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Abstract
In the presence of ever-changing computer architectures, high-
quality optimising compiler backends are moving targets that re-
quire specialist knowledge and sophisticated algorithms. In this pa-
per, we explore a new backend for the Glasgow Haskell Compiler
(GHC) that leverages the Low Level Virtual Machine (LLVM), a
new breed of compiler written explicitly for use by other compiler
writers, not high-level programmers, that promises to enable out-
sourcing of low-level and architecture-dependent aspects of code
generation. We discuss the conceptual challenges and our backend
design. We also provide an extensive quantitative evaluation of the
performance of the backend and of the code it produces.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Applicative (functional) languages; D.3.4 [Processors]:
Code generation, Retargetable compilers

General Terms Design, Languages, Performance

1. Introduction
The Glasgow Haskell Compiler (GHC) began with a backend trans-
lating code for the Spineless Tagless G-machine (STG-machine) to
C [23]. The idea was that targeting C would make the compiler
portable due to the ubiquity of C compilers. At the time, this was a
popular approach [7, 14, 27]. By leveraging C as a portable assem-
bly language, the authors of compilers for higher-level languages
hoped to save development effort, reuse the engineering work in-
vested into the backend of optimising C compilers, and achieve
portability across multiple architectures and operating systems.

Unfortunately, it turned out that C is a less than ideal intermedi-
ate language, especially for compilers of lazy functional languages
with their non-standard control flow [24]. In particular, C does not
support proper tail calls, first-class labels, access to the runtime
stack for garbage collection, and many other desirable features.
This is not surprising, as C was never designed to act as an inter-
mediate language for high-level compilers. Nevertheless, it compli-
cates the work of the compiler writers, as they have to work around
those limitations of C-based backends. Moreover, the resulting ma-
chine code is less efficient than that of backends which generate na-
tive assembly code. GHC and other high-level compilers partially
mitigate these shortcomings by targeting the GNU C compiler and
using some of its many language extensions, such as global regis-
ters and first-class labels. This doesn’t detract too much from the
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portability of C as GNU C itself has been ported to many architec-
tures. However, exploiting GNU C extensions only partially solves
the problems of compiling via C, as C compiler optimisations are
often ineffective for code generated from high-level languages —
much static information gets lost in the translation. Since the ex-
act set of supported extensions depends on the particular version of
GNU C, this approach also introduces new dependencies.

In the case of GHC, the use of the GNU C compiler as a backend
also increases compilation time significantly. As a response, GHC
eventually included support for native code generators that directly
produce assembly code. These are currently only fully functional
for the x86 and the SPARC architecture.

The desire to reap the benefits of compiling via C, while avoid-
ing the problems, inspired the development of low-level intermedi-
ate languages that can be conveniently targeted by high-level com-
pilers and that provide the basis for code generators shared by mul-
tiple compilers. Of particular interest is C--, as its design has been
heavily influenced by the experience with GHC [24].

Although using C-- as an intermediate language is technically a
very promising approach, it comes with a huge practical problem:
it is only worthwhile to develop a portable compiler backend if it
is used by many compilers, but compiler writers do not want to
commit to a backend technology unless they know it is widely used
and supported. As a consequence, a variant of C-- is currently used
as a low-level intermediate language in GHC, but there is no useful
general-purpose backend based on C-- that GHC could target.

Currently, the most promising backend framework is the Low
Level Virtual Machine (LLVM), which comes with support for just-
in-time compilation and life-long program analysis and optimi-
sation [19]. An LLVM-based C compiler, named clang, recently
gained significant traction as an alternative to the GNU C com-
piler.1 Hence, it is very likely that LLVM will be further developed
and is a suitable target of a long-term strategy.

In this paper, we describe the design of a new GHC backend
that leverages LLVM. We illustrate the problems that we encoun-
tered, such as conflicting register conventions and GHC’s tables-
next-to-code optimisation, and our approach to solving them. We
also present a quantitative analysis of both the performance of the
backend itself and of the code it produces. In particular, we com-
pare it to the C backend and the native code generator of GHC.
The overall outcome is very promising: the new LLVM backend
matches the performance of the existing backends on most code
and outperforms the existing backends by up to a factor of 2.8 on
tight loops with high register pressure on the x86 architecture.

In summary, we make the following technical contributions:

• We qualitatively compare GHC’s existing backends and the
capabilities of the LLVM framework (Sections 3 & 4).

• We present a design for an LLVM backend for GHC, including
new methods to solve long standing problems, such as GHC’s

1To a large part due to the backing and financial support of Apple.



fixed register assignment and tables-next-to-code optimisation
(Section 5).

• We present a quantitative analysis of the performance of the two
old backends and our new LLVM backend (Section 6).

We discuss related work in Section 7 and conclude in Section 8.

2. The case for a new backend
As we outlined in the previous section, GHC used to have two
backends: (1) the C backend, which generates GNU C code, and
(2) the native code generator, which generates assembly code for a
few architectures. We will briefly review these two backends before
giving our motivation for developing a third, the LLVM backend.

2.1 The C backend
The C backend is based on the STG-machine, an abstract machine
that was designed to support the compilation of higher-order, lazy
functional languages [23]. GHC’s C backend generates C code
which contains extensions that are specific to the GNU C compiler.
These extensions facilitate the generation of more efficient code by
storing the virtual machine registers of the STG-machine in con-
crete registers of the target hardware, by supporting tail calls with
first-class labels, and by removing some overhead due to removing
superfluous function entry and exit code. The resulting dependence
on GNU C has two major drawbacks: Firstly, portability is limited
by the portability of GNU C (it is not very well supported on Mi-
crosoft Windows, for example), and even on architectures that are
supported by GNU C, the generated code can be of poor quality –
as, for example, the code produced by the GNU C backend for the
SPARC architecture. Secondly, as GHC not only exploits the ex-
tensions, but also the particular form of assembly generated, there
are also dependencies on the version of the C compiler. Therefore,
changes in the code generator of the GNU C compiler can break,
and have in the past broken, GHC.

The GHC C code generator consists of a reasonably manageable
5,400 lines of code. However, to achieve even better efficiency than
possible with only exploiting GNU C extensions, GHC opts to post-
process the assembly generated by the C compiler. More precisely,
it uses a Perl script to match specific patterns of assembly code and
to rewrite them to better-optimised assembly code. This script is of
course heavily dependent on the target architecture and also on the
specific version of GNU C. In particular, it rearranges code blocks
to implement the tables-next-to-code scheme of GHC, which we
will discuss on more detail in Section 3.5. For obvious reasons, this
script is hard to maintain (it is not a coincidence it is nicknamed
“the evil mangler”), and has been responsible for more than one
tricky bug.

Finally, another serious shortcoming of the C backend is its
relatively long compilation time. GHC generates sizeable C files
and GNU C requires considerable time to turn them into assembly
code. Unfortunately, the long compilation time does not result in
carefully optimised code, as one might hope. On the contrary,
the generated assembly leaves much to be desired. This is not so
much the fault of the GNU C compiler as a consequence of GHC
generating non-idiomatic C code.

