faad2-2.7 37993 1189 150 12.6%
ming-0.4.2 35901 1375 241 17.5%
dillo-2.0 641574 8053 345 4.28%
gstreamer-0.8.5 2060335 10683 1067 9.98%

Results show that, there are lots of arithmetic operations (about one tenth)
which may affect memory allocations. In fact, this ratio is a little bit higher than
that in regular applications, because most of the test suites are image-related
applications which needs to allocate a lot of memory. Compared to results in
[28] and [25], the checking ratio is very low.

5.2 Performance Overhead

In this section, we present the performance overhead of IntPatch. Our experi-
ments show that the overhead is quite low, on average about 1%. Table 2] shows

82 C. Zhang et al.

Table 2. Performance of IntPatch

application original (s) patched (s) overhead
ming-0.4.2 236.143 239.549 1.44%
libtiff-3.8.2 127.571 129.123 1.01%
dillo-2.0 3.762 3.805 1.14%
faad2-2.7 361.163 364.478 0.91%

the overhead of applications patched by IntPatch relative to the uninstrumented
versions (both compiled with the same options).

We test ming, a library for generating Macromedia Flash files (.swf), with
benchmark PNGSuite [I9]. PngSuite is a test-suite containing 157 different PNG
format images for PNG applications. These PNG files are converted into flash
files using ming and the consumed time is recorded.

For dillo, we test its CSS rendering speed using a CSS benchmark devised
by nontroppo [3]. Libtiff is tested with a pack of TIFF format files distributed
together with it. These tiff files are compressed to JPEG format files using libtiff
and the consumed time is recorded. For faad2, we use it to decode 100 MPEG-4
format videos randomly downloaded from Mp4Point [16].

5.3 False Positives and False Negatives

As mentioned above, our type analysis is conservative, and thus our analysis is
sound (i.e. no false negatives). In other words, any vulnerability that satisfies
102BO’s features will be caught by the type analysis.

In order to evaluate the false positive rate of IntPatch, we test these ap-
plications instrumented by IntPatch with normal and malicious inputs. Each
application is fed with normal inputs described in Sect. and with 2 ~ 3
malicious inputs (e.g. crafted image files). Results show that all normal inputs
don’t trigger the runtime check and while malicious inputs both trigger the
check. That is to say, no false positives exist. However, the test is not sufficient
and the the code coverage rate is low, and thus IntPatch may still has false
positives.

In fact, our type analysis and slicing analysis are path-insensitive, infeasible
paths may bring false positives to IntPatch. The conservative alias analysis in
LLVM we used also brings some false positives.

In addition, integer overflow checks (called sanitization routine) inserted by
programmers will also lead to false positives. That is because the sanitization
routine will untaint the variable, but our type analysis process hasn’t considered
this semantic effection on the type propagation. On the other hand, sanitization
routines are at semantic level and hard to be detected. One possible solution is
that programmers give up customized sanitization routines and use the interface
I0check() provided by IntPatch only.

IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 83

5.4 Zero-Day Bugs

The type analysis pass in IntPatch has generated many candidate I02BO vul-
nerabilities. Of course, there are many false positives. With manual validation,
we can identify real vulnerabilities. During our unfinished time-consuming val-
idation process, we discover 21 new 102BO vulnerabilities in 6 applications, as
shown in Table

Table 3. Zero-Day Bugs detected by IntPatch

application | swftools Inkscape gnash ming faad2 libtiff

version 0.9.0 0.46 0.85 042 2.7 3.8.2

bugs 2 4 5 3 3 4

For example, we found a vulnerability in function readPNG in ming-0.4.2.
Value png.height is read from an input PNG file. This value then multiplies a
constant without any checks. The result of the multiplication is further used in
function malloc. Finally, data from the input PNG file is read into the allocated
memory. It is a typical IO2BO vulnerability.

We have submitted some of these zero-day vulnerabilities to security service
provider such as Secunia [21] and oCert [I8]. Some of the submissions, such as
the vulnerability in libtiff (CVE-2009-2347), have been confirmed. Corresponding
patches from vendors has been released or are in progress. Considering that other
vulnerabilities are still in the process of being submitted or fixed, we do not want
to provide further detailed information here.

5.5 Limitation

Our work is based on LLVM, which is still in development stage. So certain
applications might have troubles being compiled with LLVM. Furthermore our
analysis pass is time-consuming. These drawbacks limit the domain of IntPatch’s
applications.