2.2 The native code generator
GHC’s native code generator (NCG) was developed to avoid the
problems of the C backend. It directly generates assembly code.
Just as with C code generation, imperative code is generated from
a representation of a Haskell program in the language of the STG-
machine. As a result, and because appropriate care is taken, code
generated by the NCG is binary compatible with code generated by
the C backend. GHC’s native code generator shares the usual ad-
vantages and disadvantages of a backend that produces assembly.

It can generate efficient code, without any of the tricks used by the
C backend, such as post-processing the assembly. Implementing
a NCG, however, requires detailed knowledge of the target archi-
tecture and a considerable amount of work. Much of this work is
replicated for each platform GHC supports. It is also quite diffi-
cult to implement code generators that generate high-quality code,
as this requires many optimisations and fine tuning for each archi-
tecture to achieve optimal register and instruction selection. With
the NCG, each platform, such as x86, SPARC, and PowerPC has
to perform their own code generation with only the register alloca-
tor being shared among all platforms. As a result, the NCG, which
includes three code generators (for x86, SPARC, and PowerPC) is
at about 20,570 lines of code nearly four times the size of the C
backend.

One of the main advantages of the NCG is that it can generally
compile a Haskell program in half the time of the C backend. Also,
despite its far larger size compared to the C backend, it is arguably
the simpler of the two.

2.3 The LLVM backend
A GHC backend on the basis of a portable compiler framework,
such as the Low Level Virtual Machine (LLVM) [19] , promises to
combine the benefits of the C backend and the NCG with few or
none of their disadvantages. The idea behind the C backend was
to outsource the considerable development and maintenance effort
required to implement a compiler backend to the developers of C
compilers — after all, this is an area that is fairly far away from
where GHC innovates.

Compared to the NCG and C backend, an LLVM has the fol-
lowing to offer:

Offloading of work. Building a high performance compiler back-
end is a huge amount of work, LLVM for example was started
around 10 years ago. Going forward, GHC’s LLVM backend
should be a lot less work to maintain and extend than either the
C backend or NCG. It will also benefit from any future improve-
ments to LLVM which has a particularly bright looking future
given the community and industrial support behind it [28].

Optimisation passes. GHC does a great job of producing fast
Haskell programs. However, there are a large number of lower
level optimisations, particularly the kind that require ma-
chine specific knowledge, that it doesn’t currently implement.
Some examples of these include partial redundancy elimination
(PRE), loop unrolling and strength reduction. Through LLVM
we gain these and many more for free.

The LLVM Framework. Perhaps the most appealing feature of
LLVM is that it has been designed from the start to be a com-
piler framework. Individual optimisations can be chosen and
ordered at compile time, as well as new optimisation passes dy-
namically loaded. LLVM also offers a choice of register allo-
cators and even an interpreter and JIT compiler. For a research
driven project like GHC this is a great benefit and makes LLVM
a very fun and useful tool to experiment with.

The Community. The LLVM project now includes far more then
LLVM: it is an entire compiler tool chain with a C/C++ com-
piler, assembly tools, a linker, a debugger, and static analysis
tools. The work of the community on these projects and also the
work of third party compilers, such as GHC, benefit all compil-
ers based on LLVM and improve tool support.

3. How GHC works
Before discussing LLVM and how it fits into GHC’s compilation
process in Sections 4 and 5, this section details the aspects of
GHC’s design that are relevant to the LLVM backend.
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Figure 1. The GHC pipeline

3.1 The GHC pipeline
Figure 1 outlines GHC’s compilation pipeline. The three main
intermediate languages in that pipeline are:

Core. GHC’s main optimisation engine is implemented in the form
of a large number of program analysis and source-to-source
transformation steps on the intermediate language Core. Core is
a typed lambda calculus —specifically, it is an instance of Sys-
tem FC (X) [26]— and as such far removed from the process of
target code generation. Hence, it plays no role in the design of
the LLVM backend. Nevertheless, it is central to one of the ar-
eas of major innovation in GHC, which highlights our previous
point that target code generation is essentially an unwelcome
distraction to most GHC developers.

STG-language. This is an A-normalised [12] lambda calculus,
which serves as the language of the Spineless Tagless G-
Machine (STGM) [23] – the abstract machine that defines
GHC’s execution model. This execution model was originally
the basis of the C backend, and hence, strongly impacts a num-
ber of the design choices in the target code generation. We will
discuss the STG-machine and its impact on code generation in
more detail in the following subsection.

Cmm. Cmm is a variant of the C-- language [24], which in turn
could be described as a subset of C with extensions to facilitate
the use as a low-level intermediate language — for example, it
supports tail calls and the integration with a garbage collector.
As most of the more complex features of C--, such as its runtime
system, aren’t supported in Cmm, it is even closer to being
a subset of C. In fact, before GHC included Cmm, it used
an intermediate language called Abstract C instead. Cmm is
the starting point for the two original code generators, the C
backend and the NCG, and it also serves as the input to our
LLVM backend. It is central to developing a GHC backend and
we will discuss it in detail in Subsection 3.4.

The dependence of GHC’s code generators on Cmm is obvious in
Figure 1, where the pipeline splits after Cmm depending on which
backend is used. The NCG generates assembly directly from Cmm,
whereas the C backend and the new LLVM backend generate C and

LLVM IR, respectively. The generation of assembly from C and
LLVM IR is then left to supporting tools, namely the GNU C com-
piler and the LLVM tools, respectively. The C backend additionally
runs a post-processing tool, a Perl script with target code-specific
regular expressions, over the assembly to further optimise it.

We will discuss the exact reasons for starting from Cmm in the
LLVM backend in detail in Section 5. Before we can do this, we
first need to introduce some of the design of the STG-machine and
the Cmm intermediate language.

3.2 Spineless Tagless G-Machine
The STG-machine essentially comprises three parts: (1) the STG-
language from Figure 1, (2) an abstract machine configuration
consisting of a register set, heap, stack, etc., and (3) an operational
semantics that defines in which way the various constructs of the
STG-language alter the machine configuration upon execution. The
first component, the STG-language itself, is not important for the
LLVM backend as we translate the lower-level Cmm to LLVM IR.

However, the remaining two components, the machine config-
uration as well as the operational semantics are crucial to under-
standing the LLVM backend as it is the ultimate purpose of the
backend to map these two components onto the target machine
architecture — or more precisely, to map it onto the LLVM ma-
chine configuration and LLVM IR code, respectively. In theory, it
is LLVM’s responsibility to map STG-configurations and programs
encoded in LLVM IR to the various concrete architectures. In prac-
tice, the design of the LLVM backend requires us to understand
how LLVM IR maps to concrete architectures to generate efficient
code.

In particular, we need to represent the heap, stack, and machine
registers of the STG-machine on top of LLVM. As Cmm is spe-
cialised to GHC and the translation of STG-language programs,
the Cmm code follows certain idioms and includes specific lan-
guage constructs to handle the components of the STG machine
configuration. Of particular importance is the register set of the
STG-machine, which we will call STG registers in the following.