In our implementation, IntPatch depends heavily on alias analysis. However,
alias analysis is a well-known problem in static analysis. Its accuracy and per-
formance will affect IntPatch’s results.

Programmers’ sanitization routines are not encouraged as mentioned above.
This limitation is not friendly to programmers.

6 Related Work

Many efforts have been made on integer overflow vulnerabilities. Followings are
some representative works.

84 C. Zhang et al.

Shuo Chen et al. presented a FSM-based method [29] and uses finite state
machines (FSM) to identify integer overflows. Experts summarize a finite state
machine representing the integer overflow vulnerability first. Then a tool is used
to check whether there are integer overflow vulnerabilities. It needs a lot of
expert’s effort and the FSM for distinct applications may be different. Thus, it
is not a general solution.

Ramkumar Chinchani et al. [31] describe each arithmetic operation formally
and then utilize architecture characteristics to check each arithmetic operation
and catch integer overflow at runtime [3I]. This method doesn’t pay much at-
tention on distinguishing benign and unexpected overflows, thus there are lots
of false positives.

The sub-typing method presented by Brumley et al. [25] formalizes the se-
mantics for safe integer operations in C. Overflow checks are inserted after each
arithmetic operations to capture runtime overflows. It protects against many
kinds of integer errors, including signedness error, interger overflow/underflow
or truncation error. They implement a prototype called RICH and found several
zero-day bugs too. However, benign and unexpected overflows are not distin-
guished either.

The method presented by Ceesay [28] utilizes type qualifiers theory [33] and
a tool CQUAL [34] to detect type conflicts. Their work is implemented in the
preprocessing step. They extend traditional type system with new type quali-
fier trusted similar to embeded type qualifier const. Then a type analysis is
made and find all type conflicts. Each type conflict is reported as a potential
vulnerability.

Both of these methods treat all kinds of integer overflow vulnerabilities, and
suffer from the indistinguishability between benign overflows and unexpected
overflows. Thus, their false positive rates are high.

Our paper focus on the most typical integer overflow vulnerability and tries
to present a sound solution. Our type system is more complex and effective than
Ceesay’s. The final result shows that our method is effective.

7 Conclusion

This paper surveys many 102BO vulnerabilities, and presents a framework to
model and automatically fix this kind of vulnerability. A prototype tool IntPatch
is implemented based on LLVM. Experiments show that IntPatch is powerful and
lightweight and can effectively defend against IO2BO vulnerabilities. Twenty-one
zero-day vulnerabilities are found as a byproduct.

References

1. Carnegie Mellon University’s Computer Emergency Response Team,
http://www.cert.org/advisories/
2. Common vulnerabilities and exposures, http://cve.mitre.org

http://www.cert.org/advisories/
http://cve.mitre.org

10.
11.
12.
13.
14.
15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

IntPatch: Automatically Fix IO2BO Vulnerability at Compile-Time 85

Cssbench: a css benchmark devised by nontroppo,
http://www.howtocreate.co.uk/csstest.html

CUPS: a standards-based, open source printing system developed by Apple Inc.,
http://www.cups.org/

Cups’ erroneous patch, http://www.cups.org/str.php?L2974

CUPS Vulnerability,
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1722

Cwe-680: Io2bo vulnerabilities,
http://cwe.mitre.org/data/definitions/680.html

Dillo: a lightweight browser, http://www.dillo.org

Discussion between programmers and gcc developers,
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475#c2

Draft of the c99 standard with corrigenda tcl, tc2, and tc3 included,
http://www.open-std.org/jtcl/sc22/WG1l4/www/docs/n1256 . pdf

FAAD2: A MPEG-4 and MPEG-2 AAC Decoder,
http://www.audiocoding.com/faad2.html

GStreamer: a framework for streaming media applications,
http://gstreamer.freedesktop.org/

Intel 64 and ia-32 architectures software developer’s manuals,
http://www.intel.com/products/processor/manuals/

libtiff: TIFF Library and Utilities, http://www.libtiff.org/

Ming: a library for generating Macromedia Flash files, http://www.libming.org/
Mp4point: a source for free mp4 / mpeg-4 video movie clips,
http://www.mpdpoint.com/

National vulnerability database, http://nvd.nist.gov/

oCERT: Open Source Computer Emergency Response Team,
http://www.ocert.org/

Pngsuite: The ”official” test-suite for png applications like viewers, converters and
editors, http://www.schaik.com/pngsuite/