3.3 STG Registers
Abstract machines usually define the most frequently accessed
components of their machine state as abstract machine registers
to suggest that these are mapped to hardware registers for optimal
performance. In the case of GHC, these abstract machine registers
are also central for the interaction with the runtime system (RTS),
which is written in C, Cmm, and some snippets of assembly. The
STG registers function as an interface between generated code
and the runtime system. In other words, the mapping of STG
registers to the hardware registers and memory locations of the
target architecture are hard-wired into the runtime system. The
STG Registers include a stack and heap pointer, as well as a set
of general registers that are used for argument passing.

Currently, there are two different ways in which GHC imple-
ments STG registers; they are called unregisterised and registerised
mode, respectively. Unregisterised mode is the simple approach
where all STG registers are stored in memory on the heap. Due
to the frequent use of STG registers in GHC-generated code, this
simple approach comes with a significant performance penalty and
is mainly meant for porting and bootstrapping GHC on a new archi-
tecture. In unregisterised mode, GHC’s C backend generates stan-
dard C code and omits the post-processing phase indicated in Fig-
ure 1.

In contrast, registerised mode uses the hardware registers of
the target architectures to store at least the most important STG
registers — this process if often referred to as register pinning. As
there are far too many STG machine registers to store them all in



real registers though, some still need to be stored in memory. This
technique alone has a dramatic effect on the speed of programs.

As these registers are used by GHC’s C-based runtime system,
implementing the STG registers in a different manner then either
of the two currently supported would involve significant changes
to the RTS, increasing the development and maintenance effort.
Hence an appropriate mapping of the STG registers can be a con-
siderable challenge for a backend since it requires explicit control
over register allocation, something not offered by many compiler
targets, including LLVM.

3.4 Cmm
As depicted in Figure 1, Cmm is the final backend-independent in-
termediate representation used by GHC, and serves as a common
starting point for the backend code generators. Cmm is based on
the C-- language, but with numerous additions and omissions. The
most important difference is that Cmm doesn’t support any of C--’s
runtime interface features. In C--, these features provide support for
implementing accurate garbage collection and exception handling.
Instead of involving Cmm, GHC uses a portable garbage collector,
implemented in the runtime system, that requires no explicit sup-
port from the backends, but depends on the idiomatic generation of
Cmm code by GHC.

Overall, Cmm is designed to be a minimal procedural language.
It supports just the features needed to efficiently abstract away
hardware and little more. The prominent features of the language
are:

1. Unlimited variables, abstracting real hardware registers;

2. Simple type system of either bit types or float types;

3. Powerful label type and sections which can be used to imple-
ment higher-level data types;

4. Functions and function calling with efficient tail call support.
Functions don’t support arguments though, the STG registers
are used instead to explicitly implement the calling convention
used;

5. Explicit control flow with functions being comprised of blocks
and branch statements;

6. Direct memory access;

7. A set of global variables that represent the STG registers; and

8. Code and data order in Cmm is preserved in the compiled code.
GHC uses this property for implementing one particular optimi-
sation, which we will examine in detail in the next subsection.

Cmm greatly simplifies the task of a backend code generator as
the non-strict and functional aspects of Haskell have already been
handled and the code generators instead only need to deal with a
fairly simple procedural language. Figure 2 displays an example of
Cmm. It demonstrates a large portion of the Cmm language, such
as its types, variables, control structures and use of code and data
labels.

3.5 Cmm data & code layout
One of the requirements Cmm places on a backend is that the
generated object code has the same order of the data and code
sections as the Cmm code has. If a data and code section are
adjacent in the Cmm code they are expected to be adjacent in the
final object code. This is a problematic requirement as C compilers
and other tools take the liberty to reorder code and data sections.
Hence, this requirement accounts for much of the magic performed
by the Perl script realising the assembly post-processing for the
GHC’s C backend. It turns out to be a problem for the LLVM
backend, too.

section "data" {
fibmax:

bits32 35;
}

fib()
{

bits32 count; count = R1;
bits32 n2; n2 = 0;
bits32 n1; n1 = 1;
bits32 n; n = 0;

if (count == 1 || bits32[fibmax] < count) {
n = 1;
goto end;

}

for:
if (count > 1) {

count = count - 1;
n = n2 + n1;
n2 = n1;
n1 = n;
goto for;

}

end:
R1 = n;
jump StgReturn;

}

Figure 2. Cmm example: Fibonacci numbers
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But before getting into the details of the LLVM backend, let us
review the reason for the onerous constraint of the Cmm interme-
diate language. GHC uses it to implement an optimisation known
as tables-next-to-code (TNTC). The basic idea is to lay the meta-
data of a closure right before the code for the closure itself. The
metadata, which we call an info-table, is required by the runtime
system for each closure. With that layout, both the closure’s evalu-
ation code and its metadata can be accessed from a single pointer.

A graphical representation of this layout is in Figure 3. The first
word of a closure is its info pointer that refers to the first instruction
of the closure’s entry code. The remaining fields of the closure, its
payload, contains a function’s free variables or a data constructor’s
arguments.

A closure’s entry code is executed when the closure is evaluated
— i.e., when a lazily evaluated piece of code, a thunk, is forced or
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when a function closure is entered to apply it to some arguments.
The entry code of closures representing data structures that are
in normal form returns a value identifying the corresponding data
constructor or similar. By indexing backwards from a closure’s info
pointer, the runtime system can access the info-table that contains
layout information to assist garbage collection and other metadata.

Without the TNTC optimisation, the first word of a closure does
not refer directly to the entry code, but instead to the info-table,
as depicted in Figure 4. The info-table, in turn, explicitly stores
a pointer to the entry code in an additional field. Hence, without
the TNTC optimisation, info tables use one more word of memory
and, more importantly, executing a closure’s entry code, when it
is evaluated, requires two pointer lookups instead of one. This is
costly as Haskell code creates and evaluates closures at a rapid rate.

In summary, due to the frequent closure entry of Haskell code,
the GHC designers chose to bake a layout constraint into Cmm
that is hard to meet with conventional backend technology, such
as compiling via C or using a general-purpose framework, such as
LLVM. We will look into the capabilities of LLVM in more detail
in the following section.

4. How LLVM works
The Low Level Virtual Machine (LLVM) is an open source, mature
optimising compiler framework whose development started in 2000
as part of Lattner’s Masters thesis [18]. Today, it provides a high-
performance static compiler backend, but can also be used to build
just-in-time compilers and to provide mid-level analyses and opti-
misation in a compiler pipeline. Its main innovation is in the area of
life-long program analysis and optimisation [19] — i.e., it supports
program analysis and optimisation at compile time, link time, and
runtime. Our GHC LLVM backend currently ignores the link-time
and runtime analysis and optimisation capabilities and uses LLVM
as a conventional static backend. Hence, we are most concerned
with LLVM’s abstract machine language that serves as input the
LLVM pipeline.

4.1 The LLVM assembly language
The LLVM assembly language, LLVM IR, is the input language
which LLVM accepts for code generation. However, it also acts as
LLVM’s internal intermediate representation for program analysis
and optimisation passes. The IR has three equivalent representa-
tions: a textual representation (the assembly form), an in-memory
representation, and a binary representation. The textual represen-
tation is useful in a compiler pipeline where individual tools com-
municate via files, as well as for human inspection. The in-memory
representation is used internally, but also whenever a compiler links
to LLVM as a library to avoid the overhead of file input and out-
put. The binary representation is used for compact storage — it

define i32 @pow( i32 %M, i32 %N ) {
LoopHeader :

br label %Loop
Loop :

%res = phi i32 [1, %LoopHeader], [%res2, %Loop]
%i = phi i32 [0, %LoopHeader], [%i2, %Loop]
%res2 = mul i32 %res , %M
%i2 = add i32 %i, 1
%cond = icmp ne i32 %i2 , %N
br i1 %cond , label %Loop , label %Exit

Exit :
ret i32 %res2

}

Figure 5. LLVM code to raise an integer to a power

occupies less storage than the textual format and can be read more
efficiently.

The LLVM IR is low-level and assembly-like, but it maintains
higher-level static information in the form of type and dataflow in-
formation — the latter due to using static single assignment (SSA)
form [9]. SSA form guarantees that every variable is only assigned
once (and never updated), and hence, strongly related to functional
programming [6]. The design goal in combining a low-level lan-
guage with high-level static information is to retain sufficient static
information to enable aggressive optimisation, while still being
low-level enough to efficiently support a wide variety of program-
ming languages.

The main features of LLVM’s assembly language are:

1. Unlimited virtual registers, abstracting real hardware registers;

2. Low-level assembly with higher-level type information;

3. Static single assignment form (SSA) with phi (φ) function;

4. Functions and function calling with efficient tail call support;

5. Explicit control flow with functions comprising blocks and
branch statements; and

6. Direct memory access, as well as a type-safe address calcula-
tion instruction, getelementptr facilitating optimisations.

The single-assignment property of the SSA form requires the use
of phi (φ) functions in the presence of low-level control flow with
explicit branches. A phi function selects the value to be assigned
to a virtual register in dependence on the edge of the control-flow
graph along which execution reached the phi function. SSA form
is well-established as a type of intermediate representation that
simplifies the implementation of code analysis and optimisation.

The above feature list of the LLVM IR has much in common
with the feature list of Cmm (in Section 3.4). We will compare the
two in detail in Section 5.1, where we discuss the translation. For
the moment, let’s have a look at a concrete piece of LLVM IR code.

The code in Figure 5 contains one complete LLVM function,
which is made up of a list of basic blocks, each preceded by a label.
The function has three basic blocks, those being LoopHeader,
Loop, and Exit. All control flow in LLVM is explicit, so each
basic block must end with a branch (br) or return statement (ret).
Variable names preceded by a percent symbol, such as %res and
%i, denote virtual registers. Virtual registers are introduced by the
unique assignment that defines them — just as in a let-binding. All
operations are annotated with type information, such as i32, which
implies an integer type of 32 bits. Finally, the Loop block starts with
two phi functions. The first one assigns to %res either the constant
1 or the value stored in register %res2 depending on whether



execution entered the Loop block from the block LoopHeader or
from Loop itself.

All LLVM code is defined as part of an LLVM module, with
modules serving as compilation units. An LLVM module consists
of four parts: meta information, external declarations, global vari-
ables, and function definitions. Meta information can be used to de-
fine the endianness of the module, as well as the alignment and size
of various LLVM types for the architecture the code will be com-
piled to. Global variables are as expected, and are prefixed with the
@ symbol, as are functions, to indicate that they are actually point-
ers to the data and have global scope. This also distinguishes them
from local variables which are prefixed with the % symbol.

4.2 Comparing C-- and LLVM
As mentioned previously, GHC’s Cmm language is based on the
C-- language. The goals of the C-- project were not unlike those
of the LLVM project. There is, however, an important difference
between the two: LLVM is geared towards supporting aggressive
optimisation of a universal language and C-- towards supporting
high-level language features such as garbage collection with no
overhead. It is interesting though that despite these differences
both projects independently developed very similar features. This
might suggest that a universal low-level language needs to support
a certain essential set of features. It is also interesting to see that
over its lifetime, LLVM’s design has in some areas moved towards
that of C--. A few examples of features that C-- supported in its
initial design and that LLVM only added later are:

• LLVM’s type system originally was similar to C, support-
ing signed and unsigned variations of char, byte, int and
long. Now its type system is much closer to C--, having sim-
ply bitsN types and not distinguishing between signed or un-
signed. LLVM also used to exclusively use overloaded opera-
tions, such as addition and division, but now increasingly has
separate instructions for the different types.

• LLVM at first did not support declaring the calling convention
of functions and calls, they have only been added later.

• LLVM originally contained a malloc and free instruction but
these have very recently been removed.

• LLVM now has direct support for implementing garbage col-
lection. This is not as complex or as versatile as the compile
and runtime interface supported by C--, but it works in a sim-
ilar manner: frontend compilers annotate their code with safe
points and call special functions in their LLVM code that trig-
ger a compiler plug-in, which they need to supply, to add the
information needed by their garbage collector to the code. Our
backend doesn’t use this support, though as the garbage collec-
tor implemented by GHC doesn’t require it.

5. LLVM backend design
As shown in Figure 1, our LLVM backend uses Cmm as its input
language, just like the other two backends. In principle, we could
have used STG-language as our input language, to try and use the
higher-level information in the STG-language to generate better
code. However, that would have meant duplicating much of the
existing functionality in the STG-to-Cmm phase, which not only
deals with sophisticated language features, such as laziness and
partial application, but also runtime system considerations, such
as the generation of metadata for the garbage collector. Instead of
replicating this functionality, it seems more economical to fix any
shortcomings in the Cmm code generator and in the Cmm language
if and when we identify any situation where the LLVM backend
doesn’t have the information it needs. This hasn’t happened so far.
Moreover, sharing as much code as possible between the backends

simplifies maintaining ABI compatibility between the new LLVM
backend and the existing backends, which is important to enable
linking to modules and libraries compiled with other backends.
Finally, there is ongoing work in GHC to move to a new Cmm
code generator and a slightly changed Cmm representation [25].
Once complete, this work should improve the code generated by all
backends, making it complementary to the LLVM backend instead
of competitive.

Despite all backends compiling off Cmm, the design and imple-
mentation of a translation phase to LLVM IR raises a number of
conceptual problems that are unique to the LLVM backend: (1) the
mapping of Cmm language constructs to LLVM IR, (2) the gener-
ation of LLVM’s SSA form and especially of the phi functions, (3)
an efficient implementation of the STG registers, and (4) the im-
plementation of Cmm’s strict code and data layout constraints. We
will address these issues individually in the following subsections.

5.1 Compiling Cmm to LLVM IR
The Cmm and LLVM IR were designed with a similar goal in mind:
to be a minimal language to abstract hardware. The primary dif-
ference is LLVM’s broader focus, aiming to support multiple lan-
guages and aggressive optimisation of the code, whereas Cmm, as
used in GHC, is skewed towards compiling Haskell-like languages.

To support high-level data types, Cmm uses a label system that
works like assembly labels for implementing data types. There is no
type information, and arrays and record structures are implemented
in the same manner. LLVM instead supports such high-level data
types, such as arrays and structures explicitly. Nevertheless, trans-
lating between the two is fairly straightforward, especially since
many of the harder cases, such as a Cmm data structure with labels
at non-start positions, aren’t used by GHC and so don’t need to be
supported — these features were inherited from C--.