Python interpreter suffers from gcc’s behavior,
http://bugs.python.org/issuel608

Secunia: a Danish computer security service provider,

http://secunia.com/

Vupen: a company providing security intelligence,
http://www.vupen.com/english/

Ahmad, D.: The rising threat of vulnerabilities due to integer errors. IEEE Security
and Privacy 1(4), 77-82 (2003)

Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Princiles, Techniques,
and Tools, 2nd edn. Addison-Wesley, Reading (2006)

Brumley, D., Chiueh, T.c, Johnson, R., Lin, H., Song, D.: Rich: Automatically
protecting against integer-based vulnerabilities. In: Proceedings of the 14th Annual
Network and Distributed System Security Symposium (NDSS 2007) (2007)
Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2008), San Diego, CA, USA
(2008)

Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: automati-
cally generating inputs of death. In: Proceedings of the 13th ACM Conference on
Computer and Communications Security, CCS 2006 (2006)

http://www.howtocreate.co.uk/csstest.html
http://www.cups.org/
http://www.cups.org/str.php?L2974
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1722
http://cwe.mitre.org/data/definitions/680.html
http://www.dillo.org
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475#c2
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www.audiocoding.com/faad2.html
http://gstreamer.freedesktop.org/
http://www.intel.com/products/processor/manuals/
http://www.libtiff.org/
http://www.libming.org/
http://www.mp4point.com/
http://nvd.nist.gov/
http://www.ocert.org/
http://www.schaik.com/pngsuite/
http://bugs.python.org/issue1608
http://secunia.com/
http://www.vupen.com/english/

86

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.

C. Zhang et al.

Ceesay, E., Zhou, J., Gertz, M., Levitt, K., Bishop, M.: Using type qualifiers to
analyze untrusted integers and detecting security flaws in ¢ programs. Detection
of Intrusions and Malware & Vulnerability Assessment (2006)

Chen, S., Kalbarczyk, Z., Xu, J., Iyer, R.K.: A data-driven finite state machine
model for analyzing security vulnerabilities. In: IEEE International Conference on
Dependable Systems and Networks, pp. 605-614 (2003)

Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks
are realistic threats. In: Proceedings of the 14th Conference on USENIX Security
Symposium, p. 12 (2005)

Chinchani, R., Iyer, A., Jayaraman, B., Upadhyaya, S.: Archerr: Runtime environ-
ment driven program safety. In: 9th European Symposium on Research in Com-
puter Security, Sophia Antipolis (2004)

Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph (1991)
Foster, J.S., Fahndrich, M., Aiken, A.: A theory of type qualifiers. In: PLDI 1999:
Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language
Design and Implementation, pp. 192-203. ACM, New York (1999)

Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: PLDI 2002:
Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation, Berlin, Germany, pp. 1-12 (2002)

Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In:
PLDI 2005: Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 213-223 (2005)

Lattner, C.: LLVM: An Infrastructure for Multi-Stage Optimization. Master’s the-
sis, Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana,
IL (December 2002), http://1lvm.cs.uiuc.edu

Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CGO 2004), Palo Alto, California (March
2004)

Molnar, D., Li, X.C., Wagner, D.A.: Dynamic test generation to find integer bugs
in x86 binary linux programs. In: Proceedings of the 18th USENIX Security Sym-
posium (2009)

Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for c. In:
ESEC/FSE-13: Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pp. 263-272 (2005)

Sotirov, A.: Heap feng shui in javascript. In: Proceedings of Blackhat Europe (2007)
Wang, T., Wei, T., Lin, Z., Zou, W.: IntScope: Automatically Detecting Integer
Overflow Vulnerability in X86 Binary Using Symbolic Execution. In: Proceedings
of the 16th Annual Network and Distributed System Security Symposium, San
Diego, CA (February 2009)

Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference
on Software Engineering (1981)

http://llvm.cs.uiuc.edu

	IntPatch: Automatically Fix IO2BO Vulnerability
	Introduction
	Background
	What Is an IO2BO Vulnerability?
	How to Fix IO2BO Vulnerabilities?

	System Overview
	Identify Potential IO2BO Vulnerabilities
	Locate Vulnerable Arithmetic Operations and Patch

	Implementation
	LLVM
	Type Analysis
	Locate Vulnerable Arithmetic Operations and Patch
	Another Compiler Interface

	Evaluation
	Check Density
	Performance Overhead
	False Positives and False Negatives
	Zero-Day Bugs
	Limitation

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