Another minor difference is that LLVM’s preferred way of ac-
cessing memory is a special instruction, getelementptr, that
takes a pointer type, such as an array, and an index, returning
a type-safe pointer. In contrast, Cmm uses explicit pointer arith-
metic. LLVM supports this, too, but it prevents some worthwhile
code optimisations. Initially we simply used pointer arithmetic
in the LLVM backend but have recently changed to using the
getelementptr instruction, primarily as part of some work to give
LLVM better aliasing information.

Many other aspects of Cmm and LLVM IR are rather similar
and instead of discussing all features in detail, Table 1 provides a
summary of the relationship. As a concrete example, consider the
translation of the Cmm code of Figure 2 into unoptimised LLVM
code in Figure 6. After improving the code with LLVM’s optimiser,
the code is more compact as shown in Figure 7. By relying on
the LLVM optimiser, instead of trying to generate better-optimised
LLVM code directly, we could keep the LLVM backend simpler —
after all, we want to offload as much work as possible onto LLVM.

5.2 Dealing with LLVM SSA form
As we discussed in Section 4, LLVM code must be in SSA form —
i.e., all LLVM virtual registers are immutable, single-assignment
variables. In contrast, all of Cmm’s variables are mutable; so, we
need to handle the conversion to SSA form as part of the LLVM
backend. The conversion of arbitrary code into SSA form is a well
understood problem; however, it requires a fair amount of imple-
mentation work. Thankfully, LLVM provides us with an alternative
option that is far simpler: instead of LLVM’s virtual registers, we
can use stack allocated variables.

We translate each mutable Cmm variable into an LLVM vari-
able allocated on the stack using the alloca instruction. This in-
struction returns a pointer into the stack that can be read from and
written to just like any other memory location in LLVM by using



Cmm LLVM
Basic Types

Fixed set of integer and float-
ing point types:

Support for any size N bit
type and a fixed set of float-
ing point types:

i8, i16, 132, 164, i128 i1, i2, i3... i32, ... iN
f32, f64, f80, f128 float, double, x86-fp80, fp128

High Level Types
Supports a label type that
represent the address of the
location it’s declared at. This
can be used to implement
higher level types such as ar-
rays and structures.

Has explicit support for high
level types such as arrays and
structures:

Array: cmmLabel {i32, i32,
i32, i32}

Array: [4 x i32]

Structure: cmmLabel {i32,
f32, f64}

Structure: {i32, float, dou-
ble}

Variables
Unlimited typed local vari-
ables. Global data is repre-
sented through untyped la-
bels, all load and store oper-
ations are instead typed.

Unlimited typed local and
global variables, however
LLVM’s use of SSA form
means Cmm local variables
don’t map directly to LLVM
local variables. Stack al-
located variables are used
instead.

Code Module Structure
A module consists of global
variables and functions.

Functions don’t support
arguments or return values,
the STG registers are used
for this purpose instead.
Functions consist of a list
of blocks. All control flow
between blocks is explicit.

A module consists of global
variables, functions, type
aliases, metadata and a data
layout specification.

Functions support argu-
ments and a single return
value.

Expressions
Literals, memory reads, ma-
chine operations and STG
register reads

Literals, memory reads and
machine operations. LLVM
has a full coverage of the ma-
chine operations that Cmm
supports and not much more,
the mapping is nearly 1 to 1.

Statements
Comments, assignment,
memory writes, uncondi-
tional branch, conditional
branch, multi-way branch,
tail calls and function calls.

Cmm also supports calls
to a group of functions called
CallishMachOp. These are
maths functions such as sin
and log. On hardware which
supports them they should
become CPU instructions,
otherwise they are turned
into calls to the C standard
library.

LLVM directly supports all
of the statements that Cmm
supports and a few more.

Interestingly LLVM also
supports many of the Cmm
CallishMachOp instructions
and in a similar manner
where in LLVM they are
termed intrinsic functions.

Table 1. Mapping of Cmm and LLVM languages

%fibmax_struct = type {i32}
@fibmax = global %fibmax_struct {i32 35}

define cc 10 void @fib( i32 %Base_Arg,
i32 %Sp_Arg, i32 %Hp_Arg,i32 %R1_Arg) {

cP:
[...]
%R1_Var = alloca i32, i32 1
store i32 %R1_Arg, i32* %R1_Var
%cf = alloca i32, i32 1
%cl = alloca i32, i32 1
%ck = alloca i32, i32 1
%cj = alloca i32, i32 1
%nQ = load i32* %R1_Var
store i32 %nQ, i32* %cf
store i32 0, i32* %cl
store i32 1, i32* %ck
store i32 0, i32* %cj
%nR = load i32* %cf
%nS = icmp eq i32 %nR, 1
br i1 %nS, label %cT, label %nU

nU:
%nV = bitcast %fibmax_struct* @fibmax to i32*
%nX = load i32* %nV
%nY = load i32* %cf
%nZ = icmp ult i32 %nX, %nY
br i1 %nZ, label %cT, label %n10

n10:
[...]

Figure 6. Partial output of LLVM backend with Figure 2 as input

%fibmax_struct = type { i32 }
@fibmax = global %fibmax_struct { i32 35 }

define cc 10 void @fib( i32 %Base_Arg,
i32 %Sp_Arg, i32 %Hp_Arg,i32 %R1_Arg) {

cP:
%nS = icmp eq i32 %R1_Arg, 1
br i1 %nS, label %c12, label %nU

nU:
%nX = load i32* getelementptr inbounds

(%fibmax_struct* @fibmax, i32 0, i32 0)
%nZ = icmp ult i32 %nX, %R1_Arg
br i1 %nZ, label %c12, label %c13.preheader

c13.preheader:
[...]

}

Figure 7. Output of LLVM Optimiser with Figure 6 as input

explicit load and store instructions. Code using stack-allocated
variables instead of virtual registers is generally slower, but LLVM
includes an optimisation pass called mem2reg, which is designed
to correct this. This pass turns explicit stack allocation into the use
of virtual registers in a manner that is compatible with the SSA re-
striction by using phi functions. In effect, mem2reg implements the
SSA conversion for us.

5.3 Handling the STG registers
The efficient treatment of the STG registers was one of the ma-
jor challenges we faced in writing the LLVM backend. While the
LLVM backend could easily implement the STG registers using un-



registerised mode, where they are all stored in memory, this would
lead to poor performance. Hence, we need to support registerised
mode to map as many of the STG registers as possible to hardware
registers, and we want to do that such that it yields the same register
mapping as used by the other two backends. This is crucial for ABI
compatibility, as discussed.

Register mapping is a straight forward affair for the NCG as
it has full control over register allocation. GHC’s NCG register
allocator is aware of the special status of the STG registers and
simply reserves the appropriate hardware registers for exclusive
use as STG registers — i.e., it aliases the STG register with some
hardware registers. The situation is similar for the C backend.
Although, ANSI C does not offer control over hardware-specific
registers, GNU C provides an extension, called global register
variables, which facilitates the same approach of reserving fixed
hardware registers for specific STG registers throughout the code.

LLVM does not provide this option. Instead, our solution is to
implement a new calling convention for LLVM that passes the first
n arguments of a function call in specific hardware registers. We
choose the hardware registers that we would like to associate with
STG registers. Then, the LLVM backend compiles each Cmm func-
tion such that the corresponding LLVM function uses the new call-
ing convention with the appropriate number of parameters. Further-
more, the generated LLVM code passes the correct STG registers
as the first n arguments to that call.

As a consequence, the values of the STG registers are in the
appropriate hardware registers on entry to any function. This is in
contrast to the other two backends, where the STG registers are
also pinned to their hardware registers throughout the body of a
function. However, to guarantee the correct register assignment of
function entry it is sufficient to ensure that the runtime system
finds the registers in the correct place and that LLVM code can
call and be called from code generated by other backends. In fact,
it is an improvement over the strategy of the other two backends,
as the n hardware registers can temporarily be used for other
purposes in function bodies if LLVM’s register allocator decides it
is worthwhile spilling them. In most cases though, simply leaving
the STG registers in the hardware registers is the best allocation
and LLVM is capable of recognising this.

The only down side of a new calling convention is that its ad-
dition requires modifying the LLVM source code. However, our
extension has recently been accepted upstream by the LLVM devel-
opers. It is now included in public versions of LLVM since version
2.7, which was released in May of 2010 — i.e., as long as version
2.7 or later is being used, GHC works with a standard LLVM in-
stallation.

5.4 Handling Cmm Data and Code layout
As discussed in Section 3.5, Cmm’s requirement to preserve the
ordering of data and code layout is uncommon and causes problems
with backends other than the NCG (which generates the assembly
sections explicitly). Unfortunately, GHC uses this property of Cmm
to implement the tables-next-to-code optimisation, which is fairly
significant with an about 5% reduction in runtimes.

As the C backend can’t meet the layout requirement with either
ANSI C or through one of the GNU C extensions, it resorts to
an extra pass over the assembly code produced by the GNU C
compiler to rearrange assembly sections and rewrite the code.

The LLVM backend faces the same problem as the C backend,
as there is no explicit support for ordering code sections in LLVM.
Fortunately, we found a technique to realise the ordering constraint
by using the sub-sections feature of the GNU Assembler (gas). This
feature facilitates the specification of a numbered subsection when-
ever assembly is placed into a particular assembly section. When
gas compiles the assembly to object code, it combines subsections

.text 12
sJ8_info:
movl $base_SystemziIO_hPrint2_closure, (%ebp)
movl $base_GHCHandleziFD_stdout_closure, -4(%ebp)
addl $-4, %ebp
jmp base_GHCziIOziHandleziText_hPutChar1_info

.text 11
sJ8_info_itable:
.long Main_main1_srt-sJ8_info
.long 0
.long 327712

Figure 8. GNU Assembler Subsections to implement TNTC

in ascending numerical order and creates only one section including
all the numbered subsections. In other words, the subsections are
purely a structure that exists in the assembly, but does not appear
explicitly in the object code. To guarantee that a closure’s metadata
appears immediately before the closure’s entry code, we simply
place the metadata in section ’text n’ and the entry code in sec-
tion ’text 〈n+ 1〉’, making sure that no other code or functions
use those subsections. This is illustrated at an example in Figure 8.

While this approach works well it does create a portability
problem as it only works with the GNU Assembler. Fortunately
this covers two of the three major platforms GHC is supported
on, Linux and Windows. On Mac OS X though we are unable to
use this technique and so for now have resorted to post processing
the assembly produced by LLVM in a manner similar to the C
backend. While this is regrettable it is important to note that the
mangler2 used by the LLVM backend consists of only about 180
lines of Haskell code, of which half is documentation. The C
mangler by comparison is around 2000 lines of Perl code as it has
to handle multiple platforms and far more than simple assembly
code rearrangement. We are planning, for the future, to move to
a purely LLVM-based solution by extending LLVM to explicitly
support associating a global variable with a function. This approach
might enable better code optimisation; for example, by performing
global constant propagation with the info table values.

6. Evaluation of the LLVM backend
Next, we evaluate the new LLVM backend in comparison to GHC’s
existing C backend and NCG. The evaluation is in two parts: first,
we consider the complexity of the backends themselves, and sec-
ond, we analyse the performance of the generated code. The back-
end complexity is a primary concern for GHC developers, whereas
code performance concerns both developers and users of GHC.

6.1 Complexity of backend implementations
As a simple metric for the code complexity of the three backends,
we compare their respective code size. This gives us an indication
of the amount of work initially required to implement them as well
as the effort that is spend on maintenance. Table 2 displays the code
size of the various components of the three backends.

The LLVM backend is the smallest at 3,133 lines of code. The
C backend is over 70% larger at 5,382 lines. The NCG is by far the
largest, being 6 times larger than the LLVM backend and 4 times
larger than the C backend — it totals 20,570 lines.

In addition to plain code size, we also need to consider the
structural and conceptual complexity, particularly for the C back-
end which doesn’t seem an unreasonable size. The C backend con-

2We are tentatively calling this pass, the Righteous Mangler, in line
with the established naming convention



Lines of code of the GHC backends

C Total 5382
Compiler 1122
Includes 2201

Assembly Processor 2059
NCG Total 20570

Shared 7777
X86 5208

SPARC 4243
PowerPC 3342

LLVM Total 3133
Compiler 1865

LLVM Module 1268

Table 2. GHC backend code sizes

sists of three distinct components: (1) the actual compiler that maps
Cmm to C code; (2) the C header files included in the generated
C code; and (3) the evil mangler, a Perl script post-processing the
generated assembly. The C headers define a large number of macros
and data structures that decrease the work required by the code gen-
erator and also deal with platform specific issues, such as word size.
The C headers are fairly sophisticated, but the arguably most com-
plex part of the C backend is the evil mangler, which is implements
the TNTC optimisation as well as a variety of other optimisations,
such as removing each C function prologues and epilogues. The
fragile Perl code uses a large number of regular expressions that
need to be updated regularly for new versions of GCC.

The NCG consists of a shared component plus a platform-
specific component for each supported architecture. The design is
fairly typical of a NCG. The shared component consists a general
framework for abstracting and driving the pipeline as well as a
register allocator. Each platform specific component is responsible
for the rest of the pipeline, principally consisting of instruction
selection and pretty printing of the assembler code.

The LLVM backend comprises two components: (1) the com-
piler itself and (2) a code module for interfacing with LLVM. It
has none of the complexity of the C backend with its sophisti-
cated assembly post-processing or of the NCG with its size and
architecture-specific code. It’s also nearly platform independent; it
needs to know the word size, endianness and the mapping of STG
registers to hardware registers. All of this information is already
used elsewhere in GHC and so isn’t specific to the LLVM backend.

6.2 Performance
To compare the quality of the generated code, we will consider the
runtime, but also other metrics, such as compilation times and the
size of the compiled code. We used a Core 2 Duo 2.2GHz machine
running a 32 bit Linux OS and set the runtimes of the LLVM back-
end to be the baseline, except where otherwise specified. So posi-
tive percentages for either the C backend or NCG mean that they
are slower than the LLVM backend by that percentage and nega-
tive percentages mean they are faster by that percentage. First, we
investigate the NoFib benchmark suite and then some interesting
individual examples. Also, as the NCG is GHC’s default backend
and as the GHC developers are looking at deprecating the C back-
end, we will focus on comparing against the NCG.

NoFib [22] is the standard benchmark suite for GHC. It is de-
veloped alongside GHC and used by developers to test the perfor-
mance impact of changes to GHC. In Table 3, we see the runtimes
of the NCG and C backend against the LLVM backend.

There is little difference between the three backends. The NCG
comes out with the best overall runtime, ahead of the LLVM back-

NCG and C backend against LLVM backend (∆%)

Program NCG Runtime C Runtime
atom -6.2 -0.8
comp lab zift -4.6 -0.9
cryptarithm1 -3.4 0.9
hidden 4.7 10.9
integer -1.0 -1.3
integrate 2.8 8.3
simple 1.5 16.6
transform 4.0 5.7
treejoin -2.8 4.6
wave4main 6.8 12.4
wheel-sieve2 -3.4 -2.8
(79 more) .. ..
-1 s.d. -3.1 -2.0
+1 s.d. 3.0 7.6
Average -0.1 2.7

Table 3. NoFib runtimes of all three backends

Main_runExperiment_entry()
c1GU:

Hp = Hp + 36;
if (Hp > HpLim) goto c1GX;
I32[Hp - 32] = s1Gh_info;
I32[Hp - 24] = I32[Sp + 12];
I32[Hp - 20] = I32[Sp + 0];
I32[Hp - 16] = I32[Sp + 4];
I32[Hp - 12] = I32[Sp + 8];
I32[Hp - 8] = ghczmprim_GHCziTypes_ZC_con_info;
I32[Hp - 4] = I32[Sp + 12];
I32[Hp + 0] = Hp - 32;
R1 = Hp - 6;
Sp = Sp + 16;
jump (I32[Sp + 0]) ();

c1GY:
R1 = Main_runExperiment_closure;
jump stg_gc_fun ();

c1GX:
HpAlloc = 36;
goto c1GY;

Figure 9. A typical Cmm function produced by GHC

end by 0.1%. The C backend comes in last, trailing 2.7% behind
the LLVM backend. The tables only includes individual bench-
marks where the runtimes vary significantly between backends. We
investigated each of these benchmarks individually to determine
the cause of the difference. We didn’t find any cases where the C
backend had any conceptual advantage. Where the C backend per-
formed poorly, this was a combination of the at times awkward
mapping of Haskell to C and performance bugs with GCC.

Comparing the NCG against the LLVM backend, further testing
showed that the performance difference was the greatest for atom,
hidden and wave4main. However, in all three cases, no particular
feature of the code generation seemed to be responsible. It was just
a matter of a better default instruction selection.

All this raises an important question: why do we get such similar
results with very different code generators? Especially, if we con-
sider that GHC’s NCG optimisation pass consists of just branch-
chain elimination and constant folding, whereas LLVM implements
around 60 different optimisation passes. We conjecture that the rea-
son for the similar performance is the Cmm code they all use as in-



LLVM optimiser against O0 (∆%)

O1 O2 O3
-1 s.d. -4.9 -6.7 -6.3
+1 s.d. 3.0 2.1 4.0
Average -1.0 -2.4 -1.3

Table 4. NoFib runtimes of LLVM at different optimisation levels.

mmult laplace fft
#cores 1 8 1 8 1 7
NCG 13.38s 1.68s 4.75s 1.44s 8.88s 2.06s
LLVM 4.64s 0.62s 2.98s 1.15s 8.75s 2.02s
Speed up 2.88 2.71 1.59 1.25 1.01 1.02

Table 5. LLVM versus NCG performance for Repa benchmarks

import qualified Data.Vector.Unboxed as U
main = print $

U.sum $ U.zipWith3 (\x y z -> x * y * z)
(U.enumFromTo 1 (100000000::Int))
(U.enumFromTo 2 (100000001::Int))
(U.enumFromTo 7 (100000008::Int))

Figure 10. Vector Zip3 benchmark

collatzLen :: Int -> Word32 -> Int
collatzLen c 1 = c
collatzLen c n = collatzLen (c+1) $

if n ‘mod‘ 2 == 0 then n ‘div‘ 2 else 3*n+1

pmax x n = x ‘max‘ (collatzLen 1 n, n)

main = print $ foldl pmax (1,1) [2..1000000]

Figure 11. Hailstone benchmark

put: it just isn’t easily optimised. Much of the Cmm code that GHC
produces is essentially memory bound, a side effect of Haskell be-
ing a lazy evaluated language and so there is often very little regis-
ter pressure or choice in the instruction selection, which is why the
NCG is able to perform close to LLVM. Figure 9 contains some
typical Cmm code, illustrating the problem.

To further test our conjecture, we ran the NoFib benchmarks
with the optimisation level of LLVM set to the various supported
default groups: -O0, -O1, -O2 and -O3. The results are in Table 4.

NoFib however doesn’t tell us the full story concerning perfor-
mance, specifically due to the idiomatic Cmm of GHC. This be-
comes, for example, apparent in code using stream fusion [8] and
highly optimised array code, such as that of the parallel array li-
brary Repa [17]. The Cmm code of the compute-intensive, tight in-
ner loops of these libraries generally suffer from high register pres-
sure and can benefit from smart instruction ordering, which leaves
considerable scope for LLVM to optimise performance. The con-
siderable impact that LLVM’s optimisations can have on such code
is quantified in Table 5, where we compare the single-threaded and
multi-threaded performance of NCG and LLVM-generated code for
three Repa benchmarks (see [17] for details on these benchmarks).

We further investigated two simple benchmarks featuring tight
loops: (1) zip3, Figure 10, uses the high-performance vector li-
brary, based on array fusion; and (2) hailstone, Figure 11, relies
on list-fusion from the standard Prelude and unboxed integers. We

NCG and C backend against LLVM backend (∆%)

Metric NCG C Backend
Object File Sizes -12.8 -5.2
Compilation Times -64.8 +35.6

Table 6. NoFib: Object file sizes and compile times

evaluated both benchmarks using the Criterion benchmarking li-
brary [21] and looking at the resulting kernel density estimates.

Figure 12 shows the kernel density estimates for both bench-
marks using the three backends. For zip3, the LLVM backend
comes out clearly in front with a mean runtime of 334ms, the C
backend second with 423ms and the NCG last with a mean of
590ms. The generated Cmm code consists of 3 functions that pro-
duce the three enumerated lists. Each calls a common comparator
function that checks whether the end of the list has been reached.
The LLVM backend aggressively inlines the comparator function,
saving a jump instruction for each of the three list enumerations.
The C backend generates remarkably similar code to the NCG, the
difference simply seems to be in the ordering of some branches and
basic blocks, with the C backend choosing the correct hot path.

For hailstone, we see that the C backend comes out in front
with a mean of 567ms, the LLVM backend second with a mean
of 637ms and the NCG last with a disappointing mean of 2.268s.
The LLVM and C backends perform well for two reasons: (1) they
both perform significantly better instruction selection and (2) they
both inline a large amount of code. The C backend outperforms the
LLVM backend due to slightly better branch ordering.

Table 6 lists the summary of the compile times and object file
sizes for the NoFib suite. Both the NCG and C backend produce
smaller code. This is currently a deficiency of LLVM: it does not
yet optimise for code size. For compile times, the LLVM backend
sits between the NCG and C backend. This is due to LLVM’s
additional optimisation passes, which incur an overhead compared
to the NCG. We saw the considerable benefit of these optimisations
in the runtimes of the Repa, zip3, and hailstone benchmarks.

6.3 LLVM’s type system
An advantage of LLVM is its fairly strong type system and static
checking of compiled code. While it doesn’t approach the level
of sophistication that Haskell programmers are used to, it does
offer a system similar to C’s. All variables and memory locations
are typed, all operations obey strict type rules, and pointers are
carefully distinguished from other types. For example to conduct
pointer arithmetic, a pointer must first be cast to an integer of word
width type for all arithmetic and then cast back to a pointer. We
found this type system very helpful while implementing the LLVM
backend, especially as there is usually little compiler support for
such a low-level task as code generation.

To quantify the benefit of LLVM’s checks, we scanned the
source code revision history for the backend, looking at the bugs
we still had to fix after the backend was able to compile a whole
Haskell program. There were 15 fixes in total, after which the
backend was capable of compiling GHC itself. Of these 15, 10 fixes
were motivated by compile time errors generated by LLVM. Some
of these were obvious bugs that would have also been discovered by
a traditional assembler, but a few were more subtle. They generally
related to pointer handling, such as one bug where we returned
the pointer itself instead of the value it pointed to. For the 5 bugs
that LLVM didn’t pick up, two were related to generating incorrect
function and data labels, one was an incorrectly compiled negate
operation, one an incorrectly compiled label offset operation and
one was due to a bug in the LLVM optimiser.
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e
st

im
a
te

 o
f 

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

0

2.0e-2

4.0e-2

6.0e-2

8.0e-2

330 ms 333 ms 335 ms 338 ms 340 ms 343 ms 345 ms
execution time

Densities of execution times for "zipWith3 (asm)"

e
st

im
a
te

 o
f 

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

0

2.0e-2

4.0e-2

6.0e-2

8.0e-2

0.1

580 ms 590 ms 600 ms 610 ms 620 ms 630 ms
execution time

Densities of execution times for "zipWith3 (c)"
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Densities of execution times for "hailstone (llvm)"
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Figure 12. Runtimes of Hailstone and Zip3 benchmarks

The combination of LLVM’s type system with the SSA form
that requires every operation to be explicit is a significant help
for compiler development. It’s also rewarding to see type systems
being used at such a low level. Although it was originally designed
to enabled more aggressive optimisations, it does increase safety.

7. Related work
There is a large amount of work in the compiler community around
LLVM, including static code generation, just-in-time code genera-
tors, and static analysis tools.

Schie recently added an LLVM backend to the Utrecht Haskell
Compiler3 (UHC), a research Haskell compiler, designed around
the idea of implementing the compiler as a series of compilers [11,
29]. UHC’s usual backend is a C code generator. His work pro-
duced some impressive results, which included a 10% reduction in
the runtime of compiled programs. The UHC LLVM backend how-
ever didn’t reach the stage of being able to handle the full Haskell
language, instead working with a subset of Haskell. The results
with the UHC backend can hardly be compared to our work, as
GHC by default already generates code that is on average 40 times
faster than that of UHC.

Other projects using LLVM include the following:

• Clang: A C, C++ and Objective-C compiler using LLVM as a
backend target [1].

• OpenJDK Project Zero: A version of Sun Microsystems open
source JVM, OpenJDK, which uses zero assembly. LLVM is
used as a replacement for the usual just-in-time compiler [4].

• Pure: A functional programming language based on term
rewriting. Pure uses LLVM as a just-in-time compiler [13].

• Unladen Swallow: Google backed Python virtual machine with
an LLVM based just-in-time compiler [5].

3UHC was previously known as the Essential Haskell Compiler (EHC)

• LDC: A compiler for the D programming language using
LLVM as a backend target [2].

• llvm-lua: A compiler for the Lua programming language using
LLVM as a backend target [3].

• SAFECode: A compiler that takes LLVM bitcode as input and
uses static analysis to produce a memory safe version of the
same program [10].

Using LLVM isn’t the only approach though to provide a rel-
atively portable, easy to target, high performance compiler tar-
get, there are also high-level virtual machines, such as Microsoft’s
Common Language Runtime (CLR) [16], or the Java Virtual Ma-
chine (JVM) [20]. These are in some ways quite similar to LLVM,
they all provide a virtual instruction set that abstracts away the un-
derlying hardware and can be targeted by multiple programming
languages. The functional programming language Clojure [15] for
example targets the JVM with great success. Targeting the JVM or
CLR also has the added benefits of direct access to the high quality
libraries that come with both platforms. There are trade offs though,
using a high level virtual machine means that many of your choices
are made for you. Features such as garbage collection and excep-
tion handling are provided and as such you need to be able to effi-
ciently map your language onto the design of these services, which
may not always be possible, or at least efficient. Neither the CLR or
JVM provide an option of compiling your code to native machine
code, both use interpreters and just-in-time compilation for execu-
tion which generally leads to lower performance. LLVM doesn’t
include these high-level services and enables us to use infrastruc-
ture optimised for Haskell. It also permits us to choose between
static compilation or interpretation with just-in-time compilation.

As well as the work around LLVM, there is also work being
done in GHC around code generation. Ramsey et al. are redesigning
the architecture of GHC’s backend pipeline [25] to improve the
code generated by GHC. A large part of this work is the design of
a dataflow optimisation framework called Hoopl that can be used
to easily compose together distinct passes. While there is some



overlap in the optimisations that can be done with Hoopl and those
implemented by LLVM, this work is mostly complementary to the
LLVM backend as it is intended to replace the current STG to Cmm
code generator with a much more modular design, not just duplicate
optimisations present in LLVM. The end result of the work will be
more efficient Cmm code passed to the LLVM code generator.

8. Conclusion
Our LLVM backend is clearly simpler, conceptually and in terms
of lines of code, than the two previous backends. It effectively
outsources a sophisticated part of GHC’s compilation pipeline and
frees developer resources to concentrate on issues that are more
directly relevant to the Haskell community.

Our quantitative analysis shows that the LLVM backend, al-
ready in its current form, generates code that is on par with GHC’s
native code generator (the more efficient of the two current back-
ends). For tight loops, as generated by the vector package, we even
see a clear performance advantage of our backend.

The biggest disadvantage of the LLVM backend is currently its
comparatively high compilation times with respect to the native
code generator. This is partly to be expected as the LLVM back-
end is performing a lot more optimisation work on the code. We
do expect to be able to improve on the compilation speed though
as currently the LLVM backend interfaces with LLVM by using in-
termediate files and calling the LLVM command line tools, which
wastes time parsing and pretty printing LLVM code. LLVM can
also be used as a shared library, using entirely in-memory repre-
sentations of the LLVM IR. By using this facility, we should be
able to improve compilation speeds significantly.
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